
CoScheme: Compositional Copatterns in Scheme

Paul Downen1[0000−0003−0165−9387] and
Adriano Corbelino II1[0000−0002−6014−6189]

University of Massachusetts Lowell, Lowell MA 01854, USA
Paul_Downen@uml.edu

Adriano_VilargaCorbelino@uml.edu

Abstract. Since their introduction, copatterns have promised to extend
functional languages — with their familiar pattern matching facilities —
to synthesize and work with infinite objects through a finite set of ob-
servations. Thus far, their adoption in practice has been limited and
primarily associated with specific tools like proof assistants. With that
in mind, we aim to make copattern matching usable for ordinary func-
tional programmers by implementing them as macros in the Scheme and
Racket programming languages. Our approach focuses on composable
copatterns, which can be combined in multiple directions and offer a
new solution to the expression problem through novel forms of exten-
sibility. To check the correctness of the implementation and to reason
equationally about copattern-matching code, we describe an equational
theory for copatterns with a sound, selective translation into λ-calculus.

Keywords: Codata · Copatterns · Scheme · Macros · Composition ·
Expression Problem.

1 Introduction

Composition is one of the great promises of functional programming to com-
bat complexity. As opposed to monolothic solutions, functional programming
languages encourage us to decompose large problems into small, reusable, and
reliable parts and then to recompose them back into a whole solution [13]. This
practice is encouraged through tools like higher-order functions to abstract out
common patterns and laziness to separate generation, selection, and consump-
tion of information. Rather than implementing a complex algorithm as a single
special-purpose loop, functional programming lets us express the same solution
as the composition of simple domain-specific operations and generic combinators:
maps, filters, folds, and unfolds.

However, the expression problem [29] is a familiar foe that still resists this
(de)compositional approach. It captures the common problem that arises when
we want to maintain code — such as an evaluator for the syntax trees of an
expression language — by extending it in two different directions: adding new
forms of data (i.e., classes of objects) and new operations (i.e., methods) on
them. Traditionally, functional languages can easily add new operations over

2 P. Downen, A. Corbelino II

any given data type, but adding a new constructor requires a major rewrite that
can potentially alter the rest of the code. Conversely, object-oriented languages
make it easy to add a new class of object, but extending a base class with a
new method again requires major rewriting. Being a common obstacle in the
way of maintaining, extending, and decomposing code, the expression problem
has garnered many solutions in the object-oriented [19,30] and functional [24,16]
worlds, and especially hybrid languages that mix both [3,11].

This work presents a novel solution to the expression problem: composable
copatterns. Copatterns [2] are often associated with codata types for expressing
infinite objects, but their use is not limited to just that. Their composition, in
particular, allows us to define programs by performing equational reasoning in
the evaluation context. Performing the “substitution of equals for equals” [28]
enhances the predictability and composability of our programs since we can
analyze our part code in isolation.

Previous implementations of copatterns can be found in strongly typed lan-
guages which impose prescribed restrictions on their use. For example, Agda
gives the most full-fledged implementation of copatterns in a real system [6].
However, Agda is primarily a proof assistant rather than a general-purpose pro-
gramming language, and as such, has different concerns than an ordinary func-
tional programmer. There is also some support for copatterns in OCaml [18],
but as an unofficial extension that has not been merged into the main compiler.

The copatterns implemented here are also implemented as macros like [18];
however, we present a different encoding that focuses on providing new methods
of extensibility that were not available before, and can be desugared without any
static typing information. To achieve that, and to fully integrate it into a prac-
tical general-purpose programming language, we choose a programmable pro-
gramming language [10] and provide a new language extension as a library [27].
We focus, in particular, on Scheme and Racket, which offers a robust macro
system for seamlessly implementing new language features.

Our extension presents three different composition flavors, allowing us to
capture some “design patterns” used by functional programmers as first-class
abstractions. First, we have vertical composition, which permits us to gather a
collection of alternative options with failure handling. Second, we have horizon-
tal composition, which permits us to compose a sequence of steps, parameters,
matching, or guards. Third, we have circular composition, which allows us to
recurse back on the entire composition itself.

Our primary contributions are organized as follows:

– Section 2 shows examples of programming with copattern equations in Scheme-
like languages, including new forms of program composition — vertical and
horizontal — that allows us to solve familiar examples of the expression
problem [29] through a fusion of functional and object-oriented techniques.

– Section 3 exposes the challenges related to implementing copatterns in this
scenario, introduces our library API, shows how we can desugar our abstrac-
tions into a set of primitives and how the implementations differ between
Racket and a standard R6RS-compliant Scheme.

CoScheme: Compositional Copatterns in Scheme 3

– Section 4 presents a theory for how to translate copatterns into a small core
target language — untyped λ-calculus with recursion and patterns — with
a local double-barrel transformation reminiscent of selective continuation-
passing style transformation. Importantly, only the new language constructs
are transformed, while existing ones in the target language are unchanged.

– Section 4.2 demonstrates correctness in terms of an equational theory for
reasoning about copattern-matching code in the source language, which is a
conservative extension of the target language, and we prove that it is sound
with respect to translation.

2 Programming with Composable Copatterns in Scheme

All examples shown below are executable Scheme and Racket code. You can
follow along and interact with the code using the supporting library found online
at https://github.com/pdownen/CoScheme.

2.1 Infinite streams

For decades, functional programmers have had a reliable and versatile method
for representing tree-shaped structures: inductive data types. These can model
data of any size — for example, lists of an arbitrary length — but each instance
must be finite. But how does a program handle infinite amounts of information,
that cannot possibly occupy a finite memory space?

One method of modeling infinite information is through laziness, as in the
Haskell programming language. For example, consider the usual infinite list of
Fibonacci numbers in Haskell:

fibs :: [Int]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fibs cannot be fully evaluated because it has no base case — it would even-
tually expand out to 0 : 1 : 1 : 2 : 3 : 5 : 8 : ... forever — but this is no
problem in a non-strict language that only evaluates as much as needed. But
what if we are working within a strict language without laziness built in? Must
we give up on the approach entirely, or is there an alternate solution that works
just as well with eager and lazy evaluation?

In contrast, codata describes types defined by primitive destructors that use
values of the codata type — as opposed to the primitive constructors that define
how to build values of a data type — and lets us easily model infinite data
in eager languages, too. For example, the usual Stream a codata type of infinite
a’s is defined by two destructors: Head : Stream a -> a extracts the first element
and Tail : Stream a -> Stream a discards the first element and returns the rest.
To define new streams, we can describe how they react to different combinations
of Head and Tail destructors using copatterns [2]. Borrowing Agda’s syntax, a
possible copattern-based definition of the same fibs function above is:

https://github.com/pdownen/CoScheme

4 P. Downen, A. Corbelino II

fibs : Stream Nat
Head fibs = 0
Head (Tail fibs) = 1
Tail (Tail fibs) = zipWith _+_ fibs (Tail fibs)

However, at the moment, Agda currently does not understand if fibs is well-
founded — it is — and so fibs is rejected. As a proof assistant, Agda has de-
manding requirements on all definitions to ensure well-foundedness: they must
never have unproductive infinite loops, and they must cover every possible case
(when matching on arguments or copatterns, as in fibs). But for a general-
purpose programming language, we expect to be able to write arbitrary loops
that may or may not terminate. Copattern-based definitions need to gracefully
handle cases that fail to return — either due to an infinite loop or an excep-
tion, like an unhandled case, which are semantically similar [22] — and should
generate code based on whatever is given. In this kind of setting, the language
does not enforce — and indeed, our implementation does not check — coverage,
which is instead up to the programmer to determine.

Let us now consider some examples of programming by equational reason-
ing to get familiar with copatterns and how we can use them in Scheme. For
example, even in a dynamically-typed language like Scheme, linked lists can
be thought of as an inductively-defined type combining two constructed forms:
List a = null | (cons a (List a)). Likewise, infinite streams can be under-
stood as the type of a procedure that exhibits two different behaviors at the same
time: Stream a = 'head -> a & 'tail -> Stream a. In other words, any Stream a
is a procedure that takes one argument, and its response depends on the exact
value: given 'head an a is returned, and given 'tail another Stream a is returned.

In order to define new coinductive processes, one of the main entry points is
the top-level, multi-line define* macro. This macro enables us to declare codata
objects through a list of equations between a copattern on the left-hand side
and an expression on the right-hand side. At the root of every copattern is a
name for the object itself, which can be inside any number of applications — the
applications may just list parameter names or more specific patterns, narrowing
down the concrete arguments that match. Using define*, we can define the trivial
zeroes stream — whose 'head is 0 and whose 'tail is more zeroes — as:

;; zeroes : Stream nat
(define* [(zeroes 'head) = 0]

[(zeroes 'tail) = zeroes])

Streams like zeroes are black boxes that can only be observed by passing 'head
or 'tail as arguments to get their response. Still, this is enough for many useful
operations, like taking the first n elements, which can be define*d as:

;; takes : (Stream a, nat) -> List a
(define* [(takes s 0) = '()]

[(takes s n) = (cons (s 'head) (takes (s 'tail) (- n 1)))])

A constant stream is not particularly useful; more interesting streams will change
over time. For example, imagine a “stuttering” stream (0, 0, 1, 1, 2, 2, 3, 3, . . .)

CoScheme: Compositional Copatterns in Scheme 5

that repeats numbers twice before moving on. This stream can be defined by
copattern matching equations:

;; stutter : nat -> Stream nat
(define* [((stutter n) 'head) = n]

[(((stutter n) 'tail) 'head) = n]
[(((stutter n) 'tail) 'tail) = (stutter (+ n 1))])

So that (takes (stutter 1) 10) = '(1 1 2 2 3 3 4 4 5 5),1 because the first
and second elements — ((stutter n) 'head) and (((stutter n) 'tail) 'head)
respectively — return the same n before incrementing.

But why is stutter well-defined, and how can we understand its meaning? As
in many functional languages, the = in code really implies equality between the
two sides, and this equality still holds when we plug in real values for placeholder
variables like n. So to determine the first 'head element, of (stutter 1), we match
the left-hand side and replace it with the right to get ((stutter 1) 'head) = 1.
Similarly, the second element is (((stutter 1) 'tail) 'head) = 1 as well. The
third element is accessed by two 'tail projections and then a 'head as the nested
applications ((((stutter 1) 'tail) 'tail) 'head), which doesn’t exactly match
any left-hand side. However, equality holds in any context, and the inner appli-
cation (((stutter 1) 'tail) 'tail) does match the third equation. Thus, we
can apply a few steps of equational reasoning to derive the expected answer 2:

((((stutter 1) 'tail) 'tail) 'head) = ((stutter (+ 1 1)) 'tail) ; line 3
= ((stutter 2) 'head) ; +
= 2 ; line 1

So these three examples work, but is every case really covered? The Stream Nat
interface that stutter’s output follows allows for any number of 'tail projections
followed by a final application to 'head that returns a natural number. stutter
works its way through these projections in groups of two, eliminating a pair of
'tail projections at a time until it gets to the end case, which is either a 'head
(if the total number of 'tails is even) or a 'tail followed by 'head (if the total
number of 'tails is odd). So, stutter behavior is defined no matter what is
asked of it. Even with other observations like takes, which passes around partial
applications of stutter as a first-class value, internally stutter only “sees” the
'head and 'tail applications from takes, and is dormant otherwise.

Reasoning about the coverage of our copatterns is important since our imple-
mentation does not provide coverage analysis. If we encounter an uncovered case,
our implementation emits a runtime error, explaining that this is an uncovered
copattern. Non-total configurations, akin to partial functions, are not always
undesirable. They can simplify the development during a prototyping phase,
and if the missing case does not make sense, they can be the most semantically
meaningful.

With this practice under our belt, we can now directly translate the canonical
Fibonacci example from Agda to Scheme like so:
1 Try it! https://github.com/pdownen/CoScheme has implementations of define*

and related macros used by these examples.

https://github.com/pdownen/CoScheme

6 P. Downen, A. Corbelino II

;; zips-with : ((a, b) -> c, Stream a, Stream b) -> Stream c
(define*

[((zips-with f xs ys) 'head) = (f (xs 'head) (ys 'head))]
[((zips-with f xs ys) 'tail) = (zips-with f (xs 'tail) (ys 'tail))])

;; fibs : Stream nat
(define*

[(fibs 'head) = 0]
[((fibs 'tail) 'head) = 1]
[((fibs 'tail) 'tail) = (zips-with + fibs (fibs 'tail))])

so that (takes fibs 10) is '(0 1 1 2 3 5 8 13 21 34).

2.2 Self-referential objects

Codata can also be used to implement an abstract interface over regular finite
data. As an alternate syntax for define*, we can explicitly give a top-level name
to bind the definition to for external use, and on each equation give a hidden
internal for self-reference and recursion. To illustrate this, consider the following
queue example, which internally refers to itself by the name self for an object-
oriented feel:

(define* queue
[(self 'new) = (self '() '())]
[((self in out) 'enq x) = (self (cons x in) out)]
[((self '() '()) 'deq) = (error "Invalid dequeue: empty queue")]
[((self in '()) 'deq) = ((self '() (reverse in)) 'deq)]
[((self in out) 'deq) = (cons (car out) (self in (cdr out)))])

This reflects the purely functional queue implementation in using two lists (an
inbox and an outbox) as internal states. We externally bound this declaration to
the name queue, but the internal recursion is through the name self. This queue
object responds to three methods: 'new returns a new empty queue, 'enq x puts
the x to the end of the queue (i.e., the top of the inbox), and 'deq returns the
oldest enqueued element (from the top of the outbox or bottom of the inbox, as
appropriate). Thus, ((((queue 'new) 'enq 1) 'enq 2) 'deq) returns the oldest
element 1 and a queue object containing only 2.

Visualizing what we are defining through the lens of the object-oriented
paradigm can give a new perspective here. With this metaphor, we can view
our definitions as describing the protocols of objects, where the equations spec-
ify how an object should respond to a sequence of messages. Here, queue itself can
only directly respond to one message — 'new — that initializes the object with
two empty lists for its private internal state. From there, the initialized queue
object now only responds to the 'enq x and 'deq messages which can read and
update the object’s internal state. However, besides these two messages, there is
no other way to manipulate the internal state of an initialized queue object; the
in and out lists are completely hidden within an opaque procedural abstraction,
enforcing an encapsulation of private state. Given an initialized queue object,

CoScheme: Compositional Copatterns in Scheme 7

it would not be possible, for instance, to break the first-in-first-out ordering by
taking an element from the in list or to put an element on the out list.

