
Controlling Copatterns: There and Back Again
Paul Downen

University of Massachusetts Lowell
Lowell, USA

Paul_Downen@uml.edu

Abstract
Copatterns give functional programs a flexible mechanism
for responding to their context, and composition can greatly
enhance their expressiveness. However, that same expressive
power makes it harder to precisely specify the behavior of
programs. Using Danvy’s functional and syntactic correspon-
dence between different semantic artifacts, we derive a full
suite of semantics for copatterns, twice. First, a calculus of
monolithic copatterns is taken on a journey from small-step
operational semantics to abstract machine to continuation-
passing style. Then within continuation-passing style, we
refactor the semantics to derive a more general calculus of
compositional copatterns, and take the return journey back
to derive the other semantic artifacts in reverse order.

CCS Concepts: • Software and its engineering → Pat-
terns; Interpreters; •Theory of computation→Control
primitives; Operational semantics; Abstract machines.

Keywords: Copatterns, Delimited Control, Handlers, Func-
tional Correspondence, Syntactic Correspondence
ACM Reference Format:
Paul Downen. 2025. Controlling Copatterns: There and Back Again.
In Proceedings of the Workshop Dedicated to Olivier Danvy on the
Occasion of His 64th Birthday (OLIVIERFEST ’25), October 12–18,
2025, Singapore, Singapore. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3759427.3760362

1 Introduction
Pattern matching—a common feature among functional lan-
guages that expresses complex traversals over trees—can be
made even more powerful through a modern extension: co-
patterns [1]. The dual to patterns, copatterns let multi-clause
definitions match over more information in their calling con-
text, reacting to the structure of projections in addition to the
structure of arguments. In contrast to Haskell-style lazy data
structures, copatterns are especially useful for modeling and
manipulating infinite information like streams in settings
that are more sensitive to termination like proof assistants
and eager languages.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
OLIVIERFEST ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2150-2/25/10
https://doi.org/10.1145/3759427.3760362

Compositional copatterns—as recently implemented as a
Scheme macro library [16]—extend copatterns with new
ways to combine and apply partially-defined, context-sensitive
code using a fusion of functional and object-oriented tech-
niques. For example, a (lazy) pair can be represented in
Scheme as procedure that takes ‘fst or ‘snd as an argu-
ment and returns the respective element. The two-by-two
nested pair ((1, 2), (3, 4)) can then be defined through multi-
ple equations describing chains of projection like so:
(define*

[((quad ‘fst) ‘fst) = 1]
[((quad ‘fst) ‘snd) = 2]
[((quad ‘snd) ‘fst) = 3]
[((quad ‘snd) ‘snd) = 4])

Suppose we want to override the diagonal elements—the
first of the first, and the second of the second—with new
values. The function (diag x y z) below returns x as the
very first, y as the very last, and is the same as z elsewhere
(define*

[(((diag x y z) ‘fst) ‘fst) = x]
[(((diag x y z) ‘snd) ‘snd) = y]
[(diag x y z) = z])

so that (diag 50 60 quad) represents ((50, 2), (3, 60)). No-
tice the use of the third “fall-through” case taken whenever
the first two cases don’t apply. Crucially, the context this
fall-through case matches is less specified than the earlier
cases, so (((diag 50 60 quad) ‘snd) ‘fst) should simplify
to ((quad ‘snd) ‘fst) = 3. Effectively, the above 3-clause
definition of diag on two-by-two pairs is short-hand for the
following expansion that manually elaborates all four cases:
(define*

[(((diag x y z) ‘fst) ‘fst) = x]
[(((diag x y z) ‘snd) ‘snd) = y]
[(((diag x y z) ‘fst) ‘snd) = ((z ‘fst) ‘snd)]
[(((diag x y z) ‘snd) ‘fst) = ((z ‘snd) ‘fst)])

As the notation suggests, we can understand this code
through equational reasoning—replacing call sites match-
ing the left-hand side with the right-hand side. However, it
is not so obvious how to convert this into an operational
semantics capable of directly calculating the result of any
source-level program, without elaborations like the above.
This becomes even more challenging when taking into ac-
count other forms of higher-order composition that can be
performed at run-time: multiple clauses can be stitched to-
gether vertically to handle undefined cases, and individual
clauses can be extended horizontally to consider more con-
text or side conditions before committing to a right-hand side.

https://orcid.org/0000-0003-0165-9387
https://doi.org/10.1145/3759427.3760362
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759427.3760362

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

The implementation [16] gives a semantics based on macro
expansion into a small subset of Scheme (i.e., 𝜆-calculus),
but only describes the semantics via translation to the target
language and not in terms of the source-level language itself.

Thankfully, there is a general-purpose technique for con-
verting one form of semantics into another! Danvy’s func-
tional correspondence [2] and syntactic correspondence [4]
show how to use off-the-shelf program transformations to
derive semantic artifacts—operational semantics, abstract
machines, and continuation-passing style transformations—
from one another in a way that is correct by construction.
In other words, we can (mostly mechanically) generate func-
tional and correct operational semantics directly from the
macro definition implementing copatterns [16]. Yet, this is
not just an exercise of turning the crank. Doing so reveals
connections between copattern matching with delimited
control and a form of first-class handlers.
Our journey today is a round-trip hike in the semantic

park. Starting from a simplified source copattern calculus
with a straightforward operational semantics, we derive its
corresponding continuation-passing style (CPS) transforma-
tion. Then after making a few adjustments generalizing it to
match themacro definition found in [16], we turn around and
walk backwards to derive a direct-style operational seman-
tics for compositional copattern matching. More specifically,
our technical contributions are as follows:

• (Section 3) We derive a trio of semantic artifacts for a
monolithic copattern calculus—small-step operational
semantics, abstract machine, and continuation-passing
style (CPS) translation—through a mechanical deriva-
tion based on functional code for copattern matching
on contexts and a search to find the next redex.

• (Section 4) We refactor the monolithic copattern cal-
culus into more compositional primitives that give
first-class control over (1) the (delimited) calling con-
text and (2) the options for how to handle match failure.
The CPS translation corresponds to the macro defini-
tion in [16], and shows that the compositional calculus
is a conservative extension of the monolithic one.

• (Section 5) Going in reverse, we walk back from the
CPS translation of compositional copatterns and derive
the missing semantic artifacts—an abstract machine
and small-step operational semantics—that correspond
by construction to the CPS translation.

The main highlights of these derivations are shown here,
illustrating the Haskell code that corresponds to the vari-
ous semantic artifacts for copattern matching. To find the
detailed step-by-step process, which serves as their proof of
correctness, see https://github.com/pdownen/derive-copat.

Before diving into the semantics, we begin with an exam-
ple that illustrates the added expressive power that composi-
tionality gives to copatterns in functional code, by infusing
it with some techniques from the object-oriented paradigm.

2 Expressiveness of Copatterns
To illustrate the expressiveness of copatterns, let’s consider
how they can be used to write an interpreter for arithmetic
expressions in Scheme.1A simple way to represent expres-
sions is as trees where the nodes start with the (symbolic)
name of an operator followed by sub-expressions, and leaves
are just number literals. For a simple language, the trees
representing addition and multiplication follow the patterns
‘(add ,l ,r) and ‘(mul ,l ,r).2 The arithmetic interpreter
arith can then be defined as an object [16] by (co)pattern
matching on calls of the form (arith ‘eval e) where ‘eval

signals the request to evaluate an expression tree e:
(define-object

[(arith ‘eval n) (try-if (number? n))
= n]

[(arith ‘eval ‘(add ,l ,r))
= (+ (arith ‘eval l) (arith ‘eval r))]

[(arith ‘eval ‘(mul ,l ,r))
= (* (arith ‘eval l) (arith ‘eval r))])

(define expr0 ‘(add 1 (mul 2 3)))

The first clause contains a guard try-if used to check that
the variable n is bound to a numeric value; if not, the next
two clauses are tried, matching the two operators. Following
these equations derives (arith ‘eval expr0) = 7.
Now, what if we wanted to add a new expression node,

such as (unary) negation ‘(neg ,e)? We can’t just define a
new function which handles the ‘neg operation and calls the
old one for all other cases, like this wrong extension of arith:
(define-object

[(arith-wrong ‘eval ‘(neg ,e))
= (- (arith-wrong ‘eval e))]

[(arith-wrong ‘eval e) = (arith ‘eval e)])

(define expr1 ‘(add 1 (neg (mul 2 3))))

Certain special cases will work. Passing in an expression
from the old syntax will produce the correct answer—like
(arith-wrong ‘eval expr0) = 7—or limited uses of negation—
like (arith-wrong ‘eval ‘(neg 5)) = -5. However, examples
where old and new operations are nested within one another
produce an error, like (arith-wrong ‘eval expr1).
In a functional language with built-in support for alge-

braic data types—like Haskell and ML-family languages—we
would have to copy-and-paste the old code and add one extra
clause for the new case. Instead, with compositional copat-
terns, we can reuse the old code as-is by composing it with
another object that defines the new behavior. A correct way
to extend the arithmetic evaluator looks like:
1The library defining the Scheme and Racket macros used in these examples
can be found at https://github.com/pdownen/CoScheme.
2This is quasiquote syntax, where the backquote ‘...means to interpret the
expression literally as a data structure—leaving names as quoted symbols—
except for internal “unquoting” form ,l which means to insert the value of
l in place. When used as a pattern, the form ‘...matches against a nested
tree data structure of that shape, and ,l inside of a backquote pattern is a
wildcard variable that can match any value, which gets bound to l.

https://github.com/pdownen/derive-copat
https://github.com/pdownen/CoScheme

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

(define arith-ext
(arith ‘compose
(object
[(self ‘eval ‘(neg ,e))
= (- (self ‘eval e))])))

where the tag ‘compose denotes an implicit inherited method
of objects that combines the clauses vertically in an either-or
fashion. That way, it correctly calculates answers to both
old expressions (arith-ext ‘eval expr0) = 7 and new ones
(arith-ext ‘eval expr1) = -5. Textually, it is as if the un-
derlying runtime system did the copy-and-pasting for us,
behaving exactly like the equivalent expanded definition:3

(define-object
[(arith-ext ‘eval n) (try-if (number? n))
= n]

[(arith-ext ‘eval ‘(add ,l ,r))
= (+ (arith-ext ‘eval l) (arith-ext ‘eval r))]

[(arith-ext ‘eval ‘(mul ,l ,r))
= (* (arith-ext ‘eval l) (arith-ext ‘eval r))]

[(arith-ext ‘eval ‘(neg ,e))
= (- (arith-ext ‘eval e))])

So we can add as many operators as we want to the evaluator
without modifying any old code. Fantastic!

However, what if we attempted a more radical change,
such as extending arithmetic to algebraic expressions with
variables in them? When evaluating a variable, we need
access to a mapping from variables to numbers to look up
its value. Unfortunately, just composing clauses together
vertically will no longer suffice. Typically, we would need to
thread this environment around in every other case where
it’s not needed, requiring careful surgery of the old code.
Instead, we can take a page out of the object-oriented

book and think about objects that “encapsulate” additional
information within them. For instance, an object might hold
onto exactly the variable-to-number environment we need.
Fortunately, we already have all the tools at our disposal to
get the job done—without needing to introduce the baggage
of a whole class system. Rather, we can model lightweight
“classes” à la JavaScript as functions (representing the con-
structor) that return an object. For our needs, the simplest
class of objects containing a given variable-to-number envi-
ronment is defined by a single accessor method:
(define (with-env dict)

(object [(_ ‘env) = dict]))

So that ((with-env e) ‘env) = e. This internal functionality
can be composed with our existing arithmetic evaluator and
a new clause to ‘eval that says how to look up a variable
(represented as a plain symbol) in an expression tree.

3We renamed the recursive evaluator to arith-ext in each equation for
ease of reading, including the ones that were copied from the original arith
definition. This is neither necessary nor changes the semantics, because
define* and define-object are based on open recursion, so that the vari-
ables used internally for recursive references on the right-hand sides of
equations are different from the variable bound for external use by outside
code. In fact, the recursive name used to refer back to the object can be
different between each line, and be different from the top-level name.

