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Abstract

Administrative reductions are extra steps introduced by pro-
gram transformations, usually as a form of bookkeeping new
information needed by the transformation. While this can
keep transformations themselves simple and small, they have
the unfortunate effect of making the programs they produce
more costly in terms of run-time resources and—worse still—
cognitive resources used by humans trying to read and debug
their code. This paper introduces a general-purpose tech-
nique for eliminating administrative expressions in macros
using localized rewriting rules. The result is a system of
writing and rewriting compositional macros (both in the
sense that the macros are defined as compositional func-
tions, and that several different macros can be combined
without administrative reductions) that can be extended by
the programmer with new functionality.
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1 Introduction

Many program transformations are plagued by administra-
tive reductions: additional bookkeeping steps that are left
over in the new code produced by the transformation, but
were not present in the original program. For example, con-
sider how one might convert the application (f (g x)) into a
standard continuation-passing style (CPS), which introduces
an additional parameter representing the evaluation context
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as a function that gets passed to every call. Manually unfold-
ing the transformation [ f (f x)]] by hand, an experienced
CPS expert might produce the following code:

[f (gx)] =2k.gx (Ay. fy k)

The transformed code elucidates the following details of
program execution:

o The new parameter k represents the evaluation context
of the whole expression.

e The inner call g x happens first, and its previously
anonymous result is now given an explicit name (y) in
the following continuation.

o After g x returns a value y—i.e., passes a value to its
continuation (Ay...)—the next call is to f y.

e The return value of f y—i.e, the value f y passes to
k—is the final value returned by the whole expression.

This example of CPS-transformed code for (f (g x)) is as
simplified as possible. Formally speaking, it is a normal form:
no possible reductions (i.e., § reductions in the A-calculus)
can apply without inlining definitions for functions f or g.
However, it was produced by a human with the goal of avoid-
ing any unnecessary steps. Most definitions of CPS transfor-
mations will not reach this form right away because they are
defined compositionally: each construct of the programming
language (e.g., application, function abstraction, etc.) is al-
ways handled in the same way no matter the sub-expressions
they are made of. This forces a “worst-case scenario” attitude
in the transformation process that is often unnecessary. For
this example, a typical compositional CPS transformation
would begin like so:

Lf (901 =k (K" k" ) (Af"- [g x] (Ay. f* y k)

The first function expression (f) might perform some com-
putational steps, so it is given a continuation (Af’. ...)
explaining what to do when it is done. However, f is al-
ready done, and so the translation of f immediately passes
it to that continuation as [ f] = Ak’. kK’ f. This application
(AK’. ...) (Af’. ...) is an administrative reduction, and is
undesirable for several reasons. First, it represents an ex-
tra step at run-time (or at best optimized by a sufficiently
advanced implementation). Perhaps worse, administrative
steps quickly build up in even modest examples to make the
transformed code significantly larger and more difficult to
understand.
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Administrative reductions are bad enough in theory, but
worse in practice, such as in macro expansions in a lan-
guage like Scheme or Racket. When developing a new macro
transformation, the ability to expand and read the code is
a vital asset for debugging, and a pile-up of administrative
reductions can make this task nearly impossible. An abstract
setting like the A-calculus affords us the ability to hand wave
the problem away by marking some As introduced by a trans-
formation as administrative and then rewriting the term into
the normal form where they are eliminated if possible [15].
However, if we were to write the same transformation as a
Scheme macro, there is no general “reduce only these lamb-
das and ignore others” procedure available out of the box
during macro expansion. Alternatively, we take efforts to
avoid introducing them in the first place during the transla-
tion process [5]. However, this makes for monolithic macros
that are difficult to change or extend with new features, some
of which might be defined by the programmer.

This paper is about a general technique for developing
Scheme-like macros that are compositional, avoid adminis-
trative reductions, and are free from the above compromises.
The key idea is that there is a brief moment in time dur-
ing macro expansion—right before the final form is set into
stone—that administrative reductions become visible and can
be rewritten away. Inserting rewriting rules in just that mo-
ment can turn an otherwise administrative-full transforma-
tion into an administrative-free one without compromising
the rest of the code. This can be used to combine the results
from several independent transformations without having
to fuse them together into a big monolithic macro. Better
yet, because all that rewriting logic is localized into certain
key places, it can be exposed as an API that the programmer
can add new rewriting rules to incorporate their own code
into the administrative-reduction process.

More specifically, we begin with a review of the common
approaches in sections 2 and 3 and give our technical contri-
butions in sections 4 to 6 as follows:

e Section 2 reviews common naive and one-pass CPS
transformations on the A-calculus with different amounts
of administrative reduction, and how they can be en-
coded as Racket macros.

e Section 3 reviews an alternative approach to CPS based
on the continuation monad, with the advantage of
more modularity and features but at the cost of pro-
ducing code with many administrative reductions.

e Section 4 introduces the new technique of this paper. It
shows how the monad-based macros can be enhanced
with rewriting rules to eliminate administrative steps
at macro-expansion time, producing administrative-
normal forms for select continuation operations.

e Section 5 generalizes the technique to accommodate
arbitrary user-defined rewriting rules, which allows
for adding new macros and programming features in
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client code that can participate in the elimination of
the administrative reductions.

e Section 6 evaluates the impact on the size and com-
plexity of expanded code. This includes a larger case
study on a Racket library for copattern matching [9],
which has an average 55% reduction in number of to-
kens and 61% depth in the syntax tree of expanded
code compared to a naive implementation that doesn’t
rewrite administrative steps.

The code examples and collected data presented here can
be found at https://github.com/pdownen/rewrite-macros.

2 Administrative Reductions of CPS
Transformation

2.1 A naive transformation

An early example of a CPS transformation is given by Plotkin [13]
for translating the call-by-value A-calculus:

Cl[x] = Ak. k x
Cl[Ax.M] = Ak. k Ax.C[M]
C[M N] = Ak. C[M]] Af.C[[N] Ax. f x k

Value expressions—like variables x and functions Ax.M—
need to be passed to the continuation k they are given,
whereas applications—M N—need to evaluate the two sides
M and N before the function can be called.