Since we can already use encapsulation in copattern-based definitions, can
we also use a functional model [1] of inheritance and dynamic dispatch? Our im-
plementation of copattern matching in Scheme includes new facilities for com-
posing code snippets compared to current functional (or object-oriented) lan-
guages. However, to avoid unwanted surprises, the programmer does have to ask
for them. This is a small request, and can be done by replacing define* with
define-object, as in the following file system example:

(define-object
[((fs-object p . _) 'path) = p])

(define-object (<: (import-object fs-object))
[((file p txt) 'text) = txt]
[((file p txt) 'size) = (string-length ((file p txt) 'text))])

(define-object (directory <: (import-object fs-object))
[((apply dir p cts) 'contents) = cts]
[((apply dir p cts) 'overhead) = 8]
[((apply dir p cts) 'size)
= (apply + ((apply dir p cts) 'overhead)

(map (λ(o) (o 'size)) ((apply dir p cts) 'contents)))])

This example emulates some functionality of a filesystem, specifically calculat-
ing various sizes. Every filesystem object has a path, which is captured by the
fs-object object that only knows how to calculate its 'path by returning the
first piece of information it was given and ignoring the rest of the object’s inter-
nal data. Filesystem objects all also have a size, but calculating it requires more
object-specific information. This additional functionality is spelled out by more
specific filesystem objects:

– A file contains some 'text and its 'size is the length of that text.
– A directory contains any number of additional filesystem objects, stored as

its 'contents, and its 'size is the sum of it’s 'contents size plus an additional
'overhead that defaults to 8.

Both file and directory objects inherit the code for calculating it’s 'path by
importing fs-object with the extension clause <: (import-object fs-object).
Note that these three object definitions exercise three of the four possible defi-
nition forms, based on whether the external name is given explicitly or inferred,
and on whether there is an extension clause is included:

– fs-object’s external name is inferred from the internal name in its copattern
equation, and it has no listed extension clause,

– file’s external name is taken from its internal one and it extends fs-object,
– directory’s external name is given explicitly (and is different from its internal

name) and it extends fs-object.

8 P. Downen, A. Corbelino II

The last possibility is an explicit external name with no extensions, such as the
following equivalent definition of fs-object that elaborates the naming inference:

(define-object fs-object
[((fs-object p . _) 'path) = p])

While these definitions are functional, they contain some undesirable re-
dundancy. In particular, we have to repeat the same initialization forms —
(file p txt) and (apply dir p cts) — in front of every equational definition
because the object must be initialized with parameters before it is used. What is
worse, every time we want to ask a question about the object itself by recursively
passing it a message, we have to repeat this same initialization again exactly as
it occurred, leading to longer and more error-prone code. It would be better here
to follow the common object-oriented factorization of steps: first the object is
initialized with some internal data at the time of its construction, and then we
get an object that can (recursively) respond to methods. This can be done by
factoring out the common construction phase in the above definitions using a
construct clause like so:

(define-object (<: (import-object fs-object))
[(file p txt) (construct (list p txt))
(object
[(self 'text) = txt]
[(self 'size) = (string-length (self 'text))])])

(define-object (directory* <: (import-object fs-object))
[(apply dir p cts) (construct (cons p cts))
(object
[(self 'contents) = cts]
[(self 'overhead) = 8]
[(self 'size)
= (apply + (self 'overhead)

(map (λ(o) (o 'size)) (self 'contents)))])])

The construct operation lists its internal parameters given at the time of ini-
tialization. After this step, we describe a first-class anonymous object that
knows how to refer to its fully-constructed form by an internal name (here
we use the name self), so there is no need to re-construct (file p txt) or
(apply dir p cts) to recursively call other methods. Factoring out the common
copattern leads to shorter code, the definitions describe objects with exactly the
same behavior as before.

So far, we have only shaved off small parts of shared code: the common 'path
method and the initial initialization copattern. Where this coding style starts to
pay off is when we override some methods to automatically influence the result
of others. For example, we might have a fancier type of directory structure that
replicates the exact same behavior as a normal directory, but its 'overhead is 128
instead of 8. Or we might have static links that act like a normal file, except
that they only contain a path to the real place its text is stored, so it always
has a fixed size (8). These specialized revisions of directories and files can be

CoScheme: Compositional Copatterns in Scheme 9

implemented by importing from the original definitions and modifying certain
lines like so (where we omit the code for looking up the text for a static link):

(define-object (fancy-directory <: (import-object directory))
[((fancy-dir p . cts) 'overhead) = 128])

(define-object (<: (import-object file))
[(static-link p lnk) (construct (list p lnk))
(object
[(_ 'link) = lnk]
[(_ 'text) = "..."]
[(_ 'size) = 8])])

Although fancy-directory has only one defining equation about its 'overhead,
the implication is that its 'size should be 120 larger than a regular directory due
to the 'overhead increase. We can test out this use of inheritance and dynamic
dispatch by simulating a small directory structure:

(define ham (file "hamlet.md" "Words, words, words...."))
(define guide (file "Guide.md" "Don't Panic"))
(define books (directory* "Books" ham guide))
(define shortcut (static-link "Guide.md" "Books/Guide.md"))
(define docs (fancy-directory "Documents" shortcut books))

and calculating the sizes of each file system object:

(ham 'size) = 23 = (string-length "Words, words, words....")
(guide 'size) = 11 = (string-length "Don't Panic")
(books 'size) = 42 = (+ 8 23 11)
(shortcut 'size) = 8
(docs 'size) = 178 = (+ 128 8 42)

The question is: how were we able to inject new code in the middle of an
object like directory to change its behavior? The key issue is that, within
directory, recursive calls to ((apply dir p cts) 'overhead) — or just simply
(self 'overhead) in the second version — cannot be tied to this definition of
directory. Instead, we employ open recursion: the internal references to the re-
cursive object itself are left as unbound parameters that will only be bound to
the full object value when the final definition is ready to use. This is why the
internal and external names can be different — like in queue and directory —
since the external name is bound to the final object value while the internal
names are left (temporarily) open-ended and will be filled in later. In the same
way, the internal names used in each clause are fully independent and can also
differ from one another. This difference of using open recursion to leave internal
names temporarily unbound also applies to definitions where the external name
is inferred: although the external names file and static-link are inferred from
the internal names in the copatterns, the internal variables are left unbound
until the externally-visible name gets bound to the object value.

Thankfully, this whole framework is still built on purely functional idioms,
which makes it easier to reason about code. How can we understand what in-
heritance should do? The answer should be familiar to functional programmers:

10 P. Downen, A. Corbelino II

inheritance is composition and substitution! For example, the inheritance depen-
dencies can be fully inlined as-is into fancy-directory to bring the full definition
into one place by copying the inherited code into place like so:

(define-object fancy-directory
[((fancy-dir p . cts) 'overhead) = 128]
[((apply dir p cts) 'overhead) = 8]
[((apply dir p cts) 'contents) = cts]
[((apply dir p cts) 'size)
= (apply + ((apply dir p cts) 'overhead)

(map (λ(o) (o 'size)) ((apply dir p cts) 'contents)))]
[((fs-object p . _) 'path) = p])

After naïve inlining, there are some irrelevant differences: there are three different
internal names (fancy-dir, dir, and fs-object) used in various clauses, and we
use two equivalent syntaxes ((fancy-dir p . cts) and (apply dir p cts)) for
copatterns that bind arbitrary-length argument sequences to cts. Cleaning up
these differences by rewriting each initializing copattern to (apply self p cts)
and renaming as necessary gives a more uniform code:

(define-object fancy-directory
[((apply self p cts) 'overhead) = 128]
[((apply self p cts) 'overhead) = 8]
[((apply self p cts) 'contents) = cts]
[((apply self p cts) 'size)
= (apply + ((apply self p cts) 'overhead)

(map (λ(o) (o 'size)) ((apply self p cts) 'contents)))]
[((apply self p _) 'path) = p])

From here, it becomes more obvious that the two different equations defining
(... 'overhead) overlap, so the first one takes precedence and the second one
is dead code that can be completely erased. Furthermore, when there are no
more future extensions, we can inline the recursive calls at this point, to get the
simpler closed definition that reveals exactly what each method will do:

(define* fancy-directory
[((apply self p cts) 'overhead) = 128]
[((apply self p cts) 'contents) = cts]
[((apply self p cts) 'size)
= (apply + 128 (map (λ(o) (o 'size)) cts))]

[((apply self p _) 'path) = p])

2.3 Decomposing the expression problem

Our notion of compositional copatterns can capture some object-oriented styles
of code (de)composition with encapsulation, inheritance, and dynamic dispatch.
How can this new capability for composition influence the kinds of functional
programs we write? For example, consider the usual definition of a simple arith-
metic expression evaluator in typed functional languages like Haskell and OCaml
(we use Haskell syntax here):

CoScheme: Compositional Copatterns in Scheme 11

data Expr = Num Int | Add Expr Expr

eval :: Expr -> Int
eval (Num n) = n
eval (Add l r) = eval l + eval r

While Scheme does not have algebraic data types, we can encode complex con-
structor expressions as a list starting with the constructor name as a quoted
symbol and the arguments as the remainder of the list, and when unambiguous,
leave atomic data alone. So Num 5 could just be represented as the plain number
5, and Add l r would be represented as the quasiquote `(add ,l ,r) which plugs
in the values bound to variables l and r as the second and third elements of
the list (denoted by the “unquote” comma , before the variable names). We can
then use the facilities of define* to write almost identical code in Scheme like
so, using the guard try-if to test if the argument is a number:
;; eval : Expr -> Number
(define*

[(eval n) (try-if (number? n)) = n]
[(eval `(add ,l ,r)) = (+ (eval l) (eval r))])

Fantastic, it works! Both the Scheme and Haskell code have the same structure.
And on the surface, they both share the same strengths and weaknesses. From
the lens of the expression problem [29], it is easy to add new operations to existing
expressions — such as listing the numeric literals in an expression
;; list-nums : Expr -> List num
(define*

[(list-nums n)
(try-if (number? n)) = (list n)]

[(list-nums `(add ,l ,r)) = (append (list-nums l) (list-nums r))])

— but adding new classes of expressions is hard. For example, if we wanted
to support multiplication, we could add a Mult constructor to the Expr data
type, but this would require modifying all existing operations and case-splitting
expressions over Expr values. Even worse, if we wanted to support both expression
languages — with or without multiplication — we would have to copy the code
and maintain both versions.

Thankfully, our implementation of copattern matching in Scheme includes
new facilities for composing code snippets. As we previously saw with the object-
oriented examples, we can turn ordinary functional code into a more extensional
form by using define-object instead of define*.
;; list-nums* : Expr -> List num
(define-object

[(list-nums* n)
(try-if (number? n)) = (list n)]

[(list-nums* `(add ,l ,r)) = (append (list-nums* l) (list-nums* r))])

The list-nums* object behaves exactly like list-nums in all the same contexts it
works in, but in addition, it implicitly inherits additional functionality for compo-
sition defined elsewhere. This new composition lets us break existing multi-line

12 P. Downen, A. Corbelino II

definitions into individual parts, and recompose them later. For example, the
evaluator can be composed in terms of separate objects for each line like so:

(define-object
[(eval-num n) (try-if (number? n)) = n])

(define-object
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])

;; eval* : Expr -> num
(define eval* (eval-num 'compose eval-add))

So (eval expr) is the same as (eval* expr) for any well-formed expression ar-
gument. Why program in this way? Now, if we want to extend the functionality
of existing operations — like evaluation and listing literals — to support a new
class of expression, we can define the new special cases separately as a patch and
then compose them with the existing code as-is like so:

(define-object
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])

(define-object
[(list-mul `(mul ,l ,r)) = (append (list-mul l) (list-mul r))])

;; eval-arith : Expr+Mul -> num
(define eval-arith (eval* 'compose eval-mul))

;; eval-arith : Expr+Mul -> List num
(define list-nums-arith (list-nums* 'compose list-mul))

So for an expression (define expr1 '(add (mul 2 3) 4)), the extended code cor-
rectly yields (eval-arith expr1) = 10 and (list-nums-arith expr1) = '(2 3 4)
whereas the original code fails at the 'mul case.2 Note that this composition
automatically generates new functions and leaves the original code intact, which
can still be used for the smaller expression language with only numbers and
addition.

This example emphasizes our guiding principle: composition. We call combi-
nations like (eval-num 'compose eval-add eval-mul) vertical composition since
they behave as if we simply stacked their internal cases vertically, like in the
original definition of eval.

Not all types of language extensions are this simple, though. Consider what
happens if we want to support algebraic expressions which might have variables
in them. To evaluate a variable, we need a given environment — mapping names
to numbers — which we can use to look up the variable’s value.

(define-object [(eval-var env `(var ,x)) = (lookup env x)])

2 The astute reader might notice the open recursion at work here: the recursive calls
to eval-mul cannot be specifically tied to this definition because it only says what
to do with multiplication and fails to handle the other cases. Instead, recursive calls
to eval-mul must also open to invoking the other code associated with eval-num
and eval-add even though it is not known to be associated with them yet.

CoScheme: Compositional Copatterns in Scheme 13

However, it is wrong to just vertically compose this variable evaluator with the
previous code because the arithmetic evaluator only takes a single expression
as an argument, whereas the variable evaluator needs both an environment and
an expression. The manual way to perform this extension is routine for func-
tional programmers: in addition to adding a new case, we have to add an extra
parameter to each case, which gets passed along on all recursive calls.

It would be highly disappointing to have to rewrite our existing code in-place
to do this extension. Fortunately, our copattern language allows for another
type of composition — horizontal composition — which allows us to combine
sequences of steps, one after another, and automatically fall through to the next
case if something fails. For this example, we can define a general procedure
with-environment to perform the above transformation, taking any extensible
evaluator object expecting just an expression and threading an environment
along each recursive call. This lets us patch our existing arithmetic evaluator
with an environment and then compose it with variable evaluation like so:

(define (with-environment eval-ext)
(object [(self env expr)

(with-self (override-lambda* self
[(_ sub-expr) = (self env sub-expr)])

(try-apply-forget eval-ext expr))]))

;; Env = List (Symbol . num)

;; eval-alg : (Env, Expr+Mul+Var) -> num
(define eval-alg

((with-environment (eval-arith 'unplug)) 'compose eval-var))

The with-environment function is the most complex code we have seen so far,
but it just spells out the usual steps a functional programmer uses to modify
existing code with an environment.

– Given the evaluator eval-ext, it returns a new first-class object (which is
the same as define-object without assigning a name) that expects both an
environment and expression to process.

– This new object then invokes eval-ext by passing just the expression, ex-
cept that if eval-ext ever tries to recur with a sub-expression, the calls
(self sub-expr) gets replaced with (self env sub-expr) just like the tem-
plate transformation.

