
Structures for Structural Recursion

Paul Downen Philip Johnson-Freyd Zena M. Ariola
University of Oregon, USA

{pdownen,philipjf,ariola}@cs.uoregon.edu

Abstract
Our goal is to develop co-induction from our understanding of
induction, putting them on level ground as equal partners for
reasoning about programs. We investigate several structures which
represent well-founded forms of recursion in programs. These
simple structures encapsulate reasoning by primitive and noetherian
induction principles, and can be composed together to form complex
recursion schemes for programs operating over a wide class of data
and co-data types. At its heart, this study is guided by duality:
each structure for recursion has a dual form, giving perfectly
symmetric pairs of equal and opposite data and co-data types for
representing recursion in programs. Duality is brought out through
a framework presented in sequent style, which inherently includes
control effects that are interpreted logically as classical reasoning
principles. To accommodate the presence of effects, we give a
calculus parameterized by a notion of strategy, which is strongly
normalizing for a wide range of strategies. We also present a more
traditional calculus for representing effect-free functional programs,
but at the cost of losing some of the founding dualities.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Program and recursion schemes

Keywords Recursion; Induction; Coinduction; Duality; Structures;
Classical Logic; Sequent Calculus; Strong Normalization

1. Introduction
Martin-Löf’s type theory [5, 15] taught us that inductive definitions
and reasoning are pervasive throughout proof theory, mathematics,
and computer science. Inductive data types are used in programming
languages like ML and Haskell to represent structures, and in proof
assistants and dependently typed languages like Coq and Agda
to reason about finite structures of arbitrary size. Mendler [17]
showed us how to talk about recursive types and formalize inductive
reasoning over arbitrary data structures. However, the foundation
for the opposite to induction, co-induction, has not fared so well.
Co-induction is a major concept in programming, representing
endless processes, but it is often neglected, misunderstood, or
mistreated. As articulated by McBride [19]:
We are obsessed with foundations partly because we are aware of a
number of significant foundational problems that we’ve got to get

right before we can do anything realistic. The thing I would think
of . . . is coinduction and reasoning about corecursive processes.
That’s currently, in all major implementations of type theory, a
disaster. And if we’re going to talk about real systems, we’ve got
to actually have something sensible to say about that.

The introduction of copatterns for coinduction [3] is a major step
forward in rectifying this situation. Abel et al. emphasize that there
is a dual view to inductive data types, in which the values of types
are defined by how they are used instead of how they are built,
a perspective on co-data types first spurred on by Hagino [12].
Co-inductive co-data types are exciting because they may solve
the existing problems with representing infinite objects in proof
assistants like Coq [2].

The primary thrust of this work is to improve the understanding
and treatment of co-induction, and to integrate both induction
and co-induction into a cohesive whole for representing well-
founded recursive programs. Our main tools for accomplishing
this goal are the pervasive and overt duality and symmetry that runs
through classical logic and the sequent calculus. By developing
a representation of well-founded induction in a language for the
classical sequent calculus, we get an equal and opposite version
of well-founded co-induction “for free.” Thus, the challenges that
arise from using classical sequent calculus as a foundation for
induction are just as well the challenges of co-induction, as the two
are inherently developed simultaneously. Afterward, we translate the
developments of induction and co-induction in the classical sequent
calculus to a λ-calculus based language for effect-free programs,
to better relate to the current practice of type theory and functional
programming. As the λ-based style lacks symmetries present in the
sequent calculus, some of the constructs for recursion are lost in
translation. Unsurprisingly, the cost of an asymmetrical viewpoint
is blindness to the complete picture revealed by duality.

Our philosophy is to emphasize the disentanglement of the
recursion in types from the recursion in programs, to attain a
language rich in both data and co-data while highlighting their
dual symmetries. On the one hand, the Coq viewpoint is that all
recursive types—both inductive and co-inductive—are represented
as data types (positive types in polarized logic [16]), where induction
allows for infinitely deep destruction and co-induction allows for
infinitely deep construction. On the other hand, the copattern
approach [2, 3] represents inductive types as data and co-inductive
types as co-data. In contrast, we take the view that separates the
recursive definition of types from the types used for specifying
recursive processing loops. Thereby, the types for representing the
structure of a recursive process are given first-class status, defined on
their own independently of any other programming construct. This
makes the types more compositional, so that they may be combined
freely in more ways, as they are not confined to certain restrictions
about how they relate to data vs co-data or induction vs co-induction.
More traditional views on the distinction between inductive and
co-inductive programs come from different modes of use for the

same building blocks, emerging from particular compositions of
several (co-)data types.

The primary calculus for recursion that we study corresponds
to a classical logic, so it inherently contains control effects [11]
that allow programs to abstract over their own control-flow—
intuitionistic logic and effect-free functional programs are later
considered as a special case. For that reason, the intended evalu-
ation strategy for a program becomes an essential part of under-
standing its meaning: even terminating programs give different
results for different strategies. For example, the functional program
length(Cons (error “boom”) Nil) returns 1 under call-by-name
(lazy) evaluation, but goes “boom” with an error under call-by-value
(strict) evaluation. Therefore, a calculus that talks about the be-
havior of programs needs to consider the impact of the evaluation
strategy. Again, we disentangle this choice from the calculus itself,
boiling down the distinction as a discipline for substitution. We get
a family of calculi, parameterized by this substitution discipline,
for reasoning about the behavior of programs ultimately executed
with some evaluation strategy. The issue of strong normalization
is then shown uniformly over this family of calculi by specifying
some basic requirements of the chosen discipline.

The bedrock on which we build our structures for recursion is
the connection between logic and programming languages, and the
cornerstone of the design is the duality permeating these program-
ming concepts. Induction and co-induction are clearly dual, and to
better highlight their symmetric opposition we base our language in
the symmetric setting of the sequent calculus. Here, classicality is
not just a feature, but an essential completion of the duality needed
to fully express the connections between recursion and co-recursion.
We consider several different types for representing recursion in pro-
grams based on the mathematical principles of primitive and noethe-
rian recursion which are reflected as pairs of dual data and co-data
types. As we will find, both of these different recursive principles
have different strengths when considered programmatically: primi-
tive recursion allows us to simulate seemingly infinite constructed
objects, like potentially infinite lists in Coq or Haskell, whereas
noetherian recursion admits type-erasure. In essence, we demon-
strate how this parametric sequent calculus can be used as a core
calculus and compilation target for establishing well-foundedness of
recursive programs, via the computational interpretation of common
principles of mathematical induction.

We begin by presenting some basic functional programs, includ-
ing copatterns [3], in a sequent based syntax to illustrate how the
sequent calculus gives a language for programming with structures
and duality (Section 2) in which all types, including functions and
polymorphism, are treated as user-defined data and co-data types
(Section 3). Next, we develop two forms of well-founded recur-
sion in types—based on primitive and noetherian recursion—along
with specific data and co-data types for performing well-founded
recursion in programs (Section 4). These two recursion schemes
are incorporated into the sequent calculus language, and we demon-
strate a rewriting theory that is strongly normalizing for well-typed
programs and supports erasure of computationally irrelevant types
at run-time (Section 5). Finally, we illustrate the natural deduction
counterpart to our sequent calculus language, and show how the
recursive constructs developed for classically effectful programs can
be imported into a language for effect-free functional programming
(Section 6).

2. Programming with Structures and Duality
Pattern-matching is an integral part of functional programming
languages, and is a great boon to their elegance. However, the
traditional language of pattern-matching can be lacking in areas,
especially when we consider dual concepts that arise in all programs.
For example, when defining a function by patterns, we can match

on the structure of the input—the argument given to the function—
but not its output—the observation being made about its result.
In contrast, calculi inspired by the sequent calculus feature a
more symmetric language which both highlights and restores this
missing duality. Indeed, in a setting with such ingrained symmetry,
maintaining dualities is natural. We now consider how concepts
from functional programming translate to a sequent-based language,
and how programs can leverage duality by writing basic functional
programs in this symmetric setting.

Example 1. One of the most basic functional programs is the
function that calculates the length of a list. We can write this length
function in a Haskell- or Agda-like language by pattern-matching
over the structure of the given List a to produce a Nat:

dataNatwhere

Z : Nat

S : Nat→ Nat

data List awhere

Nil : List a

Cons : a→ List a→ List a

length Nil = Z

length (Consx xs) = let y = length xs in S y

This definition of length describes its result for every possible call.
Similarly, we can define length in the µµ̃-calculus1 [8], a language
based on Gentzen’s sequent calculus, in much the same way. First,
we introduce the types in question by data declarations in the sequent
calculus:

dataNatwhere

Z : ` Nat |
S : Nat ` Nat |

data List(a)where

Nil : ` List(a)|
Cons : a, List(a) ` List(a)|

While these declarations give the same information as before, the
differences between these specific data type declarations are largely
stylistic. Instead of describing the constructors in terms of a pre-
defined function type, the shape of the constructors are described
via sequents, replacing function arrows with entailment (`) and
commas for separating multiple inputs. Furthermore, the type of the
main output produced by each constructor is highlighted to the right
of the sequent between entailment and a vertical bar, as in ` Nat |
or ` List(a)|, and all other types describe the parameters that must
be given to the constructor to produce this output. Thus, we can
construct a list as either Nil or Cons(x, xs), much like in functional
languages. Next, we define length by specifying its behavior for
every possible call:

〈length||Nil · α〉 = 〈Z||α〉
〈length||Cons(x, xs) · α〉 = 〈length||xs · µ̃y.〈S(y)||α〉〉

The main difference is that we consider more than just the argument
to length. Instead, we are describing the action of length with
its entire context by showing the behavior of a command, which
connects together a producer and a consumer. For example, in the
command 〈Z||α〉, Z is a term producing zero and α is a co-term—
specifically a co-variable—that consumes that number. Besides
co-variables, we have other co-terms that consume information.
The call-stack Nil · α consumes a function by supplying it with
Nil as its argument and consuming its returned result with α. The
input abstraction µ̃y.〈S(y)||α〉 names its input y before running the
command 〈S(y)||α〉, similarly to the context let y = � in S(y)
from the functional program.