This theoretical program transformation can be made real
in terms of a macro in Racket written in terms of syntax-rules:

(define-syntax cps

(syntax-rules (A1)
;; Make sure to handle lambdas first
[(cps (A(x) body))
(A(k) (k (A(x) (cps body))))]
;5 Other binary lists are applications
[(cps (fun arg))
(A(k) ((cps fun)

(A(f) ((cps arg)
(Ax) ((F x) k)N

;; Otherwise, assume it is an identifier
[(cps x)
(Ak) (k x)>1))

The cps macro needs to handle the special lambda form
(A(x) body) which begins specifically with the symbol A fol-
lowed by a single parameter x (in a list) and then the body
expression that calculates the result. The first parameter to
syntax-rules lists A as a literal identifier—like a keyword—
not to be confused with a variable, so that the first syntax
rule only matches on lists that begin with exactly A. After
that, the cps macro has rules for handling single-argument
applications (fun arg) and variables.!

INote that the variable X in the syntax pattern (cps X) could actu-
ally match with any expression not already matched by the above two
rules. However, assuming that cps is only given expressions that rep-
resent this simple A-calculus—only (A(x) expr) or (expr expr) or
identifier—then the only remaining case is an identifier.
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Trying this new cps macro, we can transform the (curried)
function that applies its first argument twice to the second:

(define ex1
(cps (ACF) (A(x) (f (f x3)))))

To test out that the transformation is correct, we need to
iteratively run the example code, apply the function value
it returns, and then run the body again until the final result
is returned. We can set up this infrastructure to run a CPS
program by passing the identity function as the initial con-
tinuation, and inject a pure function as a CPS value which
returns its result:

(define (run m) (m identity))

(define (pure-fun f)
(A(x) (Ak) (k (f x)))))
Using these, one possible way to run the example is to pass
the pure function representing Ax. 2 (1+x) and the number
9, running each step of CPS along the way like so:
(define (run-example ex-cpsd)
(run
((run
((run ex-cpsd)
(pure-fun (A(x) (x 2 (+ 1 x))))))
9)))
The twofold function application is 2 (1+ (2% (1+9))) =42,
which is exactly what (run-example ex1) returns.
However, a curious programmer might want to under-
stand how cps works by examining the expanded form of
the expression. Peeking inside, they would see:

(define ex1%

(A(k)
(k (A(F)
(Ak) (k (A(x)
(Ak) ((ACk) (k )
(A(F1) ((AK)
((ACk) (k )
(A(f2)
((ACk) (k x))
(A(y)
((f2 y)
k)))3))
(A(z) ((Ff1 z) k)
2333333000
Unacceptable!

2.2 Plotkin’s “colon” translation

The naive CPS transformation introduces far too many steps
that have little relation to what the original code is trying to
do. Rather than trying to optimize the output of the macro—
somehow traversing and rewriting the expression it returns
into a better form—we can avoid creating these administra-
tive steps in the first place during the transformation. One
way to do so has been dubbed the “colon” translation due to
Plotkin’s original notation [13]. The main idea is to define a
new translation C, as an optimization of the previous C by
fusing it together with the application of the continuation:

C[M] k = Co[[ M] [K]
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where the transformation C,[[ M| [k] takes two parameters—
both the expression to transform as well as the continuation
it is to be applied to—as such it avoids the creation of so
many abstractions (Ak. ...) at each step. This simplifying
translation can be written as:

Callx] [k] =k x
Cal[Ax.M] [k] = k Ax.C,[M]]
CallM NT[K] = CIMI[Af. CINT [Ax. £ x 1]

CalM] = 2k. CalM] [K]

The last line is an auxiliary one-parameter definition of how
to handle cases where the continuation is not explicitly
given—by intuitively n-expanding as (Ak. C,[M] k) and
then tucking the new continuation k deep inside the trans-
lation of M where it is needed—and is only used inside the
body of a source-program A-abstraction.

As before, this transformation can be encoded as a Racket
macro that now takes either two arguments (corresponding
to the “applied” form C,[[M] [k]) or one (corresponding to
the “unapplied” C[M])).

(define-syntax cps-apply
(syntax-rules (A4)
[(cps-apply (A(x) body) k)
(k (A(x) (cps-apply body)))]
[(cps-apply (fun arg) k)
(cps-apply fun
(A(f) (cps-apply arg
(A(x) ((f x) k)))INI
[(cps-apply val k)
(k val)]
[(cps-apply expr)
(A(k) (cps-apply expr k))1))

Expanding this new macro on the same example

(define exl1-ap
(cps-apply (A(f) (A(x) (f (f x))))))

leads to the following transformed code

(define exl-ap*
(ACk)
(k (A(F)
(ACk) (k (A(x)
(ACk) ((A(F1)
((A(f2)
((A(x1)
((f2 x1)
(Aly)
((F1y) kX)) x))
)

333330
Slightly better, but not good enough yet. There are still ap-
plications of continuations to values, such as ((A(x1)...) x)
that shouldn’t be in the expanded code.

