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Abstract

Structural induction is pervasively used by functional programmers and researchers for both informal
reasoning as well as formal methods for program verification and semantics. In this paper, we promote
its dual — structural coinduction — as a technique for understanding corecursive programs only in
terms of the logical structure of their context. We illustrate this technique as an informal method
of proofs which closely match the style of informal inductive proofs, where it is straightforward to
check that all cases are covered and the coinductive hypotheses are used correctly. This intuitive
idea is then formalized through a syntactic theory for deriving program equalities, which is justified
purely in terms of the computational behavior of abstract machines and proved sound with respect to
observational equivalence.

1 Introduction

Every day, a large community of computer scientists — working on applications and theory
of functional programming, verification, type systems, and semantics — employ induction
to effectively reason about software and its behavior. Whether mechanically checked by a
computer or informally written with pen and paper, various forms of inductive techniques
are applied with confidence that the result is well-founded. What is the secret to this
confidence? The inductive principle itself limits recursive reasoning to only pieces of the
original example which are structurally smaller than it (Burstall, 1969).

Coinduction, the dual to induction, is not understood or used with the same level of famil-
iarity or frequency. It is usually relegated to coalgebras (Rutten, 2019), since traditionally
only the categorical setting speaks clearly about the duality that relates induction and coin-
duction. Despite its difficulty, coinduction remains an essential principle for dealing with
important software systems like concurrent processes, web servers, and operating systems
(Barwise & Moss, 1997), which endlessly run while interacting with their environment.

Why, then, does coinduction see less use in both informally written and mechanically
verified proofs of programming language theory? One major obstacle is that coinduction is
easy to formulate in a dangerous way, where the recursive nature of coinduction seems too
powerful on the surface and can lead to nonsensical, viciously circular proofs. To tamper
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2 P. Downen and Z.M. Ariola

down on this unreasonable power, we must externally check that the coinductive hypothesis
is only applied in certain special contexts, which fundamentally breaks compositional
reasoning; certain proofs may seem valid until they are embedded into a larger context.

In this paper, we aim to alleviate the non-compositional difficulty of coinduction by
reformulating it to more closely resemble the familiar forms of induction used in practice,
with the hope that this presentation will make coinduction more suitable for widespread
use in programming environments (Gordon, 2017). Our methodology is to work in a setting
based on (Curien & Herbelin, 2000) where the important contexts are reified into first-class
objects that can be labeled and have a predictable structure — similar to inductive objects
like numbers and trees which can be named and analyzed structurally. The key idea here
is that the coinductive principle limits recursion to only contexts which are structurally
smaller than the starting point of coinduction, and that this requirement is checked locally
by just looking at the label where corecursion happens. This paper then demonstrates how
coinduction — in terms of both an informal pen-and-paper methodology as well as a formal
program logic for proving equality of corecursive programs with or without side effects
— can be seen as induction on the context. We thus avoid resorting to the least or greatest
fixed point notions of lattice theory and domain theory to explain the duality between
induction and coinduction (Gordon, 1994). Both the informal technique and formal system
are sound in the sense that every syntactically-derived equality implies an observational
equivalence: the program logic is proven sound with respect to an adequate denotational
model of observational equivalence defined in terms of its operational semantics.

Having (co)inductive reasoning principles expressed within a calculus follows previous
work (Curien & Herbelin, 2000) on defining a calculus that directly expresses the dualities
commonly seen in logic, specifically (Downen & Ariola, 2023). For example, the duality
between true and false computationally appears as the duality between a process that pro-
duces information and one that consumes information (Downen & Ariola, 2018). We think
our work follows the spirit of Kozen & Silva (2017); the authors present several examples
of the use of coinduction in informal-style mathematical arguments. This paper strives to
put those arguments on solid ground that can be justified only in terms of computation. We
believe our approach only requires the same mathematical skills already used by computer
scientists to reason inductively over data structures, while still capturing the essential prop-
erty of compositionality. Coinduction is explained in terms of subcomponents, much the
same way structural induction is presented.

In addition to giving a compositional and computational foundation for coinduction, this
paper studies both induction and coinduction proof principles in the setting of a language
derived from classical logic à la Curry-Howard, and identifies the syntactic conditions that
must be imposed on an argument to make it correct in the presence of computational effects.
For example, it is well known that one needs to be careful applying induction in non-strict
languages such as Haskell. For example, the optimization

x ∗ 0 ?
= 0

can be proved by traditional induction over the natural numbers, but it does not hold
according to a call-by-name evaluation strategy because this proof does not account for
the case of nontermination. Letting Ω stand for a non-terminating expression, notice that
plugging in Ω for x leads to an incorrect equality; Ω ∗ 0 = 0 claims that a non-terminating
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A Contextual Formalization of Structural Coinduction 3

expression Ω ∗ 0 is equal to a constant value. Even worse, if we consider other computational
effects such as aborting a computation, then substituting abort 1 for x leads to

(abort 1) ∗ 0 = 0

seemingly equating 1 to 0.
Dually, strict languages such as OCaml suffer from the same kinds of problems

where naïve coinduction is not always correct. For example, consider infinite stream
(x0, x1, x2, x3, . . . ) with the two main projections:

head(x0, x1, x2, . . . ) = x0 tail(x0, x1, x2, . . . ) = x1, x2, . . .

Now, intuitively, taking the head and tail of a stream and putting them back does nothing:

head xs, tail xs = xs

and this equation does indeed hold, under both call-by-name and call-by-value evaluation,
both with or without side effects (as we will see in more detail later). So intuitively, we
should be able to apply this equality a second time to expand out two places, right?

head xs, head(tail xs), tail(tail xs) ?
= xs (1.1)

As it turns out, this equation fails in call-by-value languages with side effects, similar to the
problem with x ∗ 0 = 0 in call-by-name. Of course, in the call-by-value setting, we need to
be careful of timing considerations when handling infinite objects: an infinite stream cannot
be fully evaluated in advance. So to support infinite streams, we ensure that the head and
tail of the stream are only computed on demand, that is, at the last moment when they are
required. As such, any pair M, N of a head element M and tail N is treated as a first-class
value, even if M and N have not been evaluated yet. Now, consider the partial stream value
0, Ω: asking for its head element returns 0, and asking for its tail does not return (it incurs
the non-terminating computation Ω). Plugging in 0, Ω for xs in (1.1) gives

head(0, Ω), head(tail(0, Ω)), tail(tail(0, Ω)) = (0, Ω)

This leads to a counter-example in call-by-value, where let z = tail(0, Ω) in 1 does not
terminate because tail(0, Ω) = Ω which never returns a value that can be bound to z, but

let z = tail(head(0, Ω), head(tail(0, Ω)), tail(tail(0, Ω))) in 1 =

let z = Ω, Ω in 1 =

1

In place of non-termination, plugging in (0, abort 2) for xs in (1.1) also serves as another
example using abort as a side-effect:

let z = tail(0, abort 2) in 1 =

let z = tail(head(0, abort 2), head(tail(0, abort 2)), tail(tail(0, abort 2))) in 1

where the left-hand side aborts with 2, but the right-hand side returns 1.
For a more practical example, consider these informally-defined operations on streams:

evens (x0, x1, x2, x3, . . . ) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, . . . ) = x1, x3, x5, . . .
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4 P. Downen and Z.M. Ariola

merge (x0, x1, x2, . . . ) (y0, y1, y2, . . . ) = x0, y0, x1, y1, x2, y2, . . .