1 Note that symbols µ and µ̃ used here are not related to recursion, but rather
are binders for variables and their dual co-variables in the tradition of [6].

In functional programs, it is common to avoid explicitly naming
the result of a recursive call, especially in such a short program.
Instead, we would more likely define length as:

length Nil = Z

length (Consx xs) = S(length xs)

We can mimic this definition in the sequent calculus as:

〈length||Nil · α〉 = 〈Z||α〉
〈length||Cons(x, xs) · α〉 = 〈S(µβ.〈length||xs · β〉)||α〉

Note that to represent the functional call length xs inside the
successor constructor S, we need to make use of a new kind of
term: the output abstraction µβ.〈length||xs · β〉 names its output
channel β before running the command 〈length||xs · β〉, which
calls length with xs as the argument and β as the return consumer.
In the µµ̃-calculus, output abstractions are exactly dual to input
abstractions, and defining length in µµ̃ requires us to name the
recursive result as either an input or an output. End example 1.

We have seen how to write a recursive function by pattern-
matching on the first argument, x, in a call-stack x · α. However,
why should we be limited to only matching on the structure of
the argument x? If the observations on the returned result must
also follow a particular structure, why can’t we match on α as
well? Indeed, in a dually symmetric language, there is no such
distinction. For example, the function call-stack itself can be viewed
as a structure, so that a curried chain of function applications f x y z
is represented by the pattern x · y · z · α, which reveals the nested
structure down the output side of function application, rather than
the input side. Thus, the sequent calculus reveals a dual way of
thinking about information in programs phrased as co-data, in which
observations follow predictable patterns, and values respond to those
observations by matching on their structure. In such a symmetric
setting, it is only natural to match on any structure appearing in
either inputs or outputs.
Example 2. We can consider this view on co-data to understand
programs with “infinite” objects. For example, infinite streams may
be defined by the primitive projections out of streams:

codataStream(a)where

Head : | Stream(a) ` a
Tail : | Stream(a) ` Stream(a)

Contrarily to data types, the type of the main input consumed by
co-data constructors is highlighted to the left of the sequent in
between a vertical bar and entailment, as in | Stream(a) `. The
rest of the types describe the parameters that must be given to
the constructor in order to properly consume this main input. For
Streams, the observation Head[α] requests the head value of a
stream which should be given to α, and Tail[β] asks for the tail
of the stream which should be given to β.2 We can now define a
function countUp—which turns an x of type Nat into the infinite
stream x,S(x),S(S(x)), . . .—by pattern-matching on the structure
of observations on functions and streams:

〈countUp||x · Head[α]〉 = 〈x||α〉
〈countUp||x · Tail[β]〉 = 〈countUp||S(x) · β〉

If we compare countUp with length in this style, we can see that
there is no fundamental distinction between them: they are both
defined by cases on their possible observations. The only point of

2 We use square brackets as grouping delimiters in observations, like the
head projection Head[α] out of a stream, as opposed to round parentheses
used as grouping delimiters in results, like the successor number S(y). This
helps to disambiguate between results (terms) and observations (co-terms)
in a way that is syntactically apparent independently of their context.

difference is that length happens to match on its input data structure
in its call-stack, whereas countUp matches on its return co-data
structure.

Abel et al. [3] have carried this intuition back into the functional
paradigm. For example, we can still describe streams by their Head
and Tail projections, and define countUp through co-patterns:

codataStream awhere

Head : Stream a→ a

Tail : Stream a→ Stream a

(countUp x).Head = x

(countUp x).Tail = countUp (Sx)

This definition gives the functional program corresponding to the
sequent version of countUp. So we can see that co-patterns arise
naturally, in Curry-Howard isomorphism style, from the computa-
tional interpretation of Gentzen’s sequent calculus.

Since a symmetric language is not biased against pattern-
matching on inputs or outputs, and indeed the two are treated
identically, there is nothing special about matching against both
inputs and outputs simultaneously. For example, we can model infi-
nite streams with possibly missing elements as SkipStream(a) =
Stream(Maybe(a)), where Maybe(a) corresponds to the Haskell
datatype with constructors Nothing and Just(x) for x of type a.
Then we can define the empty skip stream which gives Nothing at
every position, and the countDown function that transforms Sn(Z)
into the stream Sn(Z), Sn−1(Z), . . . ,Z,Nothing, . . . :

〈empty||Head[α]〉 = 〈Nothing||α〉
〈empty||Tail[β]〉 = 〈empty||β〉

〈countDown||x · Head[α]〉 = 〈Just(x)||α〉
〈countDown||Z · Tail[β]〉 = 〈empty||β〉
〈countDown||S(x) · Tail[β]〉 = 〈countDown||x · β〉

End example 2.

Example 3. As opposed to the co-data approach to describing
infinite objects, there is a more widely used approach in lazy
functional languages like Haskell and proof assistants like Coq
that still favors framing information as data. For example, an infinite
list of zeroes is expressed in this functional style by an endless
sequence of Cons:

zeroes = Cons Z zeroes

We could emulate this definition in sequent style as the expansion
of zero when observed by any α:

〈zeroes||α〉 = 〈Cons(Z, zeroes)||α〉
Likewise, we can describe the concatenation of two, possibly

infinite lists in the same way, by pattern-matching on the call:

〈cat||Nil · ys · α〉 = 〈ys||α〉
〈cat||Cons(x, xs) · ys · α〉 = 〈Cons(x, µβ.〈cat||xs · ys · β〉)||α〉

The intention is that, so long as we do not evaluate the sub-
components of Cons eagerly, then α receives a result even if xs
is an infinitely long list like zeroes. End example 3.

3. A Higher-Order Sequent Calculus
Based on our example programs in Section 2, we now flesh out
more formally a higher-order language of the sequent calculus: the
µµ̃-calculus. The full syntax of this language is shown in Figure 1.
The different components of programs in the µµ̃-calculus can be
understood by their relationship between opposing forces of input
and output. A term, v, produces an output, a co-term, e, consumes

c ∈ Command ::= 〈v||e〉
v ∈ Term ::= x || µα.c || K(#»e , #»v) || µ(H[#»x , #»α].c| . . .) e ∈ CoTerm ::= α || µ̃x.c || µ̃[K(#»α , #»x).c| . . .] || H[#»v , #»e]

A,B,C,D ∈ Type ::= a || λa : k.B || A B || F(
#»
A) || G(

#»
A) k, l ∈ Kind ::= ? || k1 → k2

Figure 1. The syntax of the higher-order µµ̃-calculus.

an input, and a command, c, neither produces nor consumes, it just
runs. Thus, we can consider commands to be the computational
unit of the language: when we talk about running a program, it is a
command which does the running, not a term.

To begin, we focus on the core of the µµ̃-calculus, which
includes just the substrate necessary for piping inputs and outputs to
the appropriate places. In particular, we have two different forms of
inputs and outputs: the implicit, unnamed inputs and outputs of terms
and co-terms, and the explicit, named inputs and outputs introduced
by variables (typically written x, y, z) and co-variables (typically
written α, β, γ). Thus, besides variables and co-variables, the core
µµ̃-calculus includes the generic abstractions seen in Section 2,
µα.c and µ̃x.c, which mediate between named and unnamed inputs
and outputs. The output of the term µα.c is namedα in the command
c, and dually the input of the co-term µ̃x.c is named x in c.

Even though the core µµ̃-calculus has not introduced any spe-
cific types yet, we can still consider its type system for ensuring
proper communication between producers and consumers, shown
in Figure 2. The (typed) free variables and co-variables are tracked
in separate contexts, written Γ and ∆ respectively, and the entail-
ment (`) separates inputs on the left from outputs on the right.
Additionally, the context, Θ, for type variables (written a, b, c, d),
being neither input nor output, adorn the turnstyle itself. Since pro-
grams of the µµ̃-calculus are made up of three different forms of
components, the typing rules use three different forms of sequents:
Γ `Θ v : A|∆ states that v is a term producing an output of type
A, Γ|e : A `Θ ∆ states that e is a co-term consuming an input of
type A, and c : (Γ `Θ ∆) states that c is a well-typed command.
The language of types and kinds is just the simply typed λ-calculus
at the type level with ? as the base kind, Θ ` A : k states that A
is a type of kind k, and Θ ` A = B : k states that A and B are
αβη-equivalent types of kind k.

This core language does not include any baked-in types. Instead,
all types are user-defined by a general declaration mechanism for
(co-)data types introduced in [8], similar to the data declaration
mechanisms of functional languages but generalized through duality.
Data declarations introduce new constructed terms as well as a new
case abstraction co-term that performs case analysis to destruct its
input before deciding which branch to take similar to the context
case�of . . . in functional languages. Co-data declarations are
exactly symmetric, introducing new constructed co-terms as well as
a new case abstraction term that performs case analysis on its output
before deciding how to respond.

We already saw some example declarations previously for Nat,
List(a), and Stream(a). As it turns out, all the basic types from
functional programming languages follow the same pattern and can
be declared as user-defined types. For example, pairs are defined as:

data (a : ?)⊗ (b : ?)where

(,) : a, b ` a⊗ b|

which says that building a pair of type a ⊗ b requires the terms v
of type a and v′ of type b, obtaining the constructed pair (v, v′).
Destruction of pairs, expressed by the case abstraction co-term
µ̃[(x, y).c], pattern-matches on its input pair before running the
command c.

Furthermore, we can declare the type for functions as:
codata (a : ?)→ (b : ?)where

· : a|a→ b ` b
This co-data declaration says that building a function call-stack
of type a → b requires a term v of type a and a co-term e of
type b, obtaining the constructed stack v · e. Destruction of call-
stacks, expressed by the case abstraction term µ(x · α.c), pattern-
matches on its output stack before running c. Note that this is an
alternative representation of functions to λ-abstractions in functional
languages, but an equivalent one. Indeed, the two views of functions
are mutually definable:

λx.v = µ(x · α.〈v||α〉) µ(x · α.c) = λx.µα.c

Here, we generalize the declaration mechanism from [8] to
include higher-order types and quantified type variables. The general
forms of (non-recursive) data and co-data declaration in the µµ̃-
calculus are given in Figure 3, and the associated typing rules in
Figure 4. In addition to the rule for determining when the (co-)data
types F(

#»
A) and G(

#»
A) are well-kinded, we also have the left and

right rules for typing (co-)data structures and case abstractions. By
instantiating the (co-)data type constructors at the types

#»
A , we

must substitute
#»
A for all possible occurrences of the parameters

#»a in the declaration. Furthermore, the chosen instances
#»
D for the

quantified type variables
#»

di , which annotate the constructor, must
also be substituted for their occurrences in other types. With this in
mind, the rules for construction (the FRKi and GLHi rules) check
that the sub-(co-)terms and quantified types of a structure have the
expected instantiated types, whereas the rules for deconstruction
(FL and GR) extend the typing contexts with the appropriately
typed (co-)variables and type variables.