2.3 Fully administrative-normal translation

To squeeze out the last few administrative reductions, we
need to be careful to not introduce a new continuation ab-
straction if it will be given to a value form, which intends
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to immediately apply it in the next step. Avoiding these ad-
ministrative steps is a little trickier, as it requires us to break
compositionality slightly and “look ahead” to the next forms
to see if they look like syntactic values: either a variable x or
a function Ax.M. These values are handled by a specialized
translation of values C,[[ V] that knows how to descend into
the body of a function, and the main transformation of com-
putations C.[[ M] [k] will now check when sub-expressions
are values or not. Theoretically, this new transformation is:

Co[x] =x
Co[[Ax.M] = Ax.C.[M]
Ccl[VIIkl =k C[V]
Cl[V W]kl = Gof[V] Co[W] &
Ce[V N [k] = Cc[N] [Ax. C[V x] [K]]
Cc[MN][k] = C[M] [Af- Cellf NT 1]
CIM] = 2k, C[M] [K]

(N ¢ Value)
(M, N ¢ Value)

And in practice, the corresponding Racket macro is given
in figure 1. Note that we now have to switch from simple
syntax-rules macros to a more complex syntax-case defini-
tion to use guards (a.k.a fenders) as side conditions to check
if a rule should apply before committing. For example, the
first rule of cps-comp checks if the given expression has the
form of a syntactic value (as defined by the syntactic-value?
predicate) before applying. Similar checks are done when
translating an application for the different cases of applying
two values, two non-values, or a mix.

While the definition of our CPS macro is now significantly
less simple than what we started with, its output is simpler.
Revising, the same example

(define ex1-ad

(cps-comp (A(F) (A(x) (f (f x))))))
now expands to

(define exl1-adx*
(Ak) (k (A(F)
(Ak) (k (A(x)
(A0 ((F x)
(ACy) ((F y) k)
)DDDPPID))
Finally! This is the simplest form of CPS for the example

code, with no more internal redexes left over.

3 Modular, Monadic CPS Macros

So we can now eliminate the administrative steps of CPS at
macro-expansion time. However, the approach seen so far is
quite monolithic. The cps macro tries to transform the entire
expression in one shot, or bust. This rules out nested sub-
expressions that are handled outside of cps. The monolithic
nature also makes the cps macro harder to extend with new
features—for example, multi-argument functions and calls
are not even supported—which limits the CPS sub-language.
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(define-for-syntax (syntactic-value? stx)
(syntax-case stx (A)
[(A(x) body) #t]
[x (identifier? #'x)1))

(define-syntax (cps-value stx)
(syntax-case stx (A)
[(cps-value (A(x) body))
#'(A(x) (cps-comp body))]
[(cps-value x)
(identifier? #'x)
#'x1))

(define-syntax (cps-comp stx)
(syntax-case stx ()
[(cps-comp val k)
(syntactic-value? #'val)
#'(k (cps-value val))l
[(cps-comp (fun arg) k)
(and (syntactic-value? #'fun)
(syntactic-value? #'arg))
#'(((cps-value fun) (cps-value arg)) k)I]
[(cps-comp (fun arg) k)
(syntactic-value? #'fun)
#'(cps-comp arg
(A(x) (cps-comp (fun x) k)))I
[(cps-comp (fun arg) k)
#'(cps-comp fun
(A(f) (cps-comp (f arg) k)))]
[(cps-comp expr)
#'(A(k) (cps-comp expr k))1))

Figure 1. An administrative-normal CPS macro.

Instead of pushing this monolithic approach further, we
switch to a more modular style based on monadic combina-
tors: rather than being forced to transform a whole expres-
sion at once, the expression will be built from smaller, basic
operations that combine values together to make the whole.

A stylistic choice we make now—which will become abso-
lutely crucial in the next section 4—is to treat the values
representing monadic computations as black boxes. The
only way we will actually inspect computation values is
with the operation (after comp cont) which says that after
the computation comp is done, it should finish with the con-
tinuation cont. Continuations, too, will be treated as black
boxes, only usable with the operation (resume cont val
...) which says to resume the continuation cont with the
(multiple) values as inputs. Of course, in reality, both com-
putations and continuations are just function values, and so
after and resume can be defined like so:

(define (after comp cont) (comp cont))

(define-syntax resume
(syntax-rules ()

[(resume cont val ...)

(cont val ...)]

[(resume cont val . rest)
(apply cont val rest)]))

where resume can take an optional rest parameter—a value
containing a list of the remaining arguments—at the end
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of the given arguments, as the syntactic counterpart to the
function abstraction form (A(x ... . rest) body). To fore-
shadow, their use, the top-level run function is now written:

(define (run m) (after m identity))

3.1 Monadic operations

Every good monadic library starts with the primitive monadic
combinators return and bind that glue everything together.
The (return val) function says how to make a computation
that just produces val immediately with no side effects, and
(bind m f) says how to pass the value returned by m as the
parameter to function f, and continue running where m left
off. The standard definitions for the continuation monad are:

(define (return val) (A(k) (resume k val)))

(define (bind m f)
(A(k) (after m (A(x) (after (f x) k)))))

A common pattern is to call bind directly with a lambda
abstraction as the second argument, with the intention to
“bind” the return value to the function parameter like a let-
expression. To make examples clearer, we can canonize this
pattern as a more pleasant macro:

(define-syntax-rule
(let-val [name comp] body)
(bind comp (A(name) body)))

3.2 Returning lambdas and calling functions

We can now use the basic monadic glue to create shorthands
that make it easier to write CPS code. For functions, two of
the most common operations are to return a lambda value
or to call an effectful function with the results of effectful
argument computations. These two shorthands are given by
these two simple syntax rules:

(define-syntax-rule
(ret-A params body)
(return (A params body)))

(define-syntax-rule
(call fun args)
(A(k) (after fun (call-cont () args k))))

where most of the heavy work is done by call-cont which
builds the continuation for calling a function. Its general form
is (call-cont (fun val ...)(comp ...)cont) where the first
list (fun val ...) contains the prepared call so far where
the function (fun) and each argument (val ...) have already
been evaluated. The second list (comp ...) contains the com-
putations that will produce the remaining arguments. Finally,
cont gives the continuation where the call should return to.
The call-cont macro is defined like so:
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(define-syntax call-cont
(syntax-rules ()
[(call-cont () ms k)
(A(f) (call-cxt (f) ms k))]
[(call-cont (f arg ...) ms k)
(A(x) (call-cxt (f arg x) ms k))1))

(define-syntax call-cxt
(syntax-rules ()
[(call-cxt (f x ...) (m ms) k)
(after m (call-cont (f x ...) ms k))]

[(call-cxt (f x ...) (O k)
(after (f x ...) k)1
[(call-cxt (f x ...) rest k)

(after rest

(call-rest-cont (f x ...) k))1))
(define-syntax-rule
(call-rest-cont (fun arg ...) k)
(A xs (after (apply fun arg xs) k)))

This uses the helper macros call-cxt for building the next
calling context and call-rest-cont for supporting “rest” ar-
guments as in (call fun arg ... . rest), similar to resume.