(define (alg dict)
(arith-ext ‘compose
(with-env dict)
(object
[(self ‘eval x) (try-if (symbol? x))
= (dict-ref (self ‘env) x)])))

(define env-xy ‘((x . 10) (y . 20)))
(define expr2 ‘(add x (neg (mul 2 y))))

The algebraic evaluator gives the same answers on all the
old examples without having to use its environment:
((alg env-xy) ‘eval expr0) = 7
((alg env-xy) ‘eval expr1) = 5

But now, it can handle new expressions that contain symbolic
variables in them, like
((alg env-xy) ‘eval expr2) = -30

which is what we would get from performing the following
manual textual revision and inlining:
(define (alg dict)

(object
[(self ‘eval n) (try-if (number? n))
= n]

[(self ‘eval ‘(add ,l ,r))
= (+ (self ‘eval l) (self ‘eval r))]

[(self ‘eval ‘(mul ,l ,r))
= (* (self ‘eval l) (self ‘eval r))]

[(self ‘eval ‘(neg ,e))
= (- (self ‘eval e))]

[(self ‘env)
= dict]

[(self ‘eval x) (try-if (symbol? x))
= (dict-ref (self ‘env) x)]))

but all without touching any old code!

3 Deriving Copatterns: A Journey of Small
Steps to the Land of Continuations

In order to derive a semantics that can handle the types of
open recursion and composition of partial functions from
section 2, let’s consider a small core calculus of copattern
matching in figure 1. This calculus has bound variables (𝑥),
applications of arguments (as𝑀 𝑁), and projecting a specific
index tagged 𝑋 (as𝑀 𝑋). The only two other features are:

• Open recursion: To simplify the formalization of open-
ended, late-bound self-reference, we follow a model
close to the Python programming language. The “self”
pointer is given explicitly as the first argument, so
calling a self-recursive function begins with an explicit
punctuation (written𝑀.) signaling that a copy of the
same function should be passed first (as 𝑀 𝑀). The
self-duplicating 𝛿 rule captures this step.

• Copattern 𝜆s: Instead of just taking a single parameter,
𝜆-abstractions are built out of a sequence of options
(𝑂) for mapping copatterns (𝐿) on the left-hand side to
a new term on the right-hand side. Copatterns are a
sequence of distinct parameter abstractions (𝑥 𝐿) and
checks against specific index projections (𝑋 𝐿), until

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

Variable ∋ 𝑥,𝑦, 𝑧 ::= . . .
Index ∋ 𝑋,𝑌, 𝑍 ::= . . .
Term ∋ 𝑀, 𝑁 ::= 𝑥 | 𝑀 𝑁 | 𝑀 𝑋 | 𝑀. | 𝜆{𝑂...}

Option ∋ 𝑂 ::= 𝐿 → 𝑀

Copat ∋ 𝐿 ::= 𝜀 | 𝑥 𝐿 | 𝑋 𝐿

(𝛿) 𝑀. =𝑀 𝑀

(𝛽) 𝐶 [𝜆{𝐿𝑖 → 𝑀𝑖
1≤𝑖≤𝑛... }] =𝑀 𝑗

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
[𝑁 /𝑥](

if 𝐶 = 𝐿 𝑗
⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
[𝑁 /𝑥]

and ∀𝑖 < 𝑗, �
⃗⃗⃗⃗⃗
𝑁 , 𝐶 = 𝐿𝑖

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
[𝑁 /𝑥]

)
Figure 1. Equational specification of monolithic copatterns.

the empty copattern (𝜀) signals that no more informa-
tion is needed to decide to return the right-hand side.
The resolution of a copattern 𝜆 is a complex process,
modeled by the 𝛽 rule, that checks each copattern in
turn against the 𝜆’s context 𝐶 . If somehow the 𝜆 ap-
pears in a context 𝐶 , and one of its copatterns 𝐿𝑖 can
match 𝐶 by substituting for its bound variables, then
its right-hand side 𝑀𝑖 should be returned under the
same substitution, as long as 𝐿𝑖 is the first such match.

Example 3.1. To see how this core calculus models recur-
sion and matching, consider this infinite stream object (with
a Head and Tail) that counts From an initial number:

count = 𝜆{self From 𝑥 Head → 𝑥

|self From 𝑥 Tail → self .From(succ 𝑥)}

Starting the count from 0 and accessing the third element (via
two Tails and a Head) shows how 𝛿 and 𝛽 enable recursion:

count .From 0 Tail Tail Head
= count count From 0 Tail Tail Head (𝛿)
= count .From(succ 0) Tail Head (𝛽)
= count count From (succ 0) Tail Head (𝛿)
= count .From(succ (succ 0)) Head (𝛽)
= count count From (succ (succ 0)) Head (𝛿)
= (succ (succ 0)) (𝛽)

3.1 Small-step operational semantics
The equational axioms 𝛽 and 𝛿 can specify why an answer is
correct, but they don’t give an algorithmic method showing
how to get there. So let’s write an algorithm!
The first step is to represent syntax trees as a concrete

data structure, which we can do in Haskell as shown in
figure 2. We use infix constructors m:*:n and m:@:x for func-
tion application (𝑀 𝑁) and indexing (𝑀 𝑋), respectively,
and the other constructors are for variables (Var "x" as 𝑥)

data Term i a
= Var a
| Term i a :*: Term i a
| Term i a :@: i
| Dot (Term i a)
| Obj [Option i a]

data Option i a = Copattern i a :-> Term i a

data Copattern i a
= Nop
| a :* Copattern i a
| i :@ Copattern i a

instance Semigroup (Copattern i a) where
Nop <> q' = q'
(x :* q) <> q' = x :* (q <> q')
(i :@ q) <> q' = i :@ (q <> q')

instance Monoid (Copattern i a) where
mempty = Nop

type Question i a = Copattern i (Term i a)

ask :: Term i a -> Question i a -> Term i a
ask m Nop = m
ask m (n :* q) = ask (m :*: n) q
ask m (i :@ q) = ask (m :@: i) q

type Env a b = [(a, b)]
type TermEnv i a = Env a (Term i a)
(//):: Eq a=>Term i a->TermEnv i a->Term i a

Figure 2. Syntax trees as an algebraic data type.

the “dot” operator (Dot m as 𝑀.) and copattern 𝜆-objects
(Obj [l :-> m, ...] as 𝜆{𝐿 → 𝑀 | . . . }). Copatterns are
built using similar infix constructors and end with no-op
Nop, forming a stylized list that we can concatinate using
<>. Of note, we abstract variable identifiers and projection
indexes as generic types a and i, respectively, which will
come in handy several times. A special case of Copatterns are
Questions—contexts that might match copatterns—given by
filling the variables (left of :*) in a copattern with a Term i a.
Being contexts, we can plug a term into a question via ask.

Second, we have to implement a single step of reduction,
which is shown in figure 3. The reduce function takes a
(potential) Redex and a Question to produce some Followup

result: either a Reduct is asked the next Question, or comatch-
ing needed more context. The comatch function compares
the left-hand-side against a question, creating a substitution
environment and saying if there is a full match (producing a
followup question out of the remaining context), an incom-
plete match (producing the copattern that continues past the
given question), or a mismatch. In the case of a full match,
reduce will substitute (via //) the matching environment
into the right-hand side and return the followup question. In
the case of an incomplete match, reduction is blocked, and
in the case of a mismatch, the next option is tried.

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

data Redex i a
= Introspect (Term i a)
| Respond [Option i a]
| FreeVar a

data Reduct i a
= Reduced (Term i a)
| Unhandled
| Unknown a

data Followup i a
= Next (Reduct i a) (Question i a)
| More (Copattern i a) (Term i a)

[Option i a] (Question i a)

reduce :: (Eq i, Eq a)
=> Redex i a -> Question i a
-> Followup i a

reduce (Introspect m) q
= Next (Reduced $ m :*: m) q

reduce (FreeVar x) q
= Next (Unknown x) q

reduce (Respond (lhs :-> rhs : ops)) q
= case suffix match of

Followup q' -> Next (Reduced rhs ') q'
Unasked lhs ' -> More lhs ' rhs ' ops q
Mismatch _ _ -> reduce (Respond ops) q

where match = comatch lhs q
rhs ' = rhs // prefix match

reduce (Respond []) q
= Next Unhandled q

data CoMatch i a b
= Comatch { prefix :: Env a b,

suffix :: Remainder i a b }

data Remainder i a b
= Followup (Copattern i b)
| Unasked (Copattern i a)
| Mismatch (Copattern i a) (Copattern i b)

comatch :: Eq i
=> Copattern i a -> Copattern i b
-> CoMatch i a b

comatch Nop cxt
= Comatch [] (Followup cxt)

comatch lhs Nop
= Comatch [] (Unasked lhs)

comatch (x :* lhs) (y :* cxt)
= Comatch ((x, y) : prefix q) (suffix q)
where q = comatch lhs cxt

comatch (i :@ lhs) (j :@ cxt)
| i == j = comatch lhs cxt

comatch lhs cxt
= Comatch [] (Mismatch lhs cxt)

Figure 3. An implementation of small-step reduction.

Third, we must spell out how to find the next redex in
a term. A direct-style search function is shown in figure 4,
which identifies both a redex as well as the question asked
of it. Following the syntactic correspondence methodology
[4], we can derive a tail-recursive decomposition function
from search using standard program transformations: CPS
transformation, defunctionalization [26], and compressing
corridor transitions (i.e., inlining and simplifying known
function calls to partially-known arguments). Along the way,
it becomes clear that the evaluation contexts are isomorphic

data Found i a
= Asked (Redex i a) (Question i a)

search :: Term i a -> Found i a
search (Var x) = Asked (FreeVar x) Nop
search (Dot m) = Asked (Introspect m) Nop
search (Obj ops) = Asked (Respond ops) Nop
search (m :*: n) = case search m of

Asked r q -> Asked r $ q <> n :* Nop
search (m :@: i) = case search m of

Asked r q -> Asked r $ q <> i :@ Nop

Figure 4. Searching for the next redex.

data Decomp i a = Asked (Redex i a) (Question i a)

recomp :: Term i a -> Question i a -> Term i a
recomp = ask

decomp :: Term i a -> Decomp i a
decomp m = refocus m Nop

refocus :: Term i a -> Question i a -> Decomp i a
refocus (Var x) k = Asked (FreeVar x) k
refocus (Dot m) k = Asked (Introspect m) k
refocus (Obj eqs) k = Asked (Respond eqs) k
refocus (m :*: n) k = refocus m $ n :* k
refocus (m :@: i) k = refocus m $ i :@ k

Figure 5. Decomposing a term into a redex and question.

data Answer i a
= Under (Copattern i a) (Term i a)

[Option i a] (Question i a)
| Raise (Question i a)
| Stuck a (Question i a)

eval ::(Eq a, Eq i) => Term i a -> Answer i a
eval m = iter $ decomp m

iter ::(Eq a, Eq i) => Decomp i a -> Answer i a
iter (Asked r q) = case reduce r q of

Next (Reduced m) k -> eval $ recomp m k
Next (Unknown x) k -> Stuck x k
Next Unhandled k -> Raise k
More lhs rhs eqs k -> Under lhs rhs eqs k

Figure 6. Functional small-step interpreter loop.

to the Questions we need for reduction, which comes from
the choice of call-by-name evaluation order. Swapping to
the existing representation and applying the monoid laws
gives decomp in figure 5.
Finally, the small-step interpreter is given in figure 6,

which repeatedly decomposes a term, reduces it, recomposes
the result, and loops. This algorithm is equivalent to the fol-
lowing relational small-step semantics, presented in terms
of inside out evaluation contexts and a comatch function:

Cont ∋ 𝐾 ::= 𝜀 | 𝑁 𝐾 | 𝑋 𝐾

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

eval m = refocus m Nop

refocus (Var x) k = Stuck x k
refocus (Dot m) k = refocus m $ m :* k
refocus (Obj os) k = case os of

[] -> Raise k
lhs :-> rhs : os -> comatch lhs k rhs os k

refocus (m :*: n) k = refocus m $ n :* k
refocus (m :@: i) k = refocus m $ i :@ k

comatch Nop cxt rhs _ _
= refocus rhs cxt

comatch lhs Nop rhs os q
= Under lhs rhs os q

comatch (x :* lhs) (y :* cxt) rhs os q
= comatch lhs cxt (rhs // [(x,y)]) os q

comatch (i :@ lhs) (j :@ cxt) rhs os q
| i == j
= comatch lhs cxt rhs os q

comatch lhs cxt _ os q
= refocus (Obj os) q

Figure 7. Tail-recursive abstract machine interpreter.