This form of (co-)data type declaration lets us express not
only existential quantification—as in Haskell and Coq—but also
universal quantification as well:
data ∃(a : ?→ ?)where

Pack : a b `b:? ∃a|
codata∀(a : ?→ ?)where

Spec : |∀a `b:? a b
Notice that these general patterns give us the expected typing rules:

c : Γ `Θ,b:? α : A b,∆

Γ `Θ µ(Specb:?[α].c) : ∀A|∆
Θ ` B : ? Γ|e : A B `Θ ∆

Γ| SpecB [e] : ∀A `Θ ∆

Θ ` B : ? Γ `Θ v : A B|∆
Γ `Θ PackB(v) : ∃A|∆

c : Γ, x : A b `Θ,b:? ∆

Γ|µ̃[Packb:?(x).c] : ∃A `Θ ∆

Using a recursively-defined case abstraction with deep pattern-
matching, we can now represent length in the µµ̃-calculus:

length = µ(Nil · α.〈Z||α〉
|Cons(x, xs) · α.〈length||xs · µ̃y.〈S(y)||α〉〉)

Furthermore, the deep pattern-matching can be mechanically trans-
lated to the shallow case analysis for (co-)data types:
length = µ(xs · α. 〈xs||µ̃[Nil.〈Z||α〉

|Cons(x, xs′).〈length||xs′ · µ̃y.〈S(y)||α〉〉]〉)
This case abstraction describes exactly the same specification as the
definition for length in Example 1.

Γ, x : A `Θ x : A|∆ V ar
c : (Γ `Θ α : A,∆)

Γ `Θ µα.c : A|∆ Act
c : (Γ, x : A `Θ ∆)

Γ|µ̃x.c : A `Θ ∆
CoAct

Γ|α : A `Θ α : A,∆
CoV ar

Θ ` A = B : ? Γ `Θ v : A|∆
Γ `Θ v : B|∆

Eq
Γ `Θ v : A|∆ Θ ` A : ? Γ|e : A `Θ ∆

〈v||e〉 : (Γ `Θ ∆)
Cut

Θ ` A = B : ? Γ|e : B `Θ ∆

Γ|e : A `Θ ∆
CoEq

Figure 2. The type system for the core higher-order µµ̃-calculus.

dataF(
»

a : k)where

K1 :
»
B1 ` # »

d1:l1
F(#»a)| # »

C1

. . .

Kn :
»
Bn ` # »

dn:ln
F(#»a)| # »

Cn

codataG(
»

a : k)where

H1 :
»
B1 |G(#»a) ` # »

d1:l1

»
C1

. . .

Hn :
»
Bn |G(#»a) ` # »

dn:ln

»
Cn

Figure 3. General form of declarations for user-defined data and co-data.

»

Θ ` A : k

Θ ` F(
#»
A) : ?

c1 : (Γ,
»

x : B1{
»

A/a} `
Θ,

»

d1:l1{
»

A/a} ∆,
»

α : C1{
»

A/a}) . . .

Γ|µ̃[K
»
d1:l1
1 (#»α , #»x).c1| . . .] : F(

#»
A) `Θ ∆

FL

»

Θ ` D : li{
»

A/a}
»

Γ|e : Ci{
»

A/a,
»

D/di} `Θ ∆
»

Γ `Θ v : Bi{
»

A/a,
»

D/di}|∆

Γ `Θ K
#»
D
i (#»e , #»v) : F(

#»
A)|∆

FRKi

»

Θ ` A : k

Θ ` G(
#»
A) : ?

c1 : (Γ, x : B1{
»

A/a} `
Θ,

»

d1:l1{
»

A/a} α : C1{
»

A/a},∆) . . .

Γ `Θ µ(H
»
d1:l1
1 [#»x , #»α].c1| . . .) : G(

#»
A)|∆

GR

»

Θ ` D : li{
»

A/a}
»

Γ `Θ v : Bi{
»

A/a,
»

D/d}|∆
»

Γ|e : Ci{
»

A/a,
»

D/d} `Θ ∆

Γ|H
#»
D
i [#»v , #»e] : G(

#»
A) `Θ ∆

GLHi

Figure 4. Typing rules for non-recursive, user-defined data and co-data types.

In each of the examples in Section 2, we were only concerned
with writing recursive programs, but have not showed that they
always terminate. Termination is especially important for proof
assistants and dependently typed languages, which rely on the
absence of infinite loops for their logical consistency. If we consider
the programs in Examples 1 and 2, then termination appears fairly
straightforward by structural recursion somewhere in a function call:
each recursive invocation of length has a structurally smaller list
for the argument, and each recursive invocation of countUp, and
countDown has a smaller stream projection out of its returned
result. However, formulating this argument in general turns out
to be more complicated. Even worse, the “infinite data structures”
in Example 3 do not have as clear of a concept of “termination:”
zeroes and concatenation could go on forever, if they are not given
a bound to stop. To tackle these issues, we will phrase principles
of well-founded recursion in the µµ̃-calculus, so that we arrive at a
core calculus capable of expressing complex termination arguments
(parametrically to the chosen evaluation strategy) inside the calculus
itself (see Section 5).

4. Well-Founded Recursion
There is one fundamental difficulty in ensuring termination for
programs written in a sequent calculus style: even incredibly simple
programs perform their structural recursion from within some larger

overall structure. For example, consider the humble length function
from Example 1. The decreasing component in the definition of
length is clearly the list argument which gets smaller with each call.
However, in the sequent calculus, the actual recursive invocation of
length is the entire call-stack. This is because the recursive call to
length does not return to its original caller, but to some place new.
When written in a functional style, this information is implicit since
the recursive call to length is not a tail-call, but rather S(length xs).
When written in a sequent style, this extra information becomes an
explicit part of the function call structure, necessary to remember
to increment the output of the function before ultimately returning.
This means that we must carry around enough memory to store our
ever increasing result amidst our ever decreasing recursion.

Establishing termination for sequent calculus therefore requires
a more finely controlled language for specifying “what’s getting
smaller” in a recursive program, pointing out where the decreasing
measure is hidden within recursive invocations. For this purpose, we
adopt a type-based approach to termination checking [1]. Besides
allowing us to abstract over termination-ensuring measures, we can
also specify which parts of a complex type are used as part of the
termination argument. As a consequence for handling simplistic
functions like length, we will find that, for free, the calculus ends
up as a robust language for describing more advanced recursion over
structures, including lexicographic and mutual recursion over both
data and co-data structures simultaneously.

In considering the type-based approach to termination in the
sequent calculus, we identify two different styles for the type-level
measure indices. The first is an exacting notion of index with a
predictable structure matching the natural numbers and which we
use to perform primitive recursion. This style of indexing gives
us a tight control over the size of structures, allowing us to define
types like the fixed-sized vectors of values from dependently typed
languages as well as a direct encoding of “infinite” structures as
found in lazy functional languages. The second is a looser notion
that only tracks the upper bound of indices and which we use to
perform noetherian recursion. This style of indexing is more in
tune with typical structurally recursive programs like length and
also supports full run-time erasure of bounded indices while still
maintaining termination of the index-erased programs.

4.1 Primitive Recursion
We begin with the more basic of the two recursion schemes:
primitive recursion on a single natural number index. These natural
number indices are used in types in two different ways. First, the
indices act as an explicit measure in recursively defined (co-)data
types, tracking the recursive sub-components of their structures in
the types themselves. Second, the indices are abstracted over by
the primitive recursion principle, allowing us to generalize over
arbitrary indices and write looping programs.

Let’s consider some examples of using natural number indices
for the purpose of defining (co-)data types with recursive structures.
We extend the (co-)type declaration mechanism seen previously
with the ability to define new (co-)data types by primitive recursion
over an index, giving a mechanism for describing recursive (co-)data
types with statically tracked measures. Essentially, the constructors
are given in two groups—for the zero and successor cases—and
may only contain recursive sub-components at the (strictly) previous
index. For example, we may describe vectors of exactly N values
of type A, Vec(N,A), as in dependently typed languages:

dataVec(i : Ix, a : ?)by primitive recursion on i
where i = 0 Nil : ` Vec(0, a)|
where i = j + 1 Cons : a,Vec(j, a) ` Vec(j + 1, a)|

where Ix is the kind of type-level natural number indices. Nil builds
an empty vector of type Vec(0, A), and Cons(v, v′) extends the
vector v′ : Vec(N,A) with another element v : A, giving us
a vector with one more element of type Vec(N + 1, A). Other
than these restrictions on the instantiations of i : Ix for vectors
constructed by Nil and Cons, the typing rules for terms of Vec(N,A)
follow the normal pattern for declared data types.3 Destructing
a vector diverges more from the usual pattern of non-recursive
data types. Since the constructors of vector values are put in two
separate groups, we have two separate case abstractions to consider,
depending on whether the vector is empty or not. On the one hand,
to destruct an empty vector, we only have to handle the case for
Nil, as given by the co-term µ̃[Nil.c]. On the other, destructing a
non-empty vector requires us to handle the Cons case, as given by
the co-term µ̃[Cons(x, xs).c]. These co-terms are typed by the two
left rules for Vec—one for both its zero and successor instances:

c : (Γ `Θ ∆)

Γ|µ̃[Nil.c] : Vec(0, A) `Θ ∆
VecL0

c : (Γ, x : A, xs : Vec(M,A) `Θ ∆)

Γ|µ̃[Cons(x, xs).c] : Vec(M + 1, A) `Θ ∆
VecL+1

As a similar example, we can define a less statically constrained
list type by primitive recursion. The IxList indexed data type is just

3 We can have a vector with an abstract index if we don’t yet know what
shape it has, as with the variable x or abstraction µα.c of type Vec(i, A).

like Vec, except that the Nil constructor is available at both the zero
and successor cases:
data IxList(i : Ix, a : ?)by primitive recursion on i
where i = 0 Nil : ` IxList(0, a)|
where i = j + 1 Nil : ` IxList(j + 1, a)|

Cons : a, IxList(j, a) ` IxList(j + 1, a)|
Now, destructing a non-zero IxList(N + 1, A) requires both cases,
as given in the co-term µ̃[Nil.c|Cons(x, xs).c′]. IxList has three
right rules for building terms: for Nil at both 0 and M + 1 and for
Cons. It also has two left rules: one for case abstractions handling
the constructors of the 0 case and another for the M + 1 case.