3.3 Automatic CPS transformation

With these shortcuts in hand, it becomes much easier to write
a cps transformation that supports more language features
like multi-argument functions. The monad-based cps macro
is defined based on ret-A, call, and return as follows:

(define-syntax cps
(syntax-rules (A return)
[(cps (A params body))
(ret-A params (cps body))]
[(cps (fun arg ...))
(call (cps fun) (cps arg) ...)]
[(cps (return expr))
(return expr)]
[(cps other)
(return other)1))

In addition to supporting multi-argument lambdas and calls,
this cps macro has another feature: it recognizes the special
form (return expr) which explicitly signals that the trans-
formation should stop, no matter what expr looks like.

We can now encode our example Af.Ax. f (f x) in three
different ways: (ex1) directly using return and bind, (ex2)
using the shorthands ret-1 and let-val, or using cps.

(define ex1
(return
(ACF)
(return
(A(x)
(bind (f x) (ACy) (f y2)))))N

(define ex2
(ret-A(f)
(ret-A(x)
(let-val [y (f x)1]
F NN
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(define ex3

(eps (A(F) (A(x) (f (f x))))))

While the new suite of macros is more modular, their output
leaves a lot to be desired. The more explicit ex2 expands
exactly to ex1, but ex3 is less fortunate, expanding to:

(define ex3x
(return
(A(F)
(return
(A(x)
(ACk) ((return f)
(A(F1) ((A(k) ((return f)
(A(f2)
((return x)
(A(xT) ((F2 x1) K)))IN
(ACy) ((F1y) kI

3.4 Chains of commands

One common way to make monadic code more understand-
able is to organize it into chains of commands, similar to
statements in imperative languages. The trick is that the
command chain is actually nested one after the other, so
that each line can bind variables that are in scope for the
following ones. We can easily define this notation as a macro
for any operations that take the “next step” as their final
argument like (let-val [name comp] next):

(define-syntax chain
(syntax-rules ()
[(chain (op arg ...) cmdl cmd ...)
(op arg (chain cmdl cmd ...))]
[(chain end)
end]))

Because chain does not discriminate which operations are
being used, it works just as well for stringing together se-
quences of the monadic let-val, the native let or letrec.
For example, we can simplify the code for running examples
ex1, ex2, and ex3 into a more linear organization like so:

(define (run-example ex-comp)

(run

(chain
(let-val [h ex-compl])
(let ([double-inc

(A(x) (return (* 2 (+ 1 x))))1))

(let-val [g (h double-inc)1)
(let-val [y (g 9D
(return y))))

This shows that all three examples are the same, yielding 42.

3.5 Multi-argument functions

To test out that multi-argument functions work as intended,
here is an automatically-derived example of a cps function
taking three arguments—the first being a function that gets
composed with itself like so:

(define ex4
(cps (A(f x y) (f x (f x y)))))
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(run

(chain
(let-val [h ex4])
(let ([mult (A(x y) (return (x x y)))1))
(h mult 2 3)))

The combined operations in the running context simplify to
2 % (2 % 3) = 12, which is what the computation returns.

3.6 Multiple-value returns

Our syntax for resume foreshadowed the ability to pass mul-
tiple values to a continuation. We can make use of that func-
tionality by extending the basic monadic glue with multi-
value versions like so:

(define (returns
(A(k) (resume k

vals)
vals)))

(define (binds m f)
(A (k)
(after m (A xs (after (apply f xs) k)))))

(define-syntax-rule
(let-vals [params comp] body)
(bind comp (A params body)))

That way, a single computation can return multiple values
at the same time, like ex5 below:

(define ex5
(A(f x) (returns x (f x) (f (f x)))))

(run

(chain
(let ([inc (A(x) (+ 1 x))1))
(let-vals [(x y z) (ex5 inc 10)1)
(return (list x vy z))))

The running context produces the list ' (10 11 12).

4 Rewriting Administrative Steps Across
Macro Boundaries

The modularity of the monadic approach is hard to match
with a single monolithic transformation. Not only can the
programmer freely glue together their code with reusable,
nestable parts, but they can also seamlessly add new opera-
tions and features after the fact in client code, like multiple-
value returns and chaining commands. However, the cost is
a grisly impact on the code produced by transformation, like
the expanded form of ex3* which is far, far, from optimal for
computers to run and humans to read. If only we could have
both modularity and simple output.

We can! Although each macro, defined independently,
is unaware of the others, there is a brief moment in time
during expansion where the different macros are nested in
the expression-to-be but before the final expression is set in
stone. We can exploit that moment to look for unfortunate
nestings and rewrite them into a more fortuitous form with
less redundancy. For example, if we ever see

(after (return val) cont)
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it would be better to rewrite the expression to skip the return:
(resume cont val)

Thankfully, the patterns we need to look for are quite pre-
dictable: they are all an elimination style form (like after or
resume) followed by an introduction style form (like return,
bind, let-val, etc.). Therefore, the only time we need to look
ahead for potential rewrites is in the elimination forms that
otherwise don’t do much, consolidating the rewrite logic
inside after and resume. On the introduction side, we then
need to think about what kind of shortcuts are possible if
they appear in one of those contexts, and produce the more
direct expression instead.

