
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, 59 pages, 2025. © Cambridge University Press 2025 1
doi:10.1017/S0956796825100026

A Contextual Formalization of Structural
Coinduction

PAUL DOWNEN
University of Massachusetts, Lowell (e-mail: paul_downen@uml.edu)

ZENA M. ARIOLA
University of Oregon (e-mail: ariola@cs.uoregon.edu)

Abstract

Structural induction is pervasively used by functional programmers and researchers for both informal
reasoning as well as formal methods for program verification and semantics. In this paper, we promote
its dual — structural coinduction — as a technique for understanding corecursive programs only in
terms of the logical structure of their context. We illustrate this technique as an informal method
of proofs which closely match the style of informal inductive proofs, where it is straightforward to
check that all cases are covered and the coinductive hypotheses are used correctly. This intuitive
idea is then formalized through a syntactic theory for deriving program equalities, which is justified
purely in terms of the computational behavior of abstract machines and proved sound with respect to
observational equivalence.

1 Introduction

Every day, a large community of computer scientists — working on applications and theory
of functional programming, verification, type systems, and semantics — employ induction
to effectively reason about software and its behavior. Whether mechanically checked by a
computer or informally written with pen and paper, various forms of inductive techniques
are applied with confidence that the result is well-founded. What is the secret to this
confidence? The inductive principle itself limits recursive reasoning to only pieces of the
original example which are structurally smaller than it (Burstall, 1969).

Coinduction, the dual to induction, is not understood or used with the same level of famil-
iarity or frequency. It is usually relegated to coalgebras (Rutten, 2019), since traditionally
only the categorical setting speaks clearly about the duality that relates induction and coin-
duction. Despite its difficulty, coinduction remains an essential principle for dealing with
important software systems like concurrent processes, web servers, and operating systems
(Barwise & Moss, 1997), which endlessly run while interacting with their environment.

Why, then, does coinduction see less use in both informally written and mechanically
verified proofs of programming language theory? One major obstacle is that coinduction is
easy to formulate in a dangerous way, where the recursive nature of coinduction seems too
powerful on the surface and can lead to nonsensical, viciously circular proofs. To tamper

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 P. Downen and Z.M. Ariola

down on this unreasonable power, we must externally check that the coinductive hypothesis
is only applied in certain special contexts, which fundamentally breaks compositional
reasoning; certain proofs may seem valid until they are embedded into a larger context.

In this paper, we aim to alleviate the non-compositional difficulty of coinduction by
reformulating it to more closely resemble the familiar forms of induction used in practice,
with the hope that this presentation will make coinduction more suitable for widespread
use in programming environments (Gordon, 2017). Our methodology is to work in a setting
based on (Curien & Herbelin, 2000) where the important contexts are reified into first-class
objects that can be labeled and have a predictable structure — similar to inductive objects
like numbers and trees which can be named and analyzed structurally. The key idea here
is that the coinductive principle limits recursion to only contexts which are structurally
smaller than the starting point of coinduction, and that this requirement is checked locally
by just looking at the label where corecursion happens. This paper then demonstrates how
coinduction — in terms of both an informal pen-and-paper methodology as well as a formal
program logic for proving equality of corecursive programs with or without side effects
— can be seen as induction on the context. We thus avoid resorting to the least or greatest
fixed point notions of lattice theory and domain theory to explain the duality between
induction and coinduction (Gordon, 1994). Both the informal technique and formal system
are sound in the sense that every syntactically-derived equality implies an observational
equivalence: the program logic is proven sound with respect to an adequate denotational
model of observational equivalence defined in terms of its operational semantics.

Having (co)inductive reasoning principles expressed within a calculus follows previous
work (Curien & Herbelin, 2000) on defining a calculus that directly expresses the dualities
commonly seen in logic, specifically (Downen & Ariola, 2023). For example, the duality
between true and false computationally appears as the duality between a process that pro-
duces information and one that consumes information (Downen & Ariola, 2018). We think
our work follows the spirit of Kozen & Silva (2017); the authors present several examples
of the use of coinduction in informal-style mathematical arguments. This paper strives to
put those arguments on solid ground that can be justified only in terms of computation. We
believe our approach only requires the same mathematical skills already used by computer
scientists to reason inductively over data structures, while still capturing the essential prop-
erty of compositionality. Coinduction is explained in terms of subcomponents, much the
same way structural induction is presented.

In addition to giving a compositional and computational foundation for coinduction, this
paper studies both induction and coinduction proof principles in the setting of a language
derived from classical logic à la Curry-Howard, and identifies the syntactic conditions that
must be imposed on an argument to make it correct in the presence of computational effects.
For example, it is well known that one needs to be careful applying induction in non-strict
languages such as Haskell. For example, the optimization

x ∗ 0 ?
= 0

can be proved by traditional induction over the natural numbers, but it does not hold
according to a call-by-name evaluation strategy because this proof does not account for
the case of nontermination. Letting Ω stand for a non-terminating expression, notice that
plugging in Ω for x leads to an incorrect equality; Ω ∗ 0 = 0 claims that a non-terminating

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

A Contextual Formalization of Structural Coinduction 3

expression Ω ∗ 0 is equal to a constant value. Even worse, if we consider other computational
effects such as aborting a computation, then substituting abort 1 for x leads to

(abort 1) ∗ 0 = 0

seemingly equating 1 to 0.
Dually, strict languages such as OCaml suffer from the same kinds of problems

where naïve coinduction is not always correct. For example, consider infinite stream
(x0, x1, x2, x3, . . .) with the two main projections:

head(x0, x1, x2, . . .) = x0 tail(x0, x1, x2, . . .) = x1, x2, . . .

Now, intuitively, taking the head and tail of a stream and putting them back does nothing:

head xs, tail xs = xs

and this equation does indeed hold, under both call-by-name and call-by-value evaluation,
both with or without side effects (as we will see in more detail later). So intuitively, we
should be able to apply this equality a second time to expand out two places, right?

head xs, head(tail xs), tail(tail xs) ?
= xs (1.1)

As it turns out, this equation fails in call-by-value languages with side effects, similar to the
problem with x ∗ 0 = 0 in call-by-name. Of course, in the call-by-value setting, we need to
be careful of timing considerations when handling infinite objects: an infinite stream cannot
be fully evaluated in advance. So to support infinite streams, we ensure that the head and
tail of the stream are only computed on demand, that is, at the last moment when they are
required. As such, any pair M, N of a head element M and tail N is treated as a first-class
value, even if M and N have not been evaluated yet. Now, consider the partial stream value
0, Ω: asking for its head element returns 0, and asking for its tail does not return (it incurs
the non-terminating computation Ω). Plugging in 0, Ω for xs in (1.1) gives

head(0, Ω), head(tail(0, Ω)), tail(tail(0, Ω)) = (0, Ω)

This leads to a counter-example in call-by-value, where let z = tail(0, Ω) in 1 does not
terminate because tail(0, Ω) = Ω which never returns a value that can be bound to z, but

let z = tail(head(0, Ω), head(tail(0, Ω)), tail(tail(0, Ω))) in 1 =

let z = Ω, Ω in 1 =

1

In place of non-termination, plugging in (0, abort 2) for xs in (1.1) also serves as another
example using abort as a side-effect:

let z = tail(0, abort 2) in 1 =

let z = tail(head(0, abort 2), head(tail(0, abort 2)), tail(tail(0, abort 2))) in 1

where the left-hand side aborts with 2, but the right-hand side returns 1.
For a more practical example, consider these informally-defined operations on streams:

evens (x0, x1, x2, x3, . . .) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, . . .) = x1, x3, x5, . . .

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 P. Downen and Z.M. Ariola

merge (x0, x1, x2, . . .) (y0, y1, y2, . . .) = x0, y0, x1, y1, x2, y2, . . .

The evens function selects only the even elements of a stream, odds selects only the odd
elements of a stream, and merge interleaves two streams together by alternating between
them. It should be intuitive that selecting the even and odd elements of a stream and merging
them back together is the same as the original stream:

merge (evens xs) (odds xs) ?
= xs

We can prove this fact by conventional methods of coinduction, and this paper shows that
it also holds true using our notion of strong structural coinduction under call-by-name
evaluation whether or not xs contains side effects. However, strong structural coinduction
is not sound in a call-by-value language with effects, and as a consequence the intuitive
equality is incorrect. What goes wrong? The timing considerations of when the head or tail
of a stream are computed become important in call-by-value, and need to be explicated. So
if we rewrite evens, odds, and merge more formally as

evens xs = head xs, odds (tail xs)

odds xs = evens (tail xs)

merge xs ys = head xs, head ys, merge (tail xs) (tail ys)

then notice that merge applied to any two stream values xs and ys will always return a stream
starting with at least two comma-separated elements. So if we consider the counter-example
stream value 0, Ω with exactly one comma, notice that odds (0, Ω) = evens Ω which does
not terminate. Thus, merge (evens (0, Ω)) (odds (0, Ω)) doesn’t terminate, too, which is
immediately different from the value 0, Ω. As a second counter-example, consider the
stream value 0, 1, 2, Ω with three commas, we will return a value:

merge (evens (0, 1, 2, Ω)) (odds (0, 1, 2, Ω)) = 0, 1, Ω

but that value can be differentiated from the starting stream 0, 1, 2, Ω by asking for the
third element (2) via head(tail(tail xs)). Notice in each case, the stream returned by merge
always has an even number of comma-separated elements; if the starting xs has an odd
number of elements before Ω, the last one is forgotten. As before, using an abort in place
of Ω gives us alternative abort-based counter-examples. So plugging in the partial stream
value 0, abort 1 causes merge (evens (0, abort 1)) (odds (0, abort 1)) to immediately
abort with 1 instead of returning some value, and plugging in 0, 1, 2, abort 3 returns the
smaller partial stream 0, 1, abort 3.

The remainder of this paper will give a firm, unambiguous, computational foundation
for reasoning about corecursive programs using structural coinduction, including the subtle
timing implications when side effects are involved. As an example of an inductive type
we take the canonical definition of natural numbers, and for coinductive types we consider
streams, building on top of the abstract machine language from (Downen & Ariola, 2023),
which defines a calculus of primitive recursion and corecursion. Here, we extend that
calculus with an informal (“pen-and-paper”) proof technique for structural coinduction
as well as a formal logic for soundly deriving equalities between programs with control
effects. While we focus on examples involving natural numbers and streams, the reasoning

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

A Contextual Formalization of Structural Coinduction 5

techniques discussed here are applicable to other data and codata types. More specifically,
we provide the following contributions:

• Section 2 provides examples of applying informal (co)inductive reasoning to programs
which use (co)recursion to process (co)inductive types like numbers and streams.

• Section 3 introduces the differences between intensional and extensional equality
in the presence of (co)inductive types, and gives a sound, formal program logic for
reasoning (co)inductively about (co)recursive programs with control effects. It also
discusses how to soundly generalize the induction principle for call-by-value, and
soundly generalize the coinduction principle for call-by-name.

• Section 4 discusses the contrast in expressive power between the different (co)-
inductive principles: restricted and universally sound versus unrestricted and
conditionally sound. To do so, we derive a number of more familiar reasoning princi-
ples, such as strong induction on the numbers, bisimulation, and compositionality of
coinduction.

• Section 5 provides a proof that the program logic in Section 3 is sound: syntactic for-
mal proofs of equality imply semantic contextual equivalence, and more specifically,
0 is not equal to 1. This proof is modeled in terms of a logical relation based on the
notion of orthogonality between producers and consumers.

2 (Co)Inductive Reasoning About (Co)Recursive Programs

Skilled functional programmers are quite adept at using induction, both for writing their
programs and reasoning about them. For example, we can follow the inductive structure of
the usual natural number type,

inductive data Nat where
zero : Nat
succ : Nat→Nat

to inductively define the addition plus : Nat→Nat→Nat by the patterns of Nat like so:

plus zero y = y

plus (succ x) y = succ(plus x y)

Why is plus well-founded—meaning it never causes an infinite loop, and always returns a
valid result for any valid arguments? Because its first argument always gets smaller (Burstall,
1969); the x passed into the recursive call plus x y is a piece of the original argument succ x
from the call plus (succ x) y that triggered it (a property we can statically check in the
definition).

2.1 Structural induction

To reason about functions like plus that take Nats as arguments, programmers can also
reason by induction that follows the structure of Nat in the same way the code is written.
For example, the very definition of plus is first built on the identity of addition, that

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 P. Downen and Z.M. Ariola

plus zero y = y for any number y, so it holds by just calculation with no further verification
required. However, addition’s second identity law, plus x zero = x for any number x, cannot
be directly calculated in the same way. Instead, matching the inductive structure of plus
itself, we have to prove this property by cases on what that first argument x might be.

Example Theorem 2.1. For all x of type Nat, plus x zero = x.

Proof By induction on the structure of the value x

• x = zero. We have: plus zero zero = zero = x, by definition of plus.
• x = succ x′. Assume the inductive hypothesis plus x′ zero = x′. From there,

plus (succ x′) zero = succ(plus x′ zero) def. of plus

= succ x′ = x inductive hypothesis

■

Why is the proof of Example Theorem 2.1 well-founded—meaning it does not contain
any vicious circle in its reasoning? In the inductive hypothesis, we assume that Example
Theorem 2.1 is true for the specific x′ that is the predecessor of the x we started with. As
such, the cyclic reasoning always applies to a strictly smaller x, and the inductive hypothesis
can never lead to a vicious cycle no matter how we use it, so no further checks are necessary
to validate this proof. More formally, this inductive argument is justified because the set
of natural numbers of type Nat is a least fixed point (Pierce, 2002): it is the smallest set
containing zero and closed under succ.

2.2 Coinductive programs and proofs

The correspondence between inductive type, inductive program, and inductive proof, all line
up quite neatly in the functional paradigm, with each of them following exactly the same
structure. Since coinduction is the logical dual of induction, shouldn’t this correspondence
naturally extend to coinductive structures like infinite streams? One can define the type of
streams coinductively as the largest data type (i.e., greatest fixed point, or final coalgebra)

coinductive data Stream a where
Cons : a→ Stream a→ Stream a

built from the Cons constructor—appending an element to the front of another stream—
without any base case for the empty stream. From there, coinductive functions—like
always : a→ Stream a which returns the stream that always contains the same value of type
a, or iterate : (a→ a)→ a→ Stream a that builds an infinite stream from some original a
by repeatedly applying a given function to it—can be defined cyclically like so:

always x = Cons x (always x) iterate f x = Cons x (iterate f (f x))

Why are always and iterate well-founded? The answer here is not so clear; at first glance,
they look like infinite loops that never return a definite answer. However, one justification is
that both definitions are productive: they always return a Cons before recursing. In other

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

A Contextual Formalization of Structural Coinduction 7

words, the self-references of always and iterate are both found inside a Cons (that is, in
the context Cons first . . .). If we assume lazy evaluation of Cons this can be enough to
prevent infinite loops for well-behaved observers of the stream; trying to access the “last”
element of an infinite stream is not a well-behaved observer. While this justification may not
be as self-evident as the structural induction of functions like plus, at least it is a property
that can be syntactically checked in the specific definitions of always and iterate.

Example Theorem 2.2. For all values x, iterate (λy.y) x = always x.

Proof Assume the coinductive hypothesis

iterate (λy.y) x = always x .

From there,

iterate (λy.y) x = Cons x (iterate (λy.y) ((λy.y) x)) def. of iterate

= Cons x (iterate (λy.y) x) β -reduction

= Cons x (always x) coinductive hypothesis

= always x def. of always

■

Why is the proof of Example Theorem 2.2 well-founded? Compared to the inductive
proof, skepticism of this form of coinduction is more warranted. After all, the proof begins
by immediately assuming the very fact it is trying to prove, with no stipulation! What’s to
stop us from this much simpler, but hopelessly vicious, “coinductive” proof of Example
Theorem 2.2?

Bad Proof Assume the coinductive hypothesis iterate (λy.y) x = always x. From the
coinductive hypothesis, it follows that iterate (λy.y) x = always x, as required. �

This bad proof is obviously invalid, even though it “proved” the goal through a trivial
sequence of apparently valid steps (introducing a hypothesis and using it). What’s the
difference between the bad proof above and the good proof of Example Theorem 2.2? The
good proof only tried to use the coinductive hypothesis “inside” a Cons, whereas the bad
proof just nakedly used the coinductive hypothesis outside of any Cons. Thus, somehow a
coinductive proof of this form must be very careful that certain hypotheses can only be used
in certain contexts, whatever that means, even if they are a perfect match for the current
goal.

The concern over even a trivial theorem like Example Theorem 2.2 shows the potential
breakdown of the correspondence of coinductive types, coinductive programs, and coinduc-
tive proofs; at each step, our certainty in the basic structures wanes. Even if the intuition
for distinguishing “good” from “bad” programs may be fraught, a formal system like a
proof assistant might be up to the task of regulating context-sensitive uses of the coinductive
hypothesis to verify a proof. But a human that needs to understand a proof with informal
reasoning, which has no perfect overseer like a mental proof assistant, can quickly become
overwhelmed as the theorems and proofs grow ever larger. No wonder why coinduction fills
us with such trepidation.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 P. Downen and Z.M. Ariola

Instead, what is needed is a style of coinductive reasoning which is not burdened by
precariously implicit context-sensitive rules of validity. Or put another way, the context-
sensitivity imposed by coinduction should be made an explicit part of the coinductive
hypothesis, so that it may be used freely, and fearlessly, in any place that it fits.

The first step is to shift our view away from coinductively-defined data types, to co-
inductively-defined codata types (Hagino, 1987). Rather than constructors, codata types
define the basic observations, or projections, allowed on values of the type. For infinite
streams, these are the head and tail projections that access the first element and the remainder
of the stream, respectively, as described in the following declaration:

coinductive codata Stream a where
head : Stream a→ a

tail : Stream a→ Stream a

While abstractly these may be two views of the same isomorphic structure, they give us a
different way to understand coinduction and the operational meaning of programs. With
codata types, we define programs by matching on the structure of their projections, dual to
the way function programmers define functions like plus by matching on the structure of
constructors of data types. For example, the always and iterate functions can be rewritten
in terms of copatterns (Abel et al., 2013) like so:

head(always x) = x
tail(always x) = always x

head(iterate f x) = x
tail(iterate f x) = iterate f (f x)

Here, head and tail are seen as projection functions, and the streams returned by always x
and iterate f x are defined by the two lines, describing what their head and tail is.

But copatterns alone aren’t enough. We also need to label our context, so that the
language itself is expressive enough to regulate how to control the use of coinduction to
certain contexts. To do so, we have to move outside of pure functional programming, based
on intuitionistic logic, to a more language based on classical logic with labels and jumps.
One such language (Downen et al., 2015) is modeled on the sequent calculus (Curien &
Herbelin, 2000), which provides a syntax for writing contextual observations as first-class
objects. In this sequent style, a Greek letter α , β , . . . , stands for an observer of values, and
the command ⟨x||α⟩ says that the observer α is applied to x, or symmetrically, that the value
x is returned to α .

Rather than viewing the Stream operations head and tail as functions, as we did above, we
could instead view them as primitive ways to build new observations. So if α is expecting to
observe a value of type a, then the composition head α observes a value of type Stream a by
taking its first element and passing it to α . Similarly, if β is expecting to observe a value of
type Stream a, then tail β observes a value of type Stream a by discarding its first element
and passing the rest to β . Putting them together, the observation tail(head β) should be
read as first observing the tail of a stream and then applying the head to that result so that
β receives the second element of the stream. The two different views—head and tail as
functions versus observations—are always equal to one another:

⟨head s||α⟩= ⟨s||head α⟩ ⟨tail s||β ⟩= ⟨s||tail β ⟩ (2.1)

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

A Contextual Formalization of Structural Coinduction 9

In this observer-centric style, we can further refine always and iterate by labeling the full
context in which they are observed in a command, ⟨always x||α⟩ and ⟨iterate f x||α⟩. The
two definitions then follow by matching on the structure of the observer α , which must be
built by either a head or tail projection.

⟨always x||head β ⟩= ⟨x||β ⟩
⟨always x||tail α

′⟩ = ⟨always x||α ′⟩
⟨iterate f x||head β ⟩= ⟨x||β ⟩
⟨iterate f x||tail α

′⟩ = ⟨iterate f (f x)||α ′⟩

Now, the fact that these corecursive functions are well-founded follows the same basic
reasoning as the recursive function plus: all instances of self-reference are invoked with a
strictly smaller observer. In particular, the observer α ′ in the corecursive call ⟨always x||α ′⟩
is a piece of the original observer tail α ′ from the command ⟨always x||tail α ′⟩. Similarly,
the observer of the corecursive call ⟨iterate f (f x)||α ′⟩ came from a piece of the observer
in the proceeding command ⟨iterate f x||tail α ′⟩. So copattern-matching over observers
restores the symmetry between recursive functions (which consume inductively-defined
arguments) and corecursive functions (which produce coinductively-defined results).

2.3 Structural coinduction

What about proofs involving these programs? Let’s try to prove the analogous version of
Example Theorem 2.2 but in the context of an observer labeled α .

Example Theorem 2.3. For all values x of type a and all observers α of type Stream a,
⟨iterate (λy.y) x||α⟩= ⟨always x||α⟩.

Proof By coinduction on the stream received by α , i.e., by induction on the structure of α :

• α = head β . We have: ⟨iterate (λy.y) x||head β ⟩= ⟨x||β ⟩= ⟨always x||head β ⟩ by
definition of iterate and always.

• α = tail α ′. Assume the coinductive hypothesis

⟨iterate (λy.y) x||α ′⟩= ⟨always x||α ′⟩.