The evens function selects only the even elements of a stream, odds selects only the odd
elements of a stream, and merge interleaves two streams together by alternating between
them. It should be intuitive that selecting the even and odd elements of a stream and merging
them back together is the same as the original stream:

merge (evens xs) (odds xs) ?
= xs

We can prove this fact by conventional methods of coinduction, and this paper shows that
it also holds true using our notion of strong structural coinduction under call-by-name
evaluation whether or not xs contains side effects. However, strong structural coinduction
is not sound in a call-by-value language with effects, and as a consequence the intuitive
equality is incorrect. What goes wrong? The timing considerations of when the head or tail
of a stream are computed become important in call-by-value, and need to be explicated. So
if we rewrite evens, odds, and merge more formally as

evens xs = head xs, odds (tail xs)

odds xs = evens (tail xs)

merge xs ys = head xs, head ys, merge (tail xs) (tail ys)

then notice that merge applied to any two stream values xs and ys will always return a stream
starting with at least two comma-separated elements. So if we consider the counter-example
stream value 0, Ω with exactly one comma, notice that odds (0, Ω) = evens Ω which does
not terminate. Thus, merge (evens (0, Ω)) (odds (0, Ω)) doesn’t terminate, too, which is
immediately different from the value 0, Ω. As a second counter-example, consider the
stream value 0, 1, 2, Ω with three commas, we will return a value:

merge (evens (0, 1, 2, Ω)) (odds (0, 1, 2, Ω)) = 0, 1, Ω

but that value can be differentiated from the starting stream 0, 1, 2, Ω by asking for the
third element (2) via head(tail(tail xs)). Notice in each case, the stream returned by merge
always has an even number of comma-separated elements; if the starting xs has an odd
number of elements before Ω, the last one is forgotten. As before, using an abort in place
of Ω gives us alternative abort-based counter-examples. So plugging in the partial stream
value 0, abort 1 causes merge (evens (0, abort 1)) (odds (0, abort 1)) to immediately
abort with 1 instead of returning some value, and plugging in 0, 1, 2, abort 3 returns the
smaller partial stream 0, 1, abort 3.

The remainder of this paper will give a firm, unambiguous, computational foundation
for reasoning about corecursive programs using structural coinduction, including the subtle
timing implications when side effects are involved. As an example of an inductive type
we take the canonical definition of natural numbers, and for coinductive types we consider
streams, building on top of the abstract machine language from (Downen & Ariola, 2023),
which defines a calculus of primitive recursion and corecursion. Here, we extend that
calculus with an informal (“pen-and-paper”) proof technique for structural coinduction
as well as a formal logic for soundly deriving equalities between programs with control
effects. While we focus on examples involving natural numbers and streams, the reasoning
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A Contextual Formalization of Structural Coinduction 5

techniques discussed here are applicable to other data and codata types. More specifically,
we provide the following contributions:

• Section 2 provides examples of applying informal (co)inductive reasoning to programs
which use (co)recursion to process (co)inductive types like numbers and streams.

• Section 3 introduces the differences between intensional and extensional equality
in the presence of (co)inductive types, and gives a sound, formal program logic for
reasoning (co)inductively about (co)recursive programs with control effects. It also
discusses how to soundly generalize the induction principle for call-by-value, and
soundly generalize the coinduction principle for call-by-name.

• Section 4 discusses the contrast in expressive power between the different (co)-
inductive principles: restricted and universally sound versus unrestricted and
conditionally sound. To do so, we derive a number of more familiar reasoning princi-
ples, such as strong induction on the numbers, bisimulation, and compositionality of
coinduction.

• Section 5 provides a proof that the program logic in Section 3 is sound: syntactic for-
mal proofs of equality imply semantic contextual equivalence, and more specifically,
0 is not equal to 1. This proof is modeled in terms of a logical relation based on the
notion of orthogonality between producers and consumers.

2 (Co)Inductive Reasoning About (Co)Recursive Programs

Skilled functional programmers are quite adept at using induction, both for writing their
programs and reasoning about them. For example, we can follow the inductive structure of
the usual natural number type,

inductive data Nat where
zero : Nat
succ : Nat→Nat

to inductively define the addition plus : Nat→Nat→Nat by the patterns of Nat like so:

plus zero y = y

plus (succ x) y = succ(plus x y)

Why is plus well-founded—meaning it never causes an infinite loop, and always returns a
valid result for any valid arguments? Because its first argument always gets smaller (Burstall,
1969); the x passed into the recursive call plus x y is a piece of the original argument succ x
from the call plus (succ x) y that triggered it (a property we can statically check in the
definition).

2.1 Structural induction

To reason about functions like plus that take Nats as arguments, programmers can also
reason by induction that follows the structure of Nat in the same way the code is written.
For example, the very definition of plus is first built on the identity of addition, that
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6 P. Downen and Z.M. Ariola

plus zero y = y for any number y, so it holds by just calculation with no further verification
required. However, addition’s second identity law, plus x zero = x for any number x, cannot
be directly calculated in the same way. Instead, matching the inductive structure of plus
itself, we have to prove this property by cases on what that first argument x might be.

Example Theorem 2.1. For all x of type Nat, plus x zero = x.

Proof By induction on the structure of the value x

• x = zero. We have: plus zero zero = zero = x, by definition of plus.
• x = succ x′. Assume the inductive hypothesis plus x′ zero = x′. From there,

plus (succ x′) zero = succ(plus x′ zero) def. of plus

= succ x′ = x inductive hypothesis

■

Why is the proof of Example Theorem 2.1 well-founded—meaning it does not contain
any vicious circle in its reasoning? In the inductive hypothesis, we assume that Example
Theorem 2.1 is true for the specific x′ that is the predecessor of the x we started with. As
such, the cyclic reasoning always applies to a strictly smaller x, and the inductive hypothesis
can never lead to a vicious cycle no matter how we use it, so no further checks are necessary
to validate this proof. More formally, this inductive argument is justified because the set
of natural numbers of type Nat is a least fixed point (Pierce, 2002): it is the smallest set
containing zero and closed under succ.