– This transformation of the evaluator’s notion of self is done by the with-self
operation, which can override the original recursive self.

– Finally, if none of the clauses of eval-ext succeed, then this updated evalua-
tor also falls through as before, forgetting the application had ever happened
via try-apply-forget.

The complete algebraic evaluator can then be made from an open-ended, exten-
sible version of the arithmetic evaluator — retrieved from (eval-arith 'unplug)
— horizontally composed to take an environment and vertically composed with
the single-line eval-var. It can now successfully evaluate algebraic expressions,

14 P. Downen, A. Corbelino II

such as (define expr2 '(add (var x) (mul 3 (var y)))), so that running the
evaluation (eval-arith '((x . 10) (y . 20)) expr2) returns 70 because the en-
vironment maps x to 10 and y to 20.

Another possible way to evaluate expressions with variables is constant fold-
ing, a common optimization where operations are simplified unless they are
blocked by variables whose values are unknown. In other words, the evaluator
might return a blocked expression if it cannot fully calculate the final number.
Ideally, we would like to extend our existing evaluator as-is, with the additional
cases when blocked expressions are encountered. However, as written, the equa-
tion handling (eval `(add ,l ,r)) already commits to a real numeric addition,
even if evaluating l or r does not give a numeric result.

To avoid over-committing before we know whether evaluation will successfully
calculate a final number or not, we can — at first glance — rewrite the basic
clauses of evaluation in a more defensive style. Essentially, this splits evaluation
into two separate steps: (1) check which operation we are supposed to do and
evaluate the two sub-expressions, (2) combine the two expressions according to
that operation. For example, the steps for addition and multiplication look like:

(define-object eval-add-safe
[(self 'eval ('add l r))
= (self 'add (self 'eval l) (self 'eval r))]
[(self 'add x y) (try-if (and (number? x) (number? y)))
= (+ x y)])

(define-object eval-mul-safe
[(self `(mul ,l ,r))
= (self 'mul (self l) (self r))]

[(self 'mul x y)
(try-if (and (number? x) (number? y)))
= (* x y)])

Here, the evaluation step is explicated by a 'eval tag, to help distinguish from
the other operation 'add for adding the left and right results. Note that in this
code, the 'add clause only performs a numeric addition + if it knows for sure that
both of the arguments are actually numbers. We can now compose the original
base-case for evaluating numbers with this “safer” version of addition that fails
to match cases where sub-expressions don’t evaluate to numbers (multiplication
could be added as well in a similar style):

;; eval-arith-safe : (’eval, Expr+Mul) -> num
;; & (’add, num, num) -> num
;; & (’mul, num, num) -> num
(define eval-arith-safe (eval-num 'compose eval-add-safe eval-mul-safe))

So (eval-arith-safe expr1) still evaluates to 70, but (eval-arith-safe expr2)
fails when it finds a variable sub-expression.

If it finds a variable, constant folding will just leave it alone and return an
unevaluated expression rather than a final number. Because the 'eval operation
might return a (partially) unevaluated expression, we now need to handle cases

CoScheme: Compositional Copatterns in Scheme 15

where the left or right (or both) sub-expressions do not evaluate to numbers. In
each of those cases, we must reform the addition expression out of what we find,
converting numbers n into a syntax tree of the form `(num ,n).

(define-object
[(leave-variables 'eval ('var x)) = (list 'var x)])

(define-object reform-operations
[(reform 'add l r) = (list 'add l r)]
[(reform 'mul l r) = (list 'mul l r)])

The final constant-folding algorithm can be composed from this “safe” version
of evaluation, along with the cases for leaving variables alone and reforming
partially-evaluated additions and multiplications.

;; constant-fold : (’eval, Expr+Mul+Var) -> Expr+Mul+Var
;; & (’add, Expr+Mul+Var, Expr+Mul+Var) -> Expr+Mul+Var
;; & (’mul, Expr+Mul+Var, Expr+Mul+Var) -> Expr+Mul+Var
(define constant-fold

(eval-arith-safe 'compose leave-variables reform-operations))

So now (constant-fold 'eval expr2) successfully returns expr2 itself (because
there are no operations to perform without knowing the values of variables x
and y). And running (constant-fold 'eval expr3) on the expression

(define expr3 '(add (add 1 1)
(mul (var x)

(mul 2 (add 2 3)))))

simplifies it down to '(add 2 (mul (var x) 10)). To add other operations, like
subtraction, we can easily define similar eval-sub-safe and reform-subtraction,
and 'compose them with constant-fold without having to rewrite any code.

3 A Composable Copattern Macro Library

3.1 Challenges

Even though the behavior of small examples may be straightforward to under-
stand, there are several challenges to correctly implementing copatterns in the
general case. Some of these challenges are specific to Scheme — a dynamically-
typed, call-by-value language — which forces us to carefully resolve the timing
of when and which copatterns are matched. Other challenges are specific to our
extensions to copatterns — the ability to compose copattern matching in two
different directions — which also brings in the notion of the recursive “self.”

Timing and the order of copattern matching Copatterns may have am-
biguous cases where two different overlapping copattern equations match the
same application. For example, this following function moves a number by 1
away from 0 — positives are incremented and negatives are decremented:

16 P. Downen, A. Corbelino II

(define* [(away-from0 x) (try-if (>= x 0)) = (+ x 1)]
[(away-from0 x) (try-if (<= x 0)) = (- x 1)])

Consequently, we must interpret the programmer’s code as it is written since
we cannot gain any information from a static type system. In the previous ex-
ample, the two different equations overlap for 0 itself: either one matches the
call (away-from0 0). To disambiguate overlapping copatterns, the listed equa-
tions are always tried top-down, and the first full match “wins,” as is typical
in functional languages. In this case, the first line wins, so (away-from0 0) is 1.
Furthermore, guards like try-if and try-match are run left-to-right with short-
circuiting — the moment a copattern or a guard fails, everything to the right
is skipped. This makes it possible to protect potentially-erroneous guards with
another safety guard to its left, such as (try-if (not (= y 0))) followed by
(try-if (> (/ x y) z)).

However, there are more timing issues besides these usual choices for dis-
ambiguation and short-circuiting. First of all, since we are in a call-by-value
language, we have to handle cases where an object is used in a context that
doesn’t fully match a copattern yet, but could in the future — and possibly
multiple different times. This can happen for instances like curried functions
that take arguments in multiple different calls. Just like with ordinary curried
functions, using such an object in a calling context passing only the first list of
arguments — but not the second — builds a value which closes over the param-
eters so far. For example, consider this simple counter object that can add or
get its current internal state.

(define* [((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

The call ((counter 4) 'get) matches the second equation, returning the answer
4, but (counter 4) on its own is not enough information to definitively match
either copattern, so it is just a value remembering that x = 4 and waiting for
another call. Similarly, the call (counter (+ x y)) on the right-hand side is also
incomplete in the same sense, so it, too, is a value. This definition gives us an
object with the following behavior:

> (define c0 (counter 4))
> (define c1 (c0 'add 1))
> ((c1 'add 2) 'get)
7
> (c1 'get)
5

So far, what we have seen so far seems similar to pattern-matching functions
in languages that are curried-by-default. One way in which copatterns generalize
curried functions is that each equation can take a different number of arguments.
For example, consider this reordering of the stutter stream from section 2:

(define* [(((stutter n) 'tail) 'tail) = (stutter (+ n 1))]
[(((stutter n) 'tail) 'head) = n]
[((stutter n) 'head) = n])

CoScheme: Compositional Copatterns in Scheme 17

Since none of the copatterns overlap, its behavior is exactly the same as be-
fore. But notice the extra complication here: calling ((stutter 10) 'head) with
two arguments (10 and 'head) should immediately return 10. However, the first
equation is waiting for three arguments (an n and two 'tails passed separately).
That means that the underlying code implementing stutter cannot ask for three
arguments in three different calls and then checks that the last two are 'tail. In-
stead, it has to eagerly match the arguments that it is given against the patterns
and try each of the guards to see if the current line fails — and only after that
all succeed, it may ask for more arguments and continue the copattern match.

Composition and the dimensions of extensibility The second set of chal-
lenges is due to the new notions of object composition that we develop here. In
particular, we want to be able to combine objects in two different directions:

– vertical composition is an “either or” combination of two or more objects, such
as (o1 'compose o2 ...) that acts like o1 or o2, etc, depending on which one
knows how to respond to the context. Textually, the vertical composition of
(object line-a1 ...) and (object line-b1 ...) behaves as if we copied all
each line of copattern-matching equations internally used to define the two
objects and pasted them vertically into the newly-composed object as:

(object line-a1
...
line-b1
...)

– horizontal composition is an “and then” object combination in a copattern-
matching line, such as [(self 'method1) (o1 'unplug)] defining a 'method1
that continues to act like o1 when o1 knows how to respond to the sur-
rounding context, and otherwise tries the next line. Textually, the horizon-
tal composition of a 'method1 followed by trying another object with its
own copattern-matching contexts Q1 Q2 ... acts as if the two copatterns are
combined, and the inner object is inlined into the outer one like so:

(object [(self 'method1) ((object [Q1 = response1]
[Q2 = response2]
...) 'unplug)]

...)
=
(object [(self 'method1) (comatch Q1) = response1]

[(self 'method1) (comatch Q2) = response2]
...)

Even though we can visually understand the two directions of composition
by the textual manipulations above, in reality, both of these compositions are
done at run-time (i.e., with arbitrary procedural values), as opposed to “compile-
time” transformation (i.e., macro-expansion time manipulations of code). This
means we need an extensible representation of run-time object values that allows

18 P. Downen, A. Corbelino II

for automatically switching from one object to another in the case of copattern-
match failure, as well as correctly keeping track of what to try next.

The basic idea of this representation can be understood as an extension of
an idiom in ordinary functional programming. In order to define an open-ended,
pattern-matching function, we can give the cases we know how to handle now
by matching on the arguments and include a default “catch-all” case at the end
for the other behavior. In Haskell, this might look like

f next PatA1 PatA2 ... = expr1
f next PatB1 PatB2 ... = expr2
...
f next x1 x2 ... = next x1 x2 ...

For example, consider the single-line eval-add evaluator object from section 2.
In order to compose eval-add with another evaluator handling a different case,
like eval-mul, its internal extensible code takes an extra hidden argument saying
what to try next if its line does not match, analogous to:

(define (eval-add-ext1 next)
(lambda*

[(self 'eval `(add ,l ,r)) = (+ (self 'eval l) (self 'eval r))]
[self = (next self)]))

Note that, unlike the Haskell code above, the hidden next parameter also takes
another hidden parameter: self. Why? Because if the next set of equations
needs to recurse, it cannot actually jump to itself directly — that would skip the
eval-add code entirely — but needs to jump back to the very first equation to
try. This self parameter holds the value of the whole object after all composi-
tions have been done, as it appeared in the original call site. Thus, the internal
extensible code eval-add-ext also takes this second self parameter for the same
reason: it may be the second component of a composition, and it is similar to
the following Racket definition:

(define ((eval-add-ext2 next) self)
(match-lambda*

[(list 'eval `(add ,l ,r)) (+ (self 'eval l) (self 'eval r))]
[args ((next self) args)]))

One final detail to note: unless otherwise stated, the self parameter — which
is visible as the root of any copattern — is always the same view of the entire
object. That means nesting multiple copatterns in sequence might not give the
expected result because the self parameter in the hole of every copattern context
will be bound to the same value. If we instead want the parameter in the hole
of every copattern context to reflect the object at that point in time — that is,
be assigned the value given by the partial applications given by the preceding
copatterns — we can use the nest operation. For example, nesting copatterns
in a sequence gives us a shorthand for the common functional idiom of a “local”
loop that closes over some parameters that never change, such as this definition
of mapping a function over a list:

CoScheme: Compositional Copatterns in Scheme 19

(define* [(map* f xs) = ((map* f) xs)]
[(map* f) (nest)

(extension
[(go null) = null]
[(go (cons x xs)) = (cons (f x) (go xs))])])

The map* function supports both curried and uncurried applications, and they
are defined to be equal. Its real code is given in the curried case, where the
function parameter f is bound first and never changes. Then, in a second step,
we have the internal looping function go, which matches over its list parameter
and recurses with a new list. The definition of go is given directly in the form of
an extension — the result of 'unplugging an object — which is composed with
the curried application (map* f). By using nest, we have go = (map* f), so that
f is visible from the closure but does not need to be passed again at every step
of the loop.

3.2 The library API and macro desugaring

To meet all the implementation challenges listed above, the API of our compo-
sitional copattern library revolves around three groups of first-class values:

– Objects are ordinary values, typically functions, that can be used directly
via application. Their exact interface varies based on their definition — such
as a function from a list of numbers to a list of booleans, an evaluator
from expression trees to numbers, or an object following the infinite stream
interface — but they can be applied without any additional information.

– Templates represent openly-recursive, self-referential code without a fixed
self. Instead, the “self” placeholder remains unbound for now, and it can be
instantiated later via application to yield an object described above.

– Extensions represent extensible code that can be composed together both
vertically and horizontally. Instead of failing on an unsuccessful match, will
try an as-of-yet unspecified “next” option specified later via application to
a template to produce a new template. This way, the “self” placeholder is
also unbound for now — just like with templates — and can be bound later
when the whole object is finished being composed.

Figure 1 describes a core API for forming or manipulating objects, templates,
and extensions as first-class values. These individual operations can implement
all of the examples seen thus far, which make heavy use of top-level definitional
forms like define* and define-object. The grammar of syntax supported by
these definitional forms, the operations which interpret copatterns, and multi-
clause equations, is described in fig. 2. Let us now look at how each layer of
the abstractions — from top-level definitions, multi-equation first-class values,
nested copatterns, and the small terminal operations — can be desugared to the
next one, all the way down to basic, purely-functional Scheme.

20 P. Downen, A. Corbelino II

Object formation:

(λ* TemplateStx) : Object
(object ExtensionStx) : Object
(object (<: Expr ...) ExtensionStx) : Object
(plug Extension) : Object
(introspect Template) : Object

Template formation:

(template TemplateStx) : Template
(continue x Expr) : Template
(non-rec Expr) : Template
(closed-cases Extension) : Template

Extension formation:

(extension ExtensionStx) : Extension
(compose Extension ...) : Extension
(comatch Copattern Extension) : Extension
(chain ResponseStx) : Extension
(always-is Expr) : Extension
(try x Template) : Extension
(try-if Expr Extension) : Extension
(try-match Expr Pattern Extension) : Extension
(try-λ Params Extension) : Extension
(nest Extension) : Extension

Fig. 1. Compositional copattern API.