From there,

⟨iterate (λy.y) x||tail α
′⟩= ⟨iterate (λy.y) ((λy.y) x)||α ′⟩ def. of iterate

= ⟨iterate (λy.y) x||α ′⟩ β -reduction

= ⟨always x||α ′⟩ coinductive hypothesis

= ⟨always x||tail α
′⟩ def. of always

■

Notice how the proof of Example Theorem 2.3 above follows much closer the overall
shape of the inductive proof of Example Theorem 2.1. First, the coinductive hypothesis is
only introduced in the step for α = tail α ′; as with induction, the coinductive hypothesis is
not available to show the base case of α = head β . Furthermore, the coinductive hypoth-
esis ⟨iterate (λy.y) x||α ′⟩= ⟨always x||α ′⟩ carries enough information to fully dictate the
valid contexts in which it can be used. In particular, we can only assume the goal (that

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 P. Downen and Z.M. Ariola

iterate (λy.y) x is equal to always x) when observed by α ′, the specific ancestor to the
original observer α = tail α ′. There is no way to use the coinductive hypothesis to equate
these two streams when seen by any other observer. In particular, the coinductive hypothesis
doesn’t even apply to the original goal ⟨iterate (λy.y) x||α⟩= ⟨always x||α⟩, like we did in
the bad coinductive proof, because α ̸= α ′. As such, even though the proof above is infor-
mal, there is no longer any ambiguity about its validity, so no further checks are necessary
to avoid vicious cycles. Since it follows the structure of the context, we call it structural
coinduction.

But have we proved the same result; are Example Theorems 2.2 and 2.3 logically the
same? In order to compare the two, we can employ the notion of observational equivalence,
which says that two terms are equal exactly when no observer can tell them apart. Spelled
out in terms of labeled contexts, observational equivalence is the principle that, for any
terms M and N (without a free reference to α):

M = N if and only if, for all α, ⟨M||α⟩= ⟨N||α⟩

Applying this principle to Example Theorems 2.2 and 2.3, we know for all values x,

iterate (λy.y) x = always x if and only if, for all α, ⟨iterate (λy.y) x||α⟩= ⟨always x||α⟩

So the two theorems state the same equality, up to observational equivalence.
Note that we can derive the result of applying head and tail as functions to iterate

via observational equivalence. Starting with a generic α , we can convert these function
applications to observations on top of α to match the definition of iterate as follows:

⟨head(iterate f x)||α⟩=by 2.1 ⟨iterate f x||head α⟩= ⟨x||α⟩

⟨tail(iterate f x)||α⟩=by 2.1 ⟨iterate f x||tail α⟩ = ⟨iterate f (f x)||α⟩

and thus by observational equivalence, we have

head(iterate f x) = x (2.2)

tail(iterate f x) = iterate f (f x) (2.3)

Notice that these equations derived by observational equivalence are exactly the same
as the purely functional, copattern-matching definition of iterate that we gave above. In
other words, the two copattern-based definitions—one in a functional style, and the other
matching on the structure of a labeled observer—are equivalent.

Let’s continue with one more example of structural coinduction. Here is a definition for
mapping a function over all elements in an infinite stream, where we use head and tail as
both part of the main coinductive observer on the left-hand side of the equations, as well as
a function to be applied to the given stream we are mapping over on the right-hand sides.

⟨map f s||head β ⟩= ⟨ f (head s)||β ⟩
⟨map f s||tail α

′⟩ = ⟨map f (tail s)||α ′⟩

Notice how, in the following proof, we can make use of observational equivalence in order
to reason about head and tail applied as a function to iterate.

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

A Contextual Formalization of Structural Coinduction 11

Example Theorem 2.4. For all functions f of type A→ B, values x of type A, and observers
α of type Stream A, ⟨map f (iterate f x)||α⟩= ⟨iterate f (f x)||α⟩.

Proof By structural coinduction on the observer α (leaving the value x generic):

• α = head β .

⟨map f (iterate f x)||head β ⟩= ⟨ f (head(iterate f x))||β ⟩ def. of map

= ⟨ f x||β ⟩ by (2.2)

= ⟨iterate f (f x)||head β ⟩ def. of iterate

• α = tail α ′. Assume the coinductive hypothesis

⟨map f (iterate f x)||α ′⟩= ⟨iterate f (f x)||α ′⟩

for all values x of type A.

⟨map f (iterate f x)||tail α
′⟩= ⟨map f (tail(iterate f x))||α ′⟩ def. of map

= ⟨map f (iterate f (f x))||α ′⟩ by (2.3)

= ⟨iterate f (f (f x))||α ′⟩ coinductive hypothesis

with (f x) for x

= ⟨iterate f (f x)||tail α
′⟩ def. of iterate

■

2.4 Mutual coinduction

Given a stream s, we can define mutually corecursive functions taking the elements of s at
even and odd positions as so:

⟨evens s||head β ⟩= ⟨s||head β ⟩
⟨evens s||tail α

′⟩= ⟨odds (tail s)||α ′⟩
⟨odds s||head β ⟩= ⟨s||tail(head β)⟩
⟨odds s||tail α

′⟩= ⟨evens (tail s)||tail α
′⟩

By observational equivalence and the definitions of odds and evens, we have:

odds s = evens (tail s) (2.4)

tail(evens s)) = odds (tail s) (2.5)

Merging two streams is defined as:

⟨merge s1 s2||head β ⟩= ⟨s1||head β ⟩
⟨merge s1 s2||tail(head β)⟩= ⟨s2||head β ⟩
⟨merge s1 s2||tail(tail α

′)⟩= ⟨merge (tail s1) (tail s2)||α ′⟩

As an application of observational equivalence, we have

tail(tail(merge s1 s2)) = merge(tail s1)(tail s2) (2.6)

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 P. Downen and Z.M. Ariola

Example Theorem 2.5. For all values s1 and s2 and observers α of type Stream A,
⟨evens (merge s1 s2)||α⟩= ⟨s1||α⟩ and ⟨odds (merge s1 s2)||α⟩= ⟨s2||α⟩.

Proof Both equalities can be proved at the same time by structural coinduction on α

(leaving s1 and s2 generic):

• α = head β .

⟨evens (merge s1 s2)||head β ⟩= ⟨merge s1 s2||head β ⟩ def. of evens

= ⟨s1||head β ⟩ def. of merge

⟨odds (merge s1 s2)||head β ⟩= ⟨merge s1 s2||tail(head β)⟩ def. of odds

= ⟨s2||head β ⟩ def. of merge

• α = tail α ′. Assume the coinductive hypotheses

⟨evens (merge s1 s2)||α ′⟩= ⟨s1||α ′⟩ (2.7)

⟨odds (merge s1 s2)||α ′⟩= ⟨s2||α ′⟩ (2.8)

for all values s1 and s2 of type Stream A.

⟨evens (merge s1 s2)||tail α
′⟩

= ⟨odds (tail(merge s1 s2))||α ′⟩ def. of evens

= ⟨evens (tail(tail(merge s1 s2)))||α ′⟩ by (2.4)

= ⟨evens (merge (tail s1) (tail s2))||α ′⟩ by (2.6)

= ⟨tail s1||α ′⟩ coinductive hypothesis (2.7)

= ⟨s1||tail α
′⟩ tail observation (2.1)

⟨odds (merge s1 s2)||tail α
′⟩

= ⟨evens (tail(merge s1 s2))||tail α
′⟩ def. of odds

= ⟨odds (tail(tail(merge s1 s2)))||α ′⟩ def. of evens

= ⟨odds (merge (tail s1) (tail s2))||α ′⟩ by (2.6)

= ⟨tail s2||α ′⟩ coinductive hypothesis (2.8)

= ⟨s2||tail α
′⟩ tail observation (2.1)

■

2.5 Strong coinduction

Let us try to prove that the property ⟨merge (evens s) (odds s)||α⟩= ⟨s||α⟩ holds for all
values s and observers α of type Stream A. We will show the complete proof shortly. For
now, we will focus on the problematic step. We do a proof by conduction on α . We can easily
prove the property if α = head(β). If α = tail(β) then we proceed by case analysis on β . If
β = head(β ′) the proof goes through without any issues. If β = tail(β ′) we need to prove
⟨merge (evens s) (odds s)||tail(tail(β ′))⟩= ⟨s||tail(tail(β ′))⟩ and note that the coinductive

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

A Contextual Formalization of Structural Coinduction 13

hypothesis is:

⟨merge (evens s) (odds s)||β ⟩= ⟨s||β ⟩ (2.9)

for a generic s. We then have:

⟨merge (evens s) (odds s)||tail(tail β
′)⟩

= ⟨merge (tail(evens s)) (tail(odds s))||β ′⟩ def. of merge

= ⟨merge (tail(evens s)) (tail(evens (tail s)))||β ′⟩ by (2.4)

= ⟨merge (odds (tail s)) (odds (tail(tail s)))||β ′⟩ by (2.5)

= ⟨merge (evens (tail(tail s))) (odds (tail(tail s)))||β ′⟩ by (2.4)

At this point, we would like to apply the coinductive hypothesis 2.9, but it is fixed to β and
does not hold on β ′. What we need instead is a strong version of coinduction. This is not
surprising since the same issue comes up with induction. If α = tail(tail β ′), we assume the
property holds not just for the immediate subcontext tail β ′, but also for β ′, too. We use
this strengthened reasoning principle to break the following coinductive proof into more
specific sub-cases.

Example Theorem 2.6. For all values s and observers α of type Stream A,
⟨merge (evens s) (odds s)||α⟩= ⟨s||α⟩

Proof By strong coinduction on the structure of the observer α (where we leave the stream
value s generic):

• α = head β .

⟨merge (evens s) (odds s)||head β ⟩= ⟨evens s||head β ⟩ def. of merge

= ⟨s||head β ⟩ def. of evens

• α = tail(head β ′).

⟨merge (evens s) (odds s)||tail(head β
′)⟩= ⟨odds s||head β

′⟩ def. of merge

= ⟨s||tail(head β
′)⟩ def. of odds

• β = tail(tail β ′). Assume the coinductive hypothesis (CH)

⟨merge (evens s) (odds s)||β ′⟩= ⟨s||β ′⟩ (2.10)

for all values s of type Stream A.

⟨merge (evens s) (odds s)||tail(tail β
′)⟩

= ⟨merge (tail(evens s)) (tail(odds s))||β ′⟩ def. of merge

= ⟨merge (tail(evens s)) (tail(evens (tail s)))||β ′⟩ by (2.4)

= ⟨merge (odds (tail s)) (odds (tail(tail s)))||β ′⟩ by (2.5)

= ⟨merge (evens (tail(tail s))) (odds (tail(tail s)))||β ′⟩ by (2.4)

= ⟨tail(tail s)||β ′⟩ CH (2.10) with (tail(tail s)) for s

= ⟨s||tail(tail β
′)⟩ by tail observation (2.1)

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14 P. Downen and Z.M. Ariola

Commands (c), general terms (v), and general coterms (e):

Command ∋ c ::= ⟨v||e⟩ Term∋ v, w ::= µα.c | R CoTerm∋ e, f ::= µ̃x.c | L

Type-specific introductions of values on the right (R) and covalues on the left (L):

Right ∋ R ::= λx.v | zero | succ V | corec{head α→ e | tail β → γ. f}with V

Left ∋ L ::=V · E | rec{zero→ v | succ x→ y.w}with E | head E | tail E

Call-by-name values (V) and evaluation contexts (E):

Value∋V ::= v CoValue∋ E ::= α | L

Call-by-value values (V) and evaluation contexts (E):

Value∋V ::= x | R CoValue∋ E ::= e

Operational rules:

(µ) ⟨µα.c||E⟩ 7→ c[E/α]

(µ̃) ⟨V ||µ̃x.c⟩ 7→ c[V/x]

(β→) ⟨λx.v||V · E⟩ 7→ ⟨v[V/x]||E⟩

(βzero)

〈
zero

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ v
| succ x→ y.w}

with E

〉
7→ ⟨v||E⟩

(βsucc)

〈
succ V

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ v
| succ x→ y.w}

with E

〉
7→

〈
µα.

〈
V

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ v
| succ x→ y.w}

with α

〉∣∣∣∣∣∣
∣∣∣∣∣∣µ̃y.⟨w[V/x]||E⟩

〉

(βhead)

〈 corec{ head α→ e
| tail β → γ. f}

with V

∣∣∣∣∣∣
∣∣∣∣∣∣head E

〉
7→ ⟨V ||e[E/α]⟩

(βtail)

〈 corec{ head α→ e
| tail β → γ. f}

with V

∣∣∣∣∣∣
∣∣∣∣∣∣tail E

〉
7→

〈
µγ.⟨V || f [E/β]⟩

∣∣∣∣∣∣
∣∣∣∣∣∣µ̃x.

〈 corec{ head α→ e
| tail β → γ. f}

with x

∣∣∣∣∣∣
∣∣∣∣∣∣E

〉〉

Fig. 1: Syntax and semantics of the uniform, (co)recursive abstract machine.

■

3 Intensional Versus Extensional Equality With (Co)Inductive Types

Before we lay out our formal rules of (co)inductive reasoning about the behavior of programs,
we need to specify the language in which those programs are written. For the sake of
illustration, we will use the abstract machine language with both recursion and corecursion
defined in (Downen & Ariola, 2023) — which is an extension of (Curien & Herbelin, 2000)
with primitive types for inductive numbers and coinductive streams, with full primitive
(co)recursion, not just (co)iteration — because the symmetry of its syntax lets us express
the duality of induction and coinduction most clearly. However, note that the important (co)-
inductive reasoning principles below can be applied to other languages as well—provided
the language can label points in the flow of control.

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

A Contextual Formalization of Structural Coinduction 15

Types (A), typing environments (Γ), and typing judgements (J)

Type∋ A, B ::= A→ B |Nat | Stream A

Env∋ Γ ::= • | Γ, x : A | Γ, α ÷ A (all x and α in Γ are distinct)
Typing∋ τ ::= c | v : A | e÷ A

Judge∋ J ::= Γ ⊢ τ (FV (τ)⊆ AV (Γ))

Γ ⊢ v : A Γ ⊢ e÷ A
Γ ⊢ ⟨v||e⟩ Cut

Γ, x : A, Γ′ ⊢ x : A
VarR

Γ, α ÷ A, Γ′ ⊢ α ÷ A
VarL

Γ, α ÷ A ⊢ c
Γ ⊢ µα.c : A ActR

Γ, x : A ⊢ c
Γ ⊢ µ̃x.c÷ A ActL

Γ, x : A ⊢ v : B
Γ ⊢ λx.v : A→ B

→R
Γ ⊢V : A Γ ⊢ E ÷ B

Γ ⊢V · E ÷ A→ B →L

Γ ⊢ zero : Nat
NatRzero

Γ ⊢V : Nat
Γ ⊢ succ V : Nat

NatRsucc

Γ ⊢ v : A Γ, x : Nat, y : A ⊢w : A Γ ⊢ E ÷ A
Γ ⊢ rec{zero→ v | succ x→ y.w}with E ÷Nat

NatL

Γ ⊢ E ÷ A
Γ ⊢ head E ÷ Stream A

StreamLhead
Γ ⊢ E ÷ Stream A

Γ ⊢ tail E ÷ Stream A
StreamLtail

Γ, α ÷ A ⊢ e÷ B Γ, β ÷ Stream A, γ ÷ B ⊢ f ÷ B Γ ⊢V : B
Γ ⊢ corec{head α→ e | tail β → γ. f}with V : Stream A

StreamR

Fig. 2: Type system of the uniform, (co)recursive abstract machine.

Encoding λ -terms in the abstract machine language

v w := µα.⟨v||w · α⟩
head v := µα.⟨v||head α⟩

tail v := µα.⟨v||tail α⟩
let x = v in w := µα.⟨v||µ̃x.⟨w||α⟩⟩

rec v as{. . . } := µα.⟨v||rec{. . . }with α⟩

Evaluating computations in constructors and destructors:

v · e := µ̃x.⟨v||µ̃y.⟨µα.⟨x||y · α⟩||e⟩⟩ (v /∈ Value or e /∈CoValue)

succ v := µα.⟨v||µ̃x.⟨succ x||α⟩⟩ (v /∈ Value)

rec{. . . }with e := µ̃x.⟨µα.⟨x||rec{. . . }with α⟩||e⟩ (e /∈CoValue)

corec{. . . }with v := µα.⟨v||µ̃x.⟨corec{. . . }with x||α⟩⟩ (v /∈ Value)

Fig. 3: Syntactic sugar in the abstract machine language.

The syntax and operational semantics of our (co)recursive abstract machine language
are given in Fig. 1. Computation occurs as a reduction of machine commands (c), which
are made up of a term (v) interacting with a coterm (e). Intuitively, terms correspond to
the expressions of a λ -calculus-like language and coterms correspond to continuations (or

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 P. Downen and Z.M. Ariola

evaluation contexts) that arise during computation. Of note, the machine is uniform in the
sense that it can express either call-by-value or call-by-name evaluation with the same form
of operational rules. The only difference between the two evaluation strategies is in the
definitions of values (V), which denote the terms that may be bound to and substituted
for variables, and covalues (E) which correspond to evaluation contexts. For example, the
right-hand sides of the βsucc and βtail rules seem to have two possible reductions via µ or µ̃ ,
but the definition of V and E will only permit one of them. In call-by-name, a µ̃-abstraction
is never a covalue, so the next step will be a µ̃-reduction that computes the coterm side first;
for βsucc calculating the updated covalue for the with-clause of recursion, and for βtail this
means immediately unrolling the corecursive loop again. In call-by-value, a µ-abstraction
is never a value, so the next step will be a µ-reduction that computes the term side first; for
βsucc this means immediately unrolling the recursive loop again, and for βtail this means
calculating the updated value for the with-clause of corecursion.

The type system is given in Fig. 2. We use FV to denote the set of free variables an
expression refers to, e.g., FV (v : A) for the free variables in a term v, FV (e÷ A) for the free
variables in a co-term e, and FV (c) for the free variables in a command. AV (Γ) denotes the
set of variables that have been assigned a type by Γ, e.g., AV (xi : Ai, . . . , α j ÷ B j, . . .) =

{xi, . . . , α j, . . . }. Besides the ordinary function type A→ B, the (co)recursive abstract
machine includes the types Nat of natural numbers, serving as a canonical example of
an inductive type, and Stream A of infinite streams containing A elements, serving as a
canonical example of a coinductive type. Note that in the style of the sequent calculus
(Curien & Herbelin, 2000; Downen & Ariola, 2018), the constructs of these types are
divided between the term and coterm sides of a command. For example, we include the
usual abstraction λx.v from the λ -calculus, but instead of application we build a call stack
V · E which accepts a function of type A→ B when V produces an A and E consumes a
B. Similarly for numbers, we include the constructors zero and succ for building values of
Nat, which are consumed by a rec continuation corresponding to the System T’s recursor
(Gödel, 1980). Symmetrically for streams, we instead have the destructors head and tail
for building covalues of Stream A, which project out of a corec value that corecursively
builds a stream, on-demand, one piece at a time. To check the types of these (co)terms and
validity of commands, we use a typing environment Γ that describes both the variables x
and covariables α in scope that can be referenced, along with their types, written x : A and
α ÷ A, respectively. These variables are considered free in the underlying (co)term and
command expressions, and they are assigned a type by the environment Γ. Notice that we
make the simplifying assumption throughout this paper that environments Γ never assign
types to the same (co)variable x or α more than once (i.e., every x or α bound by a Γ are
distinct), ruling out cases like x : Nat, y : Nat, x : Nat→Nat.

Since this abstract machine language doesn’t have an application like the λ -calculus, how
can it express basic compositions like f (g(x))? These sorts of terms can be encoded thanks
to the µ- and µ̃-abstractions in the machine language. For example, f (g(x)) can be written

µα.⟨µβ .⟨g||x · β ⟩||µ̃z.⟨ f ||z · α⟩⟩

where the outer µ assigns the name α to the surrounding calling context of f , and µ̃ gives
a name to the computation g(x) and invokes f with that name and the return point α .
More generally, we can use the syntactic sugar given in Fig. 3 as macro-definitions for

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

A Contextual Formalization of Structural Coinduction 17

all the usual expressions of λ -calculi, including applications (v w), using head and tail
directly as projections, let-bindings, and the recursor as a term. Notice how each of these
macro-definitions uses µ to name the current evaluation context α , in order to build a larger
continuation. But what happens if we want to use a non-value term v in a context like v · e
or succ v which is not allowed by the syntax of Fig. 1? Again, we can use µ and µ̃ to give
a name to non-(co)value expressions and follow the syntactic restrictions of the abstract
machine. These additional macro-expansions are also shown in Fig. 3.

Example 3.1. As pointed out above, the syntactic sugar might help in better grasping
the (co)recursors; we present next how to define the plus and iterate functions seen in
the previous section. The reader might consult (Downen & Ariola, 2023) for a detailed
explanation of their use.

The plus function is defined as

λx.λ z.µα.⟨x||rec{zero→ z | succ _→ y. succ y}with α⟩

Running ⟨plus 2 2||β ⟩ (with 1 = succ zero and 2 = succ 1) in call-by-value becomes:

⟨plus||2 · 2 · β ⟩ 7→→ (β→, µ)

⟨2||rec{zero→ 2 | succ _→ y. succ y}with β ⟩ 7→ (βsucc)

⟨µα.⟨1||rec{zero→ 2 | succ _→ y. succ y}with α⟩||µ̃y.⟨succ y||β ⟩⟩ 7→ (µ)

⟨1||rec{zero→ 2 | succ _→ y. succ y}with µ̃y.⟨succ y||β ⟩⟩ 7→ (βsucc)

⟨µα.⟨zero||rec{zero→ 2 | succ _→ y. succ y}with α⟩||µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩⟩ 7→ (µ)

⟨zero||rec{zero→ 2 | succ _→ y. succ y}with µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩⟩ 7→ (βzero)

⟨2||µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩⟩ 7→→ (µ̃)

⟨succ(succ 2)||β ⟩

Notice how at each recursive step the continuation gets updated: first β , then µ̃y.⟨succ y||β ⟩,
and finally µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩.