4.1 Following monadic operations by a continuation

First, consider how we can simplify return. Using the rewrite
shown above, if it appears in the context of an after, it should
go directly to resume its given continuation. In code, we write
a macro that defines the combination of the two:

(after (return x) k) = (after-return (x) k)

and can derive the definition of return in all other contexts
from the special case by n-expansion like so:

(define (return val)
(A(k) (after-return (val) k)))

(define-syntax-rule

(after-return (val) k)

(resume k val))
Likewise, we can shortcut the bind operation if it appears
in the context of an after to place the given continuation
directly where it needs to go:

(after (bind m f) k) = (after-bind (m f) k)
and the general definition of bind used in other contexts is
derived by n-expanding the special case as:

(define (bind m f)
(A(k) (after-bind (m f) k)))

(define-syntax after-bind
(syntax-rules (A4)
[(after-bind (m (A(x) body)) k)
(after (let-val [x m] body) k)]
[(after-bind (m f) k)
(after m (A(x) (after (f x) k)))1))
Note that bind, in a way, is both introducing a CPS computa-
tion as well as eliminating a function argument. Therefore,
we can give an additional special case that simplifies the com-
mon case (bind m (A(x)body)) directly to a let-expression
(let-val [x m] body), defined below.

Of all the glue, the trickiest to get right is let-val. When in
the context of after, we would ideally like to avoid binding
the continuation at all, tucking it inside the implied continu-
ation given to the computation like so:

(after (let-val [x comp] body) cont)
= (after comp (A(x) (after body cont)))
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This is perfectly fine in theory, where we assume all code
transformations are performed up to valid ¢-renaming, so
that the binding of x never captures free variables in cont.
But even the hygiene checks of the macro system do not
prevent this capture! To correctly perform this code motion,
we have to check manually that it is safe to do—if not, we
fall back to an explicit let-binding that avoids capture:

(define-syntax-rule
(let-val [id comp] body)
(A(k) (after-let-val ([id comp] body) k)))

(define-syntax (after-let-val stx)

(syntax-case stx ()
[(after-let-val ([id m] bd) cont)
(noncapture? #'id #'cont)
#'(after m (A(id) (after bd cont)))]
[(after-let-val ([id m] bd) cont)
#'(let ([k contl])

(after m (A(id) (after bd k))))1))

As a confirmation, we can check that the apparent static
binding of y in the following example

(run
(let (Ly 11)
(let-val [z (let-val [y (return 2)]
(return y))]
(return (list y z)))))

produces the expected result ' (1 2), instead of ' (2 2).

It is always safe to fall back to the explicit let-binding,
though it does increase the final code size. So there’s a choice
on how thoroughly we want to check that the continuation is
safe from capture. A simple shallow check, that is fast to per-
form, is to allow for simple atomic literals (numbers, strings,
etc.), or a single identifier expression which is not among the
parameters being bound. This is enough to simplify many
examples, and is given as:

(define-for-syntax (atomic-literal? expr)
(or (number? expr)
(boolean? expr)
(string? expr)))

(define-for-syntax
(capture-identifier? params expr)
(syntax-case params ()

[id (identifier? #'id)
(bound-identifier=? #'id expr)]
LO #f]

[(id . params) (identifier? #'id)
(or (bound-identifier=? #'id expr)

(capture-identifier? #'params

expr)) 1))

(define-for-syntax (noncapture? params expr)

(or (atomic-literal? (syntax->datum expr))
(and (identifier? expr)

(not (capture-identifier? params

expr)))))
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4.2 Eliminating steps in lambdas and calls

Continuing on, we repeat this same pattern for all the other
combinators: define the special case where they are imme-
diately eliminated, and derive the general case from it via
expansion if necessary. For returning a lambda, we have:

(define-syntax-rule
(ret-A params body)
(return (A params body)))

(define-syntax-rule
(after-ret-A (params body) cont)
(resume cont (A params body)))

Similarly, calling an effectful function becomes:

(define-syntax-rule
(call fun args)
(A(k) (after-call (fun args) k)))

(define-syntax-rule
(after-call (fun args) cont)

(after fun (call-cont () args cont)))

where call-cont is unchanged.

4.3 Rewriting macros to eliminate redexes

Now is the time where have to pay the piper. All of the
rewriting we intended to do above has to happen somewhere,
and that is in the elimination operations. Our poor, simple
after function now houses all the rewrite rules for how to
shortcut through sub-expressions. It looks ahead one step to
see if the computation is formed by one of the introductions
we know about, and replaces it with the combined form if so.
Otherwise, it can always fall back to calling the computation
like a function if no special rewrite applies.

(define-syntax after
(syntax-rules
(return bind let-val ret-A1 call cps)

[(after (return val) cont)
(after-return (val) cont)]

[(after (bind comp fun) cont)
(after-bind (comp fun) cont)]
[(after (let-val binding body) cont)
(after-let-val (binding body) cont)]
[(after (ret-A params body) cont)
(after-ret-A (params body) cont)]
[(after (call fun args) cont)
(after-call (fun args) cont)]
[(after (cps expr) cont)

(after-cps (expr) cont)]
[(after comp cont)

(comp cont)1))

The code for resume is similar. Here, we can notice when the
given continuation comes from call-cont or call-rest-cont.
Instead of forming the continuation as a lambda that is ap-
plied to values, resume will shortcut to the next step that the
body of that function produces like so:
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(define-syntax resume
(syntax-rules (call-cont call-rest-cont)
[(resume (call-cont () ms k) f)
(call-cxt (f) ms k)]

[(resume (call-cont (f x ...) ms k) val)

(call-cxt (f x val) ms k)]
[(resume (call-rest-cont (f x ...) k)
Yy o...)
(after (f x ...y ...) k)I
[(resume (call-rest-cont (f x ...) k)
Yy ... . zs)
(after (apply f x ... vy zs) k)1
[(resume k val ...)
(k val ...)]
[(resume k val . rest)
(apply k val rest)1))

4.4 Automatic, administrative-free CPS transform

Now, we get to the automatic cps transformation. This time,
it looks almost the same as the naive version, except that the
main transformation takes the continuation that comes after,
which is just threaded along with the after operation.