Top-level definitions There are two main styles of top-level definitions. The
simplest one is when an explicit name is given to the definition in question,
which directly expands to an ordinary definition bound to a first class object —
described via λ* or object — like so:

(define* x TemplateStx) = (define x (λ* TemplateStx))
(define-object x ExtensionStx) = (define x (object ExtensionStx))

This style can be used to evoke an object-oriented flavor of code, in which an
object is externally named x to the outside world, but internally refers to itself
by some other name like self or this for recursive calls.

In a more functional style of code, recursive function definitions use the same
name for both external callers as well as internal recursive calls, so there is no
need to declare the name another time. We support this style of definition, too,
by looking for the “root” of the initial copattern on the left-hand side, which gives
a name to the function itself in the context of some application. Following the
syntax of Copatterns in fig. 2, the root of the identifier x is just x, the anonymous
wildcard _ has no root, and the root of any other nested copattern is the root
of its inner Copattern. Eliding the full details of digging into a copattern to
reveal its root, if the name x is the root of first Copattern inside TemplateStx

CoScheme: Compositional Copatterns in Scheme 21

TemplateStx ::= ExtensionStx | ExtensionStx (else Expr)
| ExtensionStx (continue x Expr)

ExtensionStx ::= (Copattern ResponseStx) ...
ResponseStx ::= (op ...) ResponseStx | = Expr | try x Template

Params ::= x | (Pattern ...) | (Pattern x)
Copattern ::= x | _

| (Copattern Pattern ...)
| (Copattern Pattern x)
| (apply Copattern Pattern ... x)

Pattern ::= x | _ | 'Expr | `QQPat | ...
QQPat ::= ,Pattern | (QQPat ...) | Expr

Definitional forms:

(define* x TemplateStx)
(define* TemplateStx)
(define-object (x <: Expr ...) ExtensionStx)
(define-object x ExtensionStx)
(define-object (<: Expr ...) ExtensionStx)
(define-object ExtensionStx)

Fig. 2. Grammar of syntax used by multi-clause definitions and multi-step operations.

or ExtensionStx, then the implicitly-named definitional forms expand into the
explicitly-named ones by copying that first recursive name:3

(define* TemplateStx) = (define* x Template)
(define-object ExtensionStx) = (define-object x ExtensionStx)

Two more conspicuous cases introduce a inheritance declaration <: Expr ...
to the definition. This implicitly incorporates additional code from a list of super-
types in Expr ... to an object that is not explicitly written in the definition itself,
allowing for a form of object-oriented-like inheritance evoked by the sub-typing
<: syntax. The generalized definition is implemented directly in terms of the
support for inheritance in anonymous objects. A define-object with an explicit
name is expanded to just:

(define-object (x <: Expr ...) ExtensionStx)
= (define x (object <: Expr ...) ExtensionStx)

For an implicitly-named define-object, we must look for the name as before;
assuming x is the first root inside ExtensionStx, the two forms produce the same
definition:

3 Note that we only extract the root name in the first clause of the definition to be
used for the external name. In its full generality, a different internal name can be
used in each clause. Only good taste dictates that the names in each clause should
be the same to fit within a standard functional style.

22 P. Downen, A. Corbelino II

(define-object (<: Expr ...) ExtensionStx)
= (define-object (x <: Expr ...) ExtensionStx)

First-class objects, templates, and extensions The most unassuming way
to form a usable object — which does not introduce any implicit code not given
in the object itself — is with the multi-clause λ* form. A λ* interprets the list
of clauses as an openly-recursive template, and then closes off the recursive loop
via introspect that binds the final object value in for the recursive parameter:

(λ* TemplateStx) = (introspect (template TemplateStx))

In contrast, an object is like a λ*, but enhanced with the ability to inherit
code — given in a (<: Expr ...) constraint — which can extend or modify the
clauses it contains. These modifiers are themselves transformations on extensions
— first-class functions from old extensions to new extensions — which are applied
to the given extension value before it is closed off with the plug operation on
extensions analogous to introspect above:

(object ExtensionStx)
= (object (<:) ExtensionStx)
(object (<: Expr ...) ExtensionStx)
= (object (!<: meta Expr ...) ExtensionStx)
(object (!<: Expr ...) ExtensionStx)
= (plug ((compose Expr ...) (extension ExtensionStx)))

Note that the multiple extension modifiers are composed together using ordi-
nary function composition, so the left-most one has precedence (being the final
function in the chain). The empty inheritance (<:) is the same as if no inheri-
tance constraint is given. Furthermore, the normal inheritance (<: Expr ...) is
the same as a literal inheritance (!<: meta Expr ...) adding meta which is the
implicit superclass of “all” objects.4 Literal inheritance (!<: Expr ...) is instead
interpreted exactly as-is, with no added defaults.

The default meta superclass provides the extra code for composition seen
in the examples, including 'compose and 'unplug. How does it work? Since the
superclasses used by the object inheritance mechanism are just extension trans-
formers, we can implement meta directly as a function that composes the exten-
sion value making up an object with extra methods for manipulating it:

(define (meta ext)
(compose ext

(extension
[(self 'unplug) = ext]
[(self 'adapt mod) = (plug (meta (mod (self 'unplug))))]
[(self 'compose . os)
= (plug (meta (apply compose

(self 'unplug)
(map (λ(o) (o 'unplug)) os))))]))

4 The library implementation stores this choice of the default superclass in a mutable
parameter default-superclass that can be changed by the programmer.

CoScheme: Compositional Copatterns in Scheme 23

In other words, (meta ext) does everything that ext does, and in addition sup-
ports the methods:

– (self 'unplug) returns ext in its original state,
– (self 'adapt mod) is defined in terms of (self 'unplug) to retrieve the orig-

inal extension value and apply some new transformation to it — plugging it
back together with the same meta functionality — and

– (self 'compose o ...) will 'unplug this object and each of o ... to get all
the underlying extensions, composes them together vertically into one, and
then plugs it back into a usable meta object again.

Now, what are these first-class extensions and templates, and how are they
created? The extension macro — defined in terms of a list of clauses with an
initial Copattern paired with some response (a combination of guards or other
operations before a right-hand side) — interprets each line separately as its own
horizontal composition chain before vertically composing them together with
compose like so:
(extension [Copattern ResponseStx] ...)
= (compose [chain (comatch Copattern) ResponseStx] ...)

The main difference between a template and an extension is that a template is
responsible for providing the final “catch-all” clause saying what to do if nothing
matches. As such, the template macro first builds an extension out of the given
syntax, and then applies it to one of three final clauses:
(template ExtensionStx [else Expr])
= ((extension ExtensionStx) (non-rec Expr))
(template ExtensionStx [continue x Expr])
= ((extension ExtensionStx) (continue x Expr))
(template ExtensionStx)
= (closed-cases (extension ExtensionStx))

The first case has an [else Expr] clause that evaluates some default expression if
nothing else matches. The [continue x Expr] clause in the second case is similar
but more general: Expr is evaluated if nothing else matches, and x is bound to
the whole template itself, allowing for Expr to continue the recursive loop again
if it uses x. The final case, providing no catch-all clause, uses closed-cases to
instead raise an error if nothing matches.

Nested copattern matching and chains Nested copattern matching is now
straightforward to desugar in terms of horizontally composing curried sequences
of more basic, λ-like forms. More specifically, try-λ is a functional abstraction
over extensions analogous to the normal functional abstraction over expressions,
and mimics all three of Scheme’s λ forms: (try-λ (Pattern ...) Extension)
matches a sequence of arguments against the given sequence of parameter pat-
terns, (try-λ (Pattern x) Extension) does the same while binding any
additional arguments as a list to x, and (try-λ x Extension) just binds any list
of arguments to x. These three forms correspond to three application contexts
in a copattern, which are desugared like so:

24 P. Downen, A. Corbelino II

(comatch (Copattern . x) Extension)
= (comatch Copattern (try-λ x Extension))
(comatch (Copattern Pattern ...) Extension)
= (comatch Copattern (try-λ (Pattern ...) Extension))
(comatch (Copattern Pattern x) Extension)
= (comatch Copattern (try-λ (Pattern x) Extension))

Alternate copattern forms described using apply, like (apply Copattern x y z),
are defined similarly to the above.

An extension value is also created by chaining this initial comatch with some
response. In practice, this chaining just involves reassociating the parentheses of
intermediate operations and interpreting the right-hand side, so chain has the
following behavior:

(chain (op ...) ResponseStx) = (op ... (chain ResponseStx))
(chain = Expr) = (always-is Expr)
(chain try x Template) = (try x Template)

Because reassociation does not depend on the operations op involved, exten-
sion chains automatically work with any new user-defined operations — macros
or functions — which turn an extension (as their last argument) into another
extension.

Terminal operations and combinators Single-step operations and combi-
nators are terminal forms, defined directly in terms of plain Scheme expressions.
The simplest ones of these are also the most general: the try and continue
macros let programmers write arbitrary extensions and templates (respectively)
by abstracting over the next template to try or the object to continue recur-
sion (respectively). In reality, both of these forms desugar directly into plain
λ-abstractions.

(try x Template) = (λ(x) Template)
(continue x Expr) = (λ(x) Expr)

Common special cases include the self-contained forms: the non-recursive tem-
plate (non-rec Expr) and the fully-committed extension (always-is Expr) that
evaluate and run Expr without failing to the next case or looping back to the
beginning. Both forms are shorthand for the above abstractions that just never
use the bound variable.

(non-rec Expr) = (continue _ Expr)
(always-is Expr) = (try _ (non-rec Expr)) = (try _ (continue _ Expr))

The remaining basic combinators for adding guards and functional abstrac-
tions to extensions can be defined in terms of the above. A convenient short-
hand for manually writing new extension combinators is to abstract over both
the “next” case to try and the “self” reference at the same time, which is just a
shorter notation for a curried function:

(try next self Expr) = (try next (continue self Expr))
= (λ(next) (λ(self) Expr))

CoScheme: Compositional Copatterns in Scheme 25

The boolean try-if guard will check some boolean expression first: if it is true
it continues to try the underlying extension (which may succeed or fail on its
own accord), and otherwise skips it entirely.

(try-if Expr Extension)
= (try next self

(if Expr
((Extension next) self)
(next self)))

The pattern-matching guard try-if operates similarly, but generalizes the simple
boolean check to matching the value of an expression against a given pattern.

(try-match Expr Pattern Extension)
= (try next self

(match Expr
[Pattern ((Extension next) self)]
[_ (next self)]))

The most complicated single combinator is the try-λ functional abstraction
over an extension. This form presents a functional interface that can pattern-
match against its arguments: if the match succeeds then the variables in the
pattern are bound while trying to execute the underlying extension, but if the
match fails the extension is never tried at all. The pattern-matching component
can be factored out of try-λ via horizontal composition by first just binding the
arguments as is, and then matching them against the given patterns in a second
step like so:5

(try-λ (Pattern ...) Extension)
= (try-λ (x ...) (chain (try-match x Pattern) ... Extension))

Now we only have to handle the simpler job of accepting a given number of argu-
ments. This operation can still fail if applied to a different number of arguments,
or if the underlying extension fails. We can efficiently define different cases for
these two cases using a case-λ which combines functions of different numbers of
arguments like so: 6

(try-λ (x ...) Extension)
= (try next self

(case-λ
[(x ...) ((Extension (continue s ((next s) x ...))) self)]
[args (apply (next self) args)]))

Notice the most subtle part of try-λ: we must ensure that when we try the next
case to handle failure, they must be copied and passed again whenever next is
5 This equation is more of a specification than an efficient implementation. In practice,

the try-match operations are only generated if the given pattern is non-trivial.
6 Alternatively, some implementations like Racket have a built-in match-λ which effec-

tively extends case-λ to pattern-match directly on the arguments. In these systems,
we can use match-λ here to handle both pattern-matching and argument passing
here at the same time.

26 P. Downen, A. Corbelino II

invoked. If we forgot to wrap both applications of next with the given arguments,
they would disappear forever if we handle to fall through to the next case.

Object-manipulating functions The final operations remaining in the API
are not even macros: they are just ordinary functions. For example, the compose
that we have used twice now — to implement vertical composition of extensions
as well as to combine multiple superclass constraints — is just ordinary function
composition! Some of the other purely functional operations are similarly simple.
For example, closed-cases closes off an extension by providing a final catch-all
case that raises an error when run, and plugging an extension to get an object
is just composition of introspect and closed-cases.

(closed-cases Extension) = (Extension (non-rec (error "...")))
(plug Extension) = (introspect (closed-cases Extension))

The introspect function is a little tricker, because it needs to plug in the final
form of an object while creating that object. Attempting to recursively tie the
knot directly as

(introspect Template)
=/= (letrec ([self (Template self)])

self)

will cause a run-time error: since Scheme is a call-by-value language, it will try
to evaluate self before it is actually bound to a value yet. So instead, we have
to delay the self-reference just by one step by η-expanding, since λ-abstractions
return values without evaluating their bodies.

(introspect Template)
= (letrec ([self (Template (λ args (apply self args)))])

self)

The nest operation does the same knot-tying as introspect, but also returns a
new extension, rather than an object. To do so, it will recursively instantiate the
view of the extension at this point in time — after some applications and guards
have been evaluated — to provide the new self-referencing value. If at any point
this extension fails and falls past its last case, the updated self-reference will be
undone, and reverts back to its old form.

(nest Extension)
= (try next there

(letrec ([here ((Extension (non-rec (next there)))
(λ args (apply here args)))])

here))

Use case: Defining new custom macros via the API To demonstrate the
flexibility of the API, we show how some other, more niche, operations can be
defined in terms of the ones we already saw. In particular, the case studies on the

CoScheme: Compositional Copatterns in Scheme 27

object-oriented file system and the expression problem involved some complex
meta-programming facilities.

First, we needed to override some of the behavior of multi-clause λ*s, which
can be done by wrapping its value in a new λ* that handles the new behavior
or else falls through to the original.