The iterate function is expressed as

λ f .λx.µα.⟨corec{head α→ α | tail β → γ.µ̃x.⟨ f ||x · γ⟩}with x||α⟩

If add2 stands for the function λx.µα.⟨succ succ x||α⟩ then the even natural numbers can be
represented as µα.⟨iterate||add2 · zero ·α⟩, and the third element of this stream is computed
in call-by-value as follows (where iter2 = {head α→ α | tail β → γ.µ̃x.⟨add2||x · γ⟩}):

⟨µα.⟨iterate||add2 · zero ·α⟩||tail(tail(head(α)))⟩ 7→→ (µ, β→)

⟨corec{head α→ α | tail β → γ.µ̃x.⟨add2||x · γ⟩}with zero||tail(tail(head(α)))⟩ 7→ (βtail)

⟨µγ.⟨zero||µ̃x.⟨add2||x · γ⟩⟩||µ̃x.⟨corec iter2 with x||tail(head(α))⟩⟩ 7→ (µ)

⟨zero||µ̃x.⟨add2||x · µ̃x′.⟨corec iter2 with x′||tail(head(α))⟩⟩⟩ 7→→
⟨corec iter2 with 2||tail(head(α))⟩ 7→ (βtail)

⟨µγ.⟨2||µ̃x.⟨add2||x · γ⟩⟩||µ̃x.⟨corec iter2 with x||head α⟩⟩ 7→ (µ)

⟨2||µ̃x.⟨add2||x · µ̃x.′⟨corec iter2 with x′||head α⟩⟩⟩ 7→→
⟨corec iter2 with 4||head(α)⟩ 7→ (βhead)

⟨4||α⟩

Notice how at each co-recursive step it is not the continuation that gets updated but the
internal seed: zero, 2, and 4.

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18 P. Downen and Z.M. Ariola

Equational properties (Φ), environments (Γ), hypotheses (∆), and judgements (J):

Prop∋Φ ::= c = c′ | v = v′ : A | e = e′ ÷ A

Env∋ Γ ::= • | Γ, x : A | Γ, α ÷ A (all x and α assigned in Γ are distinct)
Hyp∋ ∆ ::= • | ∆, Φ

Judge∋ J ::= Γ | ∆ ⊢Φ (FV (∆)∪ FV (Φ)⊆ AV (Γ))

Equivalence:

Γ | ∆ ⊢ c = c′

Γ | ∆ ⊢ c′ = c
Symm

Γ | ∆ ⊢ c = c′ Γ | ∆ ⊢ c′ = c′′

Γ | ∆ ⊢ c = c′′
Trans

Operational equality:

Γ | ∆ ⊢ c = c′ c′ 7→ c′′

Γ | ∆ ⊢ c = c′′
Red

Congruence (mirror the typing rules from Fig. 2):

Γ | ∆ ⊢ v = v′ : A Γ | ∆ ⊢ e = e′ ÷ A

Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩
Cut

Γ, x : A | ∆ ⊢ x = x : A
VarR

Γ, α ÷ A | ∆ ⊢ α = α ÷ A
VarL

Γ, α ÷ A | ∆ ⊢ c = c′

Γ | ∆ ⊢ µα.c = µα.c′ : A
ActR

Γ, x : A | ∆ ⊢ c = c′

Γ | ∆ ⊢ µ̃x.c = µ̃x.c′ ÷ A
ActL

Γ, x : A | ∆ ⊢ v = v′ : B

Γ | ∆ ⊢ λx.v = λx.v′ : A→ B
→R

Γ | ∆ ⊢V =V ′ : A Γ | ∆ ⊢ E = E ′ ÷ B

Γ | ∆ ⊢V · E =V ′ · E ′ ÷ A→ B
→L

Γ | ∆ ⊢ zero = zero : Nat
NatRzero

Γ | ∆ ⊢V =V ′ : Nat

Γ | ∆ ⊢ succ V = succ V ′ : Nat
NatRsucc

Γ | ∆ ⊢ v = v′ : A Γ, x : Nat, y : A | ∆ ⊢w = w′ : A Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢ rec{zero→ v | succ x→ y.w}with E = rec{zero→ v′ | succ x→ y.w′}with E ′ ÷Nat
NatL

Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢ head E = head E ′ ÷ Stream A
StreamLhead

Γ | ∆ ⊢ E = E ′ ÷ Stream A

Γ | ∆ ⊢ tail E = tail E ′ ÷ Stream A
StreamLtail

Γ, α ÷ A | ∆ ⊢ e = e′ ÷ B Γ, β ÷ Stream A, γ ÷ B | ∆ ⊢ f = f ′ ÷ B Γ | ∆ ⊢V =V ′ : B

Γ | ∆ ⊢
corec{head α→ e

| tail β → γ. f}with V
=

corec{head α→ e′

| tail β → γ. f ′}with V ′
: Stream A

StreamR

Fig. 4: Intensional equational theory of computation.

3.1 Intensional equational theory

The machine’s operational semantics in Fig. 1 only allows us to apply the reduction steps
(c 7→ c′) to the top-level of the given command, and only ever forward: the multi-step
reduction c1 7→→ cn combines several individual steps together, c1 7→ c2 7→ c3 7→ . . . 7→ cn,
but requires that all the arrows are pointed in the same direction. These two restrictions make

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

A Contextual Formalization of Structural Coinduction 19

the operational semantics deterministic: it always marches forward in one path because
there is never more than one choice of step to take.

In contrast, an equational theory—for reasoning about when two programs, or fragments
of programs, have the same observable result—gives us more freedom to relate programs
that appear to have the same behavior. One of the key allowances is that the reduction
steps can be applied both forwards and backwards; i.e., equality is symmetric. The other
is that we can apply the reduction steps in any context (no matter how deep within the
given expression); i.e., equality is congruent. Such an equational theory for the (co)recursive
abstract machine is given in Fig. 41. All judgments have the form Γ | ∆ ⊢Φ, where Γ

contains the (unordered) type assignments to free (co)variables, ∆ contains the (unordered)
hypothesized properties involving those free (co)variables, and Φ is the property being
proved. The main properties are the base equalities for commands (c = c′) and (co)terms of
some type A (v = v′ : A and e = e′ ÷ A). For now, the hypotheses ∆ do not yet interact with
the inference rules — they will soon play a crucial role in Section 3.2 — so as shorthand,
we will write Γ ⊢Φ instead of Γ | • ⊢Φ in examples.

This equational theory is the smallest equivalence relation that includes the operational
semantics, letting us reason about which programs are equal up to execution. As a result, it
is more discriminating than a purely external observer, and can distinguish between two
definitions with the same input-output behavior depending on the way they are defined. For
this reason, this kind of equational theory is sometimes called intensional (because it lacks
extensionality or any non-trivial mathematical reasoning) or definitional (because it is based
on the definition of code).

For example, it is easy to show by reduction that ⟨plus||zero ·x · α⟩ 7→→ ⟨x||α⟩ because plus
was defined by recursion on its first argument (see Section 2), and therefore we have the
following equality:

α ÷Nat, x : Nat ⊢ ⟨plus||zero ·x · α⟩= ⟨x||α⟩

However, ⟨plus||x · zero ·α⟩ doesn’t reduce at all, even though it is nonetheless equivalent to
x in any context. Thus,

α ÷Nat, x : Nat ⊢ ⟨plus||x · zero ·α⟩= ⟨x||α⟩

is not provable. Likewise, iterate (λx.x) x is observationally equivalent to the stream
always x, but the intensional theory considers them different because their definitions are
too different.

The bulk of the rules are dedicated to congruence: the allowance that equalities may
be applied in any context. Though there are many different congruence rules to spell out
(accounting for the many different contexts that may appear), they thankfully reflect exactly
the same structure as the type system. Each typing rule from Fig. 2 for checking a single
command, term, or coterm has a corresponding rule of the same name in Fig. 4 which just
compares two such expressions hereditarily.

Note that reflexivity of well-typed commands, terms, and coterms is not included as an
inference rule in Fig. 4 because it holds by performing an induction on the typing derivation,
and applying the appropriate congruence rules. Still, in the following, we will sometimes

1 FV (Φ) stands for the free variables in a proposition Φ, and FV (∆, Φ) is defined as FV (∆)∪ FV (Φ) with
FV (•) = /0

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20 P. Downen and Z.M. Ariola

refer to these reflexivity rules:

Γ ⊢ c.... Refl
Γ | ∆ ⊢ c = c

Γ ⊢ v : A.... ReflR
Γ | ∆ ⊢ v = v : A

Γ ⊢ e÷ A.... ReflL
Γ | ∆ ⊢ e = e÷ A

where the vertical dots indicate the rule is derivable.
The Red rule states that any reduction step of the operational semantics can be added

onto another equality. Together with reflexivity, we can say that any well-typed command c
is equal to its next step, c 7→ c′:

Γ ⊢ c.... Refl
Γ | ∆ ⊢ c = c c 7→ c′

Γ | ∆ ⊢ c = c′
Red

and we will simply write

Γ ⊢ c c 7→ c′.... Red
Γ | ∆ ⊢ c = c′

Whereas a (unary) type system interprets the free variable x : A (and analogously, α ÷ A)
as one unknown value of type A, a (binary) equational theory interprets the free x : A as
two unknown values which are equal at type A. More concretely, we can understand the
meaning of free (co)variables in terms of the following notion that substitution commutes
with equality—substitution of equals into equals are equals:

Γ, x : A | ∆ ⊢ c = c′ Γ | ∆ ⊢V =V ′ : A.... SubstL
Γ | ∆ ⊢ c[V/x] = c′[V ′/x]

Γ, α ÷ A | ∆ ⊢ c = c′ Γ | ∆ ⊢ E = E ′ ÷ A.... SubstR
Γ | ∆ ⊢ c[E/α] = c′[E ′/α] (3.1)

With the rules we already have, we can use reduction to derive substitution of equal values
for variables like so:

Γ | ∆ ⊢V =V ′ : A

Γ, x : A | ∆ ⊢ c = c′

Γ | ∆ ⊢ µ̃x.c = µ̃x.c′ ÷ A
ActL

Γ | ∆ ⊢ ⟨V ||µ̃x.c⟩= ⟨V ′||µ̃x.c′⟩
Cut

Γ | ∆ ⊢ ⟨V ′||µ̃x.c′⟩= ⟨V ||µ̃x.c⟩
Symm

⟨V ||µ̃x.c⟩ 7→µ̃ c[V/x]

Γ | ∆ ⊢ ⟨V ′||µ̃x.c′⟩= c[V/x]
Red

Γ | ∆ ⊢ c[V/x] = ⟨V ′||µ̃x.c′⟩
Symm

⟨V ′||µ̃x.c′⟩ 7→µ̃ c′[V ′/x]

Γ | ∆ ⊢ c[V/x] = c′[V ′/x]
Red

And the derivation of the dual substitution of covalues for covariables follows analogously
to the above, using the dual µ activation and operational steps.

Example 3.2. Consider this basic application of corec which just (corecursively) forwards
all observations onto some underlying stream xs:

parrot xs := corec{head α→ head α | tail α→ γ. tail γ}with xs

Intuitively, parrot xs produces a stream that produces exactly the same elements as xs. We
can understand parrot at a higher level in terms of these equations that show how it reacts

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

A Contextual Formalization of Structural Coinduction 21

to head and tail observations:

⟨parrot xs||head β ⟩= ⟨xs||head β ⟩ ⟨parrot xs||tail α⟩= ⟨parrot (tail xs)||α⟩

Both of these equalities are derivable from the intensional equational theory by just applying
the operational rules (and expanding any syntactic sugar from Fig. 3 as necessary). The
head case follows directly from the βhead step:

⟨parrot xs||head β ⟩ 7→ ⟨xs||head β ⟩ (βhead)

The tail case is slightly more involved because its reduction depends on whether the
command is evaluated according to the call-by-name or call-by-value. In the call-by-name
operational semantics, we have the forward reduction (where according to Fig. 3, tail xs
corresponds to µγ.⟨xs||tail γ⟩):

⟨parrot xs||tail α⟩ 7→ ⟨tail xs||µ̃xs′.⟨parrot xs′||α⟩⟩ (βtail)

7→ ⟨parrot (tail xs)||α⟩ (µ̃)

In the call-by-value operational semantics, we have this conversion instead:

⟨parrot xs||tail α⟩ 7→ ⟨tail xs||µ̃xs′.⟨parrot xs′||α⟩⟩ (βtail)

←[⟨µβ .⟨tail xs||µ̃xs′.⟨parrot xs′||β ⟩⟩||α⟩ (µ)

:= ⟨parrot (tail xs)||α⟩ (Fig. 3)

3.2 Extensional program logic

It’s often unsatisfactory to only consider two expressions equal when they reduce to some
common reduct; that misses out on far too many equalities. Instead, we will enhance the
intensional equational theory with a program logic that is extensional, in the sense that
it considers expressions equal when they appear to be the same from the outside. This
means we will have to add additional rules for saying when two terms (or two coterms)
are equal because they cannot be distinguished by some observer. But which observer
is that? The other side of the command! Terms are observed by coterms, and vice versa.
Therefore, the idea of extensionality in the abstract machine comes down to the idea that
(co)terms of any type are equal if and only if they always form equal computations when
interacting with equal counterparts of that type. The extensional program logic is given in
Fig. 5. The distinctive feature of this theory is that it is applicable to both call-by-name and
call-by-value. That is why some properties needed to be restricted.

Propositions - Φ: We enrich the language of properties that we are proving by internalizing
the implicit “for all” generalization made by the free x : A and α ÷ A in the environment
in terms of an explicit ∀ quantifier in the syntax of propositions. In addition to the same
three cases of equality as before, we now have two dual forms of universal quantification as
properties: ∀x:A.Φ generalizes the property Φ over all choices of equal values of type A for
x, and ∀α÷A.Φ generalizes Φ over all choices of equal covalues for α of type A. The rules
governing these two ∀ properties are given in Fig. 5 as well.

Universal quantifiers can be introduced by IntroL and IntroR, which state that ∀ inter-
nalizes a free (co)variable in the environment, and eliminated by ElimL and ElimR. The

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22 P. Downen and Z.M. Ariola

Equational properties (Φ), environments (Γ), hypotheses (∆), and judgements (J)::

Prop∋Φ ::= c = c′ | v = v′ : A | e = e′ ÷ A | ∀x:A.Φ | ∀α÷A.Φ

Env∋ Γ ::= • | Γ, x : A | Γ, α ÷ A (all x and α assigned in Γ are distinct)
Hyp∋ ∆ ::= • | ∆, Φ

Judge∋ J ::= Γ | ∆ ⊢Φ (FV (∆)∪ FV (Φ)⊆ AV (Γ))

Equational properties strict on x (written Ψ(x)) and productive on α (written Ψ(α)):

StrictProp∋ Ψ(x) ::= ⟨x||E⟩= ⟨x||E ′⟩ (x /∈ FV (E)∪ FV (E ′))

| ∀y:B.Ψ(x) | ∀β÷B.Ψ(x) (x ̸= y)

|Φ⇒Ψ(x) |Ψ1(x)∧Ψ2(x) (x /∈ FV (Φ))

ProdProp∋Ψ(α) ::= ⟨V ||α⟩= ⟨V ′||α⟩ (α /∈ FV (V)∪ FV (V ′))

| ∀y:B.Ψ(α) | ∀β÷B.Ψ(α) (α ̸= β)

|Φ⇒Ψ(α) |Ψ1(α)∧Ψ2(α) (α /∈ FV (Φ))

Γ | ∆, Φ ⊢Φ
Ax

Γ | ∆, Φ′ ⊢Φ

Γ | ∆ ⊢Φ′⇒Φ
IntroH

Γ | ∆ ⊢Φ′⇒Φ Γ | ∆ ⊢Φ′

Γ | ∆ ⊢Φ
Lemm

Γ, x : A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀x:A.Φ
IntroL

Γ | ∆ ⊢ ∀x:A.Φ Γ | ∆ ⊢V =V ′ : A

Γ | ∆ ⊢Φ[V/x =V ′/x]
ElimL

Γ, α ÷ A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀α÷A.Φ
IntroR

Γ | ∆ ⊢ ∀α÷A.Φ Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢Φ[E/α = E ′/α]
ElimR

Γ | ∆ ⊢Φ1 Γ | ∆ ⊢Φ2

Γ | ∆ ⊢Φ1 ∧Φ2
ConjI

Γ | ∆ ⊢Φ1 ∧Φ2

Γ | ∆ ⊢Φ1
ConjE1

Γ | ∆ ⊢Φ1 ∧Φ2

Γ | ∆ ⊢Φ2
ConjE2

Γ, x : A | ∆ ⊢ ⟨x||e⟩= ⟨x||e′⟩
Γ | ∆ ⊢ e = e′ ÷ A

σ µ̃
Γ, α ÷ A | ∆ ⊢ ⟨v||α⟩= ⟨v′||α⟩

Γ | ∆ ⊢ v = v′ : A
σ µ

Γ, x : A, β ÷ B | ∆ ⊢Ψ[x · β/α]

Γ, α ÷ A→ B | ∆ ⊢Ψ(α)
ω→

Γ | ∆ ⊢Ψ[zero/x] Γ, x : Nat | ∆, Ψ(x) ⊢Ψ[succ x/x]
Γ, x : Nat | ∆ ⊢Ψ(x)

ωNat

Γ, β ÷ A | ∆ ⊢Ψ[head β/α] Γ, α ÷ Stream A | ∆, Ψ(α) ⊢Ψ[tail α/α]

Γ, α ÷ Stream A | ∆ ⊢Ψ(α)
ωStream

Plus all the intensional equality rules from Fig. 4

Fig. 5: Extensional program logic.

notation Φ[V/x =V ′/x] (and likewise Φ[E/α = E ′/α]) means to perform the substitution
[V/x] on the left-hand side of the equation in Φ and [V ′/x] on the right-hand side. For
example, the base cases of this substitution are when Φ is just an equality; for a command
equality, this looks like:

(c = c′)[V/x =V ′/x] := (c[V/x]) = (c′[V ′/x])

(c = c′)[E/α = E ′/α] := (c[E/α]) = (c′[E ′/α])

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

A Contextual Formalization of Structural Coinduction 23

ElimL and ElimR generalize the substitution rules previously derived in 3.1 to instantiate
the quantified (co)variables by any equal (co)values of the appropriate type:

Γ, x : A | ∆ ⊢Φ Γ | ∆ ⊢V =V ′ : A.... SubstL
Γ | ∆ ⊢Φ[V/x =V ′/x]

Γ, α ÷ A | ∆ ⊢Φ Γ | ∆ ⊢ E = E ′ ÷ A.... SubstR
Γ | ∆ ⊢Φ[E/α = E ′/α] (3.2)

which are derived from the Intro and Elim rules like so:

Γ, x : A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀x:A.Φ
IntroL

Γ | ∆ ⊢V =V ′ : A

Γ | ∆ ⊢Φ[V/x =V ′/x]
ElimL

Γ, α ÷ A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀α÷A.Φ
IntroR

Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢Φ[E/α = E ′/α]
ElimR

A special case of Elim is to reverse the Intro rules:

Γ | ∆ ⊢ ∀x:A.Φ.... ElimLx

Γ, x : A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀α÷A.Φ.... ElimRα

Γ, α ÷ A | ∆ ⊢Φ (3.3)

These can be derived from the Elim and Var rules by weakening the premise (adding
additional (co)variable type assignments which are never used).2 ElimLx is derived like so:

Γ | ∆ ⊢ ∀x:A.Φ.... WeakL
Γ, x : A | ∆ ⊢ ∀x:A.Φ Γ, x : A | ∆ ⊢ x = x : A

VarR

Γ, x : A | ∆ ⊢Φ
ElimL

Similar to the quantifiers, we also have plain propositional implication, written Φ′⇒Φ,
for stating that the truth of Φ′ implies the truth of Φ. The rules governing Φ′⇒Φ are
IntroH, which introduces an implication that internalizes a hypothesis in the environment,
and Lemm, which lets us eliminate an implication by proving its hypothesis in the
style of instantiating a lemma. While propositional implication is not strictly necessary
for the kinds of simple equalities we have considered thus far, their addition makes
it possible for us to explore some more complex forms of reasoning that can all be
derived from the same rules of structural (co)induction. For the same reason, we also
introduce propositional conjunction, written Φ1 ∧Φ2, to describe the compositionality of
(co)induction. Propositional conjunction is introduced and eliminated with the familiar
ConjI and ConjE rules.

Strict and productive propositions - Ψ(x) and Ψ(α): In some rules, we need to impose
some constraints on the use of (co)variables. This is because we aim for the program logic
to be applicable in both the call-by-value and call-by-name setting. This requires careful
attention to avoid equating a value with a non-value, as well as ensuring the same distinction
for co-values. These restrictions are defined syntactically, and approximate the two dual
notions of control flow and data flow:

• A property Ψ(x) is strict on x when it uses x directly with some covalue on both
sides of its underlying equality, with the base case of a strict property on x being

2 Weakening follows by an induction on the given typing derivation and allowing for a larger Γ in each axiom.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24 P. Downen and Z.M. Ariola

⟨x||E⟩= ⟨x||E ′⟩ where x is not free in E or E ′. Intuitively, Ψ(x) is some property
which observes x exactly once with a covalue, since all covalues are strict, forcing
their input to be computed first before they act.

• Dually, a property Ψ(α) is productive on α when it immediately returns a value to α

on both side of its underlying equality, with the base case of a productive property
on α being ⟨V ||α⟩= ⟨V ′||α⟩ where α is not free in V or V ′. Intuitively, Ψ(α) is some
property which produces exactly one value to α .

The σ µ and σ µ̃ rules implement the idea of observational equality, we would like formal
inference rules that embody these two relationships between different forms of equality.

• Γ | ∆ ⊢ v = v′ : A if and only if Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩ for all Γ | ∆ ⊢ e = e′ ÷ A.
• Γ | ∆ ⊢ e = e′ ÷ A if and only if Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩ for all Γ | ∆ ⊢ v = v′ : A.