To write looping programs over these indexed recursive types,
we use a recursion scheme which abstracts over the index occurring
anywhere within an arbitrary type. As the types themselves are
defined by primitive recursion over a natural number, the recursive
structure of programs will also follow the same pattern. The trick
then is to embody the primitive induction principle for proving a
proposition P over natural numbers:

P [0] ∧ (∀j : N.P [j]→ P [j + 1])→ (∀i : N.P [i])

and likewise the refutation of such a statement, as is given by
any specific counter-example—n : N ∧ P [n] → (∀i : N.P [i])—
into logical rules of the sequent calculus.4 By the usual reading
of sequents, proofs come to the right of entailment (` A means
“A is true”), whereas refutations come to the left (A ` means “A
is false”). Because we will have several recursion principles, we
denote this particular one with a type named Inflate, so that the
primitive recursive proposition ∀i : N.P [i] is written as the type
Inflate(λi : Ix.A) with the inference rules:

` A 0 A j `j:Ix A (j + 1)

` Inflate(A)
`M : Ix AM `

Inflate(A) `
We use this translation of primitive induction into logical rules as
the basis for our primitive recursive co-data type. The refutation
of primitive recursion is given as a specific counter-example, so
the co-term is a specific construction. Whereas, proof by primitive
recursion is a process given by cases, the term performs case analysis
over its observations. The canonical counter-example is described
by the co-data type declaration for Inflate:

codata Inflate(a : Ix→ ?)where

Up : | Inflate(a) `j:Ix a j
The general mechanism for co-data automatically generates the
left rule for constructing the counter-example, and a right rule for
extracting the parts of this construction. However, to give a recursive
process for Inflate, we need an additional right rule that gives us
access to the recursive argument by performing case analysis on the
particular index. This scheme for primitive recursion is expressed by
the term µ(Up0:Ix[α].c0|Upj+1:Ix[α](x).c1) which performs case
analysis on type-level indices at run-time, and which can access the
recursive result through the extra variable x in the successor pattern
Upj+1:Ix[α](x). This term has the typing rule:
c0 : (Γ `Θ α : A 0,∆) c1 : (Γ, x : A j `Θ,j:Ix α : A (j + 1),∆)

Γ `Θ µ(Up0:Ix[α].c0|Upj+1:Ix[α](x).c1) : Inflate(A)|∆

Terms of type Inflate i : Ix .A (which is shorthand for the type
Inflate(λi : Ix.A)) describe a process which is able to produce
A{N/i}, for any indexN , by stepwise producingA{0/i},A{1/i},
. . . , A{N/i} and piping the previous output to the recursive input

4 We use the overbar notation, P , to denote that the proposition P is false.
The use of this notation is to emphasize that we are not talking about negation
as a logical connective, but rather the dual to a proof that P is true, which is
a refutation of P demonstrating that it is false.

x of the next step, thus “inflating” the index in the result arbitrarily
high. The index of the particular step being handled is part of the
constructor pattern, so that the recursive case abstraction knows
which branch to take. In contrast, co-terms of type Inflate i : Ix .A
hide the particular index at which they can consume an input, thereby
forcing their input to work for any index.

By just applying duality in the sequent calculus and flipping
everything about the turnstyles, we get the opposite notion of
primitive recursion as a data type. In particular, we get the data
declaration describing a dual type, named Deflate:

dataDelfate(a : Ix→ ?)where

Down : a j `j:Ix Deflate(a)|
The general mechanism for data automatically generates the right
rule for constructing an index-witnessed example case, and a left
rule for extracting the index and value from this structure. Further, as
before we need an additional left rule for performing self-referential
recursion for consuming such a construction:
c1 : (Γ, x : A (j + 1) `Θ,j:Ix α : A j,∆) c0 : (Γ, x : A 0 `Θ ∆)

Γ|µ̃[Down0:Ix(x).c0|Downj+1:Ix(x)[α].c1] : Deflate(A) `Θ ∆

Dual to before, the recursive output sink can be accessed through the
co-variable α in the pattern Downj+1:Ix(x)[α]. The terms of type
Deflate i : Ix .A hide the particular index at which they produce an
output. In contrast, it is now the co-terms of the type Deflate i : Ix .A
which describe a process which is able to consume A{N/i} for
any choice of N in steps by consuming A{N/i}, . . . , A{0/i} and
piping the previous input to the recursive output α of the next step,
thus “deflating” the index in the input down to 0.

4.2 Noetherian Recursion
We now consider the more complex of the two recursion schemes:
noetherian recursion over well-ordered indices. As opposed to
ensuring a decreasing measure by matching on the specific structure
of the index, we will instead quantify over arbitrary indices that are
less than the current one. In other words, the details of what these
indices look like are not important. Instead, they are used as arbitrary
upper bounds in an ever decreasing chain, which stops when we
run out of possible indices below our current one as guaranteed by
the well-foundedness of their ordering. Intuitively, we may jump by
leaps and bounds down the chain, until we run out of places to move.
Qualitatively, this different approach to recursion measures allows us
to abstract parametrically over the index, and generalize so strongly
over the difference in the steps to the point where the particular
chosen index is unknown. Thus, because a process receiving a
bounded index has so little knowledge of what it looks like, the
index cannot influence its action, thereby allowing us to totally erase
bounded indices during run-time.

Now let’s see how to define some types by noetherian recursion
on an ordered index. Unlike primitive recursion, we do not need to
consider the possible cases for the chosen index. Instead, we quantify
over any index which is less than the given one. For example, recall
the recursive definition of the Nat data type from Example 1. We
can be more explicit about tracking the recursive sub-structure of the
constructors by indexing Nat with some ordered type, and ensuring
that each recursive instance of Nat has a smaller index, so that we
may define natural numbers by noetherian recursion over ordered
indices from a new kind called Ord:

dataNat(i : Ord)by noetherian recursion on iwhere

Z : ` Nat(i)|
S : Nat(j) `j<i Nat(i)|

Note that the kind of indices less than i is denoted by < i, and we
write j < i as shorthand for j : (< i). Noetherian recursion in
types is surprisingly more straightforward than primitive recursion,

and more closely follows the established pattern for data type
declarations:

Γ `Θ Z : Nat(N)|∆ NatRZ

Θ `M < N Γ `Θ v : Nat(M)|∆
Γ `Θ SM (v) : Nat(N)|∆

NatR S

Z builds a Nat(N) for any Ord index N , and SM (v) builds an
incremented Nat(N) out of a Nat(M), when M < N . To destruct
a Nat(N), for any index N , we have the one case abstraction that
handles both the Z and S cases:

c0 : (Γ `Θ ∆) c1 : (Γ, x : Nat(j) `Θ,j<N ∆)

Γ|µ̃[Z.c0|Sj<N (x).c1] : Nat(N) `Θ ∆
NatL

Like the case abstraction for tearing down an existentially con-
structed value, the pattern for S introduces the free type variable j
which stands for an arbitrary index less than N .

We can consider some other examples of (co-)data types defined
by noetherian recursion. The definition of finite lists is just an
annotated version of the definition from Example 1:

data List(i : Ord, a : ?)by noetherian recursion on iwhere

Nil : ` List(i, a)|
Cons : a, List(j, a) `j<i List(i, a)|

Furthermore, the infinite streams from Example 2 can also be defined
as a co-data type by noetherian recursion:

codataStream(i :Ord, a :?)by noetherian recursion on iwhere

Head : | Stream(i, a) ` a
Tail : | Stream(i, a) `j<i Stream(j, a)

Recursive co-data types follow the dual pattern as data types, with
finitely built observations and values given by case analysis on their
observations. For Stream(N,A), we can always ask for the Head
of the stream if we have some use for an input of type A, and we
can ask for its tail if we can use an input of type Stream(M,A), for
some smaller index M < N :

Γ|e : A `Θ ∆

Γ|Head[e] : Stream(N,A) `Θ ∆
StreamLHead

Θ `M < N Γ|e : Stream(M,A) `Θ ∆

Γ|TailM [e] : Stream(N,A) `Θ ∆
StreamLTail

Whereas a Stream(N,A) value is given by pattern-matching on
these two possible observations:
c : (Γ `Θ α : A,∆) c′ : (Γ `Θ,j<N β : Stream(j, A),∆)

Γ|µ(Head[α].c|Tailj<N [β].c′) : Stream(N,A) `Θ ∆
StreamR

As before, to write looping programs over recursive types with
bounded indices, we use an appropriate recursion scheme for
abstracting over the type index. The proof principle for noetherian
induction by a well-founded relation < on a set of ordinals O is:

(∀j : O.(∀i < j.P [i])→ P [j])→ (∀i : O.P [i])

which can be made more uniform by introducing an upper-bound to
the quantifier in the conclusion as well as in the hypothesis:

(∀j < n.(∀i < j.P [i])→ P [j])→ (∀i < n.→ P [i])

Likewise, a disproof of this argument is again a witness of a counter-
example within the chosen bound. We can then translate these
principles into inference rules in the sequent calculus, where we
represent this new recursion scheme by a co-data type Ascend:

Ascend(j, A) `j<N A j

` Ascend(N,A)

`M < N AM `
Ascend(N,A) `

Note that we will write Ascend i < N.A as shorthand for the type
Ascend(N,λi : Ord.A). We use a similar reading of these rules as
a basis for noetherian recursion as we did for primitive recursion.
A refutation is still a specific counter-example, so it is represented
as a constructed co-term, whereas a proof is a process so is given
as a term defined by matching on its observation. Thus, we declare
Ascend as a co-data type of the form:

codataAscend(i : Ord, a : Ord→ ?)where

Rise : |Ascend(i, a) `j<i a j
Again, the general mechanism for co-data types tells us how to
construct the counter-example with Rise, and destruct it by simple
case analysis. The recursive form of case analysis is given manually
as the term µ(Risej<N [α](x).c), where x in the pattern is a self-
referential variable standing in for the term itself. The typing rule
for this recursive case analysis restricts access to itself by making
the type of the self-referential variable have a smaller upper bound:

c : (Γ, x : Ascend(j, A) `Θ,j<N α : A j,∆)

Γ `Θ µ(Risej<N [α](x).c) : Ascend(N,A)|∆

In essence, the terms of type Ascend i < N.A describe a process
which is capable of producing A{M/i} for any M < N by leaps
and bounds: an output of type A{M/i} is built up by repeating
the same process whenever it is necessary to ascending to an index
under M . In contrast, and similar to primitive recursion, co-terms
of type Ascend i < N.A hide the chosen index, forcing their input
to work for any index.