(override-λ* Expr ExtensionStx)
= (λ* ExtensionStx [else Expr])

Next, we needed to temporarily replace the self-reference in an extension with
another, until we fall out of the scope of that extension. This can be done by
capturing the old notion of the object itself — to be used if the extension ever
falls through past its end — and passing a new one in its place like so:

(with-self new-self Extension)
= (try next old-self ((Extension (non-rec (next old-self))) new-self))

For the object-oriented examples, we needed a way to import the code of one
object into another. We also used shorthand to construct an object in two steps
(initialization and then recursive method definition). Both of these two opera-
tions are implemented as ordinary functions using the above library functionality
that behave like so:

((import-object super-obj) sub-ext)
= (compose sub-ext (super-obj 'unplug))

(construct state obj)
= (extension

[self try (with-self
(λ args (apply (apply self state) args))

(obj 'unplug))]))

Finally, to extend an evaluator with an environment, we needed a combinator
to apply a functional extension to some argument(s) in the form of a new ex-
tension. The most direct way to do so is to apply those arguments after passing
the next template and self object

(try-apply-remember Extension Expr ...)
= (try next self

(((Extension next) self) Expr ...))

however, this does not give the desired behavior! This application looks “perma-
nent” from the perspective of the next cases that follow this extension, which
will be passed the arguments Expr ... as if they were in the original calling
context. Instead, we want any alternatives that handle Extension’s failure to be
evaluated in the same context, and so the extra arguments Expr ... need to be
forgotten like so:

(try-apply-forget Extension Expr ...)
= (try next self

(let ([forgetful (continue self (λ _ (next self)))])
(((Extension forgetful) self) Expr ...)))

28 P. Downen, A. Corbelino II

3.3 Practical details of macro definitions

One concern for a real implementation is to consider what kind of pattern-
matching facilities the host language already provides. Unfortunately, the answer
is not standard across different languages in the Scheme family. For example, the
R6RS standard does not require any built-in support for pattern matching to
be fully compliant, but specific languages like Racket may include a library for
pattern matching by default. Thus, we provide two different implementations to
illustrate how copatterns may be implemented depending on their host language:

– A Racket implementation that uses its standard pattern-matching constructs
match and match-lambda*. Thus, the match from the target language in
fig. 3 is interpreted as Racket’s match, and the translation of EJλP.OK is
implemented directly as match-lambda* instead of separating the λ from the
pattern as in fig. 5. This choice ensures the pattern language implemented is
exactly the same as the pattern language already used in Racket programs.

– A general implementation intended for any R6RS-compliant Scheme,7 which
internally implements its own pattern-matching macro, try-match, by ex-
panding into other primitives like if and comparison predicates. Of note,
due to only having to handle a single line of pattern-matching at a time,
this implementation is 75 lines of Scheme and supports quasiquoting forms
of patterns. This gives a sufficiently expressive intersection between Racket’s
pattern-matching syntax and the manually implemented R6RS version.

4 A Core Copattern Calculus

4.1 Double-barrel translation

To help study the behavior and correctness of composable copattern matching,
we model a simplified version of the library API in the form of an extended
λ-calculus, and give a high-level translation into a conventional λ-calculus with
recursion and pattern matching (given in fig. 3). Our pattern language is mod-
eled after a small common core found among various implementations of Scheme,
which includes normal variable wildcards x that can match anything, quoted
symbols ’x, and lists of the form null or (consP P ′). Note that we assume all
bound variables x in a pattern are distinct. As shorthand, we write a list of
patterns P1 P2 . . . Pn for (consP1 (consP2 . . . (consPn null))). To model the
patterns found in typed functional languages like ML and Haskell, such as con-
structor applications K P..., we can represent the constructor as a quoted symbol
’K and the application as a list ’K P.... The patterns’ specifics are surprisingly
not essential to the main copattern translation and could be extended with other
features found in more specific implementations.

For simplicity, this translation begins from a smaller source language with
copatterns (given in fig. 4) separated into three main syntactic categories that
reflect the different groups of values from the macro library:
7 We have explicitly tested this implementation against Chez Scheme.

CoScheme: Compositional Copatterns in Scheme 29

Term ∋M,N ::= x |M N | λx.M | K |matchM with {P → N... } | recx = M

Pattern ∋ P ::= x | ’x | null | consP P ′

Fig. 3. Target language: pure λ-calculus with pattern-matching and recursion.

(M,N) Term syntax represents all ordinary expressions of the host language as
well as the new first-class objects of the library. The new forms of terms
are λ∗B, which gives a self-referential copattern-matching object, along with
templateB and extensionO which include the other two syntactic cat-
egories as first-class values that can be applied as functions to instantiate
their open-ended recursion and composition.

(B) Template syntax represents a simplified grammar supported by template and
similar macros specified as TemplateStx in fig. 2. Including some extension
cases in a template is written as O;B, the catch-all clause which may continue
the loop again via a recursive object bound to x is written as continuex→
M , and the closed case where the catch-all clause raises an error is the empty
string ε. Since the simpler final else clause is a special case of continue, we
treat it as syntactic sugar.

(O) Extension syntax represents a simplified grammar supported by extension
and similar macros specified as ExtensionStx in fig. 2 with terser notation.
Vertical composition is written as O;O′, similar to O;B, with the empty
string ε as its neutral element. Copattern-matching is written as Q[x]O,
where Q is a copattern context with x as the root identifier naming the recur-
sive object itself. The more basic forms are written as λP.O for a functional
abstraction over an extension, matchP ← M O for a pattern-matching
guard, and try x → B for the statement which binds the following cases
to x before running a template specified by B. We treat if-guards and the
form (= M) as syntactic sugar for special cases of the more general forms,
and also sometimes use the alternative notation doM in place of (= M) in
contexts where the latter notation appears awkward.

The syntax in B and O directly reflects the core operations for forming and
combining copattern-matching expressions of the library API. Here, the copat-
tern syntax Q[x] itself is expressed as a subset of contexts, Q, surrounding an
object internally named x. Two lines separated by a semicolon (O;O′) repre-
sents a binary vertical composition compose that tries either O or O′, and ε
represents an empty extension (extend) with respect to vertical composition:
it immediately refers to the next option. Prefixing with a copattern-matching
expression (Q[x] O) represents the (comatch Q[x] O) form that tries Q[x] and
then O. Smaller special cases of matching include pattern lambdas (λP.O) for
try-λ, and pattern guards (matchP ← M O) for try-match. Other operations
use the same names as in fig. 1.

This simplified grammar makes it easier to define the full macro expansion
as a translation from the source (fig. 4) to target (fig. 3) as given in fig. 5. This

30 P. Downen, A. Corbelino II

Term ∋M,N ::= · · · | λ∗B | templateB | extensionO

Template ∋ B ::= ε | O;B | continuex→M

Extension ∋ O ::= ε | O;O′ | Q[x] O | λP. O |matchP ←M O | try x→ B

Copattern ∋ Q ::= □ | Q P

Pattern ∋ P ::= x | ’x | null | consP P ′

Syntactic sugar:

elseM = continue_→M (= M) = doM = try_→ elseM

if M O = matchTrue←M O (letx = M O) = matchx←M O

Fig. 4. Source language: target extended with nested copatterns, self-referential ob-
jects, recursion templates, and composable extensions.

translation shares many similarities to continuation-passing style (CPS) trans-
lations. However, we explicitly avoid converting the entire program to CPS.
Notably, every syntactic form for the source language is unchanged; for exam-
ple, JM NK = JMK JNK. Instead, the only time we need to introduce an extra
parameter is for the two new syntactic categories. All templates are translated
to functions that take a value for the whole object itself to a new version of
that object. Similarly, all extensions are translated to functions that take both
a template as the “base case” to try next and a value for the whole object itself.
Even though this is dynamically-typed, we can view the type of templates as
object transformers and extensions as template transformers:

Object = some type of function
Template = Object→ Object′

Extension = Template→ Template′ = Template→ Object→ Object′

The interesting cases for translating terms are the new forms. templateB
and extensionO are just translated to their given forms as transformation func-
tions. With λ∗B, we need to recursively plug its translation in for its self pa-
rameter. Note the one detail that the recursive self is η-expanded to in this
application. This ensures that λx.self x is treated as a value in a real implemen-
tation, and is always safe assuming that B describes a function (non-functional
cases of λ∗B are undefined user error).

For templates and extensions, the terminators continue and try are trans-
lated to plain λ-abstractions that allow the programmer direct access to their
implicit parameters. Complex copatterns (x P1...Pn O) are reduced down to a
simpler sequence of pattern lambdas (x λP1. . . . λPn. O), and pattern lambdas
(λP.O) are reduced down to a simpler non-matching lambda followed by an
explicit match guard (λx.matchP ← x O).

This leaves just the base cases of simple extension forms. Each time an ex-
tension (of form λb.λs. . . .) “fails,” it calls the given next template with the given

CoScheme: Compositional Copatterns in Scheme 31

Translating new terms:

Jλ∗BK = (rec self = T JBK (λx.self x))

JtemplateBK = T JBK
JextensionOK = EJOK

JMK = by induction (otherwise)

Translating templates:

T JεK = λs.fail s

T JO;BK = λs.EJOK T JBK s

T Jcontinuex→MK = λx.JMK

Translating copattern-matching and pattern-matching functions:

EJ(Q[x] P) OK = EJQ[x] (λP.O)K
EJx OK = λb.λx.EJOK b x

EJλP.OK = EJλx.matchP ← x OK (if P /∈ Variable)

Translating other extensions:

EJεK = λb.λs.b s

EJO;O′K = λb.λs.EJOK (EJO′K b) s

EJλx.OK = λb.λs.(λx.EJOK (λs′.b s′ x) s)

EJmatchP ←M OK = λb.λs.match JMK with {P → EJOK b s;_→ b s }
EJtry x→ BK = λx.T JBK

Fig. 5. Translating copattern-based source code to the target language.

self object (b s). A match guard JmatchP ←M OK will try to match the trans-
lation of M against the pattern P ; the success case continues as EJOK with the
same next template and self. A non-matching lambda Jλx.OK always succeeds
(for now), but note that the next template to try on failure has to be changed to
include the given argument. Why? Because the lambda has already consumed
the next argument from its context, it would be gone if, later on, the following
operations fail and move on to the next option. So instead of invoking the given
b directly as b s′ (for a potentially different future s′), they need to invoke b
applied to this argument x as b s′ x.

In this translation, we also give the η-reduced forms on the right-hand side
when available. This shows that the empty extension ε is just the identity func-
tion (given the next thing b to try, ε does nothing and immediately moves on to
b), and horizontal composition O;O′ is just ordinary function composition.

32 P. Downen, A. Corbelino II

Value ∋ V,W ::= x | λx.M | null | consV W | ’x
EvalCxt ∋ E ::= □ | E M | V E |matchEwith {P → N... } | recx = E

(β) (λx.M) V = M [V/x]

(match)
matchV with { P → N ;

P ′ → N ′... }
= N [W.../x...] (if P [W.../x...] = V)

(apart)
matchV with { P → N ;

P ′ → N ′... }
=

matchV with

{P ′ → N ′... }
(if P # V)

(rec) (recx = V) = V [(recx = V)/x]

Apartness between patterns and values (P # V):

V /∈ Variable ∪ { ’x }
’x # V

V /∈ Variable ∪ {null }
null # V

V /∈ Variable ∪ { consW W ′ |W,W ′ ∈ Value }
consP P ′ # V

P # W

consP P ′ # consW W ′
P ′ # W ′

consP P ′ # consW W ′

Fig. 6. Untyped equational axioms of the target language.

4.2 Correctness

We already used the translation to a core λ-calculus as a specification for imple-
menting compositional copatterns, but the translation is also useful for another
purpose: checking the expected meaning of copattern-matching code. With that
in mind, we now look for some laws that let us equationally reason about some
programs to make sure they behave as expected.

First, the core target language — a standard call-by-value λ-calculus ex-
tended with pattern-matching and recursion — has the equational theory shown
in fig. 6, which is the reflexive, symmetric, transitive, and compatible (i.e., equal-
ities can be applied in any context) closure of the listed rules. It has the usual
β axiom (restricted to substituting value arguments), two axioms for handling
pattern-match success (match) and failure (apart), and an axiom for unrolling
recursive values (rec). Values (V,W) include the usual ones for call-by-value λ-
calculus (x and λx.M) as well as lists (null and consV W) and symbolic literals
(’x). Matching a value V against a pattern P will succeed if the variables (x...)
in the pattern can be replaced by other values (W...) to generate exactly that V :
P [W.../x...] = V . In contrast, matching fails if the two are known to be apart,
written P # V and defined in fig. 6, which implies that all possible substitutions
of P will never generate V . Note that while matching and apartness are mutu-
ally exclusive, there are some values that are neither matching nor apart from

CoScheme: Compositional Copatterns in Scheme 33

ExtensionFunc ∋ F ::= Q[x P] O | λP.O
Value ∋ V ::= · · · | λ∗(F ;B) | templateB | extensionO

Identity, associativity, and annihilation laws of composition:

ε;O = O (O1;O2);O3 = O1; (O2;O3) doM ;O = doM

ε;B = B (O1;O2);B = O1; (O2;B) doM ;B = elseM

Pattern and copattern matching:

matchP ← V O = O[W.../x...] (if P [W.../x...] = V)

matchP ← V O = ε (if P # V)

(template (λP.doM);B) V ′ V = M [W.../x...] (if P [W.../x...] = V)

(template (λP.O);B) V ′ V = (templateB) V ′ V (if P # V)

C[(template (Q[y] = M);B) V] = M [V/y][W.../x...] (if Q[W.../x...] = C)

C[(template (Q[y] O);B) V] = C[(templateB) V] (if Q # C)

C[λ∗(Q[y] = M);B] = M [(λ∗(Q[y] = M);B)/y]

[W.../x...]

(if Q[W.../x...] = C)

C[λ∗(Q[y] O); elseM] = C[M] (if Q # C)

Apartness between copatterns and contexts (Q # C):

Q[W.../x...] = C P # V

Q P # C V

Q # C

Q P # C

Q # C

Q # C V

Fig. 7. Some equalities of copattern extensions.

some patterns. For example, compare the variable x against the pattern null; x
may indeed stand for null or another value like λy.M .

The first usual property is that the translation specified in fig. 5 is a conser-
vative extension: any two terms that are equal by the target equational theory
are still equal after translation. Because the translation is hygienic and compo-
sitional by definition, we can follow the proof strategy in [9].

Proposition 1 (Conservative Extension). If M = N in the equational
theory of the target (fig. 6), then so too does JMK = JNK.

To reason about the new features in the source language — introduced by
λ∗, template, and extension — we introduce additional axioms given in fig. 7,
so that the source equational theory is the reflexive, symmetric, transitive, and
compatible closure of these rules in both figs. 6 and 7. The purpose of these new
equalities is to perform some reasoning about programs using copatterns, and in
particular, to check that the syntactic use of = really means equality. For example,
a special case is Q[λ∗(Q[y] = M);B] = M [λ∗(Q[y] = M);B/y], which says a λ∗

34 P. Downen, A. Corbelino II

appearing in exactly the same context as the left-hand side of an equation will
unroll (recursively) to the right-hand side. Other equations describe algebraic
laws of copattern alternatives and how to fill in templates and extensions when
applied. This source equational theory is sound with respect to translation.