Thankfully, the “only if” direction of both of these can be derived by the Cut congruence
rule already present in the intensional equational theory (Fig. 4):

Γ | ∆ ⊢ v = v′ : A Γ | ∆ ⊢ e = e′ ÷ A
Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩ Cut

If we already know two terms Γ | ∆ ⊢ v = v′ : A are equal, then for any other equal co-
terms Γ | ∆ ⊢ e = e′ ÷ A, Cut lets us conclude that their pointwise combination gives equal
commands Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩. Dually, starting with two equal coterms, Cut lets us
combine them with any equal terms to give equal commands. Whereas the “if” direction
is implemented by the σ µ and σ µ̃ rules, which establish a logical equivalence between
equality of commands versus equality of (co)terms. These rules say that any two terms
(dually coterms) are equal when they form equal commands when interacting with a generic
covariable (dually variable). The σ rules allow the derivation of the extensional η rules for
µ and µ̃ (Herbelin, 2005):

Γ ⊢ v : A.... ηµ

Γ | ∆ ⊢ µα.⟨v||α⟩= v : A

Γ ⊢ e÷ A.... ηµ̃

Γ | ∆ ⊢ µ̃x.⟨x||e⟩= e÷ A

They can be derived from the σ µ , σ µ̃ inference rules and µµ̃ reductions. ηµ is derived as:

Γ ⊢ v : A.... Cut,VarL, ActR
Γ, α ÷ A ⊢ ⟨µα.⟨v||α⟩||α⟩ ⟨µα.⟨v||α⟩||α⟩ 7→µ ⟨v||α⟩.... Red

Γ, α ÷ A | ∆ ⊢ ⟨µα.⟨v||α⟩||α⟩= ⟨v||α⟩
Γ | ∆ ⊢ µα.⟨v||α⟩= v : A

σ µ

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

A Contextual Formalization of Structural Coinduction 25

Analogously for ηµ̃ :

Γ ⊢ e÷ A.... Cut,VarR, ActL
Γ, x : A ⊢ ⟨x||µ̃x.⟨x||e⟩⟩ ⟨x||µ̃x.⟨x||e⟩⟩ 7→µ̃ ⟨x||e⟩.... Red

Γ, x : A | ∆ ⊢ ⟨x||µ̃x.⟨x||e⟩⟩= ⟨x||e⟩
Γ | ∆ ⊢ µ̃x.⟨x||e⟩= e÷ A

σ µ̃

Note that the µ and µ̃ reduction apply to both call-by-name and call-by-value since (co)-
variables are considered values in these strategies. This means that the ηµ and ηµ̃ axioms
are sound in both semantics.

The ω→ rule expresses a form of extensionality for functions in terms of call stacks.
It states that the only canonical covalue of type A→ B has the form V · E, and testing a
property on a generic call stack x · β is sufficient to generalize that property over all α of
type A→ B. The rule allows the derivation of the following η axiom for functions (Curien
& Herbelin, 2000):

Γ ⊢V : A→ B.... η→
Γ | ∆ ⊢ λx.µα.⟨V ||x · α⟩=V : A→ B

which is equivalent to the familiar η law of the λ -calculus, as it can be seen by
macro-expanding the syntactic sugar for application according to Fig. 3: λx.(V x) =
λx.µα.⟨V ||x · α⟩=η→ V . The derivation is as follows:

Γ ⊢V : A→ B....
Γ, y : A, β ÷ B ⊢ ⟨λx.µα.⟨V ||x · α⟩||y · β ⟩ ⟨λx.µα.⟨V ||x · α⟩||y · β ⟩ 7→→β→µ ⟨V ||y · β ⟩.... Refl, Reds

Γ, y : A, β ÷ B | ∆ ⊢ ⟨λx.µα.⟨V ||x · α⟩||y · β ⟩= ⟨V ||y · β ⟩
Γ, γ ÷ A→ B | ∆ ⊢ ⟨λx.µα.⟨V ||x · α⟩||γ⟩= ⟨V ||γ⟩

ω→

Γ | ∆ ⊢ λx.µα.⟨V ||x · α⟩=V : A→ B
σ µ

Second from the bottom, ω→ can be applied to γ ÷ A→ B because the equation
⟨λx.µα.⟨V ||x · α⟩||γ⟩= ⟨V ||γ⟩ is productive on γ; both sides of the equation immediately
produce a syntactic value to γ .

Remark 3.3. If we relax the restriction on the ω→ rule and instead allow it for any property
Φ (which we’ll refer to as σ→), then it would be possible to conclude that

...
Γ, γ ÷ A→ B | ∆ ⊢ ⟨λx.µα.⟨v||x · α⟩||γ⟩= ⟨v||γ⟩

σ→

Γ | ∆ ⊢ λx.µα.⟨v||x · α⟩= v : A→ B
σ µ

The problem is that ⟨v||γ⟩ may not produce a single value to γ—v might throw γ away, as
shown in the example below.

β ÷Nat, γ ÷ A→ B ⊢ ⟨λx.µα.⟨µδ .⟨zero||β ⟩||x · α⟩||γ⟩= ⟨µδ .⟨zero||β ⟩||γ⟩ : A→ B

This equality is fine under call-by-name evaluation but is inconsistent under call-by-value,
wherein not all covalues of function type have the form α or x · α . For example, the coterm

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26 P. Downen and Z.M. Ariola

µ̃ .⟨succ zero||α⟩ lets us observe the difference call-by-value evaluation makes between the
two sides of the equation. On the left, we have

⟨λx.µα.⟨µδ .⟨zero||β ⟩||x · α⟩||µ̃ .⟨succ zero||β ⟩⟩ 7→→ ⟨succ zero||β ⟩

whereas on the right, we have

⟨µδ .⟨zero||β ⟩||µ̃ .⟨succ zero||β ⟩⟩ 7→→ ⟨zero||β ⟩

Therefore, we would be able to derive zero = succ zero : Nat using call-by-value evaluation,
making the theory inconsistent.

This inconsistency in call-by-value should not be surprising. It is well known that unre-
stricted η equivalence is unsound in the call-by-value λ -calculus with general recursion or
side effects. The usual counter-example is that the term Ω = (λx.x) (λx.x) is observationally
different from a λ -abstraction, but the η law requires Ω = λx.(Ω x). Instead, the sound
version of the call-by-value η law only applies to values: λx.(V x) =V .

The induction rule ωNat summarizes the following deduction for proving a property Ψ

over any number x using an infinite number of premises:

Γ | ∆ ⊢Ψ[zero/x] Γ | ∆ ⊢Ψ[succ zero/x] Γ | ∆ ⊢Ψ[succ(succ zero)/x] . . .

Γ, x : Nat | ∆ ⊢Ψ

This deduction is justified from the reasoning that zero, succ zero, succ(succ zero)—are
all the canonical values of Nat; testing Ψ on all of them is sufficient to generalize Ψ over
any x of type Nat. ωNat uses the usual structure of primitive induction on the numbers to
summarize this kind of argument in a finite form, and can be understood as an inference
rule representing the usual axiom of induction:

Ψ(zero)⇒ (∀x:Nat.Ψ(x)⇒Ψ(succ x))⇒ (∀x:Nat.Ψ(x)) (ωNat)

Rather than listing a separate proof for each number, just start with a proof for zero
specifically, and give a transformation from a proof of Ψ on an arbitrary number to the
next proof of Ψ for the successor of that same number. Because this second step is a
transformation, we first assume that the property Ψ is true on a generic x : Nat by placing Ψ

in the environment Γ of other assumptions, with the intention that the assumed Ψ in Γ can
be used to prove Ψ with x replaced by succ x.

As an example of the application of induction, we would like to prove the following
deep extensionality axiom for “trivial” uses of recursion (where a stands for an unused
variable):

(δNat) ∀α÷Nat. rec

{
zero→ zero

succ → y. succ y

}
with α = α ÷Nat

The above is saying that any generic observer α cannot tell the difference if a natural number
is first broken down and rebuilt from scratch from the base case (zero) up. Let us use the
following shorthand:

noop α := rec{zero→ zero | succ → y. succ y}with α

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

A Contextual Formalization of Structural Coinduction 27

and proceed as follows:

α ÷Nat ⊢ ⟨zero||noop α⟩= ⟨zero||α⟩
α ÷Nat, x : Nat | ⟨x||noop α⟩= ⟨x||α⟩ ⊢ ⟨succ x||noop α⟩= ⟨succ x||α⟩

α ÷Nat, x : Nat ⊢ ⟨x||noop α⟩= ⟨x||α⟩ ωNat

α ÷Nat ⊢ noop α = α
σ µ̃

⊢ ∀α.noop α = α
IntroR

We can apply the induction rule ωNat here because the property ⟨x||noop α⟩= ⟨x||α⟩ is
strict on x. This is evident because both sides of the equation observe x with a covalue
(rec . . . with α on the left and α on the right) in both call-by-name and -value.

We can just evaluate the left-hand-side to prove the base case:

⟨zero||noop α⟩= ⟨zero||α⟩

What remains is to show ⟨succ x||noop α⟩= ⟨succ x||α⟩ from the inductive hypothesis (IH)
⟨x||noop α⟩= ⟨x||α⟩. We would like to put together the following equality:

⟨succ x||noop α⟩= ⟨µβ .⟨x||noop β ⟩||µ̃y.⟨succ y||α⟩⟩
= ⟨µβ .⟨x||β ⟩||µ̃y.⟨succ y||α⟩⟩ (IH?)

= ⟨succ x||α⟩ (ηµ , µ̃)

The problem is that the induction hypothesis holds only for α , but we now need to apply it
in a different context. This requires a generalization of the context:

⊢ ∀α ÷Nat . ⟨zero||noop α⟩= ⟨zero||α⟩
x : Nat | ∀α ÷Nat .⟨x||noop α⟩= ⟨x||α⟩ ⊢ ∀α ÷Nat .⟨succ x||noop α⟩= ⟨succ x||α⟩

x : Nat ⊢ ∀α ÷Nat .⟨x||noop α⟩= ⟨x||α⟩ ωNat
.... ElimRα

α ÷Nat, x : Nat ⊢ ⟨x||noop α⟩= ⟨x||α⟩
α ÷Nat ⊢ noop α = α

σ µ̃

⊢ ∀α ÷Nat .noop α = α
IntroR

Note that the ω Nat rule can still be applied since quantifying over a strict property gives
another strict property. Now we can instantiate the inductive hypothesis

∀α ÷Nat .⟨x||noop α⟩= ⟨x||α⟩

to the new context β : ⟨x||noop β ⟩= ⟨x||β ⟩.
The need to generalize over the context does not show up when one does inductive proofs

in λ -calculus since the context is left implicit. In fact, let’s go back to the proof of Example
Theorem 2.1. Notice how we applied the inductive hypothesis not at the top level, which we
can represent as □, but in the bigger context succ □. The inductive hypothesis should be
better expressed as: ∀C[□],C[plus x′ zero] =C[x′].

Analogously, we can also prove the following “shallow” extensionality property ηNat
that just look at the outermost structure of a numeric value or a stream projection:

(ηNat) ∀α÷Nat. rec

{
zero→ zero

succ y→ . succ y

}
with α = α ÷Nat

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28 P. Downen and Z.M. Ariola

Remark 3.4. Note that the property ∀α.⟨x||noop α⟩= ⟨x||α⟩ is strict in x, since the recursor
is a co-value in both call-by-value and call-by-name. If we remove that restriction and
apply induction on an arbitrary proposition Φ we can derive inconsistent equations under
call-by-name because it can equate any coterm e÷Nat with a rec covalue, whether or not e
itself is a covalue. For example, we would be able to prove this property:

α ÷Nat, x : Nat ⊢ ⟨x||rec{zero→ zero | succ → zero}with α⟩= ⟨zero||α⟩

The call-by-name version of the derived SubstL rule, see (3.1) and (3.2), allows for the
call-by-name value µ .⟨succ zero||α⟩ to be substituted for x in this equation, leading to the
inconsistent equality α÷Nat ⊢ ⟨succ zero||α⟩=⟨zero||α⟩ .

The coinduction rule ωStream specifies a form of structural coinduction for streams. It
works in exactly the same way as structural induction for numbers—just with the roles of
values and covalues reversed. The ωStream rule summarizes this deduction for proving a
property Ψ over any stream projection α using an infinite number of premises:

Γ, β ÷ A ⊢Ψ[head β/α] Γ, β ÷ A ⊢Ψ[tail(head β)/α] Γ, β ÷ A ⊢Ψ[tail(tail(head β))/α] . . .

Γ, α ÷ Stream A ⊢Ψ

This deduction is justified by the reasoning that the listed projections—head β , tail(head β),
tail(tail(head β))—cover all the canonical covalues of Stream A; testing Ψ on all of them
is sufficient to generalize Ψ over any generic α of type Stream A. ωStream summarizes
this kind of argument in a finite form, avoiding the list of separate proofs for each of the
infinitely possible projections. Whereas ωNat corresponds to the usual induction axiom for
the natural numbers, the ωStream rule corresponds to the dual form of the coinduction axiom
for proving a property holds for all observations of infinite streams in both call-by-name
and call-by-value:

(∀β÷A.Ψ(head β))

⇒ (∀α÷ Stream A.Ψ(α)⇒Ψ(tail α)) (ωStream)

⇒ (∀α÷ Stream A.Ψ(α))

Dual to induction on the numbers, we start with a proof for head β specifically, and give a
transformation from a proof of Ψ on an arbitrary observation on streams to the next proof
of Ψ for the same observation on the tail of the stream. As before, this transformation is
represented by assuming Ψ holds for a generic α ÷ Stream A by listing it in the environment
Γ, which can then be used to derive a proof of Ψ with α replaced by tail α .

As an example of application of co-induction, we would like to prove the following deep
extensional property of streams, which is the dual of δNat:

(δStream) ∀xs:Stream A. corec

{
head α→ head α

tail → β . tail β

}
with xs = xs : Stream A

The above is saying that any generic stream xs gives the same response when its projections
are broken down and rebuilt from scratch from the base case (head α) up. We should be
able to apply the rules from Fig. 5 to prove it.

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

A Contextual Formalization of Structural Coinduction 29

By using the shorthand parrot xs := corec{head α→ head α | tail α→ γ. tail γ}with xs
as in Example 3.2, the bottom of the derivation starts like this:

xs : Stream A, β ÷ A ⊢ ⟨parrot xs||head β ⟩= ⟨xs||head β ⟩
xs : Stream A, α ÷ Stream A | ⟨parrot xs||α⟩= ⟨xs||α⟩ ⊢ ⟨parrot xs||tail α⟩= ⟨xs||tail α⟩

xs : Stream A, α ÷ Stream A ⊢ ⟨parrot xs||α⟩= ⟨xs||α⟩ ωStream

xs : Stream A ⊢ parrot xs = xs : Stream A
σ µ

⊢ ∀xs : Stream A.parrot xs = xs : Stream A IntroL

We begin by assuming some generic stream value xs : Stream A is in scope. The first step
(from the bottom up) applies σ µ to generalize equality of terms to an equality of commands,
by introducing a generic continuation α ÷ Stream A expecting a stream. From here, we can
apply the ωStream coinductive rule since we invoke α with a value. We continue with two
proof obligations:

1. Show ⟨parrot xs||head β ⟩= ⟨xs||head β ⟩.
2. Show ⟨parrot xs||tail α⟩= ⟨xs||tail α⟩ follows from the coinductive hypothesis (CIH)
⟨parrot xs||α⟩= ⟨xs||α⟩.

Step 1 follows directly from βhead, as shown in Example 3.2. Step 2 proceeds as follows:

⟨parrot xs||tail α⟩= ⟨parrot (tail xs)||α⟩ (βtailµµ̃)

= ⟨tail xs||α⟩ (CIH?)

= ⟨xs||tail α⟩ (µ)

The coinductive hypothesis does not apply in the middle step, because it is already fixed for
some previously-chosen xs, which is not the same as (tail xs) used here. What we need is the
ability to generalize the coinductive hypothesis. Rather than introducing a generic stream xs
first and then applying coinduction, we should apply coinduction to prove an equality holds
for all choices of xs, as shown below:

β ÷ A ⊢ ∀xs:Stream A.⟨parrot xs||head β ⟩= ⟨xs||head β ⟩
α ÷ Stream A | ∀xs.⟨parrot xs||α⟩= ⟨xs||α⟩ ⊢ ∀xs:Stream A. ⟨parrot xs||tail α⟩= ⟨xs||tail α⟩

α÷Stream A ⊢ ∀xs:Stream A.⟨parrot xs||α⟩= ⟨xs||α⟩ ω Stream
.... ElimLxs

xs : Stream A, α÷Stream A ⊢ ⟨parrot xs||α⟩= ⟨xs||α⟩
xs : Stream A ⊢ parrot xs = xs : Stream A

σ µ

⊢ ∀xs:Stream A.parrot xs = xs : Stream A IntroL

The base case is as before. For the co-inductive case, we have the following calculation in
call-by-value and -name:

⟨parrot xs||tail α⟩
7→ ⟨µβ .⟨xs||tail β ⟩||µ̃y.⟨parrot y||α⟩⟩ (βtail)

= ⟨µβ .⟨xs||tail β ⟩||µ̃y.⟨y||α⟩⟩ (CIH[y/x])

= ⟨µβ .⟨xs||tail β ⟩||α⟩ (ηµ̃)

7→ ⟨xs||tail α⟩ (µ)

Note that the generalization over xs in the coinductive hypothesis is essential for instantiating
xs with the bound y newly introduced by βtail reduction.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30 P. Downen and Z.M. Ariola

As we did for Nat, we can also derive the following “shallow” extensionality property
that just look at the outermost structure of a stream projection:

(ηStream) ∀x:Stream A. corec

{
head α→ head α

tail β → . tail β

}
with x = x : Stream A

Remark 3.5. The coinductive ωStream rule is similar in spirit to ω→: it matches over
the possible shapes of a generic covalue α ÷ Stream A in scope. The problem is that in
call-by-value there are more values than the ones we considered. If we relax the restriction
of productivity and allow the application of the rule to a generic proposition Φ we would
then prove:

α ÷Nat, β÷ Stream A ⊢ ⟨corec{head →α| tail →α.α}with zero||β ⟩= ⟨zero||α⟩

and yet the call-by-value version of the derived SubstR rule, see (3.1) and (3.2), lets us
substitute µ̃ .⟨succ zero||α⟩ as a covalue for β , leading to an inconsistent equality:

⟨corec{head →α| tail →α.α}with zero||µ̃ .⟨succ zero||α⟩⟩= ⟨succ zero||α⟩= ⟨zero||α⟩

3.3 Consistency of the extensional program logic

Ultimately, the program logic is not useful if it derives inconsistent results. One very
simplistic version of consistency is that 0 is different from any successor (like 1); and dually,
we should also know that a head projection is different from a tail projection.

Definition 3.6 (Consistency). An equational theory or program logic for the (co)recursive
abstract machine is consistent iff the following equalities are not derivable:

• ⊢ zero = succ V : Nat, and
• ⊢ head E = tail E ′ ÷ Stream A.

As with most systems, equating 0 and 1 collapses the notion of equality. Assuming
zero = succ zero : Nat lets us prove that any two terms v and w of type A are equal by
abstracting over the output α ÷ A in this derivation with σ µ:

⟨v||α⟩= ⟨zero||rec{zero→ v | succ → .w}with α⟩ (βzero)

= ⟨succ zero||rec{zero→ v | succ → .w}with α⟩ (zero = succ zero)

= ⟨w||α⟩ (βsuccµµ̃)

This forces every v = w : A to hold, which we can use to equate any two commands and
any two coterms of the same type, as well. Likewise, equating the head and tail projections
leads to the same collapse, due to a similar derivation. Assuming head α = tail(head α), we
can prove any two coterms e and f of type A are equal by abstracting over the input x : A
via σ µ̃ in this derivation:

⟨x||e⟩= ⟨corec{head → e | tail → . f}with x||head α⟩ (βhead)

= ⟨corec{head → e | tail → . f}with x||tail(head α)⟩ (head α = tail(head α))

= ⟨x|| f ⟩ (βtailµµ̃)

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

A Contextual Formalization of Structural Coinduction 31

Γ, x : A, β ÷ B | ∆ ⊢Φ[x · β/α]

Γ, α ÷ A→ B | ∆ ⊢Φ
σ→

Γ, β ÷ A | ∆ ⊢Φ[head β/α] Γ, α ÷ Stream A | ∆, Φ ⊢Φ[tail α/α]

Γ, α ÷ Stream A | ∆ ⊢Φ
σStream

Γ | ∆ ⊢Φ[zero/x] Γ, x : Nat | ∆, Φ ⊢Φ[succ x/x]
Γ, x : Nat | ∆ ⊢Φ

σNat

Fig. 6: Unrestricted coinduction rules σ→, σStream, and unrestricted induction rule σNat

By restricting induction to only apply to strict properties, and restricting coinduction to
only productive properties, we get a single extensional program logic (parameterized by the
definition of values and covalues) that is consistent in both call-by-value and call-by-name
evaluation. See Section 5 for the proof of consistency.

Theorem 3.7. The extensional program logic in Fig. 5 is consistent for both the call-by-name
and call-by-value semantics.

3.4 When is unrestricted (co)induction sound?

Common folklore says that induction holds only in call-by-value, and thus dually co-
induction should hold only in call-by-name. This is reflected in part through the restrictions
defining strict versus productive properties in the “universally” sound extensional program
logic given in Fig. 5. Call-by-value has a more permissive notion of covalue (any coterm is
a call-by-value covalue), so the induction principle ωNat applies to more properties in the
call-by-value logic than in the call-by-name one. Symmetrically, call-by-name has a more
permissive notion of value (any term is a call-by-name value), so the coinduction principle
ωStream applies to more properties in call-by-name than in call-by-value. In Fig. 6 we give
the unrestricted reasoning rules.

For non-recursive types like A→ B the full power of σ→ can be recovered from the
weaker ω→ in the right setting. In call-by-name, the productivity restriction of ω→ is not
important since any term can be a value, and we break down any property to apply ω→
at the root. However, this difference in power between (co)induction in the two semantics
is not quite enough to account for the true strength of call-by-value induction and call-by-
name coinduction, because the strategy of breaking down the property in advance weakens
the (co)inductive hypothesis. As a consequence, the fact that the sub-syntax of strict and
productive properties includes ∀ quantifiers but not implications (Φ′⇒Φ) of any form
means that choosing the “best” semantics still does not fully restore ωNat to σNat or
ωStream to σStream.