2.2 Coinductive programs and proofs

The correspondence between inductive type, inductive program, and inductive proof, all line
up quite neatly in the functional paradigm, with each of them following exactly the same
structure. Since coinduction is the logical dual of induction, shouldn’t this correspondence
naturally extend to coinductive structures like infinite streams? One can define the type of
streams coinductively as the largest data type (i.e., greatest fixed point, or final coalgebra)

coinductive data Stream a where
Cons : a→ Stream a→ Stream a

built from the Cons constructor—appending an element to the front of another stream—
without any base case for the empty stream. From there, coinductive functions—like
always : a→ Stream a which returns the stream that always contains the same value of type
a, or iterate : (a→ a)→ a→ Stream a that builds an infinite stream from some original a
by repeatedly applying a given function to it—can be defined cyclically like so:

always x = Cons x (always x) iterate f x = Cons x (iterate f ( f x))

Why are always and iterate well-founded? The answer here is not so clear; at first glance,
they look like infinite loops that never return a definite answer. However, one justification is
that both definitions are productive: they always return a Cons before recursing. In other
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words, the self-references of always and iterate are both found inside a Cons (that is, in
the context Cons first . . . ). If we assume lazy evaluation of Cons this can be enough to
prevent infinite loops for well-behaved observers of the stream; trying to access the “last”
element of an infinite stream is not a well-behaved observer. While this justification may not
be as self-evident as the structural induction of functions like plus, at least it is a property
that can be syntactically checked in the specific definitions of always and iterate.

Example Theorem 2.2. For all values x, iterate (λy.y) x = always x.

Proof Assume the coinductive hypothesis

iterate (λy.y) x = always x .

From there,

iterate (λy.y) x = Cons x (iterate (λy.y) ((λy.y) x)) def. of iterate

= Cons x (iterate (λy.y) x) β -reduction

= Cons x (always x) coinductive hypothesis

= always x def. of always

■

Why is the proof of Example Theorem 2.2 well-founded? Compared to the inductive
proof, skepticism of this form of coinduction is more warranted. After all, the proof begins
by immediately assuming the very fact it is trying to prove, with no stipulation! What’s to
stop us from this much simpler, but hopelessly vicious, “coinductive” proof of Example
Theorem 2.2?

Bad Proof Assume the coinductive hypothesis iterate (λy.y) x = always x. From the
coinductive hypothesis, it follows that iterate (λy.y) x = always x, as required. �

This bad proof is obviously invalid, even though it “proved” the goal through a trivial
sequence of apparently valid steps (introducing a hypothesis and using it). What’s the
difference between the bad proof above and the good proof of Example Theorem 2.2? The
good proof only tried to use the coinductive hypothesis “inside” a Cons, whereas the bad
proof just nakedly used the coinductive hypothesis outside of any Cons. Thus, somehow a
coinductive proof of this form must be very careful that certain hypotheses can only be used
in certain contexts, whatever that means, even if they are a perfect match for the current
goal.

The concern over even a trivial theorem like Example Theorem 2.2 shows the potential
breakdown of the correspondence of coinductive types, coinductive programs, and coinduc-
tive proofs; at each step, our certainty in the basic structures wanes. Even if the intuition
for distinguishing “good” from “bad” programs may be fraught, a formal system like a
proof assistant might be up to the task of regulating context-sensitive uses of the coinductive
hypothesis to verify a proof. But a human that needs to understand a proof with informal
reasoning, which has no perfect overseer like a mental proof assistant, can quickly become
overwhelmed as the theorems and proofs grow ever larger. No wonder why coinduction fills
us with such trepidation.
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8 P. Downen and Z.M. Ariola

Instead, what is needed is a style of coinductive reasoning which is not burdened by
precariously implicit context-sensitive rules of validity. Or put another way, the context-
sensitivity imposed by coinduction should be made an explicit part of the coinductive
hypothesis, so that it may be used freely, and fearlessly, in any place that it fits.

The first step is to shift our view away from coinductively-defined data types, to co-
inductively-defined codata types (Hagino, 1987). Rather than constructors, codata types
define the basic observations, or projections, allowed on values of the type. For infinite
streams, these are the head and tail projections that access the first element and the remainder
of the stream, respectively, as described in the following declaration:

coinductive codata Stream a where
head : Stream a→ a

tail : Stream a→ Stream a

While abstractly these may be two views of the same isomorphic structure, they give us a
different way to understand coinduction and the operational meaning of programs. With
codata types, we define programs by matching on the structure of their projections, dual to
the way function programmers define functions like plus by matching on the structure of
constructors of data types. For example, the always and iterate functions can be rewritten
in terms of copatterns (Abel et al., 2013) like so:

head(always x) = x
tail(always x) = always x

head(iterate f x) = x
tail(iterate f x) = iterate f ( f x)

Here, head and tail are seen as projection functions, and the streams returned by always x
and iterate f x are defined by the two lines, describing what their head and tail is.

But copatterns alone aren’t enough. We also need to label our context, so that the
language itself is expressive enough to regulate how to control the use of coinduction to
certain contexts. To do so, we have to move outside of pure functional programming, based
on intuitionistic logic, to a more language based on classical logic with labels and jumps.
One such language (Downen et al., 2015) is modeled on the sequent calculus (Curien &
Herbelin, 2000), which provides a syntax for writing contextual observations as first-class
objects. In this sequent style, a Greek letter α , β , . . . , stands for an observer of values, and
the command ⟨x||α⟩ says that the observer α is applied to x, or symmetrically, that the value
x is returned to α .

Rather than viewing the Stream operations head and tail as functions, as we did above, we
could instead view them as primitive ways to build new observations. So if α is expecting to
observe a value of type a, then the composition head α observes a value of type Stream a by
taking its first element and passing it to α . Similarly, if β is expecting to observe a value of
type Stream a, then tail β observes a value of type Stream a by discarding its first element
and passing the rest to β . Putting them together, the observation tail(head β ) should be
read as first observing the tail of a stream and then applying the head to that result so that
β receives the second element of the stream. The two different views—head and tail as
functions versus observations—are always equal to one another:

⟨head s||α⟩= ⟨s||head α⟩ ⟨tail s||β ⟩= ⟨s||tail β ⟩ (2.1)
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In this observer-centric style, we can further refine always and iterate by labeling the full
context in which they are observed in a command, ⟨always x||α⟩ and ⟨iterate f x||α⟩. The
two definitions then follow by matching on the structure of the observer α , which must be
built by either a head or tail projection.

⟨always x||head β ⟩= ⟨x||β ⟩
⟨always x||tail α

′⟩ = ⟨always x||α ′⟩
⟨iterate f x||head β ⟩= ⟨x||β ⟩
⟨iterate f x||tail α

′⟩ = ⟨iterate f ( f x)||α ′⟩

Now, the fact that these corecursive functions are well-founded follows the same basic
reasoning as the recursive function plus: all instances of self-reference are invoked with a
strictly smaller observer. In particular, the observer α ′ in the corecursive call ⟨always x||α ′⟩
is a piece of the original observer tail α ′ from the command ⟨always x||tail α ′⟩. Similarly,
the observer of the corecursive call ⟨iterate f ( f x)||α ′⟩ came from a piece of the observer
in the proceeding command ⟨iterate f x||tail α ′⟩. So copattern-matching over observers
restores the symmetry between recursive functions (which consume inductively-defined
arguments) and corecursive functions (which produce coinductively-defined results).