Proposition 2 (Soundness). The translation is sound w.r.t. the source and
target equational theories (e.g., M = N in fig. 7 implies JMK = JNK in fig. 6).

Proofs of these propositions are given in section A of the appendix.

5 Related Work

While we use the expression problem as a motivating application of composi-
tional copatterns, it has multiple previous solutions using various features and
spreading on multiple paradigms. The Visitor pattern [19] is a classic solution
in the object-oriented world. However, we have other options such as [30], which
brings Java interfaces closer to Haskell’s type classes, and [21], which presents the
abstraction of object algebras that are easily integrated into OO languages, since
they do not depend upon fancy features. On the other hand, on the functional
paradigm side, we have solutions like [24] and [16]. The former utilizes Haskell’s
type system, specifically type classes, to provide a modular way to construct
data types and functions. However, this approach relies on a type system. The
latter is a compiler framework that provides tools to specify different languages
for the compiler passes. The framework achieves this by automatically handling
a portion of the mapping between two given entities.

Previously, copatterns have been developed exclusively from the perspective
of statically-typed languages. Much of the work has been for dependently typed
languages like Agda [6], which use a type-driven approach to elaborate copat-
terns [23,25]. The closest related works are about implementing copatterns using
macros in OCaml [18,15]. As with the above work in dependently typed lan-
guages, [18] is also concerned with type system ramifications, and CoCaml [15]
supports only a subset of coinductive data types, called regular, with periodic
repetitions that allow for finite representation in memory using cyclic structures.
Here, we show how to implement copatterns with no typing information or re-
strictions on cyclic structures, and focus instead on composition and equational
reasoning. The literature also presents other examples of open recursion and in-
heritance in a functional setting; for instance, [4] implements memorization for
monadic computations using inheritance and mixins.

The translation in fig. 5 is reminiscent of “double-barreled CPS” [26] used to
define control effects like delimited control [8] and exceptions [17]. In our case,
rather than a “successful return path” continuation, there is a “resume recursion”
continuation. Expressions that return successfully just return as normal, similar
to a selective CPS [20], which makes it possible to implement as a macro expan-
sion. A “next case” continuation — to handle copattern-matching failure — is
introduced to make each line of a copattern-based definition a separate first-class

CoScheme: Compositional Copatterns in Scheme 35

value. From that point, the “recursive self” must be a parameter because no one
sliver of a definition suffices to describe the whole.

Theories of object-oriented languages [1,7] also model the “self” keyword as a
parameter later instantiated by recursion; either as an explicit recursive binding,
or encoded as self-application. This is done to handle the implicit composition
of code from inheritance, whereas here, we need to handle explicit composition
of first-class extensible objects. The full connection between copatterns — as
we describe here — and object-oriented languages remains to be seen. In terms
of the Lisp family of languages, the approach here seems closest to a first-class
generalization of mixins [3,11] with a simple dispatch mechanism (matching), in
contrast to class-based frameworks focused on complex dispatch [12,14,5].

6 Conclusion

We have shown here how to implement a more extensible, compositional version
of copatterns as a macro in standard Scheme as well as Racket. Our major focus
involves new ways to compose (co)pattern matching code in multiple directions
— vertically and horizontally — which can be used to solve the expression prob-
lem since it can encode certain functional and object-oriented design patterns.
Despite the more general forms of program composition, we still support straight-
forward equational reasoning to understand code behavior, even when that code
is assembled from multiple parts of the program. This equational reasoning is
formalized in terms of an extended λ-calculus, which is soundly translated into a
common core calculus familiar to functional programmers; we leave the definition
of a complete and minimal equational theory for copatterns as future work.

Our work here does not include static types, inherited from Scheme’s nature
as a dynamically typed language. As future work, we intend to develop a type
system for the copattern language described here; specific challenges include
correctly specifying type types of (de)composed code as well as coverage analysis
that ensures every case is handled after the composition is finished. The second
direction of future work is to incorporate effects into copattern definitions and
their equational reasoning, for example, subsuming (delimited) control operators
into the copattern language as a way of expressing compositional effect handlers.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. 2245516.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

36 P. Downen, A. Corbelino II

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer (1996)
2. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming

infinite structures by observations. In: Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. pp.
27–38. POPL ’13, ACM, New York, NY, USA (2013). https://doi.org/10.1145/
2429069.2429075

3. Bracha, G., Cook, W.R.: Mixin-based inheritance. In: Conference on Object-
Oriented Programming Systems, Languages, and Applications / European Confer-
ence on Object-Oriented Programming, OOPSLA/ECOOP 1990, Ottawa, Canada,
October 21-25, 1990, Proceedings. pp. 303–311. ACM (1990). https://doi.org/10.
1145/97945.97982

4. Brown, D.S., Cook, W.R.: Function inheritance : Monadic memoization mixins
(2009)

5. Chambers, C.: Object-oriented multi-methods in Cecil. In: European Conference
on Object-Oriented Programming. pp. 33–56. Springer (1992)

6. Cockx, J., Abel, A.: Elaborating dependent (co)pattern matching. Proceedings of
the ACM on Programming Languages 2(ICFP) (2018). https://doi.org/10.1145/
3236770

7. Cook, W.R., Palsberg, J.: A denotational semantics of inheritance and its correct-
ness. Information and Computation 114(2), 329–350 (1994). https://doi.org/10.
1006/INCO.1994.1090

8. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP 1990, Nice, France, 27-29
June 1990. pp. 151–160. ACM (1990). https://doi.org/10.1145/91556.91622

9. Downen, P., Ariola, Z.M.: Compositional semantics for composable continuations:
From abortive to delimited control. In: Proceedings of the 19th ACM SIGPLAN In-
ternational Conference on Functional Programming. pp. 109–122. ICFP ’14, ACM,
New York, NY, USA (2014). https://doi.org/10.1145/2628136.2628147

10. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,
J., Tobin-Hochstadt, S.: A programmable programming language. Communications
of the ACM 61(3), 62–71 (2018). https://doi.org/10.1145/3127323

11. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and mixins. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 171–183 (1998)

12. Gabriel, R., White, J., Bobrow, D.: Clos: Integrating object-oriented and functional
programming. Communications of the ACM 34, 28–38 (1991). https://doi.org/10.
1145/114669.114671

13. Hughes, J.: Why functional programming matters. The Computer Journal 32(2),
98–107 (1989). https://doi.org/10.1093/comjnl/32.2.98

14. Ingalls, D.H.H.: A simple technique for handling multiple polymorphism. In: Con-
ference Proceedings on Object-Oriented Programming Systems, Languages and
Applications. p. 347–349. OOPSLA ’86, Association for Computing Machinery,
New York, NY, USA (1986). https://doi.org/10.1145/28697.28732

15. Jeannin, J.B., Kozen, D., Silva, A.: CoCaml: Functional programming with reg-
ular coinductive types. Fundamenta Informaticae 150(3), 347–377 (2017). https:
//doi.org/10.3233/FI-2017-1473, https://journals.sagepub.com/doi/full/10.3233/
FI-2017-1473

https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/3236770
https://doi.org/10.1145/3236770
https://doi.org/10.1145/3236770
https://doi.org/10.1145/3236770
https://doi.org/10.1006/INCO.1994.1090
https://doi.org/10.1006/INCO.1994.1090
https://doi.org/10.1006/INCO.1994.1090
https://doi.org/10.1006/INCO.1994.1090
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/2628136.2628147
https://doi.org/10.1145/2628136.2628147
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/114669.114671
https://doi.org/10.1145/114669.114671
https://doi.org/10.1145/114669.114671
https://doi.org/10.1145/114669.114671
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1145/28697.28732
https://doi.org/10.1145/28697.28732
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.3233/FI-2017-1473
https://journals.sagepub.com/doi/full/10.3233/FI-2017-1473
https://journals.sagepub.com/doi/full/10.3233/FI-2017-1473

CoScheme: Compositional Copatterns in Scheme 37

16. Keep, A.W., Dybvig, R.K.: A nanopass framework for commercial compiler de-
velopment. In: Proceedings of the 18th ACM SIGPLAN international conference
on Functional programming. pp. 343–350. ICFP ’13, Association for Computing
Machinery (2013). https://doi.org/10.1145/2500365.2500618

17. Kim, J., Yi, K., Danvy, O.: Assessing the overhead of ML exceptions by selective
CPS transformation. BRICS Report Series 5 (1998)

18. Laforgue, P., Régis-Gianas, Y.: Copattern matching and first-class observations in
OCaml, with a macro. In: Proceedings of the 19th International Symposium on
Principles and Practice of Declarative Programming, Namur, Belgium, October 09
- 11, 2017. pp. 97–108 (2017). https://doi.org/10.1145/3131851.3131869

19. Lasater, C.G.: Design Patterns. Wordware Publishing, Inc. (2006)
20. Nielsen, L.R.: A selective CPS transformation. In: Seventeenth Conference on the

Mathematical Foundations of Programming Semantics, MFPS 2001, Aarhus, Den-
mark, May 23-26, 2001. Electronic Notes in Theoretical Computer Science, vol. 45,
pp. 311–331. Elsevier (2001). https://doi.org/10.1016/S1571-0661(04)80969-1

21. Oliveira, B.C.D.S., Cook, W.R.: Extensibility for the masses. In: ECOOP 2012
– Object-Oriented Programming, vol. 7313, pp. 2–27. Springer Berlin Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31057-7_2

22. Peyton Jones, S., Reid, A., Henderson, F., Hoare, T., Marlow, S.: A semantics for
imprecise exceptions. In: Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation. p. 25–36. PLDI ’99, Associ-
ation for Computing Machinery, New York, NY, USA (1999). https://doi.org/10.
1145/301618.301637

23. Setzer, A., Abel, A., Pientka, B., Thibodeau, D.: Unnesting of copatterns. In:
Rewriting and Typed Lambda Calculi - Joint International Conference, RTA-
TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 14-17, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8560,
pp. 31–45. Springer (2014). https://doi.org/10.1007/978-3-319-08918-8_3

24. Swierstra, W.: Data types à la carte. Journal of Functional Programming 18(4)
(2008). https://doi.org/10.1017/S0956796808006758

25. Thibodeau, D.: Programming Infinite Structures using Copatterns. Master’s thesis,
School of Computer Science, Mcgill University, Montreal (2015)

26. Thielecke, H.: Comparing control constructs by double-barrelled CPS. Higher-
Order and Symbolic Computation 15, 141–160 (2002). https://doi.org/10.1023/A:
1020887011500

27. Tobin-Hochstadt, S., St-Amour, V., Culpepper, R., Flatt, M., Felleisen, M.: Lan-
guages as libraries. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. p. 132–141. PLDI ’11, Asso-
ciation for Computing Machinery, New York, NY, USA (2011). https://doi.org/
10.1145/1993498.1993514

28. Wadler, P.: A critique of Abelson and Sussman or why calculating is better than
scheming. SIGPLAN Not. 22(3), 83–94 (1987). https://doi.org/10.1145/24697.
24706

29. Wadler, P., et al.: The expression problem. Posted on the Java Genericity mailing
list (1998)

30. Wehr, S., Thiemann, P.: JavaGI: The interaction of type classes with interfaces and
inheritance. ACM Transactions on Programming Languages and Systems 33(4),
1–83 (2011). https://doi.org/10.1145/1985342.1985343

https://doi.org/10.1145/2500365.2500618
https://doi.org/10.1145/2500365.2500618
https://doi.org/10.1145/3131851.3131869
https://doi.org/10.1145/3131851.3131869
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/301618.301637
https://doi.org/10.1145/301618.301637
https://doi.org/10.1145/301618.301637
https://doi.org/10.1145/301618.301637
https://doi.org/10.1007/978-3-319-08918-8_3
https://doi.org/10.1007/978-3-319-08918-8_3
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1023/A:1020887011500
https://doi.org/10.1023/A:1020887011500
https://doi.org/10.1023/A:1020887011500
https://doi.org/10.1023/A:1020887011500
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/24697.24706
https://doi.org/10.1145/24697.24706
https://doi.org/10.1145/24697.24706
https://doi.org/10.1145/24697.24706
https://doi.org/10.1145/1985342.1985343
https://doi.org/10.1145/1985342.1985343

38 P. Downen, A. Corbelino II

A Proofs

A.1 Conservative extension of the target

Lemma 1. The following instances of translation are all values up to the equa-
tional theory of the target language in fig. 6:

(a) T JBK = λs.M for some term M ,
(b) EJOK = λb.λs.M for some term M ,
(c) EJF K = λb.λs.λx.M for some term M ,
(d) JV K = W for some value W .

Proof. By mutual induction on the syntax of templates B, extensions O, exten-
sion functions F , and values V .

(a) T JBK = λs.M for some term M , as shown by the following cases:
– (B = ε) T JεK = λs. fail s, so M = fail s.
– (B = O;B′) T JO;B′K = λs. JOK JB′K s, so M = JOK JB′K s.
– (B = continuex→N) T Jcontinuex→NK = λx.JNK, so M = JNK.

(b) EJOK = λb.λs.M for some term M , as shown by the following cases:
– (O = ε) EJεK = λb.λs. b s, so M = b s.
– (O = O1;O2) EJO1;O2K = λb.λs. JO1K (JO2K b) s, so M = JO1K (JO2K b) s.
– (O = Q[x] O) follows by induction on Q (generalizing O):
• (Q = □) for all O,

EJx OK = λb.λx.EJOK b x

= λb.λs.EJOK[s/x] b s (α)

so M = EJOK[s/x] b s for the given O.
• (Q = Q′ P) assuming the inductive hypothesis (IH) that, for all O,

there is an NO such that EJQ[x] OK = λb.λs.NO. For all O,

EJ(Q′[x] P)OK = EJQ′[x] (λP.O)K
= λb.λs.N(λP.O) (IH)

so M = N(λP.O) given by the inductive hypothesis applied to λP.O.
– (O = λP. O) follows by cases if P is a variable or another pattern:
• (P ∈ Variable) EJλx. OK = λb.λs.(λx.EJOK (λs′.b s′ x) s), so
M = λx.EJOK (λs′.b s′ x) s.

• (P /∈ Variable) EJλP. OK = EJλx.matchP ← x OK, which follows
by the above case.

– (O = matchP ← N O)

EJmatchP ← N OK = λb.λs.match JNK with

{ P → EJOK b s;

_→ b s }

so M = match JNK with {P → EJOK b s;_→ b s }.