This essential difference in reasoning power raises the question: are the unrestricted
induction and coinduction principles ever safe? Thankfully, it turns out that the full (co)-
induction rules σNat and σStream can be consistently added to the program logic, even in
the presence of computational effects like first-class control, under the correct evaluation
strategy (see Section 5).

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32 P. Downen and Z.M. Ariola

Definition 3.8 (Strong Program Logics). The two strong program logics, which
generalize the common extensional program logic (Fig. 5) with additional sound rules
specifically for call-by-name and call-by-value reduction are:

• The strong call-by-name program logic extends the call-by-name instance of Fig. 5
with the σStream and σ→ rules of coinduction from Fig. 6.

• The strong call-by-value program logic extends the call-by-value instance of Fig. 5
with the σNat rule of induction from Fig. 6.

Theorem 3.9. The strong call-by-name and call-by-value program logics are consistent.

4 The Strength of Strong (Co)Induction

Due to the lack of propositional implication, there are certain forms of inductive reasoning
(for example, “strong” induction on the numbers) that are possible using σNat with a
property Φ′⇒Φ that cannot be derived from the ωNat—even in call-by-value. Likewise,
there are certain forms of coinductive reasoning (for example, bisimulation) that are possible
with σStream but cannot be derived from ωStream—even in call-by-name.

Next, we will explore the strength of full σNat and σStream versus the weaker ωNat and
ωStream, and the use of structural (co)induction for encoding several different reasoning
principles for (co)inductive types.

Compositionality of weak mutual (co)induction

Before we get to the full strength of strong structural (co)induction, consider an example of
what can be done with just the weak version all on its own. Mutual induction lets us prove
two properties at the same time, where the correctness of each one depends simultaneously
on the other. To prove Ψ1(x) and Ψ2(x) for all natural numbers x, there are two inductive
cases: one showing Ψ1(succ x) and the other showing Ψ2(succ x). The two cases can be
proved separately from one another, but each one gets to assume both inductive hypotheses
Ψ1(x) and Ψ2(x) hold. This principle is especially useful for generalizing the inductive
hypotheses in situations where we are only interested in Ψ1(x) at the end, but the proof of
Ψ1(x) requires additional knowledge about Ψ2(x) during the inductive step.

This mutual induction reasoning principle can be derived by applying the weak induction
rule ωNat on the conjunction Ψ1(x)∧Ψ2(x) first, before splitting the two apart like so:

Γ | ∆ ⊢Ψ1[zero/x] Γ | ∆ ⊢Ψ2[zero/x]

Γ | ∆ ⊢Ψ1[zero/x]∧Ψ2[zero/x]
ConjI

Γ, x : Nat | ∆, Ψ1(x)∧Ψ2(x) ⊢Ψ1[succ x/x]
Γ, x : Nat | ∆, Ψ1(x)∧Ψ2(x) ⊢Ψ2[succ x/x]

Γ, x : Nat | ∆, Ψ1(x)∧Ψ2(x) ⊢Ψ1[succ x/x]∧Ψ2[succ x/x]
ConjI

Γ, x : Nat | ∆ ⊢Ψ1(x)∧Ψ2(x)
ωNat

This application of the weak ωNat is allowed because the conjunction of two strict properties
Ψ1(x)∧Ψ2(x) is also strict on x.

Since the rules for induction and coinduction mirror each other, we can encode mutual
(weak) coinduction on streams in the exact same way using the ωStream and ConjI rules.

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

A Contextual Formalization of Structural Coinduction 33

This mutual weak coinduction rule looks like:
Γ, β ÷ A | ∆ ⊢Ψ1[head β/α]

Γ, β ÷ A | ∆ ⊢Ψ2[head β/α]

Γ, β ÷ A | ∆ ⊢ (Ψ1 ∧Ψ2)[head β/α]
ConjI

Γ, α ÷ Stream A | ∆, Ψ1(α)∧Ψ2(α) ⊢Ψ1[tail α/α]

Γ, α ÷ Stream A | ∆, Ψ1(α)∧Ψ2(α) ⊢Ψ2[tail α/α]

Γ, α ÷ Stream A | ∆, Ψ1(α)∧Ψ2(α) ⊢ (Ψ1 ∧Ψ2)[tail α/α]
ConjI

Γ, α ÷ Stream A | ∆ ⊢Ψ1(α)∧Ψ2(α)
ωStream

For example, we can apply this rule to formalize our previous mutually-coinductive proof
of Example Theorem 2.5 about evens and odds like so:3

β ÷ A ⊢ ∀s1∀s2.⟨evens (merge s1 s2)||head β ⟩= ⟨s1||head β ⟩
β ÷ A ⊢ ∀s1∀s2. ⟨odds (merge s1 s2)||head β ⟩= ⟨s2||head β ⟩

α ÷ Stream A |Ψ1(α)∧Ψ2(α) ⊢ ∀s1∀s2. ⟨evens (merge s1 s2)||tail α⟩= ⟨s1||tail α⟩
α ÷ Stream A |Ψ1(α)∧Ψ2(α) ⊢ ∀s1∀s2. ⟨odds (merge s1 s2)||tail α⟩= ⟨s2||tail α⟩

.... ωStream, ConjI

α ÷ Stream A ⊢ ∀s1∀s2.⟨evens (merge s1 s2)||α⟩= ⟨s1||α⟩
∧ ∀s1∀s2. ⟨odds (merge s1 s2)||α⟩= ⟨s2||α⟩

Where the two coinductive hypotheses are:

Ψ1(α) = ∀s1∀s2.⟨evens (merge s1 s2)||α⟩= ⟨s1||α⟩
Ψ2(α) = ∀s1∀s2.⟨odds (merge s1 s2)||α⟩= ⟨s2||α⟩

Both of these two propositions are productive on α because on the right side they are
given si which is always a value, and on the left side they are immediately matched on
by evens or odds (which are represented by a corec which is itself a value). From here,
the calculations showing all four required equalities follow the same steps as the informal
proof in Example Theorem 2.5. Since only the weak form of coinduction is used, this fact
about evens and odds holds true in languages with side effects under both call-by-name and
call-by-value evaluation.

Notice that, for both mutual induction and coinduction, the strong rules σStream or σNat
are only needed to verify fundamentally non-productive or non-strict propositions Φ1 ∧Φ2,
respectively.

Strong induction on the naturals

In contrast to mutual induction, which can be derived from ωNat, the traditional notion of
strong induction on the natural numbers really requires the full σNat. How can we formalize
the derivation of strong induction? First, define the ordering relation on numbers in terms
of the following equality and translation of the usual minus function (replacing negative
results with zero) specified as follows:

M ≤N : Nat := minus M N = zero : Nat

⟨minus||x · zero ·α⟩= ⟨x||α⟩
⟨minus||succ x · succ y · α⟩= ⟨minus||x · y · α⟩
⟨minus||zero · succ y · α⟩= ⟨zero||α⟩

3 Note that while evens (merge s1 s2) and odds (merge s1 s2) are not syntactically values, they both simplify to a
value in both call-by-value and call-by-name. So we can get the equivalent productive property by simplifying
the two equations, applying ωStream, and then expanding back to this form.

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34 P. Downen and Z.M. Ariola

We then write ∀y≤ x : Nat .Φ as shorthand for the property ∀y : Nat . y≤ x : Nat⇒Φ.
Applying σNat to the free x in this property gives:

Γ ⊢ ∀y≤ zero : Nat .Φ Γ, x : Nat | ∀y≤ x : Nat .Φ ⊢ ∀y≤ succ x : Nat .Φ
Γ, x : Nat ⊢ ∀y≤ x : Nat .Φ σNat

Since we can derive the properties ∀y≤ zero : Nat . y = zero : Nat (by definition of ≤) and
∀x : Nat . x≤ x : Nat (by induction with σNat), we can specialize the above application to
derive the following simpler statement of strong induction on the naturals:

Γ ⊢Φ[zero/x] Γ, x : Nat | ∀y≤ x : Nat .Φ ⊢Φ[succ x/x]....
Γ, x : Nat ⊢Φ

Notice that we can never use ωNat for this derivation, even if Φ happens to be strict on x.
Why not? Because the property to which we apply induction,

∀y : Nat. y≤ succ x : Nat =⇒ Φ

includes an implication where the inducted-upon x is referenced to the left of =⇒ , which
is not allowed in properties that are strict on x.

Strong coinduction on streams

As with induction on the natural numbers, we can derive the dual notion of strong co-
induction on infinite streams. First, define the ordering relation on stream projections
as:

Q≤ R÷ Stream A := depth Q≤ depth R : Nat

where depth Q computes the depth of any stream projection Q, effectively converting
tailn(head α) to succn zero:

depth Q := µα.⟨corec{head α→ α | tail _→ γ.µ̃y.⟨succ y||γ⟩}with zero||Q⟩

As before, we write the quantification ∀β ≤ α ÷ Stream A.Φ as shorthand for ∀β ÷
Stream A. β ≤ α ÷ Stream A⇒Φ. Applying σStream to this property gives:

Γ, δ ÷ A | ∆ ⊢ ∀β ≤ head δ ÷ Stream A.Φ

Γ, α ÷ Stream A | ∆, ∀β ≤ α ÷ Stream A.Φ ⊢ ∀β ≤ tail α ÷ Stream A.Φ

Γ, α ÷ Stream A | ∆ ⊢ ∀β ≤ α ÷ Stream A.Φ
σStream

Analogous to strong induction on the naturals, we can use this application to derive the
following simpler statement of strong coinduction on streams:

Γ, δ ÷ A | ∆ ⊢Φ[head δ/α]

Γ, α ÷ Stream A | ∆, ∀β ≤ α ÷ Stream A.Φ[β/α] ⊢Φ[tail α/α]
....

Γ, α ÷ Stream A | ∆ ⊢Φ

From this, we can derive the following special case of strong coinduction, where we must
show the first n + 1 base cases (for head β , tail(head β), . . . tailn(head β)) directly, and then

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

A Contextual Formalization of Structural Coinduction 35

take the n + 1th tail projection in the coinductive case:

Γ, β÷A | ∆ ⊢Φ[head β/α] . . . Γ, β÷A | ∆ ⊢Φ[tailn(head β)/α] Γ, α÷ Stream A | ∆, Φ ⊢Φ[tailn+1
α/α]....

Γ, α ÷ Stream A | ∆ ⊢Φ

The above principle can prove that

α ÷ Stream A ⊢ ∀s : Stream A.⟨merge (evens s) (odds s)||α⟩= ⟨s||α⟩ (4.1)

by stepping by 2. We prove the property for the base cases (head β and tail(head β)) and
then prove the coinductive case

α ÷ Stream A ⊢ ∀s : Stream A.⟨merge (evens s) (odds s)||tail(tail β)⟩= ⟨s||tail(tail β)⟩

assuming that the property holds for β . This principle captures the proof of Example
Theorem 2.6, with the difference that it avoids the case analysis. From (4.1), we can then
prove

∀s : Stream A. merge (evens s) (odds s) = s : Stream A (4.2)

by IntroL, σ µ, ElimR.

Bisimulation on streams

To conclude our exploration, we now turn to one of the most commonly used principles for
reasoning about coinductive structures—bisimulation—which allows us to prove two objects
are equal whenever they are related by any valid bisimulation relation of our choosing.
The traditional principle of bisimulation on streams can be represented by the following
inference rule, where the property Φ (with free variables s1 and s2) stands for an arbitrary
relationship between two streams s1 and s2:

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢ head s1 = head s2 : A

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢Φ[tail s1/s1, tail s2/s2]

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢ s1 = s2 : Stream A
Bisim

The two assumptions confirm that Φ is a valid bisimulation relation: Φ only relates streams
with equal heads, and is closed under tail projection. We show that this principle is also
subsumed by the strong coinduction rule σStream. We are going to prove

Γ, α : Stream A | ∆ ⊢ ∀s1, s2 : Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩ (4.3)

Where we use the shorthand ∀s1, s2 : Stream A.Φ to stand for multiple quantifications of the
same type ∀s : Stream A.∀s′ : Stream A.Φ. From the above the goal follows:

Γ, α : Stream A | ∆ ⊢ ∀s1, s2 : Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩.... ElimLs1,s2 , Ax, Lemm
Γ, s1 : Stream A, s2 : Stream A, α ÷ Stream A | ∆, Φ ⊢ ⟨s1||α⟩= ⟨s2||α⟩

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢ s1 = s2 : Stream A
σ µ

We are proving property 4.3 by strong coinduction (σStream):

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36 P. Downen and Z.M. Ariola

• For the head case, we must show that

Γ, α÷A | ∆ ⊢ ∀s1, s2 : Stream A.Φ⇒⟨head s1||α⟩= ⟨head s2||α⟩

The first bisimulation assumption already guarantees that head s1 = head s2 : A when-
ever Φ holds on s1 and s2, so this sub-goal follows directly from the congruence rules,
as shown below:

Γ, s1: Stream A, s2: Stream A, Φ ⊢ head s1 = head s2 : A.... WeakR, Cut, VarL
Γ, β÷A, s1: Stream A, s2: Stream A, Φ ⊢ ⟨head s1||β ⟩= ⟨head s2||β ⟩.... IntroH, IntroL

Γ, β÷A ⊢ ∀s1, s2: Stream A.Φ⇒⟨head s1||β ⟩= ⟨head s2||β ⟩

• For the tail case, from the coinductive hypothesis (referred to locally as CIH)

∀s1, s2 : Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩ (CIH)

we must show

Γ, α ÷ Stream A | ∆,CIH ⊢ ∀s1, s2 : Stream A.Φ⇒⟨tail s1||α⟩= ⟨tail s2||α⟩

The second bisimulation assumption guarantees that Φ[tail s1/s1, tail s2/s2] holds as
well. Therefore, substituting tail s1 and tail s2 in the coinductive hypothesis gives the
required result ⟨tail s1||α⟩= ⟨tail s2||α⟩. More precisely, using the shorthand

ΓCIH := Γ, α ÷ Stream A

ΓSim := Γ, s1 : Stream A, s2 : Stream A

Γ
′ := Γ, α ÷ Stream A, s1 : Stream A, s2 : Stream A

we can derive the goal of the coinductive step by weakening the given bisimulation
premise ΓSim | ∆, Φ ⊢Φ[tail s1/s1, tail s2/s2] as follows:

ΓCIH | ∆,CIH ⊢ ∀s1, s2: Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩
Ax

.... ElimL, ReflL

ΓCIH | ∆,CIH ⊢ ∀s2: Stream A.Φ[tail s1/s1]⇒⟨tail s1||α⟩= ⟨s2||α⟩.... ElimL, ReflL

Γ′ | ∆,CIH ⊢Φ[tail s1/s1, tail s2/s2]⇒⟨tail s1||α⟩= ⟨tail s2||α⟩

ΓSim | ∆, Φ ⊢Φ[tail s1/s1, tail s2/s2].... WeakL

Γ′ | ∆,CIH, Φ ⊢Φ[tail s1/s1, tail s2/s2]

Γ′ | ∆,CIH ⊢ ⟨tail s1||α⟩= ⟨tail s2||α⟩
Lemm

.... IntroL

Γ, α ÷ Stream A | ∆,CIH ⊢ ∀s1, s2: Stream A.Φ⇒⟨tail s1||α⟩= ⟨tail s2||α⟩

5 Consistency of the Program Logic

We’ve seen the (strong) program logics used to encode and prove a variety of different
reasoning principles and program equalities. But how do we know if and when the syntactic
rules in Figs. 5 and 6 imply real equivalences between the results of programs? Applying β

reductions may be easy enough to believe since they correspond to actual steps of execution,
but what about the (co)induction rules? They do not correspond to steps taken by the abstract

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

A Contextual Formalization of Structural Coinduction 37

machine, and we have already seen counterexamples where some of them, like σNat and
σStream, can be inconsistent in certain contexts.

In order to prove that the syntactic program logics are consistent, we will show that they
are all approximations of a more general notion of observational equivalence (also known as
contextual equivalence (Pitts, 1997b)), defined directly in terms of the behavior of running
programs. First, we need to characterize the valid stopping points where computation has
ended and we can observe the last attempt at communication between a constructor or
observer and some free (co)variable. Two such commands are considered equivalent if the
top-level structure is the same (ignoring anything deeper, since the computation is finished).

Definition 5.1 (Observable). The set of observable typing environments (Θ) and observable
commands (d) is

ObsEnv∋ Θ ::= • |Θ, α ÷Nat |Θ, x : Stream A |Θ, x : A→ B

ObsCommand ∋ d ::= ⟨zero||α⟩ | ⟨succ V ||α⟩ | ⟨x||head E⟩ | ⟨x||tail E⟩ | ⟨x||V · E⟩

The weak equivalence relation on observable commands, d ∼ d′, is:

⟨zero||α⟩ ∼ ⟨zero||α⟩ ⟨x||head E⟩ ∼ ⟨x||head E ′⟩ ⟨x||V · E⟩ ∼ ⟨x||V ′ · E ′⟩
⟨succ V ||α⟩ ∼ ⟨succ V ′||α⟩ ⟨x||tail E⟩ ∼ ⟨x||tail E ′⟩

This weak equivalence relation is extended to any two commands, c≈ c′, via computation:
c≈ c′ if and only if there are observable commands d, d′ such that c 7→→ d ∼ d′←←[c′.

Definition 5.2 (Observational Equivalence). Typed observational equivalence is defined as:

1. Γ ⊢ c1 ≈ c2 iff Γ ⊢ ci and for all contexts C, Θ ⊢C[ci] implies C[c1]≈C[c2].
2. Γ ⊢ v1 ≈ v2 : A iff Γ ⊢ vi : A and for all contexts C, Θ ⊢C[vi] implies C[v1]≈C[v2].
3. Γ ⊢ e1 ≈ e2 ÷ A iff Γ ⊢ ei ÷ A and for all contexts C, Θ ⊢C[ei] implies C[e1]≈C[e2].

where a context C is any command with a hole (written □) somewhere in it. Filling the
context (written C[c], C[v], or C[e]) means replacing the hole □ by the given sub-expression,
potentially capturing that sub-expression’s free variables.

Observational equivalence is particularly interesting since it is a consistent, computational
congruence by definition:

Congruence Meaning it is a reflexive, transitive, and symmetric equivalence relation,
which is also compatible with all contexts of the appropriate type. For example, if
Γ ⊢ v1 ≈ v2 : A, and C is a context such that Γ ⊢C[vi] is a well-typed command, then
Γ ⊢C[v1]≈C[v2] holds by definition, because contexts compose.

Computational In the sense that it is closed under the reductions of the operational
semantics: if Γ ⊢ c1 ≈ c2 and ci 7→→ c′i then Γ ⊢ c′1 ≈ c′2.

Consistent As per Definition 3.6. • ⊢ zero≈ succ V : Nat does not hold, due to the coun-
terexample context ⟨□||α⟩; both α ÷Nat ⊢ ⟨zero||α⟩ and α ÷Nat ⊢ ⟨succ V ||α⟩ are
well-typed, irreducible commands in an observable environment, and yet ⟨zero||α⟩ ̸∼

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38 P. Downen and Z.M. Ariola

⟨succ V ||α⟩. Similarly, • ⊢ head E ≈ tail E ′ ÷ Stream A does not hold, due to the
counterexample context ⟨x||□⟩ in the observable environment x : Stream A.

In fact, observational equivalence is the coarsest such relation (Harper, 2016, Theorem
46.6), meaning that any other relation with these properties are included in Definition 5.2. So,
proving that another computational congruence relation is consistent (such as the syntactic
theories in Fig. 5 and Definition 3.8) can be reduced to proving they are included within
observational equivalence.

Our primary goal, then, is to prove that these syntactic theories of equality all imply
observational equivalence, from which their consistency falls out as a corollary. To do
so, we will generalize the model of (co)inductive types from (Downen & Ariola, 2023)—
based on the techniques of classical realizability (Krivine, 2005), (bi)orthogonality (Girard,
1987; Munch-Maccagnoni, 2009), ⊤⊤-closure (Pitts, 2000), and symmetric candidates
(Barbanera & Berardi, 1994) for proving strong normalization of classical calculi—from
unary predicates describing safety to binary relations describing equivalence.

5.1 Orthogonal relations and equality candidates

The safety model of (Downen & Ariola, 2023, Section 6) is a logical relation built around
the idea of orthogonality (Girard, 1987; Pitts, 2000; Munch-Maccagnoni, 2009): a safety
predicate (written ‚) classifying when producers (v) and consumers (e) can safely interact
with one another in a command (⟨v||e⟩ ∈‚). Here we are interested in equality, in the sense
that two commands have equivalent behavior when run. As such, we need to generalize
orthogonality beyond the unary safety predicate c∈‚ on one command, and instead
consider a binary equivalence relation c ‚ c′ between two commands.

We can now give our main definition of binary orthogonality c ‚ c′ serving in terms of
the untyped weak equivalence among commands. Orthogonality, in turn, lets us describe a
semantics for typed equality as a certain pair of relations between terms and coterms. This
forms the potential (i.e., candidate (Girard, 1972)) denotations of types, so each type of our
language can be interpreted as a particular candidate of equality.

Definition 5.3 (Orthogonality). The equivalence pole ‚ is the untyped equivalence relation
on arbitrary commands (c≈ c′) given in terms of weak equivalence of observable commands
(d ∼ d′) from Definition 5.1:

c ‚ c′ := c≈ c′

:= ∃d, d′. c 7→→ d ∼ d′←←[c′

Orthogonality of two binary relations A+ ⊆ Term2 and A− ⊆CoTerm2 is defined as:4

A+ ‚A− := ∀v A+v′, e A−e′. ⟨v||e⟩‚ ⟨v′||e′⟩
We write A+‚ to denote the largest coterm relation orthogonal to the term relation A+,

and symmetrically write A−‚ to denote the largest term relation orthogonal to the coterm

4 Note that we denote membership of a binary relation R⊆X×Y as an infix operation x R y instead of set
membership notation (x, y)∈R. Furthermore, we use Y 2 as shorthand for the product Y ×Y

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

A Contextual Formalization of Structural Coinduction 39

relation A−, which are respectively defined as:

e A+‚ e′ := ∀v A+v′. ⟨v||e⟩‚ ⟨v′||e′⟩
v A−‚ v′ := ∀e A−e′. ⟨v||e⟩‚ ⟨v′||e′⟩

Definition 5.4 (Candidates). A pre-candidate is any pair A= (A+,A−) where A+ is a
binary relation on terms, and A− is a binary relation on coterms, i.e.,

A∈℘(Term2)×℘(CoTerm2) .