(define-syntax-rule
(cps expr)
(A(k) (after-cps (expr) k)))

(define-syntax after-cps
(syntax-rules (A return)
[(after-cps ((A params body)) cont)
(after (ret-A params (cps body)) cont)]
[(after-cps ((fun arg ...)) cont)
(after (call (cps fun) (cps arg) ...)
cont)]
[(after-cps ((return expr)) cont)
(after (return expr) cont)]
[(after-cps (other) cont)
(after (return other) cont)]))

Even though this cps macro has no logic for avoiding admin-
istrative reductions, this all gets handled already by after.
For example, the expansion of ex2 does not change much,
only the definition of bind has been inlined.

(define ex2x
(return
(A ()
(return
A (Ak) ((F x)
(ACy) (F y) KON

However, the expansion of ex3 below is vastly shorter, actu-
ally reaching the final administrative-normal form!

(define ex3%
(A(k) (k (A(H)
(A(k) (k (A(x)
(ACk) ((f x)
(Ay) (f y)
k)N



Rewriting Macros on the Fly

5 Extensible Macro Rewriting Rules

We’ve seen how to eliminate administrative reductions at ex-
pansion time by rewriting macros to fuse together elimination-
introduction macro pairs into a more direct form. The cost
of this methodology is:

1. Each introduction macro has two different forms: the
special case where it is immediately eliminated, and
a general form for all other contexts that is usually
derived automatically from the special case.

2. Each elimination macro checks if the relevant sub-
expression is an introduction form, and if so, rewrites
it to the special case.

Part 1 amounts to a little extra work—typically just a wrap-
per that goes along with a definition—that is easy to combine
with other macros since each one is defined independently
of the others. However, part 2 is the real pain point, where
an elimination form like after has to include special cases
for every other introduction macro in the system. Not only is
this redundant and tedious—because the shortcut logic is es-
sentially the same in every case—but it is not very extensible.
In section 4 we included some special cases for eliminat-
ing administrative steps, but if we wanted to extend it with
multi-value returns, we would have to change the definition
of after by adding new rules for more special cases. Yuck.
There should be a way to update after without changing its
code after the fact when new functionality is added, so that
it gets included in the rewriting machinery.

5.1 Generalized rewriting macros

The saving grace to the rewriting technique comes from the
fact that each rewriting rule is phrased in a highly similar
way. Because we have defined the special cases as their own
macros, each rewrite replaces the general operation op with
its specialized after-op in an expression like so:

(after (op x ...) k) = (after-op (x ...) k)

We should factor this pattern out once and for all!

To do so, we first need to collect some information about
which introduction macros to look for and—when found—
what to replace them with. This can be done through a simple
lookup table (here represented as an association list between
names of macros) available at expansion-time:

(define-for-syntax after-operation-rewrite
(list [cons #'return #'after-return]
[cons #'bind #'after-bind]
[cons #'let-val #'after-let-vall]
[cons #'ret-A #'after-ret-A11]
[cons #'call #'after-calll]))

We can then use that table to determine (1) when the elimi-
nation-introduction expression pattern has been found, and
(2) what shortcut expression should it be rewritten to. This
leads to the following definition of after with a single rule
that uses the lookup table to drive all the special-case rewrites:
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(define-syntax (after stx)
(syntax-case stx ()
[(after (op args) cont)
(and (identifier? #'op)

(assoc #'op
after-operation-rewrite
free-identifier=?))

(with-syntax

([after-op
(cdr (assoc
#'op

after-operation-rewrite
free-identifier=?))1)
#'(after-op args cont))]
[(after comp cont)
#'(comp cont)]))

Now, there are only two rules. The second rule is the usual
default case where there is no shortcut, and the first rule
handles every rewrite with the following steps:

1. Check for any expression where the computation given
to after is an application (op . args).

2. If op is an identifier, search the lookup table held in
after-operation-rewrite to see if op has an entry.

3. Ifitis and it does, then lookup the new operation name
it should be replaced with, called after-op locally, and
change the expression to use the fused (after-op
args cont) instead.

We should do the same reorganization with the other
elimination form, resume, too. However, its definition looks
different: the logic of how to rewrite each special case was
written directly into the syntax rules of resume. That is no
problem! We can just refactor the special-case logic into
separate macros that spell out each rewrite:

(define-syntax resume-call-cont
(syntax-rules ()
[(resume-call-cont (() ms k) fun)
(call-cxt (fun) ms k)]
[(resume-call-cont ((f x ...) ms k) val)
(call-cxt (f x val) ms k)1))

(define-syntax resume-call-rest-cont
(syntax-rules ()

[(resume-call-rest-cont ((f x ...) k)
y o...)

(after (f x y ...) k)]

[(resume-call-rest-cont ((f x ...) k)
Yy ... . zs)

(after (apply f x ... vy zs) k)1))

With these, we can then group all of resume’s rewrites into a
general rule that uses the lookup table like before:

(define-for-syntax
resume-continuation-rewrite
(list [cons #'call-cont
#'resume-call-cont]
[cons #'call-rest-cont
#'resume-call-rest-cont]))
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(define-syntax (resume stx)
(syntax-case stx ()
[(resume (op args) vals)
(and (identifier? #'op)

(assoc #'op
resume-continuation-rewrite
free-identifier=?))

(with-syntax
([resume-cont
(cdr (assoc
#'op
resume-continuation-rewrite
free-identifier=?))1)

#'(resume-cont args vals))]
[(resume cont val ...)
#'(cont val ...)]
[(resume cont val . rest)
#'(apply cont val rest)1))

Besides removing the redundancy in elimination macros
and shortening their definition, this refined approach is far
more extensible. Since every rewrite is controlled through a
lookup table, we can easily update it in client code if we ever
define new functionality that should be integrated into the
simplification process. For example, notice that we forgot
to include the automated cps macro in the rewrite table. No
problem! It can be added afterwards through an update to
the association list:

(begin-for-syntax
(set! after-operation-rewrite
(cons

[cons #'cps #'after-cps]

after-operation-rewrite)))
And now we get the same administrative-normal form of
ex3 as before. Updating the rewrite table lets us do more
administrative-normal expansion of examples using other
features—such as chains of commands or multi-value returns—
that were previously omitted from the rewrite logic.