As always, the symmetry of sequents points us to the dual
formulation of noetherian recursion in programs. Specifically, we
get the dual data type, named Descend, with the following data
declaration and additional typing rule for recursive case analysis:

dataDescend(i : Ord, a : Ord→ ?)where

Fall : a j `j<i Descend(i, a)|

c : (Γ, x : A j `Θ,j<N α : Descend(j, A),∆)

Γ|µ̃[Fallj<N (x)[α].c] : Descend(N,A) `Θ ∆

Now that the roles are reversed, the terms of Descend i < N.A
hide the chosen index M at which they can produce a result of type
A{M/i}. Instead, the co-terms of Descend i < N.A consuming
A{M/i} for any index M < N : an input of type A{M/i} is
broken down by repeating the same process whenever it is necessary
to descend from an index under M .

5. A Parametric Sequent calculus with Recursion
We now flesh out the rest of the system for recursive types and
structures for representing recursive programs in the sequent cal-
culus. The core rules for kinding and sorting, which accounts for
both forms of type-level indices, are given in Figure 5. The rules
for the inequality of Ord, M < N , are enough to derive expected
facts like ` 4 < 6, but not so strong that they force us to consider
Ord types above∞. Specifically, the requirement that every Ord
has a larger successor, M < M + 1, only when there is an upper
bound already established, M < N , prevents us from introduc-
ing∞ < ∞ + 1. Additionally, we have two sorts of kinds, those
of erasable types, �, and non-erasable types, �. Types (of kind
?) for program-level (co-)values and Ord indices are erasable, be-
cause they cannot influence the behavior of a program, whereas
the Ix indices are used to drive primitive recursion, and cannot be
erased. Thus, this sorting system categorizes the distinction between
erasable and non-erasable type annotations found in programs.

Before admitting a user-defined (co-)data type into the system,
we need to check that its declaration actually denotes a meaningful

type. For the non-recursive (co-)data declarations, like those in
Figure 3, this well-formedness check just confirms that the sequent
associated to each constructor Ki or Hi is well-formed, given
by a derivation of (

»
Bi ` # »

a:k,
»
di:li

»
Ci) seq from Figure 5. When

checking for well-formedness of (co-)data types defined by primitive
induction on i : Ix, as with the general form

dataF(i : Ix,
»

a : k)by primitive recursion on i

where i = 0 K1 :
»
B1 ` # »

d1:l1
F(0, #»a)| # »

C1 . . .

where i = j + 1 K′1 :
»

B′1 ` # »

d′1:l′1
F(j + 1, #»a)|

»

C′1 . . .

the i = 0 case proceeds by checking that the sequents are
well-formed for each constructor K1 . . . without referencing i,
(

»
B1 ` # »

a:k,
»
d1:l1

»
C1) seq , and in the i = j + 1 case we check each

(
»

B′1 `j:Ix, # »
a:k,

»

d′1:l′1

»

C′1) seq with the extra rule

»

Θ, j : Ix,Θ′ ` A : k

Θ, j : Ix,Θ′ ` F(j,
#»
A) : ?

Intuitively, in the i = j + 1 case the sequents for the constructors
may additionally refer to smaller instances F(j,

#»
A) of the type being

defined. If the declaration is well-formed, we add the typing rules
for F similarly to a non-recursive (co-)data type. The difference
is that the constructors for the i = 0 and i = j + 1 case build a
structure of type F(0,

#»
A) and F(M + 1,

#»
A) with M substituted for

j, respectively. Additionally, there are two case abstractions: one
of type F(0,

#»
A) that only handles constructors of the i = 0 case,

and one of type F(M + 1,
#»
A) that only handles constructors of the

i = j + 1 case. Similarly, when checking for well-formedness of
(co-)data types F(i : Ord,

»

a : k) defined by noetherian induction on
i : Ord, we get to assume the type is defined for smaller indices:

Θ, i : Ord,Θ′ `M < i
»

Θ, i : Ord,Θ′ ` A : k

Θ, i : Ord,Θ′ ` F(M,
#»
A) : ?

Intuitively, the sequents for the constructors may refer to F(M,
#»
A),

so long as they introduce quantified type variables
»

d : l such that
»

a : k,
»

d : l `M < i. Other than this, the typing rules for structures
and case statements are exactly the same as for non-recursive
(co-)data types.

We also give the rewriting theory for the µµ̃S -calculus in
Figure 6, which is parameterized by the strategy S. Since the
classical sequent calculus inherently admits control effects, the result
of a program can completely change depending on the strategy—
〈length||Rise2[Cons(µδ.〈13||α〉,Nil), α]〉 results in 〈1||α〉 under
call-by-name evaluation and 〈13||α〉 under call-by-value—so that
the parametric µµ̃S -calculus is actually a family of related but
different rewriting theories for reasoning about different evaluation
strategies, thus enabling strategy-independent reasoning. The choice
of strategy is given as the syntactic notions of value and co-value: S
is the subset of terms V ∈ V alue and E ∈ CoV alue which may
be substituted for (co-)variables. In other words, the strategy refines
the range of significance for (co-)variables by limiting what they
might stand in for, and in this way it resolves the conflict between
both the µ- and µ̃-abstractions [6]. For example, the strategies for
call-by-value and call-by-name evaluation are shown in Figure 8,
and a strategy respresenting call-by-need evaluation is representable
this way as well [8].

The reduction rules are derived from the core theory of substi-
tution in µµ̃S (the top rules of Figure 6), plus rules derived from
generic β and η principles for every (co-)data type. Of note are the
ς rules, first appearing in Wadler’s dual calculus [20], and which we
derive from the βη principles for any (co-)data type [8]. The general
lifting rules for (co-)data types are described by the lifting contexts

Θ ` 0 : Ix
Θ `M : Ix

Θ `M + 1 : Ix Θ ` 0 <∞
Θ `M <∞

Θ `M + 1 <∞
Θ `M < N

Θ `M < M + 1

Θ `M < N Θ ` N < N ′

Θ `M < N ′

a : k /∈ Θ′

Θ, a : k,Θ′ ` a : k

Θ, a : k1 ` B : k2 Θ ` k2 : �

Θ ` λa : k.B : k1 → k2

Θ ` A : k1 → k2 Θ ` B : k1

Θ ` A B : k2

Θ `M < N Θ ` N : Ord

Θ `M : Ord Θ ` ∞ : Ord

Θ ` k : �
Θ ` k : �

Θ ` k1 : � Θ ` k2 : �

Θ ` k1 → k2 : � Θ ` ? : � Θ ` Ix : � Θ ` Ord : �
Θ ` N : Ord

Θ ` (< N) : �

(`) seq

Θ ` A : ? (Γ `Θ ∆) seq

(Γ, x : A `Θ ∆) seq

Θ ` A : ? (Γ `Θ ∆) seq

(Γ `Θ α : A,∆) seq

Θ ` k : � (`Θ) seq

(`Θ,a:k) seq

Figure 5. Kinding, sorting, and well-formed typing sequents.

〈µα.c||E〉 →µE c{E/α} 〈V ||µ̃x.c〉 →µ̃V c{V/x} µα.〈v||α〉 →ηµ v µ̃x.〈x||e〉 →ηµ̃ e

〈K
#»
B (

#»
E,

#»
V)||µ̃[K

»
b:k (#»α , #»x).c| . . .]〉 →βK

S
c{

»

B/b,
»

E/α,
»

V/x} 〈µ(H
»
b:k [#»x , #»α].c| . . .)||H

#»
B [

#»
V ,

#»
E]〉 →βH

S
c{

»

B/b,
»

V/x,
»

E/α}

CK
ς ::= K

#»
B (

#»
E,�, #»e , #»v) || K

#»
B (

#»
E,

#»
V ,�, #»v) CH

ς ::= H
#»
B [

#»
V ,�, #»v , #»e] || H

#»
B [

#»
V ,

#»
E,�, #»e]

CK
ς [v]→ςK

S
µα.〈v||µ̃y.〈CK

ς [y]||α〉〉 CH
ς [v]→ςH

S
µ̃x.〈v||µ̃y.〈x||CH

ς [y]〉〉 where v /∈ V alue

CK
ς [e]→ςK

S
µα.〈µβ.〈CK

ς [β]||α〉||e〉 CH
ς [e]→ςH

S
µ̃x.〈µβ.〈x||CH

ς [β]〉||e〉 where e /∈ CoV alue

Figure 6. Parametric rewriting theory for µµ̃S .