2.3 Structural coinduction

What about proofs involving these programs? Let’s try to prove the analogous version of
Example Theorem 2.2 but in the context of an observer labeled α .

Example Theorem 2.3. For all values x of type a and all observers α of type Stream a,
⟨iterate (λy.y) x||α⟩= ⟨always x||α⟩.

Proof By coinduction on the stream received by α , i.e., by induction on the structure of α :

• α = head β . We have: ⟨iterate (λy.y) x||head β ⟩= ⟨x||β ⟩= ⟨always x||head β ⟩ by
definition of iterate and always.

• α = tail α ′. Assume the coinductive hypothesis

⟨iterate (λy.y) x||α ′⟩= ⟨always x||α ′⟩.

From there,

⟨iterate (λy.y) x||tail α
′⟩= ⟨iterate (λy.y) ((λy.y) x)||α ′⟩ def. of iterate

= ⟨iterate (λy.y) x||α ′⟩ β -reduction

= ⟨always x||α ′⟩ coinductive hypothesis

= ⟨always x||tail α
′⟩ def. of always

■

Notice how the proof of Example Theorem 2.3 above follows much closer the overall
shape of the inductive proof of Example Theorem 2.1. First, the coinductive hypothesis is
only introduced in the step for α = tail α ′; as with induction, the coinductive hypothesis is
not available to show the base case of α = head β . Furthermore, the coinductive hypoth-
esis ⟨iterate (λy.y) x||α ′⟩= ⟨always x||α ′⟩ carries enough information to fully dictate the
valid contexts in which it can be used. In particular, we can only assume the goal (that
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10 P. Downen and Z.M. Ariola

iterate (λy.y) x is equal to always x) when observed by α ′, the specific ancestor to the
original observer α = tail α ′. There is no way to use the coinductive hypothesis to equate
these two streams when seen by any other observer. In particular, the coinductive hypothesis
doesn’t even apply to the original goal ⟨iterate (λy.y) x||α⟩= ⟨always x||α⟩, like we did in
the bad coinductive proof, because α ̸= α ′. As such, even though the proof above is infor-
mal, there is no longer any ambiguity about its validity, so no further checks are necessary
to avoid vicious cycles. Since it follows the structure of the context, we call it structural
coinduction.

But have we proved the same result; are Example Theorems 2.2 and 2.3 logically the
same? In order to compare the two, we can employ the notion of observational equivalence,
which says that two terms are equal exactly when no observer can tell them apart. Spelled
out in terms of labeled contexts, observational equivalence is the principle that, for any
terms M and N (without a free reference to α):

M = N if and only if, for all α, ⟨M||α⟩= ⟨N||α⟩

Applying this principle to Example Theorems 2.2 and 2.3, we know for all values x,

iterate (λy.y) x = always x if and only if, for all α, ⟨iterate (λy.y) x||α⟩= ⟨always x||α⟩

So the two theorems state the same equality, up to observational equivalence.
Note that we can derive the result of applying head and tail as functions to iterate

via observational equivalence. Starting with a generic α , we can convert these function
applications to observations on top of α to match the definition of iterate as follows:

⟨head(iterate f x)||α⟩=by 2.1 ⟨iterate f x||head α⟩= ⟨x||α⟩

⟨tail(iterate f x)||α⟩=by 2.1 ⟨iterate f x||tail α⟩ = ⟨iterate f ( f x)||α⟩

and thus by observational equivalence, we have

head(iterate f x) = x (2.2)

tail(iterate f x) = iterate f ( f x) (2.3)

Notice that these equations derived by observational equivalence are exactly the same
as the purely functional, copattern-matching definition of iterate that we gave above. In
other words, the two copattern-based definitions—one in a functional style, and the other
matching on the structure of a labeled observer—are equivalent.

Let’s continue with one more example of structural coinduction. Here is a definition for
mapping a function over all elements in an infinite stream, where we use head and tail as
both part of the main coinductive observer on the left-hand side of the equations, as well as
a function to be applied to the given stream we are mapping over on the right-hand sides.

⟨map f s||head β ⟩= ⟨ f (head s)||β ⟩
⟨map f s||tail α

′⟩ = ⟨map f (tail s)||α ′⟩

Notice how, in the following proof, we can make use of observational equivalence in order
to reason about head and tail applied as a function to iterate.
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Example Theorem 2.4. For all functions f of type A→ B, values x of type A, and observers
α of type Stream A, ⟨map f (iterate f x)||α⟩= ⟨iterate f ( f x)||α⟩.

Proof By structural coinduction on the observer α (leaving the value x generic):

• α = head β .

⟨map f (iterate f x)||head β ⟩= ⟨ f (head(iterate f x))||β ⟩ def. of map

= ⟨ f x||β ⟩ by (2.2)

= ⟨iterate f ( f x)||head β ⟩ def. of iterate

• α = tail α ′. Assume the coinductive hypothesis

⟨map f (iterate f x)||α ′⟩= ⟨iterate f ( f x)||α ′⟩

for all values x of type A.

⟨map f (iterate f x)||tail α
′⟩= ⟨map f (tail(iterate f x))||α ′⟩ def. of map

= ⟨map f (iterate f ( f x))||α ′⟩ by (2.3)

= ⟨iterate f ( f ( f x))||α ′⟩ coinductive hypothesis

with ( f x) for x

= ⟨iterate f ( f x)||tail α
′⟩ def. of iterate

■

2.4 Mutual coinduction

Given a stream s, we can define mutually corecursive functions taking the elements of s at
even and odd positions as so:

⟨evens s||head β ⟩= ⟨s||head β ⟩
⟨evens s||tail α

′⟩= ⟨odds (tail s)||α ′⟩
⟨odds s||head β ⟩= ⟨s||tail(head β )⟩
⟨odds s||tail α

′⟩= ⟨evens (tail s)||tail α
′⟩

By observational equivalence and the definitions of odds and evens, we have:

odds s = evens (tail s) (2.4)

tail(evens s)) = odds (tail s) (2.5)

Merging two streams is defined as:

⟨merge s1 s2||head β ⟩= ⟨s1||head β ⟩
⟨merge s1 s2||tail(head β )⟩= ⟨s2||head β ⟩
⟨merge s1 s2||tail(tail α

′)⟩= ⟨merge (tail s1) (tail s2)||α ′⟩

As an application of observational equivalence, we have

tail(tail(merge s1 s2)) = merge(tail s1)(tail s2) (2.6)
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Example Theorem 2.5. For all values s1 and s2 and observers α of type Stream A,
⟨evens (merge s1 s2)||α⟩= ⟨s1||α⟩ and ⟨odds (merge s1 s2)||α⟩= ⟨s2||α⟩.