5.2 Chains of commands

Getting the continuation to tuck inside a chain of commands
doesn’t require much. In the specialization

(after (chain cmd
(ecmd ...) k)

...) k) = (after-chain

can be defined by just nesting each operation inside of after;
if there is a special case for the given operation, then after
will take care of it.
(define-syntax after-chain
(syntax-rules ()
[(after-chain ((op x ...) cl c ...) k)
(after (op x (chain c1 ¢ ...)) k)]
[(after-chain (end) k)
(after end k)1))
While it may seem like after-chain isn’t doing much com-
pared to chain, it is important to make sure that (after
(chain cmd ...)k) doesn’t fall through to the default syn-
tactic application ((chain cmd ...)k), which would prevent
threading the continuation k through each command.
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We should also make sure that the continuation can flow
into plain let-bindings, which don’t actively participate in
continuation-passing style, like so:

(after (let ([x expr] ...) body) cont)
= (let ([x expr] ...) (after body cont))

This rewrite is captured by the following specialized macro
combining the two steps, taking care to watch out for acci-
dental capture similar to after-let-val:

(define-syntax (after-let stx)
(syntax-case stx ()

[(after-let (([x expr] ...) body) cont)

(noncapture? #'(x ...) #'k)

#'(let ([x exprl ...)
(after body cont))]

[(after-let (([x expr] ...) body) cont)

#'(let ([x expr] [k cont])
(after body k))1))

Now we can update the rewriting table with the new cases:

(begin-for-syntax
(set! after-operation-rewrite
(append
(list [cons #'chain #'after-chain]
[cons #'let #'after-let])
after-operation-rewrite)))

This is enough to reach an administrative-normal form for
the run-example* code that mixes multiple lets and let-vals
in a chain, which expands as follows:

(define (run-examplex ex-comp)
(run
(A (k)
(ex-comp
(A(h)
(let ([double-inc
(A(x) (return

(2 (+ 1. x))))D
((h double-inc)

(A(g) ((g 9
(ACy) (k ¥)))3))))0))

If we have code that uses other native let-binding forms, like
letrec or let*, those can be added rewrite table, too, on an
as-needed basis.

5.3 Multiple-value returns

To simplify the expansion of code using multiple-value re-
turns, we just need to define their shortcut steps similar to
the single-value counterparts:

(define-syntax-rule
(after-returns vals k)
(resume k vals))

(define (returns vals)
(A(k) (after-returns vals k)))
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(define-syntax after-binds
(syntax-rules (A1)
[(after-binds (m (A params body)) k)
(after (let-vals [params m] body) k)]
[(after-binds (m f) k)
(after m (A xs (after (apply f xs)
k))) 1))

(define (binds m f)
(A(k) (after-binds (m f) k)))

As always, the trickiest expression to simplify is the multiple-
value binding let-vals, which has to avoid capturing free
variables in the continuation.

(define-syntax-rule
(let-vals [ids m] bd)
(A(k) (after-let-vals ([ids m] bd) k)))

(define-syntax (after-let-vals stx)
(syntax-case stx ()
[(after-let-vals ([ids m] bd) cont)
(noncapture? #'ids #'cont)
#'(after m (1 ids (after bd cont)))]
[(after-let-vals ([ids m] bd) cont)
#'(let ([k cont])
(after m (A ids (after bd k))))1))

To use the rewriting logic, we just need to update the table

(begin-for-syntax
(set!
after-operation-rewrite
(append
(list [cons #'returns
[cons #'binds
[cons #'let-vals
#'after-let-vals])
after-operation-rewrite)))

#'after-returns]
#'after-binds]

so that the code for running example ex5 will expand into
the following administrative-normal form:

(run
(let (Linc (4 (x) (+ 1T x))D
(A(k) ((ex5 inc 10)
(A(x y z) (k (list x y z))))))

6 Case Study of Rewriting Copatterns

To see the impact of the simplifications done by rewriting

macros, we can measure the change with respect to the naive

version. Rather than measuring run-time performance—which
will depend heavily on the implementation used and how

well it can optimize administrative reductions left in naive

transformation—we focus on static measures of expansion-
time code size. Since this can be relevant to the programmer

or macro-writer trying to understand and debug their code,

we focus on measures that account for human concerns that

impact how easy (or hard!) is to read code, including:

e Height: More deeply nested code is usually harder to
properly read, so larger height can correspond to more
confusing expressions. The height of a syntax tree is
measured in the usual way, where the empty list is 0,
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non-empty lists are 1 plus the maximum height of all
elements, and everything else is 1.

e Atoms: More individual parts create more information
for the reader to digest, so code made of fewer atoms
can be simpler. The total number of atoms in a syntax
tree is measured by flattening the tree to a list, so that
the number of atoms is the length of the list.

e Tokens: In reality, a human reader must process a com-
bination of tree structure and the atomic leaves that
make up the overall code. We measure the total number
of tokens in a syntax tree as an approximation of these
two factors. Each atom counts as 1 token. A list counts
as 2 tokens (the two parentheses) and the sum of its
elements’ tokens. Dotted lists are similar, but count as
3 tokens (the two parentheses and one dot marking
the tail) plus the sum of its parts. We also special-case
quoting forms (quote, quasiquote, and unquote) which
are typically printed as just one token.