A sound (pre-)candidate A= (A+,A−) satisfies the following soundness requirement:

• Soundness: every combination of A+-related terms v A+ v′ and A−-related coterms
e A− e′ forms ‚-equivalent commands ⟨v||e⟩‚ ⟨v′||e′⟩.

A complete (pre-)candidate A= (A+,A−) satisfies these two completeness requirements:

• Positive completeness: if ⟨v||E⟩‚ ⟨v′||E ′⟩ for all A−-related covalues E A− E ′, then
v A+ v′ are related by A+.

• Negative completeness: if ⟨V ||e⟩‚ ⟨V ′||e′⟩ for all A+-related values V A+ V ′, then
e A− e′ are related by A−.

An equality candidate is any sound and complete pre-candidate. PC denotes the set of all
pre-candidates, S C denotes the set of sound ones, C C the set of complete ones, and E C

denotes the set of all equality candidates.
As notation, given any pre-candidate A, we will always write A+ to denote the first

component of A and A− to denote the second one, so that A= (A+,A−). Given a binary
relation on terms A+, we will occasionally write the sound candidate (A+, {}) as just A+

when the difference is clear from the context (notice that (A+, {}) is trivially sound by
definition, but is incomplete). Likewise, we will occasionally write the sound candidate
({},A−) as just the binary coterm relation A− when unambiguous. The common case of
the empty set {}—which could be read as either the empty set of terms or the empty set of
coterms—denotes the same sound candidate ({}, {}) according to either reading.

5.2 Dual lattices and completion

With its two halves—one describing terms the other coterms—candidates provide multiple
views on the relationship between types. These appear in the unary case of typed (co)terms,
as in (Downen & Ariola, 2023, Definition 6.5), and carry over, essentially unchanged, to
binary relationships, too. In particular, the set of candidates supports two separate, but
complementary, lattice structures with different orderings; one based on a refinement notion
of plain containment, and the other based on a notion of subtyping from programming
languages.

Definition 5.5 (Refinement and Subtyping). There are two ways of ordering pre-candidates:
refinement (denoted by A⊑B meaning “A refines B” and “B extends A) and subtyping

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40 P. Downen and Z.M. Ariola

(denoted by A≤B meaning “A is a subtype of B” and “B is a supertype of A”), defined as:

(A+,A−)⊑ (B+,B−) := (A+ ⊆B+) and (A− ⊆B−)
(A+,A−)≤ (B+,B−) := (A+ ⊆B+) and (A− ⊇B−)

Refinement and subtyping both define a complete lattice on pre-candidates with the
following unions and intersections for refinement (⊔,⊓) and subtyping (∨,∧), defined over
any set of pre-candidates {Ai}i ⊆PC as:⊔

i(A+
i ,A

−
i) := (

⋃
i A+

i ,
⋃

i A−i)
∨

i(A+
i ,A

−
i) := (

⋃
i A+

i ,
⋂

i A−i)d
i(A

+
i ,A

−
i) := (

⋂
i A+

i ,
⋂

i A−i)
∧

i(A+
i ,A

−
i) := (

⋂
i A+

i ,
⋃

i A−i)

where
⋃

and
⋂

denote the union and intersection of binary relations, respectively.

There are many other ways in which refinement and subtyping differ from one another,
and reveal different structures of equality candidates. Of note, the orthogonality operation
distributes over the two orderings in completely opposite directions.

Property 5.6 (Orthogonal Ordering). Given any pre-candidates A and B:

1. Antitonicity: If A⊑B then A‚ ⊒B‚.
2. Monotonicity: If A≤B then A‚ ≤B⊥.

Furthermore, the way the union and intersection operations in the two lattices preserve
(or fail to preserve) soundness and completeness conditions also differ.

Property 5.7 (Sound and Complete Lattices). Given any subset {Ai}i ⊆S C of sound
candidates and {Bi}i ⊆C C complete candidates:

1.
∧

i Ai and
∨

i Ai are sound, but
∧

i Bi and
∨

i Bi may be incomplete.
2.

d
i Ai is sound, but

⊔
i Ai may be unsound.

3.
⊔

i Bi is complete, but
d

i Bi may be incomplete.

In order to build the interpretation of (co)inductive types, we need a complete lattice of
equality candidates, not just a lattice of pre-candidates, that preserves both soundness and
completeness. Since subtyping naturally gives us a complete sub-lattice of sound candidates,
we will begin there, with the subgoal of filling in the missing parts of a sound candidate to
generate the fully completed equality candidate.

Beginning with some initial starting point, completeness demands that we include all
other relationships which are compatible with what is already there. Since completeness
only tests potential (co)term relations w.r.t the (co)values already related by a candidate,
we will have to isolate these (co)values as part of our testing criteria. For this purpose,
the (co)value restriction Av of a candidate A= (A+,A−) includes only those values and
covalues related by A, defined as:

v Av+ v′ := v A+ v′ and v, v′ ∈ Value e Av− e′ := e A− e′ and e, e′ ∈CoValue

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

A Contextual Formalization of Structural Coinduction 41

We can use this (co)value restriction to form a complete equality candidate by interleaving
it with the orthogonality operation. But there is a dual choice in our starting point: the
positive viewpoint uses the values related by A as the defining axioms to define the equality
candidate, and the negative viewpoint uses the covalues related by A as the defining axioms.

Definition 5.8 (Positive and Negative Candidates). Given a sound candidate A, the positive
and negative constructions of equality candidates around A are respectively defined as:

Pos(A) := (A+,A+v‚)v‚v‚ Neg(A) := (A−v‚,A−)v‚v‚

The positive and negative viewpoints give complementary equality candidates. By starting
with the values first, Pos gives a smaller equality candidate (w.r.t subtyping) compared to
Neg. In fact, these two are the canonically largest and smallest equality candidates that
extend any sound starting point. This fact lets us modify the subtyping lattice to preserve
both soundness and completeness in both directions.

Lemma 5.9 (Positive & Negative Completion). For any sound candidate A, Pos(A) is the
smallest sound and complete extension of Av w.r.t subtyping, and Neg(A) is the largest
sound and complete extension of Av w.r.t subtyping. In other words, both Pos(A) and
Neg(A) are equality candidates such that Pos(A)⊒Av and Neg(A)⊒Av, and given any
other equality candidate C⊒Av,

Pos(A)≤C≤Neg(A)

Proof sketch The proof follows the same structure as in (Downen & Ariola, 2023,
Lemma 6.7) extended from sets to binary relations, which uses the facts that Pos(A)
and Neg(A) are fixed points of v‚ and, furthermore, that the set of these fixed points is
exactly the set of all equality candidates (Downen et al., 2020, Property 9). □

Definition 5.10 (Equality Candidate Lattice). Equality candidates form a complete lattice
w.r.t subtyping whose unions (⋎) and intersections (⋏) are (Downen et al., 2019):

c
i Ai := Neg(

∧
i Ai)

b
i Ai := Pos(

∨
i Ai)

Notice that the least equality candidate w.r.t subtyping is Pos{}= ({}, CoValue2)‚v‚ and
the greatest one is Neg{}= (Value2, {})‚v‚.

From this perspective, we can re-describe the positive and negative completions in terms
of the subtyping lattice of equality candidates. As per Lemma 5.9, Pos and Neg are the
intersection and union (respectively) of all extensions of a restricted sound candidate Av:

Pos(A) =
k
{C∈ E C |C⊒Av} Neg(A) =

j
{C∈ E C |C⊒Av}

As a corollary of Lemma 5.9 and the definition of Pos and Neg, we get the following
facts that let us reason about positively and negatively constructed equality candidates.

Property 5.11 (Positive & Negative Invariance). For any sound candidates A and B:

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 P. Downen and Z.M. Ariola

• If A and B relate the same values, then Pos(A) = Pos(B).
• If A and B relate the same covalues, then Neg(A) = Neg(B).

Property 5.12 (Strong Positive & Negative Completeness). For any sound candidate A:

• E Pos(A)− E ′ if and only if ⟨V ||E⟩‚ ⟨V ′||E ′⟩ for all V A+ V ′.
• V Neg(A)+ V ′ if and only if ⟨V ||E⟩‚ ⟨V ′||E ′⟩ for all E A− E ′.

Property 5.13. For any set of equality candidates {Ai}i:

1. If e A−i e′ for some i, then e ⋏i Ai e′. If V A+
i V ′ for all i, then V ⋏i Ai V ′.

2. If v Ai v′ for some i, then v ⋎i Ai v′. If E A−i E ′ for all i, then E ⋎i Ai E ′.

5.3 Interpretation of types and properties

We now have enough infrastructure to define the model of observational equivalence—as
shown in Fig. 7—by interpreting each syntactic entity (types, properties, environments, and
judgements) into its semantic counterpart.

Each syntactic type A is interpreted as an equality candidate, denoted by JAK, which is
defined by induction on the syntax of A. This interpretation has three main cases—one for
each type constructor—which are all defined in the style of Knaster-Tarski (Knaster, 1928;
Tarski, 1955) fixed points in the subtyping lattice of equality candidates:

• A function type A→ B is interpreted as the equality candidate relating the fewest
covalues possible, while still relating any two call stacks built from JAK-related
arguments and JBK-related return continuations. Dually, this is the equality candidate
relating the most values possible, as long as they have equivalent behavior when
observed by those previously described related call stacks.

• The number type Nat is interpreted as the equality candidate relating the fewest terms
possible, while still relating 0 to itself, and ensuring that the successors of any two
related values are still related. Dually, this is the equality candidate relating the most
covalues possible, as long as they respond the same to any of those related numbers.

• A stream type Stream A is interpreted as the equality candidate relating the fewest
covalues possible, while still relating any two head projections with JAK-related
continuations, and ensuring that the tail of any two related Stream A projection are
still related. Dually, this equality candidate relates the most terms possible, as long as
they have equivalent behavior when observed by those related stream projections.

Each typing environment Γ is interpreted as a binary relation on substitutions, JΓK, both
of which replace some variables with values, and some covariables with covalues. The
interpretation of Γ (written ρ JΓK ρ ′) relates two such substitutions ρ and ρ ′ that abide by
all three of the following criteria:

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

A Contextual Formalization of Structural Coinduction 43

Interpretation of types J K : Type→ E C

JA→ BK :=
j
{C∈ E C | ∀ V JAK V ′, E JBK E ′. (V · E) C (V ′ · E ′)}

JNatK :=
k
{C∈ E C | zero C zero

and ∀ V C V ′. (succ V) C (succ V ′)}

JStream AK :=
j
{C∈ E C | ∀ E JAK E ′. (head E) C (head E ′)

and ∀ E C E ′. (tail E) C (tail E ′)}

Interpretation of environments J K : Env→℘(Subst2)

Subst ∋ ρ ::=V/x, . . . , E/α, . . .

ε J•K ε := trivially true

ρ[V/x] JΓ, x : AK ρ
′[V ′/x] := ρ JΓK ρ

′ and V JAK V ′

ρ[E/α] JΓ, α ÷ AK ρ
′[E ′/α] := ρ JΓK ρ

′ and E JAK E ′

Interpretation of properties J K : Prop→℘(Subst2)

ρ Jc = c′K ρ
′ := c[ρ]‚ c′[ρ ′]

ρ Jv = v′ : AK ρ
′ := v[ρ] JAK v′[ρ ′]

ρ Je = e′ ÷ AK ρ
′ := e[ρ] JAK e′[ρ ′]

ρ J∀x : A.ΦK ρ
′ := ∀ V JAK V ′. ρ[V/x] JΦK ρ

′[V ′/x]

ρ J∀α ÷ A.ΦK ρ
′ := ∀ E JAK E ′. ρ[E/α] JΦK ρ

′[E ′/α]

ρ JΦ⇒Φ
′K ρ

′ := ρ JΦK ρ
′ implies ρ JΦ

′K ρ
′

ρ JΦ∧Φ
′K ρ

′ := ρ JΦK ρ
′ and ρ JΦ

′K ρ
′

Interpretation of hypotheses J K : Hyp→℘(Subst2)

ρ J•K ρ := trivially true

ρ J∆, ΦK ρ
′ := ρ J∆K ρ

′ and ρ JΦK ρ
′

Interpretation of judgements J K : Judge→{true, false}

JΓ | ∆ ⊢ΦK := JΓK ∩ J∆K ⊆ JΦK

Fig. 7: Model of observational equivalence in the abstract machine.

• For each variable x of type A in the environment Γ, both ρ and ρ ′ must substitute
some value for x (call them x[ρ] =V and x[ρ ′] =V ′, respectively), such that V and
V ′ are related by the interpretation of A.

• For each covariable x of type A in the environment Γ, both ρ and ρ ′ must substitute
some covalue for α (call them α[ρ] = E and α[ρ ′] = E ′, respectively) such that E
and E ′ are related by the interpretation of A.

• For each property Φ assumed in the environment Γ, the interpretation of Φ must be
true when given both ρ and ρ ′. Or in other words, Φ must relate ρ and ρ ′.

Singular syntactic properties Φ — as well as collections of hypotheses ∆ — are interpreted
as a binary predicate deciding whether or not that property holds under a given pair of

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44 P. Downen and Z.M. Ariola

substitutions. This is equivalent to interpreting Φ or ∆ as a binary relation on substitutions,
just like we did for typing environments, that identifies which substitutions make the
property true. The interpretation of these properties as relations comes in three different
flavors, which correspond to the three different roles served by each specific Φ:

• Equalities: There are three different forms of equalities. Two commands are consid-
ered equal under a pair of substitutions when they are ‚-related after applying the
left substitution to the left command and the right substitution to the right command.
Similarly, two (co)terms are considered equal at a type A under a pair of substitutions
when applying those substitutions leads to JAK-related (co)terms.

• Quantifiers: Universal quantifiers signify that a property holds under any possible
extension allowed by the type of the quantified (co)variable. Universal quantification
over a variable, ∀x:A.Φ, relates two substitutions when Φ does, after extending the
substitutions with any pair JAK-related values for x. Universal quantification over a
covariable is defined in the same way.

• Logical connectives: The logical connectives of implication (Φ⇒Φ′) and conjunction
(Φ∧Φ′) are interpreted directly for each pair of substitutions. Equivalently, we can
say that JΦ∧Φ′K means JΦK ∩ JΦ′K using the intersection of relations (∩) that
we’ve used previously, and JΦ⇒Φ′K means JΦK =⇒ JΦ′K where (=⇒) denotes
the implication of relations.

Speaking more broadly, we can generalize the universal quantification and environment
extension from Fig. 7 to range over pre-candidates that lie outside the syntactic type system.
This generality will be needed as we simplify away the extraneous elements of a type that
we don’t need to consider while proving a property. For any pre-candidate A and binary
substitution relations γ and φ , the two universal quantifiers and environment extensions are:

ρ (∀x:A.φ) ρ
′ := ∀ V A V ′. ρ[V/x] φ ρ

′[V ′/x]

ρ (∀α÷A.φ) ρ
′ := ∀ E A E ′. ρ[E/α] φ ρ

′[E ′/α]

ρ (γ, x : A) ρ
′ := ρ γ ρ

′ and x[ρ] A x[ρ ′]

ρ (γ, α ÷A) ρ
′ := ρ γ ρ

′ and α[ρ] A α[ρ ′]

Last but not least are judgements of the form Γ | ∆ ⊢Φ, which are interpreted as just
true or false statements. The syntactic entailment ⊢ is interpreted as the boolean test for
relational implication ⊆, so that JΓ | ∆ ⊢ΦK whenever the environment JΓK combined
with the constraints in J∆K implies the property JΦK. In other words, we can understand
JΓ | ∆ ⊢ΦK pointwise as the equivalent statement

JΓ | ∆ ⊢ΦK = ∀ ρ JΓK ρ
′. if ρ J∆K ρ

′ then ρ JΦK ρ
′

that ρ JΦK ρ ′ holds for all possible substitutions ρ JΓK ρ ′ given by the typing environment
and satisfying the pre-condition ρ J∆K ρ ′. This implicational interpretation of entailment
gives rise to some useful structure to reason about the semantics of judgements.

Property 5.14. For any pre-candidate A and binary substitution relations γ , φ , and φ ′:

JΓ, x : AK = JΓK, x : JAK J∀x:A.ΦK = ∀x:JAK.JΦK γ, x : A⊆ φ = γ ⊆∀x:A. φ

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

A Contextual Formalization of Structural Coinduction 45

JΓ, α÷AK = JΓK, α÷JAK J∀α÷A.ΦK = ∀α÷JAK.JΦK γ, α÷A⊆ φ = γ ⊆∀α÷A. φ

J∆, ΦK = J∆K ∩ JΦK JΦ⇒Φ
′K = JΦK =⇒ JΦ

′K (γ ∩ φ)⊆ φ
′ = γ ⊆ (φ =⇒ φ

′)

(γ, x : A)∩ J∆K = (γ ∩ J∆K), x : A (if x /∈ FV (∆))

(γ, α ÷A)∩ J∆K = (γ ∩ J∆K), α ÷A (if α /∈ FV (∆))

Furthermore, for any related ρ γ ρ ′, we have related extensions ρ[V/x] (γ, x : A) ρ[V ′/x]
for all V A V ′, and ρ[E/α] (γ, α : A) ρ[E ′/α] for all E A E ′.

5.4 Universal consistency of weak (co)induction

We now turn to justifying inductive and coinductive reasoning in terms of the above model.
One key component is that (co)induction seeks to reason about a type by only considering
the concrete structures of a type. For an inductive type like Nat, that means we want to
consider only the zero and succ cases of values, and ignore the rest. Dually for coinductive
types like Stream A and A→ B, we want to consider only the head and tail cases of stream
covalues and only the stack V · E cases for function covalues.

The first step in this direction is to notice that certain universal properties need to consider
fewer cases for positively and negatively complete equality candidates. A strict property
on x holds for all related values of Pos(A) exactly when it holds on only the values related
by A. Dually, a productive property on α holds for all related covalues of Neg(A) exactly
when it holds on only the covalues related by A. Note that this fact does not depend on the
evaluation strategy of the language, but is instead ensured by the strictness or productivity
of the underlying property.

Lemma 5.15 ((De)Constructive (Co)Induction). For any sound candidate A and substitu-
tion relation γ:

1. γ, x : Pos(A)⊆ JΨ(x)K if and only if γ, x : A⊆ JΨ(x)K, and
2. γ, α ÷Neg(A)⊆ JΨ(α)K if and only if γ, α ÷A⊆ JΨ(α)K.

Proof We use Property 5.14 to prove γ, x : A⊆ JΨ(x)K and γ, x : Pos(A)⊆ JΨ(x)K are
equivalent statements generically for all γ by induction on the syntax of Ψ(x):

• ⟨x||E⟩= ⟨x||E ′⟩ where x is not free in E or E ′. First, note that A⊑ Pos(A), so
that ∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K implies ∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K via this inclusion.
Furthermore, ∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K means

⟨x||E⟩[V/x] = ⟨V ||E⟩‚ ⟨V ′||E ′⟩= ⟨x||E ′⟩[V ′/x]

for all V A V ′ (since E[V/x] = E and E ′[V ′/x] = E ′), and thus E Av‚ E ′ by the
definition of orthogonality. Therefore E Pos(A) E ′ by Property 5.12, and thus

⟨x||E⟩[V/x] = ⟨V ||E⟩‚ ⟨V ′||E ′⟩= ⟨x||E ′⟩[V ′/x]

for any V Pos(A) V ′, which means ∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K. In other words,

∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K = ∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46 P. Downen and Z.M. Ariola

are equivalent substitution relations, and thus more generally

γ, x : A⊆ J⟨x||E⟩= ⟨x||E ′⟩K = γ ⊆∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K
= γ ⊆∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K
= γ, x : Pos(A)⊆ J⟨x||E⟩= ⟨x||E ′⟩K

• ∀y:B.Ψ(x) where y ̸= x. Applying Property 5.14:

γ, x : A⊆ J∀y:B.Ψ(x)K = γ, x : A⊆∀y:JBK.JΨ(x)K
= γ, x : A, y : JBK ⊆ JΨ(x)K
= γ, y : JBK, x : A⊆ JΨ(x)K (x ̸= y)

= γ, y : JBK, x : Pos(A)⊆ JΨ(x)K (IH)

= γ, x : Pos(A), y : JBK ⊆ JΨ(x)K (x ̸= y)

= γ, x : Pos(A)⊆∀y:JBK.JΨ(x)K
= γ, x : Pos(A)⊆ J∀y:B.Ψ(x)K

• ∀α÷B.Ψ(x). Follows by permuting the bindings of x and α and applying the inductive
hypothesis to γ extended with α ÷ JBK analogously to the previous case.