µ(Risej<N [α](x).c)→ µ(Risei<N [α].c{i/j, µ(Risej<i[α](x).c)/x}) µ̃[Fallj<N (x)[α].c]→ µ̃[Falli<N (x).c{i/j, µ̃[Fallj<i(x)[α].c]}]
〈V ||Up0[E]〉 → c0{E/α} 〈V ||UpM+1[E]〉 → 〈µβ.〈V ||UpM [β]〉||µ̃x.c1{M/j,E/α}〉 whereV = µ(Up0[α].c0|Upj+1[α](x).c1)

〈Down0(V)||E〉 → c0{V/x} 〈DownM+1(V)||E〉 → 〈µα.c1{M/j, V/x}||µ̃y.〈DownM (y)||E〉〉 whereE = µ̃[Down0.c0|Downj+1(x)[α].c1]

Figure 7. Rewriting theory for recursion in µµ̃S .

V ∈ V alueV ::= x || K(#»e ,
#»
V) || µ(H

»
b:k [#»x , #»α].c| . . .) V ∈ V alueN ::= v

E ∈ CoV alueV ::= e E ∈ CoV alueN ::= α || µ̃[K
»
b:k (#»α , #»x).c| . . .] || H[#»v ,

#»
E]

Figure 8. The call-by-value (V) and call-by-name (N) strategies.

CK
ς and CH

ς for each (co-)constructor, and their role is to bring work
to the top of a command, so that it can take over.

To implement recursion in the rewriting theory, we use the
additional rules shown in Figure 7. The recursive case abstractions
for Ascend and Descend are simplified by “unrolling” their loop: the
recursive abstraction reduces to a non-recursive one by substituting
itself inward—with a tighter upper bound—for the recursive variable.
Intuitively, this index-unaware loop unrolling is possible because the
actual chosen index doesn’t matter, the loop must do the same thing
each time around regardless of the value of the index. Contrarily,
the Inflate and Deflate recursors operate strictly stepwise: they will
always go from step 10 to 9 and so on to 0. The indices used in the
constructor really do matter, because they can influence the behavior
of the program. This fact forces us to “unroll” the loop while pattern-
matching on structures like UpM+1[E] in tandem, unlike noetherian
recursion where the two steps can be performed independently.

We also have a restriction on reduction, following the motto
“don’t touch unreachable branches,” to ensure strong normaliza-
tion. Reduction may normally occur in all contexts, except for
reduction inside a case abstraction which requires an additional
reachability caveat about the kinds of quantified types introduced
by pattern matching. This restriction prevents unnecessary infinite

unrolling that would otherwise occur in simple commands like
〈length||Risei[α]〉. Intuitively, the reachability caveat prevents re-
duction inside a case abstraction which introduces type variables
that might be impossible to instantiate, like i < 0 or j < i. The
reductions following the reachability caveat are defined as:

c→ c′ b :
»

k →(< N) ∈ Θ =⇒ N =∞∨N = M + 1

µ(HΘ[#»x , #»α].c| . . .)→ µ(HΘ[#»x , #»α].c′| . . .)

c→ c′ b :
»

k →(< N) ∈ Θ =⇒ N =∞∨N = M + 1

µ̃[KΘ(#»α , #»x).c| . . .]→ µ̃[KΘ(#»α , #»x).c′| . . .]

We also define the type erasure operation on programs, Erase(c),
which removes all types from constructors and patterns in c with
an erasable kind, while leaving intact the unerasable Ix types. The
corresponding type-erased µµ̃S -calculus is the same, except that
the reachability caveat is enhanced to never reduce inside case
abstractions. This means that every step of a type-erased command
is justified by the same step in the original command, so that type-
erasure cannot introduce infinite loops.

To demonstrate strong normalization, we use a combination of
techniques. Giving a semantics for types based on Barbanera and

Berardi’s symmetric candidates [4], a variant of Girard’s reducibility
candidates [9], as well as Krivine’s classical realizability [13], an
application of bi-orthogonality, establishes strong normalization of
well-typed commands. Of note, the strong normalization of well-
typed commands is parameterized by a strategy, which is enabled
by the parameterization of the rewriting theory. Thus, instead of
showing strong normalization of these related rewriting theories
one-by-one, we establish strong normalization in one fell swoop
by characterizing the properties of a strategy that are important
for strong normalization. First, the chosen strategy S must be
stable, meaning that (co-)values are closed under reduction and
substitution, and non-(co-)values are closed under substitution and ς
reduction. Second, S must be focalizing, meaning that (co-)variables,
structures built from other (co-)values, and case abstractions must
all be (co-)values. The latter criteria comes from focalization in
logic [7, 16, 21]—each criterion comes from an inference rule for
typing a (co-)value in focus.

Theorem 1. For any stable and focalizing strategy S , if c : Γ `Θ ∆
and (Γ `Θ ∆) seq , then c is strongly normalizing in the µµ̃S -
calculus. Furthermore, Erase(c) is strongly normalizing in the
type-erased µµ̃S -calculus.

Note that the call-by-name, call-by-value, and call-by-need
strategies from [8] are all stable and focalizing, so that as a corollary,
we achieve strong normalization for these particular instances of
the parametric µµ̃S -calculus. Furthermore, the “maximally” non-
deterministic strategy—attained by letting every term be a value and
every co-term be a co-value—is also stable and focalizing, which
gives another account of strong normalization for the symmetric
λ-calculus [14] as a corollary.

5.1 Encoding Recursive Programs via Structures
To see how to encode basic recursive definitions into the sequent
calculus using the primitive and noetherian recursion principles, we
revisit the previous examples from Section 2. We will see how the
intuitive argument for termination can be represented using the type
indices for recursion in various ways.
Example 4. Recall the length function from Example 1, as written
in sequent-style. As we saw, we could internalize the definition for
length into a recursively-defined case abstraction that describes
each possible behavior. Using the noetherian recursion principle in
the µµ̃S -calculus, we can give a more precise and non-recursive
definition for length:

length : ∀a : ?.Ascend i <∞. List(i, a)→ Nat(i)

length = µ(Speca[Risei<∞[Nil · γ](r)].〈Z||γ〉
|Speca[Risei<∞[Consj<i(x, xs) · γ](r)].

〈r||Risej [xs · µ̃y.〈Sj(y)||γ〉]〉)
The difference is that the polymorphic nature of the length function
is made explicit in System F-style, and the recursion part of the
function has been made internal through the Ascend co-data type.
Going further, we may unravel the deep patterns into shallow case
analysis, giving annotations on the introduction of every co-variable:
length = µ(Speca[αAscend i<∞. List(i,a)→Nat(i)].

〈µ(Risei<∞[βList(i,a)→Nat(i)](rAscend j<i. List(j,a)→Nat(j)).

〈µ([xsList(i,a) · γNat(i)]. 〈xs|
|µ̃[Nil.〈Z||γ〉

|Consj<i(xa, ysList(j,a)).〈r||Risej [ys·µ̃yNat(j).〈Sj(y)||γ〉]〉]〉)|
|β〉)|
|α〉)

Although quite verbose, this definition spells out all the information
we need to verify that length is well-typed and well-founded:
no guessing required. Furthermore, this core definition of length

is entirely in terms of shallow case analysis, making reduction
straightforward to implement. Since the correctness of programs
is ensured for this core form, which can be elaborated from the
deep pattern-matching definition mechanically, we will favor the
more concise pattern-matching forms for simplicity in the remaining
examples. End example 4.
Example 5. Recall the countUp function from Example 2. When
we attempt to encode this function into the µµ̃S -calculus, we
run into a new problem: the indices for the given number and
the resulting stream do not line up since one grows while the
other shrinks. To get around this issue, we mask the index of the
given natural number using the dual form of noetherian recursion,
and say that ANat = Descend i < ∞.Nat(i). We can then
describe countUp as a function from ANat to a Stream(i,ANat)
by noetherian recursion on i:

countUp : Ascend i <∞.ANat→ Stream(i,ANat)

countUp = µ(Risei<∞[x · Head[α]](r).〈x||α〉
|Risei<∞[Fallj<i(x) · Tailk<i[β]](r).

〈r||Risek[Fallj+1(Sj(x)) · β]〉)
End example 5.

Example 6. The previous example shows how infinite streams
may be modeled by co-data. However, recall the other approach to
infinite objects mentioned in Example 3. Unfortunately, an infinitely
constructed list like zeroes would be impossible to define in terms
of noetherian recursion: in order to use the recursive argument, we
need to come up with an index smaller than the one we are given,
but since lists are a data type their observations are inscrutable and
we have no place to look for one. As it turns out, though, primitive
recursion is set up in such a way that we can make headway. Defining
infinite lists to be InfList(a) = Inflate i : Ix . IxList(i, a), we can
encode zeroes as:

zeroes : InfList(Nat(0))

zeroes = µ(Up0[αIxList(0,Nat)].〈Nil||α〉
|Upi+1[αIxList(i+1,Nat)](rIxList(i,Nat)).〈Cons(Z, r)||α〉)

Even more, we can define the concatenation of infinitely constructed
lists in terms of primitive recursion as well. We give a wrapper, cat,
that matches the indices of the incoming and outgoing list structure,
and a worker, cat′, that performs the actual recursion:

cat : ∀a : ?. InfList(a)→ InfList(a)→ InfList(a)

cat = 〈µ(Speca[xs · ys · Upi[α]].

〈xs||Upi[µ̃zs.〈cat′||Upi[zs · ys · α]〉]〉)

cat′ : ∀a : ?. Inflate i : Ix . IxList(i, a)→ InfList(a)→ IxList(i, a)

cat′ = µ(Speca[Up0[Nil · ys · α]].〈Nil||α〉
|Speca[Upi+1[Nil · ys · α](r)].〈ys||Upi+1[α]〉
|Speca[Upi+1[Cons(x, xs) · ys · α](r)].