Proof Both equalities can be proved at the same time by structural coinduction on α

(leaving s1 and s2 generic):

• α = head β .

⟨evens (merge s1 s2)||head β ⟩= ⟨merge s1 s2||head β ⟩ def. of evens

= ⟨s1||head β ⟩ def. of merge

⟨odds (merge s1 s2)||head β ⟩= ⟨merge s1 s2||tail(head β )⟩ def. of odds

= ⟨s2||head β ⟩ def. of merge

• α = tail α ′. Assume the coinductive hypotheses

⟨evens (merge s1 s2)||α ′⟩= ⟨s1||α ′⟩ (2.7)

⟨odds (merge s1 s2)||α ′⟩= ⟨s2||α ′⟩ (2.8)

for all values s1 and s2 of type Stream A.

⟨evens (merge s1 s2)||tail α
′⟩

= ⟨odds (tail(merge s1 s2))||α ′⟩ def. of evens

= ⟨evens (tail(tail(merge s1 s2)))||α ′⟩ by (2.4)

= ⟨evens (merge (tail s1) (tail s2))||α ′⟩ by (2.6)

= ⟨tail s1||α ′⟩ coinductive hypothesis (2.7)

= ⟨s1||tail α
′⟩ tail observation (2.1)

⟨odds (merge s1 s2)||tail α
′⟩

= ⟨evens (tail(merge s1 s2))||tail α
′⟩ def. of odds

= ⟨odds (tail(tail(merge s1 s2)))||α ′⟩ def. of evens

= ⟨odds (merge (tail s1) (tail s2))||α ′⟩ by (2.6)

= ⟨tail s2||α ′⟩ coinductive hypothesis (2.8)

= ⟨s2||tail α
′⟩ tail observation (2.1)

■

2.5 Strong coinduction

Let us try to prove that the property ⟨merge (evens s) (odds s)||α⟩= ⟨s||α⟩ holds for all
values s and observers α of type Stream A. We will show the complete proof shortly. For
now, we will focus on the problematic step. We do a proof by conduction on α . We can easily
prove the property if α = head(β ). If α = tail(β ) then we proceed by case analysis on β . If
β = head(β ′) the proof goes through without any issues. If β = tail(β ′) we need to prove
⟨merge (evens s) (odds s)||tail(tail(β ′))⟩= ⟨s||tail(tail(β ′))⟩ and note that the coinductive
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hypothesis is:

⟨merge (evens s) (odds s)||β ⟩= ⟨s||β ⟩ (2.9)

for a generic s. We then have:

⟨merge (evens s) (odds s)||tail(tail β
′)⟩

= ⟨merge (tail(evens s)) (tail(odds s))||β ′⟩ def. of merge

= ⟨merge (tail(evens s)) (tail(evens (tail s)))||β ′⟩ by (2.4)

= ⟨merge (odds (tail s)) (odds (tail(tail s)))||β ′⟩ by (2.5)

= ⟨merge (evens (tail(tail s))) (odds (tail(tail s)))||β ′⟩ by (2.4)

At this point, we would like to apply the coinductive hypothesis 2.9, but it is fixed to β and
does not hold on β ′. What we need instead is a strong version of coinduction. This is not
surprising since the same issue comes up with induction. If α = tail(tail β ′), we assume the
property holds not just for the immediate subcontext tail β ′, but also for β ′, too. We use
this strengthened reasoning principle to break the following coinductive proof into more
specific sub-cases.

Example Theorem 2.6. For all values s and observers α of type Stream A,
⟨merge (evens s) (odds s)||α⟩= ⟨s||α⟩

Proof By strong coinduction on the structure of the observer α (where we leave the stream
value s generic):

• α = head β .

⟨merge (evens s) (odds s)||head β ⟩= ⟨evens s||head β ⟩ def. of merge

= ⟨s||head β ⟩ def. of evens

• α = tail(head β ′).

⟨merge (evens s) (odds s)||tail(head β
′)⟩= ⟨odds s||head β

′⟩ def. of merge

= ⟨s||tail(head β
′)⟩ def. of odds

• β = tail(tail β ′). Assume the coinductive hypothesis (CH)

⟨merge (evens s) (odds s)||β ′⟩= ⟨s||β ′⟩ (2.10)

for all values s of type Stream A.

⟨merge (evens s) (odds s)||tail(tail β
′)⟩

= ⟨merge (tail(evens s)) (tail(odds s))||β ′⟩ def. of merge

= ⟨merge (tail(evens s)) (tail(evens (tail s)))||β ′⟩ by (2.4)

= ⟨merge (odds (tail s)) (odds (tail(tail s)))||β ′⟩ by (2.5)

= ⟨merge (evens (tail(tail s))) (odds (tail(tail s)))||β ′⟩ by (2.4)

= ⟨tail(tail s)||β ′⟩ CH (2.10) with (tail(tail s)) for s

= ⟨s||tail(tail β
′)⟩ by tail observation (2.1)
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Commands (c), general terms (v), and general coterms (e):

Command ∋ c ::= ⟨v||e⟩ Term∋ v, w ::= µα.c | R CoTerm∋ e, f ::= µ̃x.c | L

Type-specific introductions of values on the right (R) and covalues on the left (L):

Right ∋ R ::= λx.v | zero | succ V | corec{head α→ e | tail β → γ. f}with V

Left ∋ L ::=V · E | rec{zero→ v | succ x→ y.w}with E | head E | tail E

Call-by-name values (V ) and evaluation contexts (E):

Value∋V ::= v CoValue∋ E ::= α | L

Call-by-value values (V ) and evaluation contexts (E):

Value∋V ::= x | R CoValue∋ E ::= e

Operational rules:

(µ) ⟨µα.c||E⟩ 7→ c[E/α]

(µ̃) ⟨V ||µ̃x.c⟩ 7→ c[V/x]

(β→) ⟨λx.v||V · E⟩ 7→ ⟨v[V/x]||E⟩

(βzero)

〈
zero

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ v
| succ x→ y.w}

with E

〉
7→ ⟨v||E⟩

(βsucc)

〈
succ V

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ v
| succ x→ y.w}

with E

〉
7→

〈
µα.

〈
V

∣∣∣∣∣∣
∣∣∣∣∣∣

rec { zero→ v
| succ x→ y.w}

with α

〉∣∣∣∣∣∣
∣∣∣∣∣∣µ̃y.⟨w[V/x]||E⟩

〉

(βhead)

〈 corec{ head α→ e
| tail β → γ. f}

with V

∣∣∣∣∣∣
∣∣∣∣∣∣head E

〉
7→ ⟨V ||e[E/α]⟩

(βtail)

〈 corec{ head α→ e
| tail β → γ. f}

with V

∣∣∣∣∣∣
∣∣∣∣∣∣tail E

〉
7→

〈
µγ.⟨V || f [E/β ]⟩

∣∣∣∣∣∣
∣∣∣∣∣∣µ̃x.