CoScheme: Compositional Copatterns in Scheme 39

– (O = nestO) EJnestOK = λb.λs.(rec s′ = EJOK (λ_.b s) (λx.s′ x)), so
M = (rec s′ = EJOK (λ_.b s) (λx.s′ x))

– (O = try x→ B) assuming the inductive hypothesis (IH) from part (a)
that T JBK = λs.N for some N ,

EJtry x→ BK = λx.T JBK
= λx.(λs. N) (IH)

= λb.(λs. N)[b/x] (α)

so M = N [b/x]
(c) EJF K = λb.λs.λx.M for some term M , as shown by the following cases:

– (F = λP. O) Following the same calculation in the matching special case
of part (b) above, EJλP.OK = λb.λs.(λx.M) for some M .

– (F = Q[x P] O) follows by induction on Q (generalizing O):
• (Q = □) for all O,

EJ(y P) OK = EJy (λP.O)K = λb.λy.EJλP.OK b y

Following the same calculation in the previous case (F = λP.O) gives
us some N such that EJλP.OK = λb.λs′.λx.N , so continuing we have

EJ(y P) OK = λb.λy.(λb.λs′.λx.N) b y

= λb.λy.λx.N [y/s′] (β)

= λb.λs.λx.N [y/s′][s/y] (α)

so M = N [y/s′][s/y].
• (Q = Q′ P ′) assuming the inductive hypothesis that, for all O, there

is an NO such that EJQ′[y P] OK = λb.λs.λx.NO. For all O,

EJ(Q′[y P] P ′) OK = EJQ′[y P] (λP ′.O)K
= λb.λs.λx.N(λP ′.O) (IH)

so M = N(λP ′.O) given by the inductive hypothesis applied to λP ′.O.
(d) JV K = W for some value W , as shown by the following cases:

– (V = x) JxK = x, so W = x.
– (V = λx.M) Jλx.MK = λx.JMK, so W = λx.JMK.
– (V = null) JnullK = null, so W = null.
– (V = consV1 V2) JconsV1 V2K = cons JV1K JV2K, where JV1K = W1 and

JV2K = W2 by the inductive hypotheses, so W = consW1 W2.
– (V = templateB) JtemplateBK = T JBK = λs.M , for some M , by the

inductive hypothesis part (a), so W = λs.M .
– (V = extensionO) JextensionOK = EJOK = λb.λs.M , for some M ,

by the inductive hypothesis part (b), so W = λb.λs.M .
– (V = λ∗(F ;B)) assuming the inductive hypotheses that
IH1 there is some N1 such that EJF K = λb.λs.λx.N1, and
IH2 there is some N2 such that T JBK = λs.N2,

40 P. Downen, A. Corbelino II

Jλ∗(F ;B)K = (rec self = T JF ;BK (λx.self x))

= (rec self = EJF K T JBK (λx.self x)) (β)

= (rec self = (λb.λs.λx.N1) T JBK (λx.self x)) (IH1)

= (rec self = (λb.λs.λx.N1) (λs.N2) (λx.self x)) (IH2)

= (rec self = λx.N1[(λs.N2)/b][(λx.self x)/s]) (β)

= λx.N1[(λs.N2)/b]

[(λx.self x)/s]

[(rec self = λx.N1[(λs.N2)/b][(λx.self x)/s])/self]

(rec)

Lemma 2 (Pattern Translation).
JP K = P .

Proof. By induction on the syntax of P . ⊓⊔

Lemma 3 (Apartness Translation).
If P # V then P # JV K.

Proof. By induction on the derivation of apartness P # V . ⊓⊔

Lemma 4 (Compositionality).
There exists a translation of contexts JCK such that JC[M]K = JCK[JMK],

and similarly for contexts which surround templates B and extensions O. The
same holds for T JCK and EJCK for contexts returning templates and extensions,
respectively.

Proof. By induction on the possible contexts C and the definition of the trans-
lation. ⊓⊔

Lemma 5 (Hygiene).
If x is captured by C if and only if it is captured by JCK in JCK[x]. The

same holds for T JCK and EJCK for contexts returning templates and extensions,
respectively.

Proof. By induction on the possible contexts C and the implicit side-conditions
on the definition of translation where new binding forms introduced on the right-
hand side must not capture free variables of sub-terms. ⊓⊔

Lemma 6 (Substitution). For all values V ,

(a) JM [V/x]K = JMK[JV K/x],
(b) T JB[V/x]K = T JBK[JV K/x],
(c) EJO[V/x]K = EJOK[JV K/x].

Proof. The proof strategy follows from proposition 2 of [9].
Suppose we have a free occurrence of x in a term M which is decomposed

as C[x], where C does not capture x. Because the translation is compositional
(lemma 4), we can decompose every occurrence of a variable from its surrounding

CoScheme: Compositional Copatterns in Scheme 41

context as JC[x]K = JCK[x]. Then, because the translation is hygienic (lemma 5),
we know JCK does not capture x. Thus,

JC[x]K[JV K/x] = JCK[x][JV K/x] (lemma 4)

= JCK[JV K][JV K/x]
= JC[V]K[JV K/x] (lemma 4)

This replacement can then be iterated for each free occurrence of x in the term,
until x no longer appears free in the final term M ′, in which the substitution is
JM ′K[JV K/x] = JM ′K.

The same procedure applies for free occurrences of variables in templates and
extensions. ⊓⊔

Lemma 7 (Equivalence Relation).
The translation preserves the structure of an equivalence relation with respect

to the equational theory of the target. Equalities between translated terms have
the following properties:

(a) Reflexivity: JMK = JMK.
(b) Symmetry: if JMK = JNK then JNK = JMK,
(c) Transitivity: if JM1K = JM2K and JM2K = JM3K then JM1K = JM3K.
(d) Congruence: if JMK = JMK then for all contexts C, JC[M]K = JC[N]K.

and similarly for equalities between translated templates T JBK and extensions
EJOK.

Proof. The proof strategy follows from proposition 1 of [9].
Reflexivity, transitivity, and symmetry of the equational theory follows im-

mediately.
Congruence—M = N implies C[M] = C[N] for all contexts C—follows

from the fact that the translation is compositional (lemma 4). An equation
C[M] = C[N], derived from congruence of M = N inside C, can be derived
by distributing the translation across contexts to apply the underlying equality
JMK = JNK gotten from soundness of M = N :

JC[M]K = JCK[JMK] (lemma 4)

= JCK[JNK]
= JC[N]K (lemma 4)

Proposition 1 (Conservative Extension). If M = N in the equational
theory of the target (fig. 6), then so too does JMK = JNK.

Proof. The soundness of the inference rules defining the structure of the source
equivalence relation follow from lemma 7.

It then remains to show that each individual axiom (β, rec, etc.) from the
target language is still equal after translation. Each one holds by the induc-
tive hypothesis—because the definition of translation for these cases does not

42 P. Downen, A. Corbelino II

ε;O = O (O1;O2);O3 = O1; (O2;O3) doM ;O = doM

ε;B = B (O1;O2);B = O1; (O2;B) doM ;B = elseM

λ∗(F ;B) = (templateF ;B) (λ∗(F ;B))

λx.(λ∗(F ;B)) x = λ∗(F ;B)

(templateO;B) V = (extensionO) (templateB) V

(template ε) V = fail V

(template continuex→M) V = M [V/x]

(extension try x→ B) V = templateB[V/x]

(template (x O);B) V = (templateO[V/x];B) V

(template (λx.O);B) V W =

template

O[W/x];

continue s′ →
(templateB) s′ W

 V

matchP ← V O = ε (if P # V)

matchP ← V O = O[W.../x...] (if P [W.../x...] = V)

λP.O = λx.(matchP ← x) O

(Q[x] P) O = Q[x] (λP.O)

Fig. 8. Core axioms of the equational theory.

change syntax—along with lemmas 1 and 6 for cases which substitute values.
For example, with the β axiom, we have

J(λx.M) V K = (λx.JMK) JV K
= (λx.JMK) W (lemma 1)

= JMK[W/x] (β)

= JMK[JV K/x] (lemma 1)

= JM [V/x]K (lemma 6)

since values are only translated to values, JV K = W up to the target equational
theory (lemma 1), which means that β-reduction still applies after translation.
For the match and apart axioms, we need to know that patterns and apartness
is not affected by translation, given by lemmas 2 and 3.

A.2 Soundness of the source

Proposition 2 (Soundness). The translation is sound w.r.t. the source and
target equational theories (e.g., M = N in fig. 7 implies JMK = JNK in fig. 6).

CoScheme: Compositional Copatterns in Scheme 43

(template (λP.O);B) V ′ V =

template

O[W/x];

continue s′ →
(templateB) s′ V

 V ′ (if P [W.../x...] = V)

(template (λP.doM);B) V ′ V = M [W.../x...] (if P [W.../x...] = V)

(template (λP.O);B) V ′ V = (templateB) V ′ V (if P # V)

C[(template (Q[y] O);B) V] =

template

O[W/x];

continue s′ →
C[(templateB) s′]

 V (if Q[W.../x...] = C)

C[(template (Q[y] = M);B) V] = M [V/y][W.../x...] (if Q[W.../x...] = C)

C[(template (Q[y] O);B) V] = C[(templateB) V] (if Q # C)

C[λ∗(Q[y] = M);B] = M [(λ∗(Q[y] = M);B)/y]

[W.../x...]

(if Q[W.../x...] = C)

C[λ∗(Q[y] O); elseM] = C[M] (if Q # C)

Fig. 9. Other equalities derived from the core axioms.

Proof. The reflexive, symmetric, transitive, and congruent structure of the equa-
tional theory is sound by lemma 7, and the axioms of the target language are
sound by proposition 1.

It remains to show that each equality in fig. 7 are sound as well. The proof of
soundness is finished by the following lemmas, which are organized in two parts:

– The equalities in fig. 8 are core axioms, whose soundness is shown by trans-
lating both sides into the target λ-calculus and deriving an equality in the
target equational theory.

– The remaining equalities in fig. 9 are derived only in terms of those core ax-
ioms directly in the source language, so their soundness follows from lemma 7
in addition to the specific lemmas proving soundness of the core axioms.

Note that every equation listed in fig. 7 can be found in either fig. 8 or fig. 9,
however, there are some additional core axioms in fig. 8 that do not appear in
fig. 7, but are useful for deriving other equations. ⊓⊔

Core axioms

Lemma 8 (Extension Composition Identity Left). In the target,

EJε;OK = EJOK

44 P. Downen, A. Corbelino II

Proof.

EJε;OK
= λb.λs. EJεK (EJOK b) s

= λb.λs. EJεK ((λb.λs. M0) b) s (lemma 1)

= λb.λs. (λb.λs. b s) ((λb.λs. M0) b) s

= λb.λs. (λb.λs. b s) (λs. M0) s (β)

= λb.λs. (λs. (λs. M0) s) s (β)

= λb.λs. (λs. M0) s (β)

= λb.λs. M0 (β)

= EJOK (lemma 1)

⊓⊔

Lemma 9 (Template Composition Identity Left). In the target,

T Jε;BK = T JBK

Proof.

T Jε;BK
= λs. EJεK T JBK s

= λs. (λb.λs. b s) T JBK s

= λs. T JBK s (β, lemma 1)

= T JBK (α, β, lemma 1)

⊓⊔

Lemma 10 (Extension Composition Associativity). In the target,

EJ(O1;O2);O3K = EJO1; (O2;O3)K

Proof. The left-hand side simplifies as follows:

EJ(O1;O2);O3K
= λb.λs. EJO1;O2K (EJO3K b) s

= λb.λs. (λb.λs. EJO1K (EJO2K b) s) (EJO3K b) s

= λb.λs. (λb.λs. (λb.λs.M1) ((λb.λs.M2) b) s) ((λb.λs.M3) b) s (lemma 1)

= λb.λs. (λb.λs. (λb.λs.M1) ((λb.λs.M2) b) s) (λs.M3) s (β)

= λb.λs. (λb.λs.M1) ((λb.λs.M2) (λs.M3)) s (β)

= λb.λs. (λb.λs.M1) (λs.M2[(λs.M3)/b]) s (β)

= λb.λs. M1[(λs.M2[(λs.M3)/b])/b] (β)

CoScheme: Compositional Copatterns in Scheme 45

The right-hand side simplifies to the same term as follows:

EJO1; (O2;O3)K
= λb.λs. EJO1K (JO2;O3K b) s

= λb.λs. EJO1K ((λb.λs. EJO2K (EJO3K b) s) b) s

= λb.λs. EJO1K (λs. EJO2K (EJO3K b) s) s (β)

= λb.λs. (λb.λs.M1) (λs. (λb.λs.M2) ((λb.λs.M3) b) s) s (lemma 1)

= λb.λs. (λb.λs.M1) (λs. (λb.λs.M2) (λs.M3) s) s (β)

= λb.λs. (λb.λs.M1) (λs.M2[(λs.M3)/b]) s (β)

= λb.λs. M1[(λs.M2[(λs.M3)/b])/b] (β)

⊓⊔

Lemma 11 (Template Composition Associativity). In the target,

T J(O1;O2);BK = T JO1; (O2;B)K

Proof. The left-hand side simplifies as follows:

T J(O1;O2);BK
= λs. EJO1;O2K T JBK s

= λs. (λb.λs. EJO1K (EJO2K b) s) T JBK s

= λs. EJO1K (EJO2K T JBK) s (β, lemma 1)

= λs. (λb.λs.M1) ((λb.λs.M2) T JBK) s (lemma 1)

= λs. (λb.λs.M1) (λs.M2[T JBK/b]) s (β, lemma 1)

= λs. M1[(λs.M2[T JBK/b])/b] (β)

The right-hand side simplifies to the same term as follows:

T JO1; (O2;B)K
= λs. EJO1K T JO2;BK s

= λs. EJO1K (λs. EJO2K T JBK s) s

= λs. (λb.λs.M1) (λs. (λb.λs. M2) T JBK s) s (lemma 1)

= λs. (λb.λs.M1) (λs.M2[T JBK/b]) s (β, lemma 1)

= λs. M1[(λs.M2[T JBK/b])/b] (β)

⊓⊔

Lemma 12 (Extension Commit). In the target,

EJdoM ;OK = EJdoMK

46 P. Downen, A. Corbelino II

Proof.

EJdoM ;OK
= λb.λs. EJdoMK (EJOK b) s

= λb.λs. EJdoMK ((λb.λs. MO) b) s (lemma 1)

= λb.λs. EJdoMK (λs. MO) s (β)

= λb.λs. EJtry_→ continue_→MK (λs. MO) s

= λb.λs. (λ_. T Jcontinue_→MK) (λs. MO) s

= λ_.λs. T Jcontinue_→MK s (β, b /∈ FV (M))

= λ_.λs. (λ_. JMK) s
= λ_.λ_. JMK (β, s /∈ FV (M))

= λ_. T Jcontinue_→MK
= EJtry_→ continue_→MK
= EJdoMK

⊓⊔

Lemma 13 (Template Commit). In the target,

T JdoM ;BK = T JelseMK

Proof.