(𝛿) 𝐾 [𝑀.] ↦→ 𝐾 [𝑀 𝑀]
(𝛽) 𝐾 [𝜆{𝐿𝑖 → 𝑀𝑖

1≤𝑖≤𝑛... }] ↦→ 𝐾 ′ [𝑀 𝑗 [𝑁 /𝑥] ...](
if comatch(𝐿𝑗 , 𝐾) = (

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
[𝑁 /𝑥] , 𝐾 ′)

and ∀𝑖 < 𝑗, comatch(𝐿𝑖 , 𝐾) =Mismatch

)
3.2 Abstract machine
Continuing on, we can use the syntactic correspondence to
transform the direct-style small-step interpreter into a tail-
recursive abstractmachine. First, we short-cut the recompose-
decompose step and instead continue by refocusing in place.

Lemma 3.2. decomp (recomp m k) = refocus m k.

Proof. By induction on k :: Question i a. □

From there, it is a matter of applying standard program
transformations: loop fusion, compressing corridor transi-
tions, and deforesting intermediate data structures. In order
to fuse reduce and comatch in with the small-step interpreter,
we need to give reduction the same treatment as search to
put it into a tail-recursive form: CPS transforming, defunc-
tionalizing [26], and compressing corridor transitions. As a
simplification, the contexts produced by defunctionalization
are isomorphic to substitution environments, whose order
is irrelevant (assuming distinct names). We also modify co-
pattern matching to substitute immediately when available,
since substitution reassociates.

Lemma 3.3. m // (env ++ env') = (m // env) // env'

Proof. By induction on m :: Term i a. □

The end result is the abstract machine interpreter shown
in figure 7. We can rephrase this code into a traditional step-
ping relation using machine states of forms (1) a refocusing
or reduction state ⟨𝑀 ∥ 𝐾⟩, or (2) a copattern-matching state

⟨𝐿 ∥ 𝐾 ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩. The initial state for evaluating 𝑀 is
⟨𝑀 ∥ 𝜀⟩, and the final states are one of: (1) stuck on an un-
known variable ⟨𝑥 ∥ 𝐾⟩, (2) an unhandled question ⟨𝜆{} ∥ 𝐾⟩,
or (3) an underspecified question ⟨𝐿 ∥ 𝜀 ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩where
𝐿 ≠ 𝜀. This gives us the following stepping relation:

• Refocusing steps:

⟨𝑀 𝑁 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝑁 𝐾⟩ ⟨𝑀 𝑋 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝑋 𝐾⟩
• Reduction steps:

⟨𝑀. ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝑀 𝐾⟩
⟨𝜆{𝐿 → 𝑀 | 𝑂...} ∥ 𝐾⟩ ↦→ ⟨𝐿 ∥ 𝐾 ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩

• Copattern-matching steps:

⟨𝑥 𝐿 ∥ 𝑁 𝐾 ′ ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩ ↦→ ⟨𝐿 ∥ 𝐾 ′ ∥ 𝑀 [𝑁 /𝑥] ∥ 𝑂... ∥ 𝐾⟩
⟨𝑋 𝐿 ∥ 𝑋 𝐾 ′ ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩ ↦→ ⟨𝐿 ∥ 𝐾 ′ ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩

⟨𝜀 ∥ 𝐾 ′ ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝐾 ′⟩
⟨𝐿 ∥ 𝜀 ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩ ̸↦→ (if 𝐿 ≠ 𝜀)

⟨𝐿 ∥ 𝐾 ′ ∥ 𝑀 ∥ 𝑂... ∥ 𝐾⟩ ↦→ ⟨𝜆{𝑂...} ∥ 𝐾⟩ (otherwise)

Remark 3.4. Note that this abstract machine inefficiently
traverses terms many times to perform substitution. To de-
rive an environment-based machine that more efficiently
uses closures and lookup, see appendix section A.

3.3 Continuation-passing style transformation
At the end of our journey, we arrive at a continuation-passing
style translation to native Haskell functions, as shown in fig-
ure 8. This translation is derived from figure 7 by (1) desug-
aring nested patterns into flat patterns on a single value,
(2) 𝜂-reduction, and (3) applying the transition functions as
soon as possible. Of note, the code elaborates a detail that
is usually suppressed in CPS transformations: when going
under a binder, we have to replace a syntactic name from the
source program with a semantic denotation within the CPS.
We accommodate this step in the middle of the CPS process
by representing variables as either a plain Name or one that
was Substituted by a CPSTerm, and should be translated as-is.

To better understand the code, we can elide some of these
details in the corresponding CPS translation of terms ⟦𝑀⟧,
lists of options ⟦𝑂...⟧, and individual copattern-matching
options ⟦𝐿 → 𝑀⟧ in a more traditional notation (where rec
denotes a recursive fixed point to handle the non-structural
recursion for under-application in comatch):

• Translating terms ⟦𝑀⟧:
⟦𝑥⟧ = 𝑥 ⟦𝑀.⟧ = 𝜆𝑘. ⟦𝑀⟧ (⟦𝑀⟧, 𝑘)

⟦𝑀 𝑁⟧ = 𝜆𝑘. ⟦𝑀⟧ (⟦𝑁⟧, 𝑘) ⟦𝑀 𝑋⟧ = 𝜆𝑘. ⟦𝑀⟧ (𝑋 𝑘)
⟦𝜆{𝑂...}⟧ = ⟦𝑂...⟧

• Translating lists of options ⟦𝑂...⟧:
⟦𝜀⟧ = 𝜆𝑘. 𝑘

⟦𝐿 → 𝑀 | 𝑂...⟧ = 𝜆𝑘. ⟦𝐿 → 𝑀⟧ 𝑘 ⟦𝑂...⟧ 𝑘

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

data Answer i a
= Under (CPSTerm i a)
| Raise (CPSQuestion i a)
| Stuck a (CPSQuestion i a)

type CPSQuestion i a = Copattern i (CPSArg i a)
type CPSTerm i a = CPSQuestion i a -> Answer i a
type CPSOption i a = CPSTerm i a -> CPSTerm i a
type CPSCopat i a = CPSQuestion i a -> CPSOption i a

newtype CPSArg i a = Arg { useArg :: CPSTerm i a }

data CPSVar i a = Name a | Subs (CPSTerm i a)

instance Eq a => Eq (CPSVar i a) where
Name x == Name y = x == y
_ == _ = False

eval :: (Eq i, Eq a) => Term i a -> Answer i a
eval m = (term (fmap Name m)) Nop

term :: (Eq i, Eq a) => Term i (CPSVar i a)
-> CPSTerm i a

term (Var (Name x)) = Stuck x
term (Var (Subs m)) = m
term (Dot m) = \k -> (term m) (Arg(term m) :* k)
term (Obj os) = options os
term (m :*: n) = \k -> (term m) (Arg(term n) :* k)
term (m :@: i) = \k -> (term m) (i :@ k)

options :: (Eq i, Eq a) => [Option i (CPSVar i a)]
-> CPSTerm i a

options [] = Raise
options (lhs :-> rhs : os)

= \q -> (comatch lhs rhs) q (options os) q

comatch :: (Eq i, Eq a) => Copattern i (CPSVar i a)
-> Term i (CPSVar i a) -> CPSCopat i a

comatch Nop rhs = _ _ -> (term rhs)
comatch (x :* lhs) rhs = \q os -> \case

(y :* k) -> (comatch lhs (rhs // [(x, n)])) q os k
where n = Var (Subs (useArg y))

Nop -> Under $ (comatch (x :* lhs) rhs) q os
_ -> os q

comatch (i :@ lhs) rhs = \q os -> \case
(j :@ k)
| i == j -> (comatch lhs rhs) q os k
Nop -> Under $ (comatch (i :@ lhs) rhs) q os
_ -> os q

Figure 8. Continuation-passing style translation to Haskell.

• Translating one copattern-matching option ⟦𝐿 → 𝑀⟧:

⟦𝜀 → 𝑁⟧ = 𝜆𝑞.𝜆𝑓 . ⟦𝑁⟧
⟦𝑥 𝐿 → 𝑁⟧ = rec 𝑟 = 𝜆𝑞.𝜆𝑓 .𝜆𝑘.

case𝑘 of (𝑥, 𝑘 ′) → ⟦𝐿 → 𝑁⟧ 𝑞 𝑓 𝑘 ′
() → 𝑟 𝑞 𝑓
𝑘 → 𝑓 𝑞

⟦𝑋 𝐿 → 𝑁⟧ = rec 𝑟 = 𝜆𝑞.𝜆𝑓 .𝜆𝑘.
case𝑘 of (𝑋 𝑘 ′) → ⟦𝐿 → 𝑁⟧ 𝑞 𝑓 𝑘 ′

() → 𝑟 𝑞 𝑓
𝑘 → 𝑓 𝑞

Remark 3.5. Typically, we would keep going and refunc-
tionalize continuations—in this case, Questions—into first-
class functions. This step becomes difficult in cases like ours,
compounded next in section 4, which is not in the image
of ordinary defunctionalization. Refunctionalization can be
made total by using copattern matching on codata [25]—
but that verges on begging the question by defining copat-
terns in terms of copatterns. But not to worry! The CPS
transformation given here corresponds to a well-known and
well-behaved one for call-by-name 𝜆-calculus, based on a
concrete representation of continuations as pair and sum
types [18, 20, 28, 30], so we can stop here.

Because all three semantics have been derived from a
single origin using correct program transformations, we now
get a theorem about their correspondence that is correct
by construction. For simplicity, we single out raising an
unanswered question as the main observation of programs.

Theorem 3.6. The three eval functions are equal, i.e., the
following relations between𝑀 and 𝐾 are all equivalent:
(a) 𝑀 ↦→∗ 𝐾 [𝜆{𝐿𝑖 → 𝑀𝑖 ...}] such that, for all 𝑖 ,

comatch(𝐿𝑖 , 𝐾) =Mismatch.
(b) ⟨𝑀 ∥ 𝜀⟩ ↦→∗ ⟨𝜆{} ∥ 𝐾⟩.
(c) ⟦𝑀⟧() ↦→∗ ⟦𝐾⟧, where ⟦𝐾⟧ is

⟦𝜀⟧ = () ⟦𝑁 𝐾⟧ = (⟦𝑁⟧, ⟦𝐾⟧) ⟦𝑋 𝐾⟧ = 𝑋 ⟦𝐾⟧

4 Refactoring Syntax and Semantics: A
Short Rest Among the Lambdas

The joy of working with a CPS transformation, like the one
we now have, is that we can employ the high-powered the-
ory of the 𝜆-calculus to reason about the semantics of our
programming language. The 𝜆-calculus has a thoroughly
developed suite of semantic tools to help us prove proper-
ties of the transformation, and the denotational style of CPS
unlocks many out-of-order simplifications and rewrites for
free. Let’s now use this ability to refactor our language.

4.1 First refactor: Delimiting the context
One of the awkward aspects of the semantics so far has to
do with unresolved matching, when a copattern is expecting
more information than the context provides. Currently, there
is no way to tell when a question is really “done,” or if we
are missing some part of the context. As a consequence, the
CPS transformation has to handle cases of an empty stack
by trying again to consume more continuation. This leads
to the complex recursive structure of copatterns (seen in the
rec fixed point) and confusion between different types of
continuations (e.g., 𝑥 𝐿 may get a pair or an empty unit).
To resolve these ambiguities, let’s add a delimiter to the

language,𝑀!, that signals the definite end to a question. If
copattern matching reaches the final punctuation (!), then
it knows there will never be more context arriving and it
can move on to the next option. But if 𝑀! signals the end

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

of questioning, we can never interrogate the answer with
another question, so where else can the delimiter appear
except at the “top” of the whole program?

Giving the program some internal control over delimited
questions amounts to a form of call-by-name delimited con-
trol. That is to say, a term can abstract over a given question
by giving it a name 𝑞 in !𝑞 → 𝑅, where 𝑅 is a response that
explains how to continue, which could be asking the same
question 𝑀 ! 𝑞, a different one 𝑀 ! 𝑞′, or a now explicitly
empty𝑀 ! 𝜀. Instead of asking, a response could also raise an
unanswered question itself, to be handled at a higher level.