〈Cons(x, µβ.〈r||xs · ys · β〉)||α〉)

If we would like to stick with the “finite objects are data, infinite
objects are co-data” mantra, we can write a similar concatenation
function over possibly terminating streams:

codataStopStream(i <∞, a : ?)where

Head : |StopStream(i, a) ` a
Tail : |StopStream(i, a) `j<i 1, StopStream(j, a)

A StopStream(i, a) object is like a Stream(i, a) object except that
asking for its Tail might fail and return the unit value instead, so it
represents an infinite or finite stream of one or more values. This
co-data type makes essential use of multiple conclusions, which

are only available in a language for classical logic. We can now
write a general recursive definition of concatenation in terms of the
StopStream co-data type:
〈cat||xs · ys · Head[α]〉 = 〈xs||Head[α]〉
〈cat||xs · ys · Tail[δ, β]〉 = 〈cat||µγ.〈xs||Tail[µ̃[().〈ys||β〉], γ]〉 · ys · β〉
This function encodes into a similar pair of worker-wrapper values,
where now a possibly infinite list is represented as a terminating
stream InfList(a) = Ascend i <∞. StopStream(i, a):
cat′ : ∀a : ?.Ascend i <∞.

StopStream(i, a)→ InfList(a)→ StopStream(i, a)

cat′ = µ(Speca[Risei<∞[xs · ys · Head[α]](r)].〈xs||α〉
|Speca[Risei<∞[xs · ys · Tailj<i[δ, β]](r)].

〈r||Risej [µγ.〈xs||Tailj [µ̃[().〈ys||Risej [β]〉], γ]〉 · ys · β]〉)

End example 6.
Intermezzo 1. It is worth pointing out why our encoding for “infinite”
data structures, like zeroes, avoids the problem underlying the
lack of subject reduction for co-induction in Coq [18]. Intuitively,
the root of the problem is that Coq’s co-inductive objects are non-
extensional, since the interaction between case analysis and the
co-fixpoint operator effectively allows these objects to notice if they
are being discriminated or not. In contrast, we take the extensional
view that the presence or absence of case analysis, in all of its
various forms, is unobservable. To ensure strong normalization,
the basic observation is instead a specific message that advertises
to the object exactly how deep it would like to go, thus restoring
extensionality and putting a limit on unfolding. End intermezzo 1.
Example 7. We now consider an example with a more complex
recursive argument that makes non-trivial use of lexicographic
induction. The Ackermann function can be written as:

〈ack||Z · y · α〉 = 〈S(y)||α〉
〈ack||S(x) · Z · α〉 = 〈ack||x · S(Z) · α〉
〈ack||S(x) · S(y) · α〉 = 〈ack||S(x) · y · µ̃z.〈ack||x · z · α〉〉

The fact that this function terminates follows by lexicographic
induction on both arguments: to every recursive call of ack, either
the first number decreases, or the first number stays the same and
the second number decreases. This argument can be encoded into
the basic noetherian recursion principle we already have by nesting
it twice:
ack : Ascend i <∞.Ascend j <∞.Nat(i)→ Nat(j)→ ANat

ack = µ(Risei<∞[Risej<∞[Z · y · α](r2)](r1).〈Fallj+1(Sj(y))||α〉

|Risei<∞[Risej<∞[Si
′<i(x) · Z · α](r2)](r1).

〈r1||Risei
′
[Rise1[x · S0(Z) · α]]〉

|Risei<∞[Risej<∞[Si
′<i(x) · Sj

′<j(y) · α](r2)](r1).

〈r2||Risej
′
[Si

′
(x) · y · µ̃[Fallk<∞(z).

〈r1||Risei
′
[Risek[x · z · α]]〉]]〉)

Essentially, we get two recursive arguments from nesting Ascend:

r1 : Ascend i′ < i.Ascend j <∞.Nat(i′)→ Nat(j)→ ANat

r2 : Ascend j′ < j.Nat(i)→ Nat(j′)→ ANat

The first recursive path r1 can be taken whenever the first argument
is smaller, in which case the second argument is arbitrary. The
second recursive path r2 can be taken whenever the second argument
is smaller and the first argument has the same index (the i in the
type of r2 matches the index of the original first argument to ack).
Again, we find that the dual form noetherian recursion, Descend, is
useful for masking the index of the output from ack. Furthermore, it
is interesting to note that in the third case of ack, we must explicitly
destruct the Descend-ed result from ack before performing the

second recursive call. In practical terms, this forces the nested
recursive call of the Ackermann function to be strict, even in a
lazy language. End example 7.

6. Natural Deduction and Effect-Free Programs
So far, we have looked at a calculus for representing recursion via
structures in sequent style, which corresponds to a classical logic
and thus includes control effects [11]. Let’s now briefly shift focus,
and see how the intuition we gained from the sequent calculus
can be reflected back into a more traditional core calculus for
expressing functional-style recursion. The goal here is to see how the
recursive principles we have developed in the sequent setting can be
incorporated into a λ-calculus based language: using the traditional
connection between natural deduction and the sequent calculus,
we show how to translate our primitive and noetherian recursive
types and programs into natural deduction style. In essence, we will
consider a functional calculus based on an effect-free subset of the
µµ̃S -calculus corresponding to minimal logic.

Essentially, the minimal restriction of the µµ̃S -calculus for
representing effect-free functional programs follows a single mantra,
based on the connection between classical and minimal logics:
there is always exactly one conclusion. In the type system, this
means that the sequent for typing terms has the more restricted
form Γ `Θ v : A, where the active type on the right is no longer
ambiguous and does not need to be distinguished with |, as is more
traditional for functional languages. Notice that this limitation on the
form of sequents impacts which type constructors we can express.
For example, common sums and products, declared as

data a⊕ bwhere

Left : a ` a⊕ b|
Right : b ` a⊕ b|

codata a& bwhere

Fst : |a& b ` a
Snd : |a& b ` b

fit into this restricted typing discipline, because each of their
(co-)constructors only ever involves one type to the right of en-
tailment. However, the (co-)data types for representing more exotic
connectives like subtraction and linear logic’s par

data a− bwhere

Pause : a ` a− b|b
codata a` bwhere

Split : |a` b ` a, b
do not fit, because they require placing two types to the right
of entailment. In sequent style, this means these minimal data
types can never contain a co-value, and minimal co-data types
must always involve exactly one co-value for returning the unique
result. In functional style, the data types are exactly the algebraic
data types used in functional languages, with the corresponding
constructors and case expressions, and the co-data types can be
thought of as merging functions with records into a notion of abstract
“objects” which compute and return a value when observed. For
example, to observe a value of type a& b, we could access the first
component as a record field, v.Fst, and we describe an object of
this type by saying how it responds to all possible observations,
{Fst⇒ v1| Snd⇒ v2}, with the typing rules:

Γ ` v1 : A Γ ` v2 : B

Γ ` {Fst⇒ v1| Snd⇒ v2} : A&B
Γ ` v : A&B
Γ ` v.Fst : A

Γ ` v : A&B
Γ ` v.Snd : B

Likewise, the traditional λ-abstractions and type abstractions from
System F can be expressed by objects of these form. Specifically,
since they are user-definable, minimal co-data types with one
constructor, Call : a|a → b ` b and Spec : |∀a `b:? a b, the
abstractions can be given as syntactic sugar:

λxA.v = {Call[xA]⇒ v} Λb?.v = {Specb:? ⇒ v}
Thus, these objects also serve as “generalized λ-abstractions” [2]
defined by shallow case analysis rather than deep pattern-matching.

The typing rules for recursive structures translated to functional
style are shown in Figure 9, and the reduction rules for the calculus

Γ `Θ v0 : A{0/i} Γ, x : A{j/i} `Θ,j:Ix v1 : A{j + 1/i}

Γ `Θ {Up0 ⇒ v0|Upj+1(x)⇒ v1} : Inflate i : Ix .A

Γ `Θ v : Inflate i : Ix .A Θ `M : Ix

Γ `Θ v.UpM : A{M/i}

Γ `Θ v : A{M/i} Θ `M : Ix

Γ `Θ DownM (v) : Deflate i : Ix .A

Γ `Θ v : Deflate i : Ix .A Γ, x : A{0/i} `Θ v0 : C Γ, x : A{j + 1/i} `Θ,j:Ix v1 : A{j/i}

Γ `Θ loop v of Down0(x)⇒ v0|Downj+1(x)⇒ v1 : C

Γ, x : Ascend i < j.A `Θ,j<N v : A{j/i}

Γ `Θ {Risej<N (x)⇒ v} : Ascend i < N.A

Γ `Θ,j<N v : A{j/i}

Γ `Θ {Risej<N ⇒ v} : Ascend i < N.A

Γ `Θ v : Ascend i < N.A Θ `M < N

Γ `Θ v.RiseM : A{M/i}

Figure 9. Typing primitive and noetherian recursion in natural deduction style.

{H
»
b:k [#»x]⇒ v′| . . .}.H

#»
B [#»v]→ v′{

»

B/b,
»

v/x} case K
#»
B (#»v)of K

»
b:k (#»x)⇒ v′| . . .→ v′{

»

B/b,
»

v/x}

{Risej<N (x)⇒ v} → {Risei<N ⇒ v{i/j, {Risej<i(x)⇒ v}/x}}

{Up0 ⇒ v0|Upj+1(x)⇒ v1}.Up0 → v0 {Up0 ⇒ v0|Upj+1(x)⇒ v1}.UpM+1 → v1{M/j, {Up0 ⇒ v0|Upj+1(x)⇒ v1}.UpM/x}

loop Down0(v)of Down0(x)⇒ v0|Downj+1(x)⇒ v1 → v0{v/x}

loop DownM+1(v)of Down0(x)⇒ v0|Downj+1(x)⇒ v1 → loop DownM (v1{M/j, v/x})of Down0(x)⇒ v0|Downj+1(x)⇒ v1

Figure 10. Reduction rules for a natural deduction language with (co-)data types and recursion.

x[= x (K
#»
B (#»v))[= K

#»
B (

#»

v[) (case v of K
»
b:k (#»x)⇒ v′| . . .)[= µα.〈v[||µ̃[K

»
b:k (#»x).〈v′[||α〉| . . .]〉

(v′.H
#»
B [#»v])[= µα.〈v′[||H

#»
B [

#»

v[, α]〉 {H
»
b:k [#»x]⇒ v| . . .}

[
= µ(H

»
b:k [#»x , α].〈v[||α〉| . . .) {Risej<N (x)⇒ v}[= µ(Risej<N [α](x).〈v[||α〉)

{Up0 ⇒ v0|Upj+1(x)⇒ v1}
[

= µ(Up0[α].〈v[||α〉|Upj+1[α](x).〈v[||α〉)

(loop v of Down0(x)⇒ v0|Downj+1(x)⇒ v1)[= µα.〈v[||µ̃[Down0(x).〈v[0||α〉|Downj+1(x)[α].〈v[1||α〉]〉

Figure 11. Type-preserving translation from a pure, natural deduction language to µµ̃S .

are shown in Figure 10. Intuitively, the objects of Inflate(A) are
stepwise loops that can return any A N by counting up from
0 and using the previous instances of itself, while we can write
looping case expressions over values of Deflate(A) to count down
from any A N to 0. Similarly, values of Ascend(N,A) are self-
referential objects that always behave the same no matter the number
of recursive invocations. Curiously though, the recursive forms
for Descend(N,A) are conspicuously missing from the functional
calculus. In essence, the recursive form for Descend(N,A) is a case
expression that introduces a continuation variable for the recursive
path out of the expression in addition to the normal return path,
effectively requiring a form of subtraction typeC−Descend(M,A)
for smaller indices M . So while Descend can still be used to hide
indices, its recursive nature lies outside the pure functional paradigm.
This follows the frequent situation where one of four classical
principles gets lost in translation to intuitionistic or minimal settings.
It occurs with De Morgan laws (¬(A ∧B)→ (¬A) ∨ (¬B) is not
intuitionistically valid), the conjunctive and disjunctive connectives
of linear logic (` requires multiple conclusions so it does not fit the
minimal mold), and here as well.