Using these measures gives an objective way to evalu-
ate the impact of macro-time administrative rewriting. To
start, we could consider the examples seen here by compar-
ing the sizes original source program the expansion of the
naive monadic macros in section 3, and the administrative-
eliminating rewriting macros in section 5. On average, the
administrative-reducing rewriting macros have similar height
to the naive ones, 8% fewer atoms, and 5% fewer tokens. How-
ever, these toy examples are so small, where the difference
either way is usually minor, and not representative of serious
code. This leads to mixed results with large savings in some
examples (like ex3 and ex4) and small losses elsewhere. A rea-
sonable person might prefer the naively-expanded version
of ex2—which looks exactly like the hand-written ex1 using
return and bind—to the “simplified” version that inlined the
definition of bind.

To get a more realistic measurement of the impact of this
technique—and how rewriting away administrative steps can
change expanded code size—we need to test larger and more
serious examples. For this, we applied the same technique
of rewriting macros to create an alternativeimplementation
of copatterns in Racket and Scheme based on [9]. The im-
plementationcontains many example uses of the copattern-
matching macros, including stream-processing operations,
and several variations on arithmetic and algebraic expression
evaluators. To measure the impact on code size, we compared
the expanded forms generated by the naive Racket library
(composable.rkt) versus one that uses macro rewriting to
skip administrative steps (composable-inline.rkt), whose
results are shown in table 1.

It is no surprise that both expanded forms are always
larger than the original source—the point of using a macro is
usually to save on code. However, on the larger examples, the
rewritten version is always smaller than the naive version
in every measure, averaging 61% shorter height, 60% fewer
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Source Naive vs Source Rewriting vs Source vs Naive
Example H A T|H A T| H» A% T% | H A T| H%» A% T%| H% A% T%
streams 7 214 432 |32 1235 3267 | 457 577 756 |17 630 1520 | 243 2.94 352 |0.53 0.51 047
arith 7 68 140 | 23 284 758 | 329 418 541 |14 142 346 | 200 2.09 247 |0.61 0.50 0.46
arith-ext | 8 147 287 |23 390 994 | 288 265 346 |14 240 556 | 175 163 194|0.61 0.62 0.55
algebra & 65 131 |28 201 533 | 350 3.09 406|19 152 390|236 234 298|0.67 0.76 0.73
partial 7 157 279 |23 477 1181 | 329 3.04 423 |14 294 646 | 2.00 187 232|0.61 0.62 0.55
Average 7 130 254 |26 517 1347 | 350 375 495|16 292 692 | 211 218 264]0.61 0.60 0.55

Table 1. Code size of copattern-matching examples — source code before expansion, expanded naive macros, and expanded
rewriting macros — comparing maximum height (H) total number of atoms (A), and total number of tokens (T) in syntax trees.
The examples include infinite streams and stream processing functions (streams), a small arithmetic expression evaluator
(arith), compositional extensions of the arithmetic expression evaluator with new operations (arith-ext), an extended
evaluator with variable expressions and environments (algebra), and partially evaluating around free variables (partial).

atoms, and 55% fewer overall tokens. In some of the more
extreme cases, macro rewriting reduces code size by half or
more; a significant reduction. And while not a quantitative
measurement, the macro-rewritten output is often closer
to human-written code in a qualitative sense. Whereas the
naive output produces extremely higher-order code (think:
lambdas applied to lambdas), the macro-rewritten output
more often simplifies away some levels of abstraction.

7 Related Work

There is ample previous work on how to eliminate admin-
istrative reductions in CPS transformations, e.g., [1-4, 6—
8,10, 12-15]; for a more in-depth review of past work, see [5].
These can mainly be thought of in two distinct styles. The
first, like [15] is based on a naive translation that marks ad-
ministrative functions, and uses a secondary rewriting pro-
cess to eliminate them after. The second, like [1], organizes
translation to never produce administrative reductions in the
first place. Our approach is in between the two: translation
will create administrative redexes, which then get rewritten
in a post-hoc process during expansion. Alternatively, one
could implement a full normalizer as a macro to run in a sec-
ond phase after the main macro’s expansion [11]. This could
potentially give a more thorough amount of normalization—
especially taking into consideration redexes introduced di-
rectly by the programmer—which is not covered by rewriting
internal steps introduced by the macro-expansion process.
However, in place of the small-step, local rewrites used here,
this alternative requires a correct and complete implementa-
tion in the macro system of the target expression language—
typically an extension of A-calculus up to, and including,
all of Scheme—which handles capture-avoiding substitution
and traversal of the fully expanded expression.

In contrast to most previous work that focuses on the
number of administrative steps reduced during expansion or
the run-time performance of the transformed program, we
focus here on the size and quality of the fully-expanded code
because it was the original use-case for which the technique

was developed. The first application of rewriting macros was
done alongside the design of the copattern library in Scheme
[9], which produces extremely higher-order code that is diffi-
cult to print and inspect directly. Instead, it became necessary
to read and understand the macro-expanded code to debug
the library while it was being developed. The technique for
rewriting macros was indispensable for producing simpler,
human-readable output in a real-world macro library built
on top of many independent, composable macros. Only af-
terward was this technique applied to CPS transformations.

8 Conclusion

Crafting a good macro library has many tensions: simplic-
ity of macro definitions versus the expressions they output;
dynamic extensibility versus static predictability; a suite
of small, modular components composed locally or a big
monolithic macro to process the whole expression. This pa-
per describes a method of rewriting macros—through an
example based on well-known continuation-passing style
transformations—that aims to combine the advantages of
these two divergent styles, externally presenting a library
of flexible, reusable, extensible parts, but internally taking
advantage of whole-expression information to simplify code
as a single cohesive unit. Not only does this give the the
macro user a better experience of having more readable ex-
panded forms made from bite-sized pieces, it also keeps the
macro writer sane by keeping separate concerns separate in
the transformation process. The general-purpose rewriting
framework also creates clear entry points where the client
can integrate their own extensions into this process without
modifying the library’s code. Applied to a larger-scale exam-
ple on copattern-matching objects in Racket, this technique
gives significant reductions in expanded code size, leading
to more understandable and maintainable programs.
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