Extending the syntax we have so far, first-class delimited
questions have the following grammatical structure:

Response ∋ 𝑅 ::= 𝑞 | 𝜀 | 𝑀 ! 𝑅
Term ∋ 𝑀, 𝑁 ::= · · · | !𝑞 → 𝑅

Whose semantics is given by extending the CPS transform:

⟦𝑀 ! 𝑅⟧ = ⟦𝑀⟧ ⟦𝑅⟧ ⟦𝜀⟧ = () ⟦𝑞⟧ = 𝑞

⟦!𝑞 → 𝑅⟧ = 𝜆𝑞. ⟦𝑅⟧
Notice how call-by-name delimited questions can compose,
but the compositional structure is opposite to call-by-value
delimited control like shift and reset [7, 8]. Rather than com-
posing multiple continuations like functions from inputs to
outputs, we can instead compose several terms—one after
another—as functions from questions to answers that handle
the unanswered questions raised by the next one in line:

⟦𝑀 ! (𝑁 ! 𝑅)⟧ = ⟦𝑀⟧ (⟦𝑁⟧ ⟦𝑅⟧) ⟦𝑀 ! 𝜀⟧ = ⟦𝑀⟧ ()
The term that immediately raises its given question can be
expressed !𝑞 → 𝑞. Later in section 5, it will be useful to have a
special form raise to denotewhen this has happened, without
having to take any more steps to calculate the response:

⟦raise⟧ = 𝜆𝑞.𝑞 = ⟦!𝑞 → 𝑞⟧

4.2 Second refactor: Nesting copatterns
Another source of difficulty is the complex structure of
copattern-matching 𝜆-abstractions, which forces a mono-
lithic matching algorithm. In the interest of factoring out
individual aspects of copattern matching, we will decom-
pose the copattern options into smaller parts. The first step
is to reassociate copatterns to the right, taking them one
step at a time in the style of currying, for example replacing
(𝑥 𝐿) → 𝑀 with 𝑥 → (𝐿 → 𝑀). The second step is to get a
handle on how a match failure should proceed, since every
copattern option needs to do something if it can’t respond to
its context. We write𝑂 ?𝑀 to mean that𝑂 is the first option
to answer the context and, if it fails, the term proceeds as𝑀
in the same context. Dually, the option needs a way to signal
success when the right-hand side is reached, which we write
?𝑥 → 𝑁 to mean that 𝑁 is returned to this context, and the
(now untaken) failure alternative is bound to 𝑥 in case the
program needs to invoke it manually.

Nested options have the following grammatical structure:
Term ∋ 𝑀, 𝑁 ::= · · · | 𝑂 ?𝑀

Option ∋ 𝑂 ::= 𝑥 → 𝑂 | 𝑋 → 𝑂 | ?𝑥 → 𝑀

On the one hand, we can understand the new forms (besides
?𝑥 → 𝑀) in terms of the old ones:

𝑂 ?𝑀 = 𝜆{𝑂 | 𝜀 → 𝑀}
𝑥 → (𝐿 → 𝑀) = (𝑥 𝐿) → 𝑀

𝑋 → (𝐿 → 𝑀) = (𝑋 𝐿) → 𝑀

On the other hand, we can decompose the monolithic syntax
into smaller, nested pieces:

𝜆{𝑂1 | · · · | 𝑂𝑛} =𝑂1 ? (· · · ? (𝑂𝑛 ? raise)
𝜀 → 𝑀 = ?_ → 𝑀

(𝑥 𝐿) → 𝑂 = 𝑥 → (𝐿 → 𝑂)
(𝑋 𝐿) → 𝑂 = 𝑋 → (𝐿 → 𝑂)

More interestingly, we now have enough flexibility over
options and their failure modes to encode dynamic com-
position of copattern matching, as used by the arithmetic
evaluator in section 2. Importantly, we can express vertical
composition of cases with a special method (here, Open) as:
object 𝑂 = 𝜆{𝑂 | self 𝑂𝑝𝑒𝑛 → 𝜆{𝑥 → 𝑂 ? 𝑥}}
compose = 𝜆𝑜 𝑜 ′ → object {?𝑥 → 𝑜.𝑂𝑝𝑒𝑛(𝑜 ′ .𝑂𝑝𝑒𝑛 𝑥)}

so that compose object{𝑂} object{𝑂 ′} = object{𝑂 | 𝑂 ′}.

4.3 Third refactor: Eliminating redundancy
At this point, there is some redundancy in the way the CPS
translation handles options. Deriving a CPS transformation
(here named 𝑂𝑝𝑡) for the option handler 𝑂 ?𝑀 gives:

𝑂𝑝𝑡⟦𝑂 ?𝑀⟧ = 𝜆𝑘. 𝑂𝑝𝑡⟦𝑂⟧ 𝑘 ⟦𝑀⟧ 𝑘
The given continuation is used twice: once to be analyzed for
copattern matching, and a copy to revert back on a failure
so that 𝑀 can start again from the original 𝑘 . However, it
would be cleaner to just pass the continuation once like so
(naming the new transformation 𝑂𝑝𝑡 ′ to disambiguate):

𝑂𝑝𝑡 ′⟦𝑂 ?𝑀⟧ = 𝜆𝑘. 𝑂𝑝𝑡 ′⟦𝑂⟧ ⟦𝑀⟧ 𝑘
We can get away without the copy by modifying the fail-
ure term on each step of copattern matching, in a way that
restores the original structure of the continuation as follows:
𝑂𝑝𝑡 ′⟦𝑥 → 𝑂⟧ = 𝜆𝑓 .𝜆𝑘. case𝑘 of

(𝑥, 𝑘 ′) → 𝑂𝑝𝑡 ′⟦𝑂⟧ (𝜆𝑞. 𝑓 (𝑥, 𝑞)) 𝑘 ′
𝑘 → 𝑓 𝑘

𝑂𝑝𝑡 ′⟦𝑋 → 𝑂⟧ = 𝜆𝑓 .𝜆𝑘. case𝑘 of
(𝑋 𝑘 ′) → 𝑂𝑝𝑡 ′⟦𝑂⟧ (𝜆𝑞. 𝑓 (𝑋 𝑞)) 𝑘 ′
𝑘 → 𝑓 𝑘

𝑂𝑝𝑡 ′⟦?𝑥 → 𝑀⟧ = 𝜆𝑥.⟦𝑀⟧
Even though the failure handler 𝑓 is called with a different
continuation, the result is the same as before.

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

Response ∋ 𝑅 ::= 𝑞 | 𝜀 | 𝑀 ! 𝑅
Term ∋ 𝑀,𝑁 ::= 𝑥 | 𝑀 𝑁 | 𝑀 𝑋 | 𝑀. | raise | 𝑂 ?𝑀 | !𝑞 → 𝑅

Option ∋ 𝑂 ::= 𝑥 → 𝑂 | 𝑋 → 𝑂 | ?𝑥 → 𝑀

Translation of results ⟦𝑅⟧:
⟦𝑀 ! 𝑅⟧ = 𝜆𝑠. ⟦𝑅⟧ 𝜆𝑞. ⟦𝑀⟧ 𝑞 𝑠 ⟦𝑞⟧ = 𝜆𝑠. 𝑠 𝑞 ⟦𝜀⟧ = 𝜆𝑠. 𝑠 ()

Translation of terms ⟦𝑀⟧:
⟦𝑥⟧ = 𝑥

⟦𝑀 𝑋⟧ = 𝜆𝑘. ⟦𝑀⟧ (𝑋 𝑘)
⟦𝑀 𝑁⟧ = 𝜆𝑘. ⟦𝑀⟧ (⟦𝑁⟧, 𝑘)
⟦𝑀.⟧ = 𝜆𝑘. ⟦𝑀⟧ (⟦𝑀⟧, 𝑘)

⟦raise⟧ = 𝜆𝑘. 𝜆𝑠.𝑠 𝑘

⟦𝑂 ?𝑀⟧ = 𝜆𝑘. ⟦𝑂⟧ ⟦𝑀⟧ 𝑘

⟦!𝑞 → 𝑅⟧ = 𝜆𝑞. ⟦𝑅⟧
Translation of options ⟦𝑂⟧:

⟦𝑥 → 𝑂⟧ = 𝜆𝑓 .𝜆𝑘.case𝑘 of (𝑥, 𝑘 ′) → ⟦𝑂⟧ (𝜆𝑞. 𝑓 (𝑥,𝑞)) 𝑘 ′

𝑘 → 𝑓 𝑘

⟦𝑋 → 𝑂⟧ = 𝜆𝑓 .𝜆𝑘.case𝑘 of (𝑋 𝑘 ′) → ⟦𝑂⟧ (𝜆𝑞. 𝑓 (𝑋 𝑞)) 𝑘 ′

𝑘 → 𝑓 𝑘

⟦?𝑥 → 𝑀⟧ = 𝜆𝑥. ⟦𝑀⟧

Figure 9. Refactored CPS and calculus of nested copatterns.

Lemma 4.1.

𝑂𝑝𝑡⟦𝑂⟧ (𝑞 ⋄ 𝑘) 𝑓 𝑘 =𝑂𝑝𝑡 ′⟦𝑂⟧ (𝜆𝑘 ′ . 𝑓 (𝑞 ⋄ 𝑘 ′)) 𝑘

Proof. By induction on 𝐿 and cases on 𝑘 . □

Corollary 4.2. 𝑂𝑝𝑡⟦𝑂⟧ 𝑘 𝑓 𝑘 =𝑂𝑝𝑡 ′⟦𝑂⟧ 𝑓 𝑘.

4.4 Fourth refactor: Fully continuation-passing style
The last small detail revolves around the fact that the CPS
transformation is no longer strictly in CPS form, due to
responses like 𝑀 ! (𝑁 ! 𝑅), which gets transformed to an
application of ⟦𝑀⟧ to the non-value ⟦𝑁⟧ ⟦𝑅⟧. But thank-
fully there is an easy fix to get back into strict CPS: iterate
CPS again [8]! This gives another layer of continuation for
responses to elaborate the evaluation order of𝑀 ! 𝑅 to say 𝑅
is evaluated first, and on a return its answer is passed to𝑀 .
The only affected cases of the transformation are:

⟦𝑀 ! 𝑅⟧ = 𝜆𝑠.⟦𝑅⟧ 𝜆𝑘.⟦𝑀⟧ 𝑘 𝑠 ⟦𝑞⟧ = 𝜆𝑠.𝑠 𝑞 ⟦𝜀⟧ = 𝜆𝑠.𝑠 ()

⟦raise⟧ = 𝜆𝑘.𝜆𝑠.𝑠 𝑘

This last refactoring gives the final syntax and CPS trans-
formation of the compositional copattern calculus, which is
shown in its entirety in figure 9.

5 Controlling Copatterns: The Return
Voyage Back to Direct Style

Having made the journey deriving semantics of monolithic
copatterns from small-step operational semantics to abstract

data Response i a
= Splat a
| End
| Term i a :!: Response i a

data Term i a
= Var a
| Term i a :*: Term i a
| Term i a :@: i
| Dot (Term i a)
| Option i a :?: Term i a
| a :!-> Response i a
| Raise

data Option i a
= a :*-> Option i a
| i :@-> Option i a
| a :?-> Term i a

Figure 10. Data type representing refactored syntax trees.

machine to continuation-passing style, we now aim to derive
the semantics of compositional copatterns in reverse.

5.1 Continuation-passing style
We begin with the continuation-passing style transforma-
tion from figure 9 that defines the semantics. The high-level
specification of the transformation can be given a concrete
Haskell implementation shown in figures 10 and 11.