Intuitively, we can think of the values of Inflate(A) as a depen-
dently typed version of the recursion operator for natural numbers
in Gödel’s System T [10]. Indeed, we can encode such an operator:

rec : ∀a : Ix→ ?.

a 0→ (Inflate i : Ix .a i→ a (i+ 1))→ Inflate i : Ix .a i

rec = λa x f.{Up0:Ix ⇒ x|Upj+1:Ix(r)⇒ f.Upj r}

So essentially, we are using the natural number index to drive the
recursion upward to compute some value, where the type of that

returned value can depend on the number of steps in the chosen
index. In a call-by-name setting, where we choose a maximal set
of values so that V can be any term, then the behavior of rec
implements the recursor: given that rec a x f →→ reca,x,f we have

reca,x,f .Up0 → x reca,x,f .UpM+1 → f.UpM (reca,x,f .UpM)

Contraposed, Deflate(A) implements a dependently-typed, step-
wise recursion going the other way. The looping form breaks down
a value depending on an arbitrary index N until that index reaches
0, finally returning some value which does not depend on the in-
dex. For instance, we can sum the values in any vector of numbers,
v : Vec(N,ANat), in accumulator style by looping over the recur-
sive structure Descend i : Ix .ANat⊗Vec(i,ANat):5

loop DownN (Fall0(Z), v)of

Down0(acc,Nil)⇒ acc

|Downi+1(acc,Cons(x, xs))⇒ (x+ acc, xs)

Instead, values of Ascend are useful for representing stronger
induction that recurses on deeply nested sub-structures. For example,
we can convert a list x1, x2, . . . , xn into a list of its adjacency pairs
(x1, x2), (x3, x4), . . . , (xn−1, xn) by

pairs Nil = Nil

pairs Cons(x, ys) = Nil

pairs Cons(x,Cons(y, zs)) = Cons((x, y), pairs zs)

5 Note, we assume an addition operator + : ANat→ ANat→ ANat.

where we silently drop the final element if the list is odd. The pairs
function can be straightforwardly encoded using Ascend as:
pairs : ∀a : ?.Ascend i <∞. List(i, a)→ List(i, a⊗ a)

pairs = λa?.{Risei<∞(r)⇒ λxList(i,a). casexsof

Nil⇒ Nil

Consj<i(xa, ysList(j,a))⇒ case ysof

Nil⇒ Nil

Consk<j(ya, zsList(k,a))⇒ Consk((x, y), r.Risekzs)}

Note that the type of the recursive argument r is Ascend i′ <
i. List(i′, a)→ List(i′, a⊗ a). Thus, the recursive self-invocation
r.Risek : List(k, a)→ List(k, a⊗ a) is well-typed, since we learn
that j < i and k < j by analyzing the Cons structure of the list and
learn that k < i by transitivity.

Finally, note that we can translate this functional calculus into
the minimal subset of the µµ̃S -calculus, as shown in Figure 11. This
translation is type-preserving, and each of the source reductions
maps to at least one reduction in the call-by-name instance of
µµ̃S [8], µµ̃N , where the set of values is as large as possible and
includes every term. So, because the µµ̃N -calculus does not allow
for well-typed infinite loops, neither does its functional counterpart.

Theorem 2. If Γ `Θ v : A and (Γ `Θ α : A) seq are derivable
then v is strongly normalizing.

7. Conclusion
Co-induction need not be a second-class citizen compared to in-
duction in programming languages. Dedication to duality provides
the key for unlocking co-recursion from recursion as its equal and
opposite force. We are able to freely mix inductive and co-inductive
styles of programming along with computational effects (specifi-
cally, classical control effects) without losing properties like strong
normalization or extensional reasoning. Additionally, we show how
the lessons we learn can be translated back to the more familiar
ground of effect-free functional programming, although its inher-
ent lack of duality causes some symmetries of recursion schemes
to be lost in translation. We can write pure functional programs
with mixed induction and co-induction, but the asymmetry of the
paradigm blocks the full expression of certain recursion principles.

In order to ensure that recursion is well-founded, we use type-
level indices indicating the size of types as a tool. This is a pragmatic
choice: the nature of computation in the sequent calculus makes
it essential to track size arguments for well-foundedness “inside”
larger structures. Allowing size information to flow into structures
is a natural consequence of the co-data presentation of functions.
Implementations of type theory typically check the arguments to
a recursive function definition, but since functions are just another
user-defined co-data structure containing these arguments, there is
no inherent reason to limit this functionality to function types alone.

We have shown how both recursion and co-recursion in programs
can be drawn from the mathematical principles of primitive and
noetherian induction, and codified as programming structures for
representing recursive processes. The style of primitive recursion
with computationally sensitive type-level indices can be mixed with
noetherian recursion that use computationally-irrelevant indices. We
see that the primitive and noetherian recursion principles, which are
generally distinct mathematically, are also distinct computationally
and have different uses. The general (co-)data mechanism helped
us to understand these principles for recursion in programs, but
the recursors were generated by hand. Can we find the general
mechanism that encompasses recursion in programs, in the same
way that we have encompassed recursion in (co-)data types?

A clear subject for future study is to enrich the existing depen-
dencies in types to be closer to full-spectrum dependent types. We

find that a modest amount of dependency in primitive recursion, in
the form of numeric type indices admitting case analysis, helps us
encode programs over Haskell-style infinite lists. Further exploring
the nature of this dependency may show how to adapt this theory to
be applicable to the use in proof assistants with dependent types. We
also saw how the duality of classical logic is useful in the study of re-
cursion. Can this classicality be rectified with more complex notions
of dependency, so that dependent types can be given a computational
view of classical reasoning principles?

Acknowledgments
We would like to thank the anonymous reviewers for their helpful
feedback on improving this paper. Paul Downen and Zena M. Ariola
have been supported by NSF grant CCF-1423617.

References
[1] A. Abel. A Polymorphic Lambda Calculus with Sized Higher-Order

Types. Ph.D. thesis, Ludwig-Maximilians-Universität München, 2006.

[2] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a
unified approach to termination and productivity. In ICFP, 2013.

[3] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: pro-
gramming infinite structures by observations. In POPL, 2013.

[4] F. Barbanera and S. Berardi. A symmetric lambda calculus for
"classical" program extraction. In TACS ’94, pages 495–515, 1994.

[5] T. Coquand and P. Dybjer. Inductive definitions and type theory an
introduction. In FSTTCS, volume 880 of LNCS, 1994.

[6] P.-L. Curien and H. Herbelin. The duality of computation. In
International Conference on Functional Programming, pages 233–243,
2000.

[7] P.-L. Curien and G. Munch-Maccagnoni. The duality of computation
under focus. Theoretical Computer Science, pages 165–181, 2010.

[8] P. Downen and Z. M. Ariola. The duality of construction. In European
Symposium on Programming, 2014.

[9] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge
University Press, 1989.

[10] K. Gödel. On a hitherto unexploited extension of the finitary standpoint.
Journal of Philosophical Logic, 9(2):133–142, 1980.

[11] T. Griffin. A formulae-as-types notion of control. In POPL, pages
47–58, 1990.

[12] T. Hagino. A typed lambda calculus with categorical type constructors.
In Category Theory and Computer Science, 1987.

[13] J.-L. Krivine. Realizability in classical logic. In Interactive models
of computation and program behaviour, volume 27, pages 197–229.
Société Mathématique de France, 2009.

[14] S. Lengrand and A. Miquel. Classical Fω, orthogonality and symmetric
candidates. Annals of Pure and Applied Logic, 153(1):3–20, 2008.

[15] P. Martin-Löf. A theory of types. Technical Report 71-3, University of
Stockholm, 1971.

[16] G. Munch-Maccagnoni. Focalisation and classical realisability. In
Computer Science Logic, pages 409–423. Springer, 2009.

[17] P. M. Nax. Inductive Definition in Type Theory. Ph.D. thesis, Cornell
University, 1988.

[18] N. Oury. Coinductive types and type preservation. Message on the
Coq-club mailing list, June 2008.

[19] S. Singh, S. P. Jones, U. Norell, F. Pottier, E. Meijer, and C. McBride.
Sexy types—are we done yet? Software Summit, Apr. 2011.

[20] P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of
ICFP, pages 189–201. ACM, 2003.

[21] N. Zeilberger. On the unity of duality. Annals of Pure Applied Logic,
153(1-3):66–96, 2008.

	Introduction
	Programming with Structures and Duality
	A Higher-Order Sequent Calculus
	Well-Founded Recursion
	Primitive Recursion
	Noetherian Recursion

	A Parametric Sequent calculus with Recursion
	Encoding Recursive Programs via Structures

	Natural Deduction and Effect-Free Programs
	Conclusion