〈 corec{ head α→ e
| tail β → γ. f}

with x

∣∣∣∣∣∣
∣∣∣∣∣∣E

〉〉

Fig. 1: Syntax and semantics of the uniform, (co)recursive abstract machine.

■

3 Intensional Versus Extensional Equality With (Co)Inductive Types

Before we lay out our formal rules of (co)inductive reasoning about the behavior of programs,
we need to specify the language in which those programs are written. For the sake of
illustration, we will use the abstract machine language with both recursion and corecursion
defined in (Downen & Ariola, 2023) — which is an extension of (Curien & Herbelin, 2000)
with primitive types for inductive numbers and coinductive streams, with full primitive
(co)recursion, not just (co)iteration — because the symmetry of its syntax lets us express
the duality of induction and coinduction most clearly. However, note that the important (co)-
inductive reasoning principles below can be applied to other languages as well—provided
the language can label points in the flow of control.
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Types (A), typing environments (Γ), and typing judgements (J)

Type∋ A, B ::= A→ B |Nat | Stream A

Env∋ Γ ::= • | Γ, x : A | Γ, α ÷ A (all x and α in Γ are distinct)
Typing∋ τ ::= c | v : A | e÷ A

Judge∋ J ::= Γ ⊢ τ (FV (τ)⊆ AV (Γ))

Γ ⊢ v : A Γ ⊢ e÷ A
Γ ⊢ ⟨v||e⟩ Cut

Γ, x : A, Γ′ ⊢ x : A
VarR

Γ, α ÷ A, Γ′ ⊢ α ÷ A
VarL

Γ, α ÷ A ⊢ c
Γ ⊢ µα.c : A ActR

Γ, x : A ⊢ c
Γ ⊢ µ̃x.c÷ A ActL

Γ, x : A ⊢ v : B
Γ ⊢ λx.v : A→ B

→R
Γ ⊢V : A Γ ⊢ E ÷ B

Γ ⊢V · E ÷ A→ B →L

Γ ⊢ zero : Nat
NatRzero

Γ ⊢V : Nat
Γ ⊢ succ V : Nat

NatRsucc

Γ ⊢ v : A Γ, x : Nat, y : A ⊢w : A Γ ⊢ E ÷ A
Γ ⊢ rec{zero→ v | succ x→ y.w}with E ÷Nat

NatL

Γ ⊢ E ÷ A
Γ ⊢ head E ÷ Stream A

StreamLhead
Γ ⊢ E ÷ Stream A

Γ ⊢ tail E ÷ Stream A
StreamLtail

Γ, α ÷ A ⊢ e÷ B Γ, β ÷ Stream A, γ ÷ B ⊢ f ÷ B Γ ⊢V : B
Γ ⊢ corec{head α→ e | tail β → γ. f}with V : Stream A

StreamR

Fig. 2: Type system of the uniform, (co)recursive abstract machine.

Encoding λ -terms in the abstract machine language

v w := µα.⟨v||w · α⟩
head v := µα.⟨v||head α⟩

tail v := µα.⟨v||tail α⟩
let x = v in w := µα.⟨v||µ̃x.⟨w||α⟩⟩

rec v as{. . . } := µα.⟨v||rec{. . . }with α⟩

Evaluating computations in constructors and destructors:

v · e := µ̃x.⟨v||µ̃y.⟨µα.⟨x||y · α⟩||e⟩⟩ (v /∈ Value or e /∈CoValue)

succ v := µα.⟨v||µ̃x.⟨succ x||α⟩⟩ (v /∈ Value)

rec{. . . }with e := µ̃x.⟨µα.⟨x||rec{. . . }with α⟩||e⟩ (e /∈CoValue)

corec{. . . }with v := µα.⟨v||µ̃x.⟨corec{. . . }with x||α⟩⟩ (v /∈ Value)

Fig. 3: Syntactic sugar in the abstract machine language.

The syntax and operational semantics of our (co)recursive abstract machine language
are given in Fig. 1. Computation occurs as a reduction of machine commands (c), which
are made up of a term (v) interacting with a coterm (e). Intuitively, terms correspond to
the expressions of a λ -calculus-like language and coterms correspond to continuations (or



691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16 P. Downen and Z.M. Ariola

evaluation contexts) that arise during computation. Of note, the machine is uniform in the
sense that it can express either call-by-value or call-by-name evaluation with the same form
of operational rules. The only difference between the two evaluation strategies is in the
definitions of values (V ), which denote the terms that may be bound to and substituted
for variables, and covalues (E) which correspond to evaluation contexts. For example, the
right-hand sides of the βsucc and βtail rules seem to have two possible reductions via µ or µ̃ ,
but the definition of V and E will only permit one of them. In call-by-name, a µ̃-abstraction
is never a covalue, so the next step will be a µ̃-reduction that computes the coterm side first;
for βsucc calculating the updated covalue for the with-clause of recursion, and for βtail this
means immediately unrolling the corecursive loop again. In call-by-value, a µ-abstraction
is never a value, so the next step will be a µ-reduction that computes the term side first; for
βsucc this means immediately unrolling the recursive loop again, and for βtail this means
calculating the updated value for the with-clause of corecursion.

The type system is given in Fig. 2. We use FV to denote the set of free variables an
expression refers to, e.g., FV (v : A) for the free variables in a term v, FV (e÷ A) for the free
variables in a co-term e, and FV (c) for the free variables in a command. AV (Γ) denotes the
set of variables that have been assigned a type by Γ, e.g., AV (xi : Ai, . . . , α j ÷ B j, . . . ) =

{xi, . . . , α j, . . . }. Besides the ordinary function type A→ B, the (co)recursive abstract
machine includes the types Nat of natural numbers, serving as a canonical example of
an inductive type, and Stream A of infinite streams containing A elements, serving as a
canonical example of a coinductive type. Note that in the style of the sequent calculus
(Curien & Herbelin, 2000; Downen & Ariola, 2018), the constructs of these types are
divided between the term and coterm sides of a command. For example, we include the
usual abstraction λx.v from the λ -calculus, but instead of application we build a call stack
V · E which accepts a function of type A→ B when V produces an A and E consumes a
B. Similarly for numbers, we include the constructors zero and succ for building values of
Nat, which are consumed by a rec continuation corresponding to the System T’s recursor
(Gödel, 1980). Symmetrically for streams, we instead have the destructors head and tail
for building covalues of Stream A, which project out of a corec value that corecursively
builds a stream, on-demand, one piece at a time. To check the types of these (co)terms and
validity of commands, we use a typing environment Γ that describes both the variables x
and covariables α in scope that can be referenced, along with their types, written x : A and
α ÷ A, respectively. These variables are considered free in the underlying (co)term and
command expressions, and they are assigned a type by the environment Γ. Notice that we
make the simplifying assumption throughout this paper that environments Γ never assign
types to the same (co)variable x or α more than once (i.e., every x or α bound by a Γ are
distinct), ruling out cases like x : Nat, y : Nat, x : Nat→Nat.