5.2 Abstract machine
The continuation-passing style transformation can be modi-
fied in several standard steps: (1) defunctionalization, (2) wait-
ing to apply the transformation function until the last mo-
ment, (3) syntactically inlining the semantics for substituted
variables, (4) fusing substitution inlining with transforma-
tion, (5) 𝜂-expansion, and (6) rewriting chains of case-analy-
sis as nested patterns. The result of these program transfor-
mations on the CPS implementation gives the tail-recursive
abstract machine shown in figure 12. This implementation
can be rephrased into a traditional presentation of a stepping
relation on machine states:

• Delimiting steps:

⟨𝑀 ! 𝑅 ∥ 𝑆⟩ ↦→ ⟨𝑅 ∥ 𝑀 ; 𝑆⟩ ⟨𝜀 ∥ 𝑀 ; 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜀 ∥ 𝑆⟩

• Refocusing steps:

⟨𝑀 𝑋 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝑋 𝐾 ∥ 𝑆⟩
⟨𝑀 𝑁 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝑁 𝐾 ∥ 𝑆⟩

⟨𝑂 ?𝑀 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑂 ∥ 𝑀 ∥ 𝐾 ∥ 𝑆⟩

• Reduction steps:

⟨𝑀. ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝑀 𝐾 ∥ 𝑆⟩
⟨raise ∥ 𝐾 ∥ 𝑀 ; 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝐾 ∥ 𝑆⟩
⟨!𝑞 → 𝑅 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑅 [𝐾 [raise] ! 𝜀/𝑞] ∥ 𝑆⟩

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

data Answer i a
= Final (CPSQuestion i a)
| Stuck [CPSTerm i a] a (CPSQuestion i a)
| CoStuck [CPSTerm i a] a

run :: (Eq a, Eq i) => Response i a -> Answer i a
run r = (response (fmap Name r))

eval :: (Eq i, Eq a) => Term i a -> Answer i a
eval m = (term (fmap Name m)) Nop

try :: (Eq i, Eq a) => Option i a -> Answer i a
try o = (option (fmap Name o)) (term Raise) Nop

response :: (Eq i, Eq a) => Response i (CPSVar i a)
-> Answer i a

response (Splat (Name k)) = CoStuck [] k
response (Splat (CPSQ q)) = Final q
response (Splat (CPST _)) = error "Illegal expr"
response (End) = Final Nop
response (m :!: r) = (term m) <!> (response r)

(<!>) :: CPSTerm i a -> Answer i a -> Answer i a
f <!> Final q = f q
f <!> Stuck gs x q = Stuck (f:gs) x q
f <!> CoStuck gs q = CoStuck (f:gs) q

term :: (Eq i, Eq a) => Term i (CPSVar i a)
-> CPSTerm i a

term (Var (Name x)) = Stuck [] x
term (Var (CPST m)) = m
term (Var (CPSQ _)) = error "Illegal expr"
term (Dot m) = \k -> (term m) (Arg(term m):*k)
term (m :*: n) = \k -> (term m) (Arg(term n):*k)
term (m :@: i) = \k -> (term m) (i :@ k)
term (Raise) = \k -> Final k
term (q :!-> r) = \k -> (response r')

where r' = r /!/ [(q, subQ k)]
term (o :?: m) = \k -> (option o) (term m) k

option :: (Eq a, Eq i) => Option i (CPSVar i a)
-> CPSOption i a

option (x :?-> m) = \f -> (term m')
where m' = m // [(x, subT f)]

option (x :*-> o) = \f -> \case
(y :* k) -> (option o') (f . (y :*)) k
k -> f k
where o' = o /?/ [(x, subT $ useArg y)]

option (i :@-> o) = \f -> \case
(j :@ k) | i == j -> (option o) (f . (i :@)) k
k -> f k

subT m = TSub (Var (CPST m))
subQ k = RSub (Splat (CPSQ k))

Figure 11. Continuation-passing style translation of copat-
terns with nested options and control into Haskell.

• Copattern matching steps:

⟨𝑥 → 𝑂 ∥ 𝑀 ∥ 𝑁 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑂 [𝑁 /𝑥] ∥ 𝑀 𝑁 ∥ 𝐾 ∥ 𝑆⟩
⟨𝑋 → 𝑂 ∥ 𝑀 ∥ 𝑋 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑂 ∥ 𝑀 𝑋 ∥ 𝐾 ∥ 𝑆⟩
⟨?𝑥 → 𝑁 ∥ 𝑀 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑁 [𝑀/𝑥] ∥ 𝐾 ∥ 𝑆⟩

⟨𝑂 ∥ 𝑀 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝐾 ∥ 𝑆⟩ (otherwise)

Remark 5.1. Similar to theorem 3.4, we can derive a more
efficient environment-based machine by starting with a CPS

data Answer i a
= Final (Cont i a)
| Stuck (MetaCont i a) a (Cont i a)
| CoStuck (MetaCont i a) a

type Cont i a = Question i a
type MetaCont i a = [Term i a]

subQ :: Question i a -> TRSub i a
subQ k = RSub (Raise `ask` k :!: End)

run :: (Eq a, Eq i) => Response i a
-> Answer i a

run r = delim r []

eval :: (Eq i, Eq a) => Term i a
-> Answer i a

eval m = refocus m Nop []

try :: (Eq i, Eq a) => Option i a
-> Answer i a

try o = comatch o Raise Nop []

delim :: (Eq a, Eq i)
=> Response i a -> MetaCont i a
-> Answer i a

delim (Splat k) s = CoStuck s k
delim (End) [] = Final Nop
delim (End) (m:s) = refocus m Nop s
delim (m :!: r) s = delim r (m : s)

refocus :: (Eq i, Eq a)
=> Term i a -> Cont i a -> MetaCont i a
-> Answer i a

refocus (Var x) k s = Stuck s x k
refocus (Dot m) k s = refocus m (m:*k) s
refocus (m :*: n) k s = refocus m (n:*k) s
refocus (m :@: i) k s = refocus m (i:@k)s
refocus (q :!-> r) k s = delim r' s

where r' = r /!/ [(q, subQ k)]
refocus (o :?: m) k s = comatch o m k s
refocus (Raise) k (m:s) = refocus m k s
refocus (Raise) k [] = Final k

comatch :: (Eq a, Eq i)
=> Option i a -> Term i a
-> Cont i a -> MetaCont i a
-> Answer i a

comatch (x :?-> n) m k = refocus n' k
where n' = n // [(x, TSub m)]

comatch (x :*-> o) m (n:*k) = comatch o' (m:*:n) k
where o' = o /?/ [(x, TSub n)]

comatch (i :@-> o) m (j:@k)
| i == j = comatch o (m:@:i) k

comatch o m k = refocus m k

Figure 12. Abstract machine for controlling copatterns.

that threads a substitution environment to lookup variables.
This machine is discussed in appendix section A.

5.3 Small-step operational semantics
The hardest step of the journey is to derive a small-step op-
erational semantics from the abstract machine. This requires
undoing several steps (fusion, deforesting) which destroy
information. However, having already completed the easier
direction for a similar calculus, we have the advantage of

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

data CoFrame i a = Arg a | At i

data CoObject i a
= CoO { coframe :: CoFrame i a,

success :: Option i a,
failure :: Term i a }

data RxTerm i a
= FreeVar a
| Introspect (Term i a)
| Try a (Term i a) (Term i a)
| Pop (CoObject i a) (Term i a)
| Get (CoObject i a) i

data RdTerm i a
= RdT (Term i a)
| UnknownA a

reduce :: (Eq i, Eq a) => RxTerm i a
-> RdTerm i a

reduce (Introspect m) = RdT $ m :*: m
reduce (Try x n m) = RdT $ n // [(x, TSub m)]
reduce (Pop (CoO (Arg x) o m) n)

= RdT $ o' :?: (m :*: n)
where o' = o /?/ [(x, TSub m)]

reduce (Pop o n) = RdT $ failure o :*: n
reduce (Get (CoO (At i) o m) j)

| i == j = RdT $ o :?: (m :@: i)
reduce (Get o i) = RdT $ failure o :@: i
reduce (FreeVar x) = UnknownA x

data RxResponse i a
= FreeCoVar a
| Reset (Term i a) (Question i a)
| Shift a (Response i a) (Question i a)
| Under (CoObject i a)

data RdResponse i a
= RdR (Response i a)
| UnknownQ a

handle :: Eq a => RxResponse i a
-> RdResponse i a

handle (FreeCoVar k) = UnknownQ k
handle (Reset m q) = RdR $ m`ask`q:!:End
handle (Shift k r q) = RdR $ r/!/[(k, subQ q)]
handle (Under o) = RdR $ failure o:!:End

subQ :: Question i a -> TRSub i a
subQ k = RSub (Raise `ask` k :!: End)

Figure 13. Functional small-step reduction of copatterns
with delimited control.

knowing something about the overall structures we should
be looking for. First, identifying which steps are associated
with reduction (the ones that can delete or duplicate infor-
mation), we can factor out a non-recursive reduce function
that turns redexes into reducts on Terms, along with a simi-
lar handle function on Responses, shown in figure 13. Next,
by identifying the remaining steps that are purely refocus-
ing (the ones that are perfectly reversible), we can factor
out a set of decomposition functions that work through de-
limiters as shown in figure 14. Finally, we can de-optimize
refocusing in terms of decompose-recompose, and catching

data Delimit i a
= Around (RxTerm i a) (Question i a) [Term i a]
| Caught (RxResponse i a) [Term i a]
| Uncaught (Question i a)

delimit :: Response i a -> Delimit i a
delimit r = delim r []

unwind :: [Term i a] -> Response i a
-> Response i a

unwind [] r = r
unwind (m:s) r = m :!: r

delim :: Response i a -> [Term i a]
-> Delimit i a

delim (m :!: r) s = delim r (m : s)
delim (End) (m:s) = catch (refocus m Nop) s
delim (End) [] = Uncaught Nop
delim (Splat k) s = Caught (FreeCoVar k) s

catch :: Decomp i a -> [Term i a] -> Delimit i a
catch (Internal r q) s = Around r q s
catch (External r) s = Caught r s
catch (Raised q) (m:s) = Caught (Reset m q) s
catch (Raised q) [] = Uncaught q

data Decomp i a
= Internal (RxTerm i a) (Question i a)
| External (RxResponse i a)
| Raised (Question i a)

decomp :: Term i a -> Decomp i a
decomp m = refocus m Nop

recomp :: Question i a -> Term i a -> Term i a
recomp q m = m `ask` q

refocus :: Term i a -> Question i a -> Decomp i a
refocus (m :*: n) k = refocus m (n :* k)
refocus (m :@: i) k = refocus m (i :@ k)
refocus (o :?: m) k = decide (consider o m) k
refocus (Dot m) k = Internal (Introspect m) k
refocus (q :!-> r) k = External (Shift q r k)
refocus (Raise) k = Raised k
refocus (Var x) k = Internal (FreeVar x) k

data Consider i a
= Inward a (Term i a) (Term i a)
| Outward (CoObject i a)

only :: Option i a -> Consider i a
only o = consider o Raise

consider :: Option i a -> Term i a
-> Consider i a

consider (x :?-> n) m = Inward x n m
consider (x :*-> o) m = Outward $ CoO (Arg x) o m
consider (i :@-> o) m = Outward $ CoO (At i) o m

decide :: Consider i a -> Question i a
-> Decomp i a

decide (Outward o) = comatch o
decide (Inward x n m) = Internal (Try x n m)

comatch :: CoObject i a -> Question i a
-> Decomp i a

comatch o (n :* k) = Internal (Pop o n) k
comatch o (j :@ k) = Internal (Get o j) k
comatch o Nop = External $ Under o

Figure 14.Decomposition of termswith delimited questions.

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

data Answer i a
= Final (Question i a)
| Stuck [Term i a] a (Question i a)
| CoStuck [Term i a] a

try :: (Eq i, Eq a) => Option i a -> Answer i a
try o = eval $ o :?: Raise

eval :: (Eq i, Eq a) => Term i a -> Answer i a
eval m = run $ m :!: End

run :: (Eq a, Eq i) => Response i a -> Answer i a
run r = case delimit r of

Around r q s -> case reduce r of
UnknownA x -> Stuck s x q
RdT m -> run $ unwind s $

recomp q m :!: End
Caught r s -> case handle r of

UnknownQ k -> CoStuck s k
RdR r -> run $ unwind s r

Uncaught q -> Final q

Figure 15. Direct-style, delimited small-step interpreter.

delimited responses in terms of delimit-unwind. This gives us
the direct-style, small-step operational interpreter shown in
figure 15. The Haskell implementation can be reinterpreted
as the following corresponding small-step reduction relation:

CoObj ∋ 𝑃 ::= 𝑥 → 𝑂 | 𝑋 → 𝑂

DelimCxt ∋ 𝐷 ::= □ | 𝑀 ! 𝐷
EvalCxt ∋ 𝐸 ::= □ | 𝐸 𝑁 | 𝐸 𝑋

𝑀 ↦→ 𝑀 ′

𝐸 [𝑀] ↦→ 𝐸 [𝑀 ′]
𝑀 ↦→ 𝑀 ′

𝑀 ! 𝜀 ↦→ 𝑀 ′ ! 𝜀
𝑅 ↦→ 𝑅′

𝐷 [𝑅] ↦→ 𝐷 [𝑅′]

(?𝑥 → 𝑁) ?𝑀 ↦→ 𝑁 [𝑀/𝑥]
((𝑥 → 𝑂) ?𝑀) 𝑁 ↦→ 𝑂 [𝑁 /𝑥] ? (𝑀 𝑁)
((𝑋 → 𝑂) ?𝑀) 𝑋 ↦→ 𝑂 ? (𝑀 𝑋)

(𝑃 ?𝑀) 𝑋 ↦→ 𝑀 𝑋 (otherwise)
(𝑃 ?𝑀) 𝑁 ↦→ 𝑀 𝑁 (otherwise)

𝐸 [!𝑘 → 𝑅] ! 𝜀 ↦→ 𝑅 [(𝐸 [raise] ! 𝜀)/𝑘]
𝑀 ! (𝐸 [raise] ! 𝜀) ↦→ 𝐸 [𝑀] ! 𝜀

(𝑃 ?𝑀) ! 𝜀 ↦→ 𝑀 ! 𝜀

Again, we get an analogous correspondence from the se-
mantic derivations as before in theorem 3.6. Delimited ques-
tions and raisemake it more clear that the observable results
of responses are unanswered questions. For simplicity, we fo-
cus on non-empty questions which must be explicitly raised.