• Φ⇒Ψ(x) where x is not free in Φ. Applying Property 5.14:

γ, x : A⊆ JΦ⇒Ψ(x)K = γ, x : A⊆ (JΦK =⇒ JΨ(x)K)
= (γ, x : A)∩ JΦK ⊆ JΨ(x)K
= (γ ∩ JΦK), x : A⊆ JΨ(x)K (x /∈ FV (Φ))

= (γ ∩ JΦK), x : Pos(A)⊆ JΨ(x)K (IH)

= (γ, x : Pos(A))∩ JΦK ⊆ JΨ(x)K (x /∈ FV (Φ))

= γ, x : Pos(A)⊆ JΦK =⇒ JΨ(x)K
= γ, x : Pos(A)⊆ JΦ⇒Ψ(x)K

• Ψ1(x)∧Ψ2(x). Note that JΨ1(x)∧Ψ2(x)K = JΨ1(x)K ∩ JΨ2(x)K so

γ, x : A⊆ JΨ1(x)∧Ψ2(x)K
= γ, x : A⊆ JΨ1(x)K ∩ JΨ2(x)K
= (γ, x : A⊆ JΨ1(x)K) and (γ, x : A⊆ JΨ2(x)K)
= (γ, x : Pos(A)⊆ JΨ1(x)K) and (γ, x : Pos(A)⊆ JΨ2(x)K) (IH)

= γ, x : Pos(A)⊆ JΨ1(x)K ∩ JΨ2(x)K
= γ, x : Pos(A)⊆ JΨ1(x)∧Ψ2(x)K

The “if” direction for property 2 follows analogously to the above using Property 5.12 for
Neg(A) in the base case of an equality ⟨V ||α⟩= ⟨V ′||α⟩. ■

Lemma 5.15 is enough to prove the extensional rule ω→ for function types, since the
interpretation JA→ BK corresponds exactly to a negatively-constructed type. As the largest
equality candidate which relates call stacks built from related parts, we can isolate these
call stacks as a negative type.

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

A Contextual Formalization of Structural Coinduction 47

Property 5.16 (Negative Functions). JA→ BK = Neg(JAK ⊙ JBK) where A⊙B is the least
relation on covalues such that:

(V · E) (A⊙B) (V ′ · E ′) :=V A V ′ and E B E ′

Lemma 5.17 (ω→). Given α, β , x /∈ FV (∆), JΓ, α ÷ A→ B | ∆ ⊢Ψ(α)K if and only if
JΓ, x : A, β ÷ B | ∆ ⊢Ψ(x · β)K.

Proof By viewing JA→ BK in terms core call-stack relation JAK ⊙ JBK (Property 5.16), and
using the fact that α /∈ FV (∆) to commute the hypothesis with the binding (Property 5.14),

JΓ, α ÷ A→ B | ∆ ⊢Ψ(α)K = (JΓK, α ÷ JA→ BK)∩ J∆K ⊆ JΨ(α)K
= (JΓK ∩ J∆K), α ÷ JA→ BK ⊆ JΨ(α)K
= (JΓK ∩ J∆K), α ÷Neg(JAK ⊙ JBK)⊆ JΨ(α)K

we learn from Lemma 5.15 that the quantification over α ÷Neg(JAK ⊙ JBK) is equivalent
to the same quantification over call stacks:

(JΓK ∩ J∆K), α ÷Neg(JAK ⊙ JBK)⊆ JΨ(α)K
= (JΓK ∩ J∆K), α ÷ JAK ⊙ JBK ⊆ JΨ(α)K (Lemma 5.15)

= (JΓK ∩ J∆K), x : JAK, β ÷ JBK.⊆ JΨ(x · β)K (x, β /∈ AV (Γ)∪ FV (∆)∪ FV (∆))

= (JΓK, x : JAK, β ÷ JBK)∩ J∆K ⊆ JΨ(x · β)K
= JΓ, x : A, β ÷ BK ∩ J∆K ⊆ JΨ(x · β)K
= JΓ, x : A, β ÷ B | ∆ ⊢Ψ(x · β)K

■

We can perform a similar inversion on the (co)inductive types, although not all at once.
Rather, this bottom-up redefinition of natural numbers and streams must work incrementally.
Beginning with the most extreme starting point (the least equality candidate Pos{} for
inductive numbers and the greatest equality candidate Neg{} for coinductive streams), we
iteratively build toward the final answer one step at a time. For the natural numbers, we use
these interpretations of the zero and succ constructors as relations between values built by
those constructors

zero JzeroK zero := trivially true (succ V) JsuccK(A) (succ V ′) :=V A V ′

in order to define larger and larger approximations of the JNatK equality candidate:

JNatK0 := Pos{} JNatKi+1 := Pos(JzeroK ∨ JsuccK(JNatKi))

At the limit, the union of all under-approximations
b

i JNatKi is the Kleene-style fixed
point definition (Kleene, 1971) of natural numbers. Thankfully, the dual construction of
coinductive streams can be done in exactly the same way, just working from the other
direction of the subtyping lattice. With these interpretations of the head and tail projections
as relations between covalues built by those destructors

(head E) JheadK(A) (head E ′) := E A E ′ (tail E) JtailK(A) (tail E ′) := E A E ′

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

48 P. Downen and Z.M. Ariola

we can define smaller and smaller approximations of JStream AK:

JStream AK0 := Neg{} JStream AKi+1 := Neg(JheadK(JAK)∧ JtailK(JStream AKi))

Here, the intersection of over-approximations
c

i JStream AKi is the dual Kleene-style fixed
point definition of streams. These incremental fixed points define the same equality candidate
as the Tarski-style fixed points from Fig. 7.

Lemma 5.18 (Positive Numbers & Negative Streams). Under both call-by-value and
call-by-name evaluation,

JNatK =
∞j

i=0

JNatKi JStream AK =
∞k

i=0

JStream AKi

Proof sketch Generalizing the proof from (Downen & Ariola, 2023, Lemma 6.13) from
sets to binary relations requires the analogous facts (Downen & Ariola, 2023, Lemmas 1.19
and 1.22) that

∞j

i=0

JNatKi =
∞∨

i=0

JNatKi

∞k

i=0

JStream AKi =
∞∧

i=0

JStream AKi

The key to demonstrating that these two instances of unions of numbers and intersections of
streams are equal is in showing that we can fully observe a constructed number or a stream
projection of any size.

For numbers, notice
b

∞

i=0 JNatKi relates the following instance of the recursor to itself:

rec∞ := rec{zero→ zero | succ → x.x}with α rec∞

∞j

i=0

JNatKi rec∞

Then, given any V
b

∞

i=0 JNatKi rec∞ V ′, we can use the fact that ⟨V ||rec∞⟩‚ ⟨V ′||rec∞⟩
to trace the reductions of the commands and show that V JNatKiV

′ for some ith finite
approximation.

Streams follow a similar logic. Notice that
c

∞

i=0 JStream AKi relates this stream to itself
for any V JAK V ′:

corec∞[V] := corec{head α→ α→ tail → γ.γ}with V

corec∞[V]

∞k

i=0

JStream AKi corec∞[V ′]

Then, given any V JAK V ′ and E
b

∞

i=0 JNatKi rec∞ E ′, we can use the fact that
⟨corec∞[V]||E⟩‚ ⟨corec∞[V ′]||E ′⟩ to trace the reductions of the commands and show that
E JStream AKiE

′ for some ith finite approximation.
It follows that these provide another definition of the least equality candidate closed under

zero and succ, and the greatest equality candidate closed under head and tail, respectively.
Since there can be only one least/greatest equality candidate satisfying the same closure
condition, they must be the same as the ones in Fig. 7. □

The incremental nature of the Kleene-style redefinitions makes it easy to reason (co)-
inductively over the ith approximation steps. This way, we can show that the premises to the

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

A Contextual Formalization of Structural Coinduction 49

(co)inductive inference rules ωNat and ωStream are interpreted as equivalent statements to
their conclusions.

Lemma 5.19 (ωNat). Given x /∈ FV (∆), JΓ, x : Nat | ∆ ⊢Ψ(x)K if and only if
JΓ | ∆ ⊢Ψ(zero)K and JΓ, x : Nat | ∆, Ψ(x) ⊢Ψ(succ x)K.

Proof The “only if” direction follows immediately, since the relations zero JNatK zero
and (succ V) JNatK (succ V ′) hold for any V JNatK V ′.

For the “if” direction, assume JΓ | ∆ ⊢Ψ(zero)K and JΓ, x : Nat | ∆, Ψ(x) ⊢Ψ(succ x)K
hold, and we will show that JΓ, x : Nat | ∆ ⊢Ψ(x)K holds, too. From Property 5.14
and Lemmas 5.15 and 5.18, it suffices to show that the following equivalent proposition
holds:

JΓ, x : Nat | ∆ ⊢Ψ(x)K = (JΓK, x : JNatK)∩ J∆K ⊆ JΨ(x)K
= (JΓK ∩ J∆K), x : JNatK ⊆ JΨ(x)K (Property 5.14)

= (JΓK ∩ J∆K), x :
∞j

i=0

JNatKi ⊆ JΨ(x)K (Lemma 5.18)

= (JΓK ∩ J∆K), x :
∞∨

i=0

JNatKi ⊆ JΨ(x)K (Lemma 5.15)

Let γ = JΓK ∩ J∆K, and we can now proceed by proving each individual approximation
γ, x : JNatKi ⊆ JΨ(x)K by induction on i.

• (Base case: 0) JNatK0 = Pos{}, so we must show γ, x : Pos{} ⊆ JΨ(x)K. By
Lemma 5.15, this statement is equivalent to γ, x : {} ⊆ JΨ(x)K, which is vacuously
true since there are no possible choices for x in the empty pre-candidate {}.

• (Inductive case: i + 1) JNatKi = Pos(JzeroK ∨ JsuccK(JNatKi)). By Lemma 5.15, these
statements

γ, x : JNatKi+1 ⊆ JΨ(x)K
= γ, x : Pos(JzeroK ∨ JsuccK(JNatKi))⊆ JΨ(x)K
= γ, x : JzeroK ∨ JsuccK(JNatKi)⊆ JΨ(x)K
= (γ, x : JzeroK ⊆ JΨ(x)K) and (γ, x : succ(JNatKi)⊆ JΨ(x)K)

are equivalent, and we must show that they hold. Since zero JzeroK zero is the
only related values of JzeroK, the assumption JΓ | ∆ ⊢Ψ(zero)K is equivalent to
γ, x : JzeroK ⊆ JΨ(x)K. Similarly, (succ V) JsuccK(JNatKi) (succ V ′) are the only
related values of JsuccK(JNatKi) for any V JNatKi V ′. By the inductive hypoth-
esis, we know γ, x : JNatKi ⊆ JΦ(x)K. Because JNatKi ≤ JNatK, the assumption
JΓ, x : Nat | ∆, Φ(x) ⊢Φ(succ x)K implies (JΓK, x : JNatKi)∩ ∆⊆ JΦ(succ x)K which
is equivalent to γ, x : JsuccK(JNatKi)⊆ JΦ(x)K. Therefore, the equivalent statements

(γ, x : JzeroK ⊆ JΨ(x)K) and (γ, x : succ(JNatKi)⊆ JΨ(x)K)
= γ, x : JNatKi+1 ⊆ JΨ(x)K

hold.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

50 P. Downen and Z.M. Ariola

So since γ, x : JNatKi ⊆ JΨ(x)K holds for every i, so too does

γ, x :
∞∨

i=0

JNatiK ⊆ JΨ(x)K = JΓ, x : Nat | ∆ ⊢Ψ(x)K

■

Lemma 5.20 (ωStream). Given α, β /∈ FV (∆), JΓ, α ÷ Stream A | ∆ ⊢Ψ(α)K if and only
if JΓ, β ÷ A | ∆ ⊢Ψ(head β)K and JΓ, α ÷ Stream A | ∆, Ψ(α) ⊢Ψ(tail α)K.

Proof Analogous to Lemma 5.19. The “only if” direction is immediate since
(head E) JStream AK (head E ′) holds for any E JAK E ′ and (tail E) JStream AK (tail E ′)
holds for any E JStream AK E ′. For the “if” direction, it suffices to show the equivalent state-
ment (JΓK ∩ J∆K), α ÷

∧
i JStream AKi ⊆ JΨ(α)K holds via Property 5.14 and Lemmas 5.15

and 5.18, which follows by induction on i using Lemma 5.15 in a similar manner as in
Lemma 5.19. ■

From this semantics of the main (co)inductive principles, we can prove soundness with
respect to the model, analogous to (Downen & Ariola, 2023), which in turn lets us derive
the fact that the universal program logic is a consistent approximation of observational
equivalence in both call-by-name and call-by-value evaluation.

Theorem 5.21 (Soundness). If Γ | ∆ ⊢Φ is derivable in the extensional program logic, then
JΓ | ∆ ⊢ΦK is true for both call-by-value and call-by-name evaluation.

Lemma 5.22. α JNatK α , and x JStream AK x and x JA→ BK x for any α and x.

Proof ⟨x||V · E⟩‚ ⟨x||V ′ · E ′⟩ by definition of ‚, so that x Neg(JAK ⊙ JBK) x by
Property 5.12, and thus x JA→ BK x by Property 5.16.

Dually, both ⟨zero||α⟩‚ ⟨zero||α⟩ and ⟨succ V ||α⟩‚ ⟨succ V ′||α⟩ by definition of ‚. As
a result, we have α JNatKi α for all i: the case for JNatK0 = Pos{} is trivial since all covalues
are related by Pos{}, and the case for JNatKi+1 = Pos(JzeroK ∨ JsuccKJNatKi) follows from
the previously mentioned fact about ‚ and Property 5.12. Finally, α

b
i JNatKi α by

Property 5.13, and thus α JNatK α by Lemma 5.18.
The fact that x JStream AK x follows from Properties 5.12 and 5.13 and Lemma 5.18 simi-

larly to the above, using the fact that ⟨x||head E⟩‚ ⟨x||head E ′⟩ and ⟨x||tail E⟩‚ ⟨x||tail E ′⟩
by definition of ‚. ■

Theorem 5.23. In the extensional program logic, the following holds for both call-by-name
and call-by-value evaluation:

1. If Γ ⊢ c = c′ then Γ ⊢ c≈ c′.
2. If Γ ⊢ v = v′ : A then Γ ⊢ v≈ v′ : A.
3. If Γ ⊢ e = e′ ÷ A then Γ ⊢ e≈ e′ ÷ A.

Proof Suppose Γ ⊢ c = c′ (the cases for Γ ⊢ v = v′ : A and Γ ⊢ e = e′ ÷ A are analogous)
and let C be any context such that Θ ⊢C[c] and Θ ⊢C[c′], and thus Θ ⊢C[c] =C[c′] by

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

A Contextual Formalization of Structural Coinduction 51

congruence. From Theorem 5.21 it must be that JΘ ⊢C[c] =C[c′]K, i.e., for any substitution
ρ JΘK ρ ′, then C[c][ρ]‚C[c′][ρ]. Note that all (co)variable type assignments in Θ have
the form α ÷Nat, x : Stream A, and x : A→ B, so by Lemma 5.22, we know that the JΘK
relates the identity substitution to itself. Thus a valid instance of JΘ ⊢C[c] =C[c′]K is
just C[c]‚C[c′], meaning C[c] 7→→ d ∼ d′←←[C[c′]. In other words, we know Γ ⊢ c≈ c′ by
definition of observational equivalence. ■

Theorem 3.7. The extensional program logic in Fig. 5 is consistent for both the call-by-name
and call-by-value semantics.

Proof A corollary of Theorem 5.23, since observational equivalence is a consistent
congruence by definition. ■

5.5 Strong call-by-value induction and call-by-name coinduction

In the general case, we need to interleave a (positive or negative) completion while building
up a (co)inductive equality candidate like JNatKi or JStream AKi. But in the specific case
where the evaluation strategy lines up nicely, we get a much simpler definition for call-by-
value inductive types and call-by-name coinductive types.

Lemma 5.24 (Strict Construction of Naturals). Under call-by-value evaluation, V JNatK V ′

if and only if V =V ′ = succn zero for some n. Furthermore JNatK = Pos(N) under call-
by-value evaluation, where N is the reflexive relation on only the hereditary numeric
constructions, i.e., the smallest binary relation such that (succn zero) N (succn zero).

Proof Let deepNat = rec{zero→ zero | succ → y. succ y}with α , and note that α ÷
Nat ⊢ deepNat ÷Nat is a well-typed covalue, so by reflexivity it is equal to itself at type Nat.
Adequacy (Theorem 5.21) then ensures that α ÷ JNatK ⊆ JdeepNat = deepNat ÷NatK and
since α JNatK α (Lemma 5.22), we know specifically that deepNat JNatK deepNat. From the
soundness of JNatK, we know that V JNatK V ′ implies ⟨V ||deepNat⟩‚ ⟨V ′||deepNat⟩, or in
other words ⟨V ||deepNat⟩ 7→→ d ∼ d′←←[⟨V ′||deepNat⟩ In call-by-value, the only such values
that satisfy this relationship are V = succn zero and V ′ = succn′ zero, for some n, n′ itera-
tions of the successor. Specifically, µ-abstractions are not values in call-by-value, and the
only other choices for values all lead to computations that get stuck at some unobservable
command.

To see that n = n′, consider what happens if n ̸= n′, and suppose (without loss of
generality) that n < n′. Here is a family of well-typed covalues that peel off n successors:

minus0 := α minusn+1 := rec{zero→ zero | succ x→ .x}with minusn

So that, for any m≤m′, ⟨succm′ zero||minusm⟩ 7→→ ⟨succm′−m zero||α⟩. Note again that α ÷
Nat ⊢minusn ÷Nat is a well-typed covalue, so that it is equal to itself by reflexivity, and
thus by adequacy (Theorem 5.21) and Lemma 5.22, minusn JNatK minusn. From soundness
of JNatK, it follows that the following inconsistent equivalence holds

⟨succn zero||minusn⟩ 7→→ ⟨zero||α⟩ ∼ ⟨succ(succn′−n−1 zero)||α⟩←←[⟨succn′ ||minusn⟩

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

52 P. Downen and Z.M. Ariola

which contradicts the definition of ∼. Therefore, n = n′, and thus V JNatK V ′ if and only if
V =V ′ = succn zero exactly.

In other words, N= JNatKv+, and so Pos(N) = Pos(JNatKv+) = Pos(JNatK) by
Property 5.11, and Pos(JNatK) = JNatK, because JNatK is already a complete equality
candidate. ■

Lemma 5.25 (Strict Destruction of Streams). Under call-by-name evaluation,
E JStream AK E ′ if and only if E = tailn(head E1) and E ′ = tailn(head E ′1) for some n and
E JAK E ′. Furthermore JStream AK = Neg(S(JAK)) under call-by-value evaluation, where
S(JAK) is the reflexive relation on only the hereditary stream projections, i.e., the smallest
binary relation such that (tailn(head E)) S(A) (tailn(head E ′)) if and only if E A E ′.

Proof Analogous to the proof for Lemma 5.24. Using the value deepStream =

corec{head α→ α | tail → β . tail β}with x, which has the type x : Stream A ⊢
deepStream A, we can conclude that E JStream AK E ′ if and only if E = tailn(head E0) and
E ′ = tailn

′
(head E ′0) for some E0 JAK E ′0. Furthermore, it must be that n = n′, because we

can peel off n tail projections using the value

raise0 := x raisen+1 := corec{head α→ head α | tail β → .β}with raisen

which derives an inconsistent equivalence ⟨x||head E0⟩ ∼ ⟨x||tail(tailn
′−n−1(head E ′0))⟩ that

contradicts the definition of ‚. Therefore, JStream AK = Neg(S(JAK)). ■

These simpler definitions for JNatK and JStream AK make it possible to verify the stronger
(co)inductive rules σNat and σStream, which do not place any restrictions on the kinds of
properties they may prove.

Lemma 5.26 (σNat).
JΓ, x : Nat ⊢ΦK if and only if JΓ ⊢Φ[zero/x]K and JΓ, x : Nat, Φ ⊢Φ[succ x/x]K.

Proof By Lemmas 5.15 and 5.24, the meaning of JΓ, x : Nat ⊢ΦK is equivalent to:

JΓ, x : Nat ⊢ΦK = JΓK, x : JNatK ⊆ JΦK
= JΓK, x : Pos(N)⊆ JΦK
= JΓK, x : N⊆ JΦK

Which can be proved equivalent to JΓK ⊆ JΦ[zero/x]K and JΓK, x : N⊆ JΦ[succ x/x]K by an
ordinary induction on the numeric constructions in N. ■

Lemma 5.27 (σStream). JΓ, α ÷ Stream A ⊢ΦK if and only if JΓ, β ÷ A ⊢Φ[head β/α]K
and JΓ, α ÷ Stream A, Φ ⊢Φ[tail α/α]K.

Proof Analogous to Lemma 5.26 by duality using Lemmas 5.15 and 5.25. ■

Theorem 5.28 (Soundness). If Γ ⊢Φ is derivable in the strong call-by-value program logic,
then JΓ ⊢ΦK is true under call-by-value evaluation. Likewise, If Γ ⊢Φ is derivable in the
strong call-by-name program logic, then JΓ ⊢ΦK is true under call-by-name evaluation.

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

A Contextual Formalization of Structural Coinduction 53

Proof The same as the proof of Theorem 5.21 with one additional case for σNat in
call-by-value or σStream and σ→ in call-by-name. ■

Theorem 5.29. In the strong call-by-value program logic and operational semantics, and
in the strong call-by-name program logic and operational semantics, the following hold:

1. If Γ ⊢ c = c′ then Γ ⊢ c≈ c′.
2. If Γ ⊢ v = v′ : A then Γ ⊢ v≈ v′ : A.
3. If Γ ⊢ e = e′ ÷ A then Γ ⊢ e≈ e′ ÷ A.

Theorem 3.9. The strong call-by-name and call-by-value program logics are consistent.

Proof Both Theorems 3.9 and 5.29 are proved the same as Theorems 3.7 and 5.23, using
the generalized Theorem 5.28 in place of Theorem 5.21. ■

6 Related Work

Foundations and implementations of coinduction

Coinduction has been heavily used in different domains: to prove security properties of
low-level code (Leroy & Rouaix, 1998; Appel & Felty, 2000), to prove regular expres-
sions containments (Henglein & Nielsen, 2011), to show language equivalence of a
non-deterministic finite automata (Bonchi & Pous, 2013), to reason about software-defined
networks (Foster et al., 2015), and probabilistic functional programs (Lago et al., 2014).
The relation between coinductive reasoning and programming languages theory has been
consolidated in (Hur et al., 2012).