T JdoM ;BK
= λs. EJdoMK T JBK s

= λs. EJtry_→ continue_→MK T JBK s

= λs. (λ_. T Jcontinue_→MK) T JBK s

= λs. (λ_. λ_. JMK) T JBK s

= λs. (λ_. JMK) s (β)

= λ_. JMK (β, s /∈ FV (M))

= T Jcontinue_→MK
= T JelseMK

⊓⊔

Lemma 14 (ηλ∗). In the target,

EJλx. (λ∗(F ;B)) xK = EJλ∗(F ;B)K

Proof. From lemma 1, we have EJF K = λb.λs.λz.M for some term M . In the
following, let M ′ = M [T JBK/b][(λy.self y)/s],

EJλx. (λ∗(F ;B)) xK

CoScheme: Compositional Copatterns in Scheme 47

= λx.EJ(λ∗(F ;B))K x

= λx.(rec self = (λs.EJF K T JBK s) (λy.self y)) x

= λx.(rec self = EJF K T JBK (λy.self y)) x (β)

= λx.(rec self = (λb.λs.λz.M) T JBK (λy.self y)) x (lemma 1)

= λx.(rec self = λz.M [T JBK/b][(λy.self y)/s]) x

= λx.(rec self = λz.M ′) x (β)

= λx.(λz.M ′[rec self = λz.M ′/self]) x (rec)

= λx.M ′[rec self = λz.M ′/self][x/z] (β)

= λz.M ′[rec self = λz.M ′/self] (α)

= rec self = λz.M ′ (rec)

= rec self = λz.M [T JBK/b][(λy.self y)/s]

= rec self = (λb.λs.λz.M) T JBK (λx.self x) (β)

= rec self = EJF K T JBK (λx.self x) (lemma 1)

= rec self = (λs.EJF K T JBK s) (λx.self x) (β)

= rec self = T JF ;BK (λx.self x)

= EJλ∗(F ;B)K

⊓⊔

Lemma 15 (Unfold λ∗). In the target,

EJλ∗(F ;B)K = J(templateF ;B) (λ∗(F ;B))K

Proof. Note, T JF ;BK (λx.self x) = EJF K T JBK (λx.self x) is β-equal to some
value of the form λz.M ′ because T JF ;BK = λb.λs.λz.M from lemma 1. So
rec self = T JF ;BK (λx.self x) unfolds via β and rec in the following,

EJλ∗(F ;B)K
= (rec self = T JF ;BK (λx.self x))

= T JF ;BK (λx.(rec self = T JF ;BK (λx.self x)) x)) (β, rec)

= T JF ;BK (λx.Jλ∗(F ;B)K x)

= T JF ;BK Jλ∗(F ;B)K (lemma 14)

= Jtemplate(F ;B)K Jλ∗(F ;B)K
= J(template(F ;B)) (λ∗(F ;B))K

⊓⊔

Lemma 16 (Template Extension). In the target,

J(templateO;B) V K = J(extensionO) (templateB) V K

Proof.

J(templateO;B) V K

48 P. Downen, A. Corbelino II

= J(templateO;B)K JV K
= (λs. EJOK T JBK s) JV K
= EJOK T JBK JV K (β, lemma 1)

= EJextensionOK T JtemplateBK JV K
= EJ(extensionO) (templateB) V K

⊓⊔

Lemma 17 (Template Failure). In the target,

J(template ε) V K = Jfail V K

Proof.

J(template ε) V K
= J(template ε)K JV K
= T JεK JV K
= (λs.fail s) JV K
= fail JV K (β, lemma 1)

= Jfail V K

⊓⊔

Lemma 18 (Template Continue). In the target,

J(template continuex→M) V K = JM [V/x]K

Proof.

J(template continuex→M) V K
= T J(continuex→M)K JV K
= (λx. JMK) JV K
= JMK[JV K/x] (β, lemma 1)

= JM [V/x]K (lemma 6)

⊓⊔

Lemma 19 (Extension Try). In the target,

J(extension try x→ B) V K = templateB[V/x]

Proof.

J(extension try x→ B) V K
= Jextension try x→ BK JV K
= EJtry x→ BK JV K

CoScheme: Compositional Copatterns in Scheme 49

= (λx. T JBK) JV K
= T JBK[JV K/x] (β, lemma 1)

= T JB[V/x]K (lemma 6)

= JtemplateB[V/x]K

⊓⊔

Lemma 20 (Template Self). In the target,

J(template (x O);B) V = (templateO[V/x];B) V K

Proof.

J(template (x O);B) V K
= EJx OK T JBK JV K (β, lemma 1)

= (λb.λx.EJOK b x) T JBK JV K
= EJOK[JV K/x] T JBK JV K (β, lemma 1)

= EJO[V/x]K T JBK JV K (lemma 6)

= J(templateO[V/x];B) V K (β, lemma 1)

⊓⊔

Lemma 21 (Template Lambda). In the target,

Jtemplate (λx.O;B) V W K =

u

w
v

 template

O[W/x];

continue s′ → (templateB) s′ W

 V

}

�
~

Proof.

J(template (λx.O);B) V W K
= (λs.EJλx.OK T JBK s) JV K JW K
= EJλx.OK T JBK JV K JW K (β, lemma 1)

= (λb.λs.λx.EJOK (λs′.b s′ x) s) T JBK JV K JW K
= EJOK[JW K/x] (λs′.T JBK s′ JW K) JV K (β, lemma 1)

= EJO[W/x]K (λs′.T JBK s′ JW K) JV K (lemma 6)

=

u

w
v

 template

O[W/x];

continue s′ → (templateB) s′ W

 V

}

�
~ (β, lemma 1)

⊓⊔

Lemma 22 (Try Match). In the target,

JmatchP ← V OK = JO[W.../x...]K (if P [W.../x...] = V)

50 P. Downen, A. Corbelino II

Proof. By lemmas 2 and 6, JV K = JP [W.../x...]K = JP K[JW K.../x...] = P [JW K.../x...]
in the following:

EJmatchP ← V OK
= λb.λs.match JV K with {P → EJOK b s;_→ b s }
= λb.λs. EJOK[JW K.../x...] b s (match, lemmas 2and 6)

= λb.λs. EJO[W.../x...]K b s (lemma 6)

= EJO[W.../x...]K (α, β, lemma 1)

⊓⊔

Lemma 23 (Try Match Apart). In the target,

JmatchP ← V OK = JεK (if P # V)

Proof. By lemma 3, P # JV K in the following:

EJmatchP ← V OK
= λb.λs.match JV K with {P → EJOK b s;_→ b s }
= λb.λs. b s (apart, lemma 3)

= EJεK

⊓⊔

Lemma 24 (Pattern Lambda). In the target,

EJλP.OK = EJλx.(matchP ← x) OK

Proof. By cases on whether P is a variable or another pattern:

– If P = y, then

EJλx.(match y ← x) OK
= λb.λs.λx. EJmatch y ← x OK (λs′.b s′ x) s

= λb.λs.λx.matchxwith {
y → EJOK (λs′.b s′ x) s;

_→ (λs′.b s′ x) s }

(β)

= λb.λs.λx.EJOK[x/y] (λs′.b s′ x) s (match)

= λb.λs.λy.EJOK (λs′.b s′ y) s (α)

= EJλy.OK

– Otherwise, when P /∈ Variable, EJλP.OK = EJλx.(matchP ← x) OK di-
rectly by definition of translation. ⊓⊔

Lemma 25 (Copattern Abstraction). In the target,

EJ(Q[x] P) OK = EJQ[x] (λP.O)K

Proof. EJ(Q[x] P) OK = EJQ[x] (λP.O)K directly by definition of translation.
⊓⊔

CoScheme: Compositional Copatterns in Scheme 51

Derived equations

Lemma 26 (Template Match). In the source,

template (λP.O;B) V ′ V =

 template

O[W.../x...];

continue s′ → (templateB) s′ V

 V ′

(if P [W.../x...] = V)

Proof.

template (λP.O;B) V ′ V

= template (λx.(matchP ← x) O;B) V ′ V (lemma 24)

=

 template

(matchP ← V) O;

continue s′ → (templateB) s′ V

 V ′ (lemma 21)

=

 template

O[W.../x...];

continue s′ → (templateB) s′ V

 V ′ (lemma 22)

⊓⊔

Lemma 27 (Template Do Match). In the source,

(template (λP.doM);B) V ′ V = M [W.../x...] (if P [W.../x...] = V)

Proof.

(template (λP.doM);B) V ′ V

=

 template

doM [W.../x...];

continue s′ → (templateB) s′ V

 V ′ (lemma 26)

= (template elseM [W.../x...]) V ′ (lemma 13)

= (template continue_→M [W.../x...]) V ′

= M [W.../x...] (lemma 18)

⊓⊔

Lemma 28 (Template Apart). In the source,

(template (λP.O);B) V ′ V = (templateB) V ′ V (if P # V) (1)

Proof.

(template (λP.O);B) V ′ V

52 P. Downen, A. Corbelino II

= (template (λx.(matchP ← x) O);B) V ′ V (lemma 24)

=

 template

(matchP ← V) O;

continue s′ → (templateB) s′ V

 V ′ (lemma 21)

=

 template

ε;

continue s′ → (templateB) s′ V

 V ′ (lemma 23)

= (template continue s′ → (templateB) s′ V) V ′ (lemma 9)

= (templateB) V ′ V (lemma 18)

⊓⊔

Lemma 29 (Context Match). In the source,

C[(template (Q[y] O);B) V] =

template

O[V/y][W.../x...];

continue s′ → C[(templateB) s′]

(if Q[W.../x...] = C ̸= □)

Proof. By induction on the syntax of Q.

– Q = □ is impossible due to the assumption Q[W.../x...] = C ̸= □.
– If Q = □ P then C = □ V ′ such that P [W.../x...] = V , and so

C[(template (Q[y] O);B) V]

= (template ((y P) O);B) V V ′

= (template (y (λP.O));B) V V ′ (lemma 25)

= (template (λP.O[V/y]);B) V V ′ (lemma 20)

=

 template

O[V/y][W.../x...];

continue s′ → (templateB) s′ V ′

 V (lemma 26)

– If Q = Q′ P then C = C ′ V ′ where [W.../x...] = [W1...,W2.../x1..., x2...]
such that Q′[W2.../x1...] = C and P [W2.../x2...] = V ′. Assume the inductive
hypothesis

C ′[(template (Q′[y] O);B) V] =

template

O[V/y][W.../x...];

continue s′ → C ′[(templateB) s′]

The equality holds by this inductive hypothesis and the following lemmas,

C[(template (Q[y] O);B) V]

CoScheme: Compositional Copatterns in Scheme 53

= C ′[(template ((Q′[y] P) O);B) V] V ′

= C ′[(template (Q′[y] (λP.O));B) V] V ′ (lemma 25)

=

 template

λP.O[V/y][W1.../x1...];

continue s′ → C ′[(templateB) s′]

 V V ′ (IH)

=

template

O[V/y][W1.../x1...][W2.../x2...];

continue s′′ → template

continue s′ →
C ′[(templateB) s′]

 s′′ V ′

V (lemma 26)

=

 template

O[V/y][W1.../x1...][W2.../x2...];

continue s′′ → (C ′[(templateB) s′′]) V ′

 V (lemma 18)

=

 template

O[V/y][W.../x...];

continue s′ → C[(templateB) s′]

 V (α)

Lemma 30 (Context Exact Match). In the source,

C[(template (Q[y] = M);B) V] = M [V/y][W.../x...] (if Q[W.../x...] = C)

Proof.

C[(template (Q[y] = M);B) V]

= C[(template (Q[y]doM);B) V]

=

 template

doM [V/y][W.../x...];

continue s′ → C[(templateB) s′]

 V (lemma 29)

= (template elseM [V/y][W.../x...]) V (lemma 13)

= (template continue_→M [V/y][W.../x...]) V

= M [V/y][W.../x...]

⊓⊔

Lemma 31 (Context Apart). In the source,

JC[(template (Q[y] O);B) V]K = JC[(templateB) V]K (if Q # C)

Proof. By induction on the derivation of apartness Q # C:

54 P. Downen, A. Corbelino II

– Suppose Q # C because Q = Q′ P and C = C ′ W ′ such that P # W and
Q′[W.../x...] = C ′.

C[(template (Q′[y] P) O;B) V]

= C ′[(template (Q′[y] P) O;B) V] W ′

= C ′[(templateQ′[y] (λP.O);B) V] W ′ (lemma 25)

=

 template

λP.O[W.../x...];

continue s′ → C ′[(templateB) s′]

 V W ′ (lemma 29)

= (template continue s′ → C ′[(templateB) s′]) V W ′ (lemma 28)

= C ′[(templateB) V] W ′ (lemma 18)

= C[(templateB) V]

– Suppose Q # C because Q = Q′ P and Q′ # C, and assume the inductive
hypothesis C[(template (Q′[y] O);B) V] = C[(templateB) V].

C[(template (Q[y] O);B) V]

= C[(template ((Q′[y] P) O);B) V]

= C[(template (Q′[y] (λP. O));B) V] (lemma 25)

= C[(templateB) V] (IH)

– Suppose Q # C because C = C ′ W and Q # C ′, and assume the inductive
hypothesis C ′[(template (Q[y] O);B) V] = C ′[(templateB) V].

C[(template (Q[y] O);B) V]

= C ′[(template (Q[y] O);B) V] W

= C ′[(templateB) V] W (IH)

= C[(templateB) V]
⊓⊔

Lemma 32 (Context λ∗ Match). In the source,

C[λ∗(Q[y] = M);B] = M [(λ∗(Q[y] = M);B)/y][W.../x...]

(if Q[W.../x...] = C)

Proof.

C[λ∗(Q[y] = M);B]

= C[(template (Q[y] = M);B) (λ∗(Q[y] = M);B)] (lemma 15)

= M [(λ∗(Q[y] = M);B)/y][W.../x...] (lemma 30)

⊓⊔

Lemma 33 (Context λ∗ Apart). In the source,

C[λ∗(Q[y] O); elseM] = C[M] (if Q # C)

CoScheme: Compositional Copatterns in Scheme 55

Proof.

C[λ∗(Q[y] O); elseM]

= C[(template (Q[y] O); elseM) (λ∗(Q[y] O); elseM)] (lemma 15)

= C[(template elseM) (λ∗(Q[y] O); elseM)] (lemma 31)

= C[(template continue_→M) (λ∗(Q[y] O); elseM)]

= C[M] (lemma 18)

⊓⊔