Theorem 5.2. The three eval functions are equal, i.e., the
following relations between 𝑅 and 𝐾 ≠ 𝜀 are all equivalent:
(a) 𝑅 ↦→∗ 𝐾 [raise]!.
(b) ⟨𝑅 ∥ 𝜀⟩ ↦→∗ ⟨raise ∥ 𝐾 ∥ 𝜀⟩.
(c) ⟦𝑅⟧(𝜆𝑘.𝑘) ↦→∗ ⟦𝐾⟧.

6 Related Work
Copatterns. Our starting point comes from a macro im-
plementation in Scheme and Racket [16], where we are pri-
marily concerned with specifying the behavior of different
dimensions of compositionality. Alternative macro imple-
mentations of copatterns have been given for OCaml [21, 22],
which leverage different restrictions to aid code generation.
Copatterns have also seen use in proof assistants like Agda
[5] which use a type-driven approach to elaboration [27, 29].

Functional and syntactic correspondence. The functional
and syntactic correspondence between semantic artifacts
[2, 4, 6, 9–11] is based on the approach of definitional in-
terpreters [26] and a long history of semantics-preserving
program transformations. It has been especially useful for
studying the semantics of call-by-need evaluation [12–14]
and its connection to sequent [3] and process calculi [17].

Delimited control. The CPS semantics of delimited copat-
ternmatching is similar to delimited control, specifically shift
and reset [7, 8]. We use a call-by-name semantics for a close
connection between evaluation contexts and copatterns. A
similar approach to call-by-name delimited control [19] is
related to shift0 [15], a powerful variant of shift [23, 24].

7 Conclusion
Now at the end of our round-trip journey, the disciplined
approach to deriving semantic artifacts has been a power-
ful methodology for understanding complex programming
features. The ability to generate CPS transformations is es-
pecially useful to explore and refactor the language design
space, and coming back gives tools to understand source pro-
grams directly. These artifacts still have untapped potential
to explore for understanding copattern and program compo-
sition, such as extracting a type system from the CPS [7].

Acknowledgments
I want to thank Olivier Danvy for so generously devoting his
time, encouragement, and teaching while I was still an early
Ph.D. student. While on an extended visit to the University
of Oregon, Olivier gave a week-long hands-on tutorial on
his technique for inter-deriving semantics. Soon thereafter,
I realized this was the perfect solution to a difficult prob-
lem on the semantics of the sequent calculus that had been
lingering for over a year, which directly led to my second
publication [3]. Now, many years later, I had been puzzling
over a similar problem of trying to capture the direct-style op-
erational semantics for composing copatterns, which eluded
me for quite some time. Only after thinking of how I could
contribute to OlivierFest, did I realize “Aha! This is the per-
fect problem to fix with the technique Olivier taught me!”
This paper is a celebration and revival of that early influence.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2245516.

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

References
[1] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.

2013. Copatterns: Programming Infinite Structures by Observations.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Rome, Italy) (POPL ’13). ACM,
New York, NY, USA, 27–38. doi:10.1145/2429069.2429075

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midt-
gaard. 2003. A functional correspondence between evaluators and
abstract machines. In Proceedings of the 5th ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declaritive Program-
ming (Uppsala, Sweden) (PPDP ’03). ACM, New York, NY, USA, 8–19.
doi:10.1145/888251.888254

[3] Zena M. Ariola, Paul Downen, Hugo Herbelin, Keiko Nakata, and
Alexis Saurin. 2012. Classical Call-by-Need Sequent Calculi: The Unity
of Semantic Artifacts. In Functional and Logic Programming: 11th
International Symposium. Vol. 7294. Springer Berlin Heidelberg, Berlin,
Heidelberg, 32–46. doi:10.1007/978-3-642-29822-6_6

[4] Magorzata Biernacka and Olivier Danvy. 2007. A syntactic corre-
spondence between context-sensitive calculi and abstract machines.
Theoretical Computer Science 375, 1–3 (April 2007), 76–108. doi:10.
1016/j.tcs.2006.12.028

[5] Jesper Cockx and Andreas Abel. 2018. Elaborating dependent
(co)pattern matching. Proceedings of the ACM on Programming Lan-
guages 2, ICFP, Article 75 (2018), 30 pages. doi:10.1145/3236770

[6] Olivier Danvy. 2008. Defunctionalized interpreters for programming
languages. In Proceedings of the 13th ACM SIGPLAN International Con-
ference on Functional Programming (Victoria, BC, Canada) (ICFP ’08).
ACM, New York, NY, USA, 131–142. doi:10.1145/1411204.1411206

[7] Olivier Danvy and Andrzej Filinski. 1989. A Functional Abstraction of
Typed Contexts. Technical Report 89/12. DIKU, University of Copen-
hagen, Copenhagen, Denmark.

[8] Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In
Proceedings of the 1990 ACM Conference on LISP and Functional Pro-
gramming, LFP 1990, Nice, France, 27-29 June 1990. ACM, New York,
NY, USA, 151–160. doi:10.1145/91556.91622

[9] Olivier Danvy and Jacob Johannsen. 2010. Inter-deriving semantic
artifacts for object-oriented programming. J. Comput. System Sci. 76,
5 (Aug. 2010), 302–323. doi:10.1016/j.jcss.2009.10.004

[10] Olivier Danvy, Jacob Johannsen, and Ian Zerny. 2011. A walk in the
semantic park. In Proceedings of the 20th ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (PEPM ’11). ACM, New
York, NY, USA, 1–12. doi:10.1145/1929501.1929503

[11] Olivier Danvy and Kevin Millikin. 2008. On the equivalence between
small-step and big-step abstract machines: a simple application of
lightweight fusion. Inform. Process. Lett. 106, 3 (April 2008), 100–109.
doi:10.1016/j.ipl.2007.10.010

[12] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. 2010. De-
functionalized interpreters for call-by-need evaluation. In Proceedings
of the 10th International Conference on Functional and Logic Program-
ming (Sendai, Japan) (FLOPS’10). Springer-Verlag, Berlin, Heidelberg,
240–256. doi:10.1007/978-3-642-12251-4_18

[13] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. 2012. On
inter-deriving small-step and big-step semantics: A case study for
storeless call-by-need evaluation. Theoretical Computer Science 435
(June 2012), 21–42. doi:10.1016/j.tcs.2012.02.023

[14] Olivier Danvy and Ian Zerny. 2013. A synthetic operational account
of call-by-need evaluation. In Proceedings of the 15th Symposium on
Principles and Practice of Declarative Programming (Madrid, Spain)
(PPDP ’13). ACM, New York, NY, USA, 97–108. doi:10.1145/2505879.
2505898

[15] Paul Downen and Zena M. Ariola. 2014. Compositional Semantics
for Composable Continuations: From Abortive to Delimited Control.
In Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming (Gothenburg, Sweden) (ICFP ’14). ACM, New

York, NY, USA, 109–122. doi:10.1145/2628136.2628147
[16] Paul Downen and Adriano Corbelino II. 2025. CoScheme: Composi-

tional Copatterns in Scheme. In International Symposium on Trends in
Functional Programming. Springer, 37 pages.

[17] Paul Downen, Luke Maurer, Zena M. Ariola, and Daniele Varacca.
2014. Continuations, Processes, and Sharing. In Proceedings of the
16th International Symposium on Principles and Practice of Declarative
Programming (Canterbury, United Kingdom) (PPDP ’14). ACM, New
York, NY, USA, 69–80. doi:10.1145/2643135.2643155

[18] Ken-Etsu Fujita. 2003. A sound and complete CPS-translation for 𝜆𝜇-
calculus. In Proceedings of the 6th International Conference on Typed
Lambda Calculi and Applications (Valencia, Spain) (TLCA’03). Springer-
Verlag, Berlin, Heidelberg, 120–134. doi:10.1007/3-540-44904-3_9

[19] Hugo Herbelin and Silvia Ghilezan. 2008. An Approach to Call-by-
Name Delimited Continuations. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Francisco, California, USA) (POPL ’08). ACM, New York, NY, USA,
383–394. doi:10.1145/1328438.1328484

[20] Martin Hofmann and Thomas Streicher. 1997. Continuation models
are universal for lambda-mu-calculus. In Proceedings of the 12th An-
nual IEEE Symposium on Logic in Computer Science (LICS ’97). IEEE
Computer Society, USA, 387. doi:10.1109/LICS.1997.614964

[21] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2017. Co-
Caml: Functional Programming with Regular Coinductive Types. Fun-
damenta Informaticae 150, 3 (2017), 347–377. doi:10.3233/FI-2017-1473

[22] Paul Laforgue and Yann Régis-Gianas. 2017. Copattern matching and
first-class observations in OCaml, with a macro. In Proceedings of the
19th International Symposium on Principles and Practice of Declarative
Programming (Namur, Belgium) (PPDP ’17). ACM, New York, NY, USA,
97–108. doi:10.1145/3131851.3131869

[23] Marek Materzok and Dariusz Biernacki. 2011. Subtyping Delimited
Continuations. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming (Tokyo, Japan) (ICFP ’11). ACM,
New York, NY, USA, 81–93. doi:10.1145/2034773.2034786

[24] Marek Materzok and Dariusz Biernacki. 2012. A Dynamic Inter-
pretation of the CPS Hierarchy. In Programming Languages and
Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 296–311.
doi:10.1007/978-3-642-35182-2_21

[25] Tillmann Rendel, Julia Trieflinger, and Klaus Ostermann. 2015. Auto-
matic refunctionalization to a language with copattern matching: with
applications to the expression problem. In Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming (Van-
couver, BC, Canada) (ICFP 2015). ACM, New York, NY, USA, 269–279.
doi:10.1145/2784731.2784763

[26] John C. Reynolds. 1972. Definitional interpreters for higher-order
programming languages. In Proceedings of the ACM Annual Conference
- Volume 2 (Boston, Massachusetts, USA) (ACM ’72). ACM, New York,
NY, USA, 717–740. doi:10.1145/800194.805852

[27] Anton Setzer, Andreas Abel, Brigitte Pientka, and David Thibodeau.
2014. Unnesting of Copatterns. In Rewriting and Typed Lambda Calculi
- Joint International Conference, RTA-TLCA 2014, Held as Part of the
Vienna Summer of Logic, Vienna, Austria, July 14-17, 2014. Proceedings,
Vol. 8560. Springer, 31–45. doi:10.1007/978-3-319-08918-8_3

[28] Th. Streicher and B. Reus. 1998. Classical logic, continuation semantics
and abstract machines. Journal of Functional Programming 8, 6 (Nov.
1998), 543–572. doi:10.1017/S0956796898003141

[29] David Thibodeau. 2015. Programming Infinite Structures using Copat-
terns. Master’s thesis. School of Computer Science, Mcgill University,
Montreal.