Coq is one of the few formal verifiers with a long history of native support for coinduction
(Giménez, 1996; Chlipala, 2013). Yet, coinductive proof development in Coq is not easy:
such proofs are not checked until they are completed, which is too late for Coq’s interactive
proof development. It is often said that coinductive proofs have a very different “feel.”
Much work on improving the mechanization of coinduction has been done in a form of
structural coinduction in the Isabelle/HOL theorem prover (Traytel et al., 2012) with the
aim to improve the ease of use (Blanchette et al., 2014, 2015). There, the built-in notion
of coinductive proof is based on bisimulation, and so the implementation has support to
automatically derive the bisimulation relation. In contrast, here we formulate structural
coinduction directly on the shape of observations — with bisimulation as just one, optional,
mode of use — so bisimulation relations never arise for many proofs. Instead, the closest
direct implementation of structural coinduction as presented here is the implementation
of copatterns in Agda (Abel et al., 2013). Coinduction has also been brought to program
verification in Dafny (Leino & Moskal, 2014) and Liquid Haskell (Mastorou et al., 2022).

While we focus on methods of reasoning based on computation and formal classical
logic, other approaches have been employed for reasoning about corecursive programs.
From the domain-theoretic approach, Scott and de Bakker’s fixed-point induction (Bakker,
1980) is one of the early examples. However, applying fixed-point induction is not so easy,
because it requires knowledge of the CPO semantics of types and their properties. In its

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

54 P. Downen and Z.M. Ariola

place, other lemmas such as the take lemma (Bird & Wadler, 1988), and its improvement,
the approximation lemma (Bird, 1998; Hutton & Gibbons, 2001), reframes the problem
of observing infinite objects through a family of more familiar questions about induction
on finite objects: two streams are equal if all their finite approximations are. Similarly,
Mastorou et al. (2022) encodes coinduction in terms of induction by adding an index.
Gibbons & Hutton (2005) give a survey of these other methods. The formalization here, in
contrast, identifies and reifies the “inductive” nature inherent in the context of coinduction
to use directly in the coinductive principle without encoding or a change of representation.

Another approach to coinduction involves the hidden algebras (Goguen & Malcolm,
1999) behind coinductive modules in the object-oriented paradigm. This has been used to
formulate circular coinductive proofs for object-oriented behavior (Goguen et al., 2000) and
concurrent processes (Popescu & Gunter, 2010). Circular coinduction has been implemented
in Coq (Endrullis et al., 2013), and generalized to a form of parameterized coinductive
proofs (Hur et al., 2013).

Coinductive reasoning principles

Using coinduction makes it possible to avoid working with numbers (Gordon, 1994).
Instead, coinductive proofs are completely based on the structure of programs, analogous
to bisimulation (Sangiorgi, 2009). Our notion of strong (co)induction also allows for
local reasoning about valid applications of the (co)inductive hypothesis, which leads to
a compositional development of (co)inductive proofs. Similarly, Paco (Hur et al., 2013)
aims to aid the development of coinductive proofs through both compositionality (local, not
global, correctness criteria) and incrementality (new knowledge may be accumulated as the
proof is developed). We showed how the strong version of our program logic encompasses
well-known principles of strong induction and bisimulation of corecursive processes.

Corecursion—and the coinductive principles to reason about them—have also been gen-
eralized to capture common patterns that occur in programming but which make structural
coinduction more difficult to verify. For example, consider the following usual definition of
the infinite Fibonacci stream in Haskell:

fibs = 0 : 1 : sums fibs (tail fibs)

sums (x : xs) (y : ys) = (x + y) : (sums xs ys)

From experience, we know this is a well-behaved infinite stream: we can access any
particular number in finite time. However, the reason why is non-trivial, which can be more
easily seen when translated as follows into the abstract machine language used here:

⟨fibs||head α⟩= ⟨0||α⟩
⟨fibs||tail(head α)⟩= ⟨1||α⟩
⟨fibs||tail(tail α)⟩= ⟨sums||µβ1.⟨fibs||β1⟩ · µβ2.⟨fibs||tail β2⟩ · α⟩

⟨sums||xs · ys · head α⟩= ⟨head xs + head ys||α⟩
⟨sums||xs · ys · tail α⟩= ⟨sums||µβ1.⟨xs||tail β1⟩ · µβ2.⟨xs||tail β2⟩ · α⟩

The trouble is that fibs’s coinductive case for tail(tail α) recursively references back to fibs
with some syntactically unknown observers—β1 and tail β2 respectively—which might be

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

A Contextual Formalization of Structural Coinduction 55

far larger than the smaller case tail α . Despite this, the reason fibs is well-founded has to
do with the helper function sums: the application ⟨sums||xs · ys · α⟩ will replicate a stream
projection of exactly α’s length (i.e., the same number of tail projections) to both xs and ys.
A function with this special property is known as “friendly” in Isabelle/HOL (Blanchette
et al., 2015, 2017) and “abstemious” in Dafny (Leino & Moskal, 2014).

Since justifying these kinds of definitions are well-founded is already complex, reasoning
about them is even more so. For example, consider this product function of two streams
from (Blanchette et al., 2015), also defined in terms of sums:

prods (x : xs) (y : ys) = (x× y) : (sums (prods (x : xs) ys) (prods xs (y : ys)))

Both the sum and product of two streams should be commutative. It is straightforward
enough to show commutativity of sums—sums xs ys = sums ys xs—directly because it
is defined only in terms of itself and plain addition. However, prod is defined in terms
of sums, which gets in the way of a bisimulation argument. Isabelle/HOL supports the
notion of coinduction “up to” (Blanchette et al., 2015, 2017) in order to better automate the
bisimulation relation for these kinds of programs. We conjecture that the notion of structural
coinduction developed here—which does not require bisimulation at all—can sidestep the
issue entirely in this kind of example. In particular, translating the above function to the
abstract machine language looks like:

⟨prods||xs · ys · head α⟩= ⟨x× y||α⟩
⟨prods||xs · ys · tail α⟩= ⟨sums||µβ1.⟨prods||xs · tail ys · β1⟩ · µβ2.⟨prods||tail xs · ys · β2⟩ · α⟩

Suppose we accept this definition as well-founded because of sums’ properties—either
marking sums “friendly” or “abstemious” as above, or using sized types (Abel, 2006). Then
we know that β1 and β2 will always be instantiated by another observation no bigger than α

(i.e., we know β1 ≤ α and β2 ≤ α according to Section 4). We could then proceed to prove

⟨prod||xs · ys · α⟩= ⟨prod||ys · xs · α⟩

using our notion of strong coinduction on α . The main case for α = tail α ′ would then look
like the following, with a coinductive hypothesis (CIH) applicable to any observation of
α ′s size or smaller, which includes the β1 ≤ α ′ and β2 ≤ α ′ instantiated by sums:

⟨prods||xs · ys · tail α
′⟩

= ⟨sums||µβ1.⟨prods||xs · tail ys · β1⟩ · µβ2.⟨prods||tail xs · ys · β2⟩ · α ′⟩ (prods def.)

= ⟨sums||µβ1.⟨prods||tail ys · xs · β1⟩ · µβ2.⟨prods||tail xs · ys · β2⟩ · α ′⟩ (CIH, β1 ≤ α
′)

= ⟨sums||µβ1.⟨prods||tail ys · xs · β1⟩ · µβ2.⟨prods||ys · tail xs · β2⟩ · α ′⟩ (CIH, β2 ≤ α
′)

= ⟨sums||µβ2.⟨prods||ys · tail xs · β2⟩ · µβ1.⟨prods||tail ys · xs · β1⟩ · α ′⟩ (sums commut.)

= ⟨prods||ys · xs · tail α
′⟩ (prods def.)

Logical relation and program equality

Our overall approach to proving properties about programs using syntactic rules (the
program logic) that are then shown to be part of a consistent-by-definition operational
model follows the general approach of logical relations (Statman, 1985), Tait’s method (Tait,
1967), and realizability (Kleene, 1945). However, we cannot use Tait’s original method

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

56 P. Downen and Z.M. Ariola

as formulated, because types in our language classify both terms and coterms. Instead,
we use the formulation of logical relations based on orthogonality between two opposing
sets, which has been developed in multiple places including linear logic (Girard, 1987),
classical realizability (Krivine, 2005), and ⊤⊤-closed relations (Pitts, 2000, 1997a), and
symmetric candidates (Barbanera & Berardi, 1994). A key feature of our model is the
built-in notion that types are first modeled by a chosen set of values (for positive types) or
covalues (for negative types). This generation from (co)values comes from a study of polarity
and focusing in linear logic (Munch-Maccagnoni, 2009), which makes similar distinctions
between call-by-value and call-by-name interpretations of types as call-by-push-value (Levy,
2001).

We also make use of the notion of candidates — an initial definition describing all
possible models of types, whose interpretation will come later — as part of our proof.
Traditionally, the candidate-based approach is used to prove properties about programs
in languages that have impredicative polymorphism like system F (Girard, 1972). Here,
we use the same idea to construct inductive and coinductive types by quantifying over all
their possible approximations: either smaller subtypes in the case of induction or larger
supertypes in the case of coinduction. These approximations are then assembled into their
least or greatest fixed points using both the Knaster-Tarski (Knaster, 1928; Tarski, 1955)
and Kleene (Kleene, 1971) constructions — which are equivalent by Lemma 5.18 — using
the lattice structure present in the logical relations model corresponding to intersection and
union types (Coppo & Dezani-Ciancaglini, 1978; Sallé, 1978; Pottinger, 1980).

7 Conclusion

This paper defines a language for providing a computational foundation of (co)inductive
reasoning principles which brings out their duality. The impact of the evaluation strategy is
also illustrated. Whereas induction does not fully work in call-by-name, co-induction has
the same issues in call-by-value. The (co)inductive principles are derived from the definition
of types in terms of construction or destruction, using control flow instead of bisimulation to
guide the coinductive hypothesis. In the end, the logical dualities in computation—between
data and codata; information flow and control flow—provide a unified framework for using
and reasoning with (co)inductive types.

As future work, we would like to formalize more advanced notions of coinduction and
bisimilarity (Pous & Sangiorgi, 2012) that relax the constraint that the processes need to
proceed completely in sync, thus allowing one to compare processes that"almost" compute
in the same way. We would also like to show that Paco’s coinductive principles (Hur et al.,
2013) can also be encoded as an application of strong coinduction—giving a computational
model for its proofs—where accumulated knowledge may be represented as the accumulator
of a corecursive process.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
Grant No. 2245516. The authors declare no competing interests.

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

A Contextual Formalization of Structural Coinduction 57

References

Abel, A. (2006) A Polymorphic Lambda Calculus with Sized Higher-Order Types. Ph.D. thesis,
Ludwig-Maximilians-Universität München.

Abel, A., Pientka, B., Thibodeau, D. and Setzer, A. (2013) Copatterns: Programming infinite structures
by observations. Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’13, pp. 27–38. ACM.

Appel, A. W. and Felty, A. P. (2000) A semantic model of types and machine instuctions for proof-
carrying code. Wegman, M. N. and Reps, T. W. (eds), POPL 2000, Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Massachusetts,
USA, January 19-21, 2000 pp. 243–253. ACM.

Bakker, J. W. d. (1980) Mathematical Theory of Program Correctness. Prentice-Hall, Inc.
Barbanera, F. and Berardi, S. (1994) A symmetric lambda calculus for “classical” program extraction.

Theoretical Aspects of Computer Software, International Conference TACS ’94, Sendai, Japan,
April 19-22, 1994, Proceedings pp. 495–515.

Barwise, J. and Moss, L. (1997) Vicious circles. on the mathematics of non-wellfounded phenomena.
The Journal of Symbolic Logic 1039–1040.

Bird, R. (1998) Introduction to Functional Programming Using Haskell (second edition). Prentice-
Hall, Inc.

Bird, R. and Wadler, P. (1988) An Introduction to Functional Programming. Prentice-Hall, Inc.
Blanchette, J. C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A. and Traytel, D. (2014) Truly

modular (co)datatypes for isabelle/hol. Klein, G. and Gamboa, R. (eds), Interactive Theorem
Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. Lecture Notes in Computer Science
8558, pp. 93–110. Springer.

Blanchette, J. C., Popescu, A. and Traytel, D. (2015) Foundational extensible corecursion: a proof
assistant perspective. Fisher, K. and Reppy, J. H. (eds), Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015 pp. 192–204. ACM.

Blanchette, J. C., Bouzy, A., Lochbihler, A., Popescu, A. and Traytel, D. (2017) Friends with benefits -
implementing corecursion in foundational proof assistants. Yang, H. (ed), Programming Languages
and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings. Lecture Notes in Computer Science 10201, pp. 111–140. Springer.

Bonchi, F. and Pous, D. (2013) Checking NFA equivalence with bisimulations up to congruence.
Giacobazzi, R. and Cousot, R. (eds), The 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013 pp. 457–468.
ACM.

Burstall, R. M. (1969) Proving properties of programs by structural induction. The Computer Journal
12(1):41–48.

Chlipala, P. (2013) Certified Programming with Dependent Types: A Pragmatic Introduction to the
Coq Proof Assistant. MIT Press.

Coppo, M. and Dezani-Ciancaglini, M. (1978) A new type assignment for λ -terms. Arch. Math. Log.
19(1):139–156.

Curien, P.-L. and Herbelin, H. (2000) The duality of computation. Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming. ICFP ’00, pp. 233–243. ACM.

Downen, P. and Ariola, Z. M. (2018) A tutorial on computational classical logic and the sequent
calculus. Journal of Functional Programming 28:e3.

Downen, P. and Ariola, Z. M. (2023) Classical (co)recursion: Mechanics. Journal of Functional
Programming 33:e4.

Downen, P., Johnson-Freyd, P. and Ariola, Z. M. (2015) Structures for structural recursion.
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming.
ICFP ’15, pp. 127–139. ACM.

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

58 P. Downen and Z.M. Ariola

Downen, P., Ariola, Z. M. and Ghilezan, S. (2019) The duality of classical intersection and union
types. Fundamenta Informaticae 170(1-3):39–92.

Downen, P., Johnson-Freyd, P. and Ariola, Z. M. (2020) Abstracting models of strong normalization
for classical calculi. Journal of Logical and Algebraic Methods in Programming 111:100512.

Endrullis, J., Hendriks, D. and Bodin, M. (2013) Circular coinduction in Coq using bisimulation-up-to
techniques. Proceedings of the 4th International Conference on Interactive Theorem Proving.
ITP’13, p. 354–369. Springer-Verlag.

Foster, N., Kozen, D., Milano, M., Silva, A. and Thompson, L. (2015) A coalgebraic decision
procedure for netkat. Rajamani, S. K. and Walker, D. (eds), Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015 pp. 343–355. ACM.

Gibbons, J. and Hutton, G. (2005) Proof methods for corecursive programs. Fundamenta Informaticae
66(04):353–366.

Giménez, E. (1996) An application of co-inductive types in coq: Verification of the alternating bit
protocol. Berardi, S. and Coppo, M. (eds), Types for Proofs and Programs pp. 135–152. Springer
Berlin Heidelberg.

Girard, J. Y. (1972) Interprétation fonctionnelle et elimination des coupures de l’arithmétique d’ordre
supérieur. These d’état, Université de Paris 7.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50(1):1–101.
Gödel, K. (1980) On a hitherto unexploited extension of the finitary standpoint. Journal of

Philosophical Logic 9(2):133–142.
Goguen, J., Lin, K. and Rosu, G. (2000) Circular coinductive rewriting. Proceedings, Automated

Software Engineering ’00 07.
Goguen, J. A. and Malcolm, G. (1999) Hidden coinduction: behavioural correctness proofs for objects.

Mathematical Structures in Computer Science 9(3):287–319.
Gordon, A. (1994) A tutorial on co-induction and functional programming. Proceedings of the 1994

Glasgow Workshop on Functional Programming, Ayr, Scotland pp. 78–95. Springer London.
Gordon, M. (2017) Corecursion and coinduction: what they are and how they relate to

recursion and induction. https://www.cl.cam.ac.uk/archive/mjcg/Blog/WhatToDo/
Coinduction.pdf.

Hagino, T. (1987) A typed lambda calculus with categorical type constructors. Category Theory and
Computer Science pp. 140–157. Springer Berlin Heidelberg.

Harper, R. (2016) Practical Foundations for Programming Languages. 2nd edn. Cambridge University
Press.

Henglein, F. and Nielsen, L. (2011) Regular expression containment: Coinductive axiomatization and
computational interpretation. Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’11, p. 385–398. Association for Computing
Machinery.

Herbelin, H. (2005) C’est maintenant qu’on calcule : Au coeur de la dualité. Habilitation thesis,
Université Paris 11.

Hur, C., Dreyer, D., Neis, G. and Vafeiadis, V. (2012) The marriage of bisimulations and kripke
logical relations. Field, J. and Hicks, M. (eds), Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012 pp. 59–72. ACM.

Hur, C.-K., Neis, G., Dreyer, D. and Vafeiadis, V. (2013) The power of parameterization in coinductive
proof. Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’13, p. 193–206. Association for Computing Machinery.

Hutton, G. and Gibbons, J. (2001) The generic approximation lemma. Information Processing Letters
79(08):197–201.

Kleene, S. C. (1945) On the interpretation of intuitionistic number theory. Journal of Symbolic Logic
10(4):109–124.

Kleene, S. C. (1971) Introduction to Metamathematics. Bibliotheca Mathematica, a Series of
Monographs on Pure and. Wolters-Noordhoff.

https://www.cl.cam.ac.uk/archive/mjcg/Blog/WhatToDo/Coinduction.pdf
https://www.cl.cam.ac.uk/archive/mjcg/Blog/WhatToDo/Coinduction.pdf

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

A Contextual Formalization of Structural Coinduction 59

Knaster, B. (1928) Un theoreme sur les functions d’ensembles. Ann. Soc. Polon. Math. 6:133–134.
Kozen, D. and Silva, A. (2017) Practical coinduction. Mathematical Structures in Computer Science

27(7):1132–1152.
Krivine, J.-L. (2005) Realizability in classical logic. Interactive models of computation and program

behaviour, vol. 27, pp. 197–229. Société Mathématique de France.
Lago, U. D., Sangiorgi, D. and Alberti, M. (2014) On coinductive equivalences for higher-order

probabilistic functional programs. Jagannathan, S. and Sewell, P. (eds), The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014 pp. 297–308. ACM.

Leino, K. R. M. and Moskal, M. (2014) Co-induction simply. Jones, C., Pihlajasaari, P. and Sun, J.
(eds), FM 2014: Formal Methods pp. 382–398. Springer International Publishing.

Leroy, X. and Rouaix, F. (1998) Security properties of typed applets. MacQueen, D. B. and Cardelli,
L. (eds), POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, CA, USA, January 19-21, 1998 pp. 391–403. ACM.

Levy, P. B. (2001) Call-By-Push-Value. PhD thesis, Queen Mary and Westfield College, University of
London.

Mastorou, L., Papaspyrou, N. and Vazou, N. (2022) Coinduction inductively: Mechanizing coinductive
proofs in liquid haskell. Proceedings of the 15th ACM SIGPLAN International Haskell Symposium.
Haskell 2022, p. 1–12. Association for Computing Machinery.

Munch-Maccagnoni, G. (2009) Focalisation and classical realisability. Computer Science Logic, 23rd
international Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal,
September 7-11, 2009. Proceedings pp. 409–423.

Pierce, B. C. (2002) Types and Programming Languages. 1st edn. The MIT Press.
Pitts, A. (1997a) A note on logical relations between semantics and syntax. Logic Journal of IGPL

5(4):589–601.
Pitts, A. M. (1997b) Operationally-based theories of program equivalence. Semantics and Logics of

Computation 14:241.
Pitts, A. M. (2000) Parametric polymorphism and operational equivalence. Mathematical Structures

in Computer Science 10(3):321–359.
Popescu, A. and Gunter, E. L. (2010) Incremental pattern-based coinduction for process algebra and

its Isabelle formalization. Proceedings of the 13th International Conference on Foundations of
Software Science and Computational Structures. FOSSACS’10, p. 109–127. Springer-Verlag.

Pottinger, G. (1980) A type assignment for the strongly normalizable λ -terms. Seldin, J. P. and Hindley,
J. R. (eds), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp.
561–577. Academic Press.

Pous, D. and Sangiorgi, D. (2012) Enhancements of the bisimulation proof method. Sangiorgi, D. and
Rutten, J. (eds), Advanced Topics in Bisimulation and Coinduction. Cambridge University Press.

Rutten, J. (2019) The Method of Coalgebra: Exercises in coinduction. CWI, Amsterdam, The
Netherlands.

Sallé, P. (1978) Une extension de la théorie des types en lambda-calcul. Ausiello, G. and Böhm, C.
(eds), Fifth International Conference on Automata, Languages and Programming. Lecture Notes in
Computer Science 62, pp. 398–410. Springer-Verlag.

Sangiorgi, D. (2009) On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.
Syst. 31(4).

Statman, R. (1985) Logical relations and the typed λ -calculus. Information and control 65(2-3):85–97.
Tait, W. W. (1967) Intensional interpretations of functionals of finite type I. Journal of Symbolic

Logic 32(2):198–212.
Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics 5(2):285 – 309.
Traytel, D., Popescu, A. and Blanchette, J. C. (2012) Foundational, compositional (co)datatypes for

higher-order logic: Category theory applied to theorem proving. Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012
pp. 596–605. IEEE Computer Society.

	Introduction
	(Co)Inductive Reasoning About (Co)Recursive Programs
	Structural induction
	Coinductive programs and proofs
	Structural coinduction
	Mutual coinduction
	Strong coinduction

	Intensional Versus Extensional Equality With (Co)Inductive Types
	Intensional equational theory
	Extensional program logic
	Consistency of the extensional program logic
	When is unrestricted (co)induction sound?

	The Strength of Strong (Co)Induction
	Consistency of the Program Logic
	Orthogonal relations and equality candidates
	Dual lattices and completion
	Interpretation of types and properties
	Universal consistency of weak (co)induction
	Strong call-by-value induction and call-by-name coinduction

	Related Work
	Conclusion