[30] Hayo Thielecke. 2004. Answer Type Polymorphism in Call-by-
Name Continuation Passing. In Programming Languages and Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, 279–293. doi:10.1007/
978-3-540-24725-8_20

https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/888251.888254
https://doi.org/10.1007/978-3-642-29822-6_6
https://doi.org/10.1016/j.tcs.2006.12.028
https://doi.org/10.1016/j.tcs.2006.12.028
https://doi.org/10.1145/3236770
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/91556.91622
https://doi.org/10.1016/j.jcss.2009.10.004
https://doi.org/10.1145/1929501.1929503
https://doi.org/10.1016/j.ipl.2007.10.010
https://doi.org/10.1007/978-3-642-12251-4_18
https://doi.org/10.1016/j.tcs.2012.02.023
https://doi.org/10.1145/2505879.2505898
https://doi.org/10.1145/2505879.2505898
https://doi.org/10.1145/2628136.2628147
https://doi.org/10.1145/2643135.2643155
https://doi.org/10.1007/3-540-44904-3_9
https://doi.org/10.1145/1328438.1328484
https://doi.org/10.1109/LICS.1997.614964
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1145/3131851.3131869
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1007/978-3-642-35182-2_21
https://doi.org/10.1145/2784731.2784763
https://doi.org/10.1145/800194.805852
https://doi.org/10.1007/978-3-319-08918-8_3
https://doi.org/10.1017/S0956796898003141
https://doi.org/10.1007/978-3-540-24725-8_20
https://doi.org/10.1007/978-3-540-24725-8_20

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

type ClosEnv i a = Env a (Closure i a)
type ClosQuestion i a

= Copattern i (Closure i a)
data Closure i a

= (:/:) { openTerm :: Term i a,
staticEnv :: ClosEnv i a }

data Redex i a
= Introspect (Term i a) (ClosEnv i a)
| Respond [Option i a] (ClosEnv i a)
| FreeVar a (ClosEnv i a)

data Reduct i a
= Reduced (Closure i a)
| Unhandled
| Unknown a

reduce :: (Eq i, Eq a)
=> Redex i a -> ClosQuestion i a
-> Followup i a

reduce (Introspect m env) q
= Next (Reduced $ m :*: m :/: env) q

reduce (FreeVar x env) q
= case lookup x env of
Nothing -> Next (Unknown x) q
Just m -> Next (Reduced m) q

reduce (Respond (lhs :-> rhs : ops) env) q
= case suffix match of

Followup q' ->
Next (Reduced $ rhs:/:env '++env) q'

Unasked lhs ' ->
More lhs ' (rhs:/:env ') ops env q

Mismatch _ _ ->
reduce (Respond ops env) q

where match = comatch lhs q
env ' = prefix match

reduce (Respond [] env) q
= Next Unhandled q

data Decomp i a
= Asked (Redex i a) (ClosQuestion i a)

decomp :: Closure i a -> Decomp i a
recomp :: Term i a -> Question i a -> Term i a
refocus :: Closure i a -> ClosQuestion i a

-> Decomp i a

eval :: (Eq a, Eq i) => Term i a -> Answer i a
eval m = iter $ decomp (m :/: [])

iter :: (Eq a, Eq i) => Decomp i a -> Answer i a
iter (Asked r q) = case reduce r q of

Next (Reduced m) k -> iter $ refocus m k
Next (Unknown x) k -> Stuck x k
Next Unhandled k -> Raise k
More lhs rhs ops env k -> Under lhs rhs ops env k

Figure 16. Small-step reduction with an environment

A Postscript: Efficiently Passing
Environments

The abstract machines derived in sections 3 and 5 are based
on substitution, which is a correct but notoriously slow imple-
mentation of static binding. A more efficient implementation
technique is to explicitly thread environments through the

data Answer i a
= Under (Copattern i a) (Closure i a)

[Option i a] (ClosEnv i a)
(ClosQuestion i a)

| Raise (ClosQuestion i a)
| Stuck a (ClosQuestion i a)

eval :: (Eq a, Eq i) => Term i a -> Answer i a
eval m = refocus m [] Nop

refocus :: (Eq a, Eq i) => Term i a
-> ClosEnv i a -> ClosQuestion i a
-> Answer i a

refocus (Var x) env k = case lookup x env of
Nothing -> Stuck x k
Just (m :/: env) -> refocus m env k

refocus (Dot m) env k
= refocus m env $ (m :/: env) :* k

refocus (Obj os) env k = case os of
lhs :-> rhs : os -> comatch lhs k [] rhs os env k
[] -> Raise k

refocus (m :*: n) env k
= refocus m env $ (n :/: env) :* k

refocus (m :@: i) env k
= refocus m env $ i :@ k

comatch :: (Eq a, Eq i) => Copattern i a
-> ClosQuestion i a -> ClosEnv i a
-> Term i a -> [Option i a] -> ClosEnv i a
-> ClosQuestion i a
-> Answer i a

comatch Nop cxt env ' rhs _ env _
= refocus rhs (env ' ++ env) cxt

comatch lhs Nop env ' rhs os env q
= Under lhs (rhs :/: env ') os env q

comatch (x:*lhs) (y:*cxt) env ' rhs os env q
= comatch lhs cxt ((x,y):env ') rhs os env q

comatch (i:@lhs) (j:@cxt) env ' rhs os env q
| i == j = comatch lhs cxt env ' rhs os env q

comatch lhs cxt _ _ os env q
= refocus (Obj os) env q

Figure 17. Environment-passing, tail-recursive abstract ma-
chine interpreter.

machine states and form closures when necessary to cor-
rectly implement static scope. These kind of environment-
based implementations are standard practice, but correctly
managing static scope through closures can be tricky, its
correctness is not as obvious.
In the context of the derivations we have done so far,

we could treat addition of environments and closures to an
abstract machine as a complex monolithic program transfor-
mation. Instead, here we stay within the incremental style,
and perform a small, but obvious transformation at the right
level of abstraction that makes environment-passing straight-
forward. Then, turning the crank in the same way as before
will mechanically generate a more efficient abstract machine
with more confidence that it is correct by construction.

A.1 Closing over monolithic copatterns
In order to thread environments efficiently, we start from
the very beginning with the small-step semantics. The main

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

data Answer i a
= Final (CPSQuestion i a)
| Stuck [CPSTerm i a] a (CPSQuestion i a)
| CoStuck [CPSTerm i a] a

type CPSQuestion i a = Copattern i (CPSArg i a)
type CPSResponse i a = Answer i a
type CPSTerm i a = CPSQuestion i a -> CPSResponse i a
type CPSOption i a = CPSTerm i a -> CPSTerm i a

newtype CPSArg i a
= Arg { useArg :: CPSTerm i a }

data CPSSub i a = CPST (CPSTerm i a)
| CPSQ (CPSQuestion i a)

type CPSEnv i a = Env a (CPSSub i a)

run :: (Eq a, Eq i) => Response i a -> Answer i a
run r = (response r [])

eval :: (Eq i, Eq a) => Term i a
-> Answer i a

eval m = (term m []) Nop

try :: (Eq i, Eq a) => Option i a -> Answer i a
try o = (option o []) Nop (term Raise []) Nop

response :: (Eq a, Eq i) => Response i a
-> CPSEnv i a -> Answer i a

response (Splat k) env = case lookup k env of
Just (CPSQ q) -> Final q
_ -> CoStuck [] k

response (End) env = Final Nop
response (m :!: r) env

= (term m env) <!> (response r env)

(<!>) :: CPSTerm i a -> Answer i a
-> Answer i a

f <!> Final r = f r
f <!> Stuck gs x q = Stuck (f : gs) x q
f <!> CoStuck gs q = CoStuck (f : gs) q

term :: (Eq a, Eq i) => Term i a -> CPSEnv i a
-> CPSTerm i a

term (Var x) env = case lookup x env of
Just (CPST m) -> m
_ -> Stuck [] x

term (Dot m) env
= \k -> (term m env) (Arg (term m env) :* k)

term (m :*: n) env
= \k -> (term m env) (Arg (term n env) :* k)

term (m :@: i) env = \k -> (term m env) (i :@ k)
term (Raise) env = \k -> Final k
term (q :!-> r) env

= \k -> (response r ((q, CPSQ k) : env))
term (o :?: m) env

= \k -> (option o env) k (term m env) k

option :: (Eq i, Eq a) => Option i a -> CPSEnv i a
-> CPSQuestion i a -> CPSOption i a

option (x :*-> o) env = \q f -> \case
(y :* k) -> (option o env ') q f k

where env ' = (x, CPST (useArg y)) : env
_ -> f q

option (i :@-> o) env = \q f -> \case
(j :@ k) | i == j -> (option o env) q f k
_ -> f q

option (x :?-> m) env = _ f -> (term m env ')
where env ' = (x, CPST f) : env

Figure 18. Environment and continuation-passing style
translation for copatterns with nested options.

data Answer i a
= Final (ClosQuestion i a)
| Stuck (MetaCont i a) a (ClosQuestion i a)
| CoStuck (MetaCont i a) a

type MetaCont i a = [Closure i a]

run :: (Eq a, Eq i) => Response i a -> Answer i a
run r = delim r [] []

eval :: (Eq i, Eq a) => Term i a -> Answer i a
eval m = refocus m [] Nop []

try :: (Eq i, Eq a) => Option i a -> Answer i a
try o = comatch o [] Nop (Raise :/: []) Nop []

delim :: (Eq a, Eq i)
=> Response i a -> ClosEnv i a
-> MetaCont i a -> Answer i a

delim (Splat k) env (m:/:e:s)
| Just (QSub q) <- lookup k env
= refocus m e Nop s

delim (Splat k) env []
| Just (QSub q) <- lookup k env
= Final q

delim (Splat k) env s
= CoStuck s k

delim (End) env (m:/:e:s)
= refocus m e Nop s

delim (End) env []
= Final Nop

delim (m :!: r) env s
= delim r env $ (m :/: env) : s

refocus :: (Eq a, Eq i) => Term i a
-> ClosEnv i a -> ClosQuestion i a
-> MetaCont i a -> Answer i a

refocus (Var x) env k s
| Just (CSub (m:/:e)) <- lookup x env
= refocus m e k s

refocus (Var x) env k s
= Stuck s x k

refocus (Dot m) env k s
= refocus m env ((m :/: env) :* k) s

refocus (m :*: n) env k s
= refocus m env ((n :/: env) :* k) s

refocus (m :@: i) env k s
= refocus m env (i :@ k) s

refocus (Raise) env k (m:s)
= refocus (openTerm m) (staticEnv m) k s

refocus (Raise) env k []
= Final k

refocus (q :!-> r) env k s
= delim r ((q, QSub k) : env) s

refocus (o :?: m) env k s
= comatch o env k (m :/: env) k s

comatch :: (Eq i, Eq a) => Option i a
-> ClosEnv i a -> ClosQuestion i a
-> Closure i a -> ClosQuestion i a
-> MetaCont i a -> Answer i a

comatch (x :*-> o) env (n:*k) m q s
= comatch o ((x, CSub n) : env) q m k s

comatch (i :@-> o) env (j:@k) m q s
| i == j = comatch o env q m k s

comatch (x :?-> n) env k m _ s
= refocus n ((x, CSub m) : env) k s

comatch _ env _ m q s
= refocus (openTerm m) (staticEnv m) q s

Figure 19. Environment-passing, abstract machine inter-
preter for copatterns with control.

OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore Downen

Refocusing / Reduction steps:
⟨𝑀 𝑁 ∥ 𝜎 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝑁 {𝜎} 𝐾⟩ ⟨𝑀. ∥ 𝜎 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝑀{𝜎} 𝐾⟩ ⟨𝑥 ∥ 𝜎 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝜎 ′ ∥ 𝐾⟩
⟨𝑀 𝑋 ∥ 𝜎 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝑋 𝐾⟩ ⟨𝜆{𝐿 → 𝑀 ;

⃗⃗ ⃗⃗
𝑂 } ∥ 𝜎 ∥ 𝐾⟩ ↦→ ⟨𝐿 ∥ 𝐾 ∥ 𝜎 ∥ 𝑀 ∥

⃗⃗⃗⃗
𝑂 ∥ 𝜎 ∥ 𝐾⟩ (𝑀{𝜎 ′}/𝑥 ∈ 𝜎)

Copattern-matching steps:
⟨𝑥 𝐿 ∥ 𝑁 {𝜎 ′} 𝐾 ′ ∥ 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩ ↦→ ⟨𝐿 ∥ 𝐾 ′ ∥ 𝑁 {𝜎 ′}/𝑥, 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩

⟨𝑋 𝐿 ∥ 𝑋 𝐾 ′ ∥ 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩ ↦→ ⟨𝐿 ∥ 𝐾 ′ ∥ 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩
⟨𝜀 ∥ 𝐾 ′ ∥ 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝐾 ′⟩
⟨𝐿 ∥ 𝜀 ∥ 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩ ̸↦→ (if 𝐿 ≠ 𝜀)

⟨𝐿 ∥ 𝐾 ′ ∥ 𝜎 ∥ 𝑀 ∥ 𝑂... ∥ 𝜎0 ∥ 𝐾⟩ ↦→ ⟨𝜆{𝑂...} ∥ 𝜎0 ∥ 𝐾⟩ (otherwise)

Figure 20. Environment-based abstract machine for calculating monolithic copatterns.

Meta-continuation steps:
⟨𝑀 ! 𝑅 ∥ 𝜎 ∥ 𝑆⟩ ↦→ ⟨𝑅 ∥ 𝜎 ∥ 𝑀{𝜎}; 𝑆⟩ ⟨𝜀 ∥ 𝜎 ∥ 𝑀{𝜎 ′}; 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜎 ′ ∥ 𝜀 ∥ 𝑆⟩ ⟨𝑞 ∥ 𝜎 ∥ 𝑀{𝜎 ′}; 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜎 ′ ∥ 𝜎 (𝑞) ∥ 𝑆⟩

Refocusing / reduction steps:
⟨𝑀 𝑋 ∥ 𝜎 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝑋 𝐾 ∥ 𝑆⟩
⟨𝑀 𝑁 ∥ 𝜎 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝑁 {𝜎} 𝐾 ∥ 𝑆⟩ ⟨!𝑞 → 𝑅 ∥ 𝜎 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑅 ∥ 𝐾/𝑞, 𝜎 ∥ 𝑆⟩
⟨𝑀. ∥ 𝜎 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜎 ∥ 𝑀{𝜎} 𝐾 ∥ 𝑆⟩ ⟨𝑂 ?𝑀 ∥ 𝜎 ∥ 𝐾 ∥ 𝑆⟩ ↦→ ⟨𝑂 ∥ 𝜎 ∥ 𝐾 ∥ 𝑀{𝜎} ∥ 𝐾 ∥ 𝑆⟩

Copattern-matching steps:
⟨𝑥 → 𝑂 ∥ 𝜎 ∥ 𝑁 {𝜎 ′} 𝐾 ∥ 𝑀{𝜎0} ∥ 𝐾0 ∥ 𝑆⟩ ↦→ ⟨𝑂 ∥ 𝑁 {𝜎 ′}/𝑥, 𝜎 ∥ 𝐾 ∥ 𝑀{𝜎0} ∥ 𝐾0 ∥ 𝑆⟩

⟨𝑋 → 𝑂 ∥ 𝜎 ∥ 𝑋 𝐾 ∥ 𝑀{𝜎0} ∥ 𝐾0 ∥ 𝑆⟩ ↦→ ⟨𝑂 ∥ 𝜎 ∥ 𝐾 ∥ 𝑀{𝜎0} ∥ 𝐾0 ∥ 𝑆⟩
⟨?𝑥 → 𝑁 ∥ 𝜎 ∥ 𝐾 ∥ 𝑀{𝜎0} ∥ 𝐾0 ∥ 𝑆⟩ ↦→ ⟨𝑁 ∥ 𝑀{𝜎0}/𝑥, 𝜎 ∥ 𝐾 ∥ 𝑆⟩

⟨𝑂 ∥ 𝜎 ∥ 𝐾 ∥ 𝑀{𝜎0} ∥ 𝐾0 ∥ 𝑆⟩ ↦→ ⟨𝑀 ∥ 𝜎0 ∥ 𝐾0 ∥ 𝑆⟩ (otherwise)

Figure 21. Environment-based abstract machine for controlling compositional copatterns.

change takes place in the reduce function as shown in fig-
ure 16: the Redex it processes will now contain an explicit
environment representing some delayed substitutions that
haven’t been finished yet, and its Reduct can now return a
Closure (pair of an open term and static environment) with
potentially more delayed substitutions.

The reasoning behind why this program transformation is
correct with respect to figure 3 is that, if we eagerly perform
all delayed substitutions before and after the environment-
passing reduce step, it is the same as the substitution-based
reduce step. Since reduce is a non-recursive stepping func-
tion, this property can be manually confirmed by manually
checking each case.
Since the new Redex type now contains closures, we also

have to update the decomposition functions decomp and
refocus. These now start with explicit closures and search
for the next redex—which follows exactly the same code
structure before, since the search never goes under binders—
which produces a redex with explicit substitution and a ques-
tion containing closures in place of raw terms.

Putting this all together, we then get the environment-
passing, small step evaluator eval and main driver loop iter

shown in figure 16—already in the in-place refocusing form—
which corresponds to the original small-step interpreter up to
performing the delayed substitutions. The main correctness
property about the top-level eval function can be derived
from each step of iter by relating the above relationship of
reduce and refocus.

From here on out, there is nothing new. Applying the same
program transformations as before—CPS transformation, de-
functionalization, loop fusion, compressing corridor transi-
tions, deforesting, and other representational data structure
changes—yields the environment-passing, tail-recursive in-
terpreter in figure 17.

We can continue on to derive a continuation-passing style
transformation like before as well, using the same trans-
formation steps—desugaring pattern matching, 𝜂-reduction,
and immediately applying transition functions to all sub-
expressions as soon as they are available. The resulting code
corresponds to a form of CPS transformation that is parame-
terized by a static environment that gets used to interpret

Controlling Copatterns: There and Back Again OLIVIERFEST ’25, October 12–18, 2025, Singapore, Singapore

both free and bound variables, in the style of many denota-
tional semantics. Rephrased as a translation function into
the 𝜆-calculus, this CPS is as follows:

• Translating terms ⟦𝑀⟧𝜎 :

⟦𝑥⟧𝜎 = 𝜎 (𝑥)
⟦𝑀 𝑋⟧𝜎 = 𝜆𝑘. ⟦𝑀⟧𝜎 (𝑋 𝑘)
⟦𝑀 𝑁⟧𝜎 = 𝜆𝑘. ⟦𝑀⟧𝜎 (⟦𝑁⟧𝜎 , 𝑘)
⟦𝑀.⟧𝜎 = 𝜆𝑘. ⟦𝑀⟧𝜎 (⟦𝑀⟧𝜎 , 𝑘)

⟦𝜆{𝑂...}⟧𝜎 = ⟦𝑂...⟧𝜎

• Translating lists of options ⟦𝑂...⟧𝜎 :

⟦𝜀⟧𝜎 = 𝜆𝑘. 𝑘

⟦𝐿 =𝑀 | 𝑂...⟧𝜎 = 𝜆𝑘. ⟦𝐿 → 𝑀⟧𝜎 𝑘 ⟦𝑂...⟧𝜎 𝑘

• Translating copattern-matching options ⟦𝐿 → 𝑀⟧𝜎 :

⟦𝜀 → 𝑁⟧𝜎 = 𝜆𝑞.𝜆𝑓 . ⟦𝑁⟧𝜎
⟦𝑥 𝐿 → 𝑁⟧𝜎 = rec 𝑟 = 𝜆𝑞.𝜆𝑓 .𝜆𝑘.

case𝑘 of (𝑦, 𝑘 ′) → ⟦𝐿 = 𝑁⟧[𝑥/𝑦],𝜎 𝑞 𝑓 𝑘
′

() → 𝑟 𝑞 𝑓
𝑘 → 𝑓 𝑞

⟦𝑋 𝐿 → 𝑁⟧𝜎 = rec 𝑟 = 𝜆𝑞.𝜆𝑓 .𝜆𝑘.

case𝑘 of (𝑋 𝑘 ′) → ⟦𝐿 = 𝑁⟧𝜎 𝑞 𝑓 𝑘 ′
() → 𝑟 𝑞 𝑓
𝑘 → 𝑓 𝑞

As a convention, when bound names are introduced on the
right-hand side of a defining equation, they are always cho-
sen to be distinct from the free variables of 𝜎 to avoid acci-
dental capture.

A.2 Closing over compositional copatterns
The refactorings used section 4 to generalize the calculus
for delimited and compositional copattern matching were
orthogonal to the question about substitution versus envi-
ronments as the semantics for static variables. Therefore, we
can replay the changes to the environment and continuation-
passing transformation in section A.1 to derive a similar
environment-based CPS translation of compositional copat-
terns:

• Translating responses ⟦𝑅⟧𝜎

⟦𝑀 ! 𝑅⟧𝜎 = 𝜆𝑠. ⟦𝑅⟧𝜎 𝜆𝑞. ⟦𝑀⟧𝜎 𝑞 𝑠
⟦𝑞⟧𝜎 = 𝜆𝑠. 𝑠 𝜎 (𝑞)
⟦𝜀⟧𝜎 = 𝜆𝑠. 𝑠 ()

• Translating terms ⟦𝑀⟧𝜎
⟦𝑥⟧𝜎 = 𝜎 (𝑥)

⟦𝑀 𝑋⟧𝜎 = 𝜆𝑘. ⟦𝑀⟧𝜎 (𝑋 𝑘)
⟦𝑀 𝑁⟧𝜎 = 𝜆𝑘. ⟦𝑀⟧𝜎 (⟦𝑁⟧𝜎 , 𝑘)
⟦𝑀.⟧𝜎 = 𝜆𝑘. ⟦𝑀⟧𝜎 (⟦𝑀⟧𝜎 , 𝑘)

⟦raise⟧𝜎 = 𝜆𝑘. 𝜆𝑠.𝑠 𝑘

⟦𝑂 ?𝑀⟧𝜎 = 𝜆𝑘. ⟦𝑂⟧𝜎 ⟦𝑀⟧𝜎 𝑘
⟦!𝑞 → 𝑅⟧𝜎 = 𝜆𝑞. ⟦𝑅⟧𝜎

• Translating options ⟦𝑂⟧𝜎
⟦𝑥 → 𝑂⟧𝜎 = 𝜆𝑓 .𝜆𝑘. case𝑘 of

(𝑥, 𝑘 ′) → ⟦𝑂⟧𝜎 (𝜆𝑞. 𝑓 (𝑥, 𝑞)) 𝑘 ′
𝑘 → 𝑓 𝑘

⟦𝑋 → 𝑂⟧𝜎 = 𝜆𝑓 .𝜆𝑘. case𝑘 of
(𝑋 𝑘 ′) → ⟦𝑂⟧𝜎 (𝜆𝑞. 𝑓 (𝑋 𝑞)) 𝑘 ′
𝑘 → 𝑓 𝑘

⟦?𝑥 → 𝑀⟧𝜎 = 𝜆𝑥. ⟦𝑀⟧𝜎
The corresponding Haskell embedding is shown in figure 18.

From here on out, we can turn the CPS transformation
into an abstract machine using the same general deriva-
tion technique. Applying standard code transformations—
defunctionalization, delaying the application of translation
functions until the last moment of application, 𝜂-expansion,
and the use of nested patternmatching—gives the environment-
passing, tail-recursive interpreter shown in figure 19.
To compare the difference of the low-level execution of

the two calculi—one for monolithic matching of complex co-
patterns, and the other for compositional matching of copat-
terns with control—we can put them in more common forms.
Rephrasing the Haskell implementations as stepping rela-
tions on machine configurations for both calculi are shown
in figures 20 and 21.

Received 2025-06-10; accepted 2025-07-31

	Abstract
	1 Introduction
	2 Expressiveness of Copatterns
	3 Deriving Copatterns: A Journey of Small Steps to the Land of Continuations
	3.1 Small-step operational semantics
	3.2 Abstract machine
	3.3 Continuation-passing style transformation

	4 Refactoring Syntax and Semantics: A Short Rest Among the Lambdas
	4.1 First refactor: Delimiting the context
	4.2 Second refactor: Nesting copatterns
	4.3 Third refactor: Eliminating redundancy
	4.4 Fourth refactor: Fully continuation-passing style

	5 Controlling Copatterns: The Return Voyage Back to Direct Style
	5.1 Continuation-passing style
	5.2 Abstract machine
	5.3 Small-step operational semantics

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Postscript: Efficiently Passing Environments
	A.1 Closing over monolithic copatterns
	A.2 Closing over compositional copatterns