Since this abstract machine language doesn’t have an application like the λ -calculus, how
can it express basic compositions like f (g(x))? These sorts of terms can be encoded thanks
to the µ- and µ̃-abstractions in the machine language. For example, f (g(x)) can be written

µα.⟨µβ .⟨g||x · β ⟩||µ̃z.⟨ f ||z · α⟩⟩

where the outer µ assigns the name α to the surrounding calling context of f , and µ̃ gives
a name to the computation g(x) and invokes f with that name and the return point α .
More generally, we can use the syntactic sugar given in Fig. 3 as macro-definitions for
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all the usual expressions of λ -calculi, including applications (v w), using head and tail
directly as projections, let-bindings, and the recursor as a term. Notice how each of these
macro-definitions uses µ to name the current evaluation context α , in order to build a larger
continuation. But what happens if we want to use a non-value term v in a context like v · e
or succ v which is not allowed by the syntax of Fig. 1? Again, we can use µ and µ̃ to give
a name to non-(co)value expressions and follow the syntactic restrictions of the abstract
machine. These additional macro-expansions are also shown in Fig. 3.

Example 3.1. As pointed out above, the syntactic sugar might help in better grasping
the (co)recursors; we present next how to define the plus and iterate functions seen in
the previous section. The reader might consult (Downen & Ariola, 2023) for a detailed
explanation of their use.

The plus function is defined as

λx.λ z.µα.⟨x||rec{zero→ z | succ _→ y. succ y}with α⟩

Running ⟨plus 2 2||β ⟩ (with 1 = succ zero and 2 = succ 1) in call-by-value becomes:

⟨plus||2 · 2 · β ⟩ 7→→ (β→, µ)

⟨2||rec{zero→ 2 | succ _→ y. succ y}with β ⟩ 7→ (βsucc)

⟨µα.⟨1||rec{zero→ 2 | succ _→ y. succ y}with α⟩||µ̃y.⟨succ y||β ⟩⟩ 7→ (µ)

⟨1||rec{zero→ 2 | succ _→ y. succ y}with µ̃y.⟨succ y||β ⟩⟩ 7→ (βsucc)

⟨µα.⟨zero||rec{zero→ 2 | succ _→ y. succ y}with α⟩||µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩⟩ 7→ (µ)

⟨zero||rec{zero→ 2 | succ _→ y. succ y}with µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩⟩ 7→ (βzero)

⟨2||µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩⟩ 7→→ (µ̃)

⟨succ(succ 2)||β ⟩

Notice how at each recursive step the continuation gets updated: first β , then µ̃y.⟨succ y||β ⟩,
and finally µ̃z.⟨succ z||µ̃y.⟨succ y||β ⟩⟩.

The iterate function is expressed as

λ f .λx.µα.⟨corec{head α→ α | tail β → γ.µ̃x.⟨ f ||x · γ⟩}with x||α⟩

If add2 stands for the function λx.µα.⟨succ succ x||α⟩ then the even natural numbers can be
represented as µα.⟨iterate||add2 · zero ·α⟩, and the third element of this stream is computed
in call-by-value as follows (where iter2 = {head α→ α | tail β → γ.µ̃x.⟨add2||x · γ⟩}):

⟨µα.⟨iterate||add2 · zero ·α⟩||tail(tail(head(α)))⟩ 7→→ (µ, β→)

⟨corec{head α→ α | tail β → γ.µ̃x.⟨add2||x · γ⟩}with zero||tail(tail(head(α)))⟩ 7→ (βtail)

⟨µγ.⟨zero||µ̃x.⟨add2||x · γ⟩⟩||µ̃x.⟨corec iter2 with x||tail(head(α))⟩⟩ 7→ (µ)

⟨zero||µ̃x.⟨add2||x · µ̃x′.⟨corec iter2 with x′||tail(head(α))⟩⟩⟩ 7→→
⟨corec iter2 with 2||tail(head(α))⟩ 7→ (βtail)

⟨µγ.⟨2||µ̃x.⟨add2||x · γ⟩⟩||µ̃x.⟨corec iter2 with x||head α⟩⟩ 7→ (µ)

⟨2||µ̃x.⟨add2||x · µ̃x.′⟨corec iter2 with x′||head α⟩⟩⟩ 7→→
⟨corec iter2 with 4||head(α)⟩ 7→ (βhead)

⟨4||α⟩

Notice how at each co-recursive step it is not the continuation that gets updated but the
internal seed: zero, 2, and 4.
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Equational properties (Φ), environments (Γ), hypotheses (∆), and judgements (J):

Prop∋Φ ::= c = c′ | v = v′ : A | e = e′ ÷ A

Env∋ Γ ::= • | Γ, x : A | Γ, α ÷ A (all x and α assigned in Γ are distinct)
Hyp∋ ∆ ::= • | ∆, Φ

Judge∋ J ::= Γ | ∆ ⊢Φ (FV (∆)∪ FV (Φ)⊆ AV (Γ))

Equivalence:

Γ | ∆ ⊢ c = c′

Γ | ∆ ⊢ c′ = c
Symm

Γ | ∆ ⊢ c = c′ Γ | ∆ ⊢ c′ = c′′

Γ | ∆ ⊢ c = c′′
Trans

Operational equality:

Γ | ∆ ⊢ c = c′ c′ 7→ c′′

Γ | ∆ ⊢ c = c′′
Red

Congruence (mirror the typing rules from Fig. 2):

Γ | ∆ ⊢ v = v′ : A Γ | ∆ ⊢ e = e′ ÷ A

Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩
Cut

Γ, x : A | ∆ ⊢ x = x : A
VarR

Γ, α ÷ A | ∆ ⊢ α = α ÷ A
VarL

Γ, α ÷ A | ∆ ⊢ c = c′

Γ | ∆ ⊢ µα.c = µα.c′ : A
ActR

Γ, x : A | ∆ ⊢ c = c′

Γ | ∆ ⊢ µ̃x.c = µ̃x.c′ ÷ A
ActL

Γ, x : A | ∆ ⊢ v = v′ : B

Γ | ∆ ⊢ λx.v = λx.v′ : A→ B
→R

Γ | ∆ ⊢V =V ′ : A Γ | ∆ ⊢ E = E ′ ÷ B

Γ | ∆ ⊢V · E =V ′ · E ′ ÷ A→ B
→L

Γ | ∆ ⊢ zero = zero : Nat
NatRzero

Γ | ∆ ⊢V =V ′ : Nat

Γ | ∆ ⊢ succ V = succ V ′ : Nat
NatRsucc

Γ | ∆ ⊢ v = v′ : A Γ, x : Nat, y : A | ∆ ⊢w = w′ : A Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢ rec{zero→ v | succ x→ y.w}with E = rec{zero→ v′ | succ x→ y.w′}with E ′ ÷Nat
NatL

Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢ head E = head E ′ ÷ Stream A
StreamLhead

Γ | ∆ ⊢ E = E ′ ÷ Stream A

Γ | ∆ ⊢ tail E = tail E ′ ÷ Stream A
StreamLtail

Γ, α ÷ A | ∆ ⊢ e = e′ ÷ B Γ, β ÷ Stream A, γ ÷ B | ∆ ⊢ f = f ′ ÷ B Γ | ∆ ⊢V =V ′ : B

Γ | ∆ ⊢
corec{head α→ e

| tail β → γ. f}with V
=

corec{head α→ e′

| tail β → γ. f ′}with V ′
: Stream A

StreamR

Fig. 4: Intensional equational theory of computation.

3.1 Intensional equational theory

The machine’s operational semantics in Fig. 1 only allows us to apply the reduction steps
(c 7→ c′) to the top-level of the given command, and only ever forward: the multi-step
reduction c1 7→→ cn combines several individual steps together, c1 7→ c2 7→ c3 7→ . . . 7→ cn,
but requires that all the arrows are pointed in the same direction. These two restrictions make
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the operational semantics deterministic: it always marches forward in one path because
there is never more than one choice of step to take.

In contrast, an equational theory—for reasoning about when two programs, or fragments
of programs, have the same observable result—gives us more freedom to relate programs
that appear to have the same behavior. One of the key allowances is that the reduction
steps can be applied both forwards and backwards; i.e., equality is symmetric. The other
is that we can apply the reduction steps in any context (no matter how deep within the
given expression); i.e., equality is congruent. Such an equational theory for the (co)recursive
abstract machine is given in Fig. 41. All judgments have the form Γ | ∆ ⊢Φ, where Γ

contains the (unordered) type assignments to free (co)variables, ∆ contains the (unordered)
hypothesized properties involving those free (co)variables, and Φ is the property being
proved. The main properties are the base equalities for commands (c = c′) and (co)terms of
some type A (v = v′ : A and e = e′ ÷ A). For now, the hypotheses ∆ do not yet interact with
the inference rules — they will soon play a crucial role in Section 3.2 — so as shorthand,
we will write Γ ⊢Φ instead of Γ | • ⊢Φ in examples.

This equational theory is the smallest equivalence relation that includes the operational
semantics, letting us reason about which programs are equal up to execution. As a result, it
is more discriminating than a purely external observer, and can distinguish between two
definitions with the same input-output behavior depending on the way they are defined. For
this reason, this kind of equational theory is sometimes called intensional (because it lacks
extensionality or any non-trivial mathematical reasoning) or definitional (because it is based
on the definition of code).

For example, it is easy to show by reduction that ⟨plus||zero ·x · α⟩ 7→→ ⟨x||α⟩ because plus
was defined by recursion on its first argument (see Section 2), and therefore we have the
following equality:

α ÷Nat, x : Nat ⊢ ⟨plus||zero ·x · α⟩= ⟨x||α⟩

However, ⟨plus||x · zero ·α⟩ doesn’t reduce at all, even though it is nonetheless equivalent to
x in any context. Thus,

α ÷Nat, x : Nat ⊢ ⟨plus||x · zero ·α⟩= ⟨x||α⟩

is not provable. Likewise, iterate (λx.x) x is observationally equivalent to the stream
always x, but the intensional theory considers them different because their definitions are
too different.

The bulk of the rules are dedicated to congruence: the allowance that equalities may
be applied in any context. Though there are many different congruence rules to spell out
(accounting for the many different contexts that may appear), they thankfully reflect exactly
the same structure as the type system. Each typing rule from Fig. 2 for checking a single
command, term, or coterm has a corresponding rule of the same name in Fig. 4 which just
compares two such expressions hereditarily.

Note that reflexivity of well-typed commands, terms, and coterms is not included as an
inference rule in Fig. 4 because it holds by performing an induction on the typing derivation,
and applying the appropriate congruence rules. Still, in the following, we will sometimes

1 FV (Φ) stands for the free variables in a proposition Φ, and FV (∆, Φ) is defined as FV (∆)∪ FV (Φ) with
FV (•) = /0
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refer to these reflexivity rules:

Γ ⊢ c.... Refl
Γ | ∆ ⊢ c = c

Γ ⊢ v : A.... ReflR
Γ | ∆ ⊢ v = v : A

Γ ⊢ e÷ A.... ReflL
Γ | ∆ ⊢ e = e÷ A

where the vertical dots indicate the rule is derivable.
The Red rule states that any reduction step of the operational semantics can be added

onto another equality. Together with reflexivity, we can say that any well-typed command c
is equal to its next step, c 7→ c′:

Γ ⊢ c.... Refl
Γ | ∆ ⊢ c = c c 7→ c′

Γ | ∆ ⊢ c = c′
Red

and we will simply write

Γ ⊢ c c 7→ c′.... Red
Γ | ∆ ⊢ c = c′

Whereas a (unary) type system interprets the free variable x : A (and analogously, α ÷ A)
as one unknown value of type A, a (binary) equational theory interprets the free x : A as
two unknown values which are equal at type A. More concretely, we can understand the
meaning of free (co)variables in terms of the following notion that substitution commutes
with equality—substitution of equals into equals are equals:

Γ, x : A | ∆ ⊢ c = c′ Γ | ∆ ⊢V =V ′ : A.... SubstL
Γ | ∆ ⊢ c[V/x] = c′[V ′/x]

Γ, α ÷ A | ∆ ⊢ c = c′ Γ | ∆ ⊢ E = E ′ ÷ A.... SubstR
Γ | ∆ ⊢ c[E/α] = c′[E ′/α] (3.1)

With the rules we already have, we can use reduction to derive substitution of equal values
for variables like so:

Γ | ∆ ⊢V =V ′ : A

Γ, x : A | ∆ ⊢ c = c′

Γ | ∆ ⊢ µ̃x.c = µ̃x.c′ ÷ A
ActL

Γ | ∆ ⊢ ⟨V ||µ̃x.c⟩= ⟨V ′||µ̃x.c′⟩
Cut

Γ | ∆ ⊢ ⟨V ′||µ̃x.c′⟩= ⟨V ||µ̃x.c⟩
Symm

⟨V ||µ̃x.c⟩ 7→µ̃ c[V/x]

Γ | ∆ ⊢ ⟨V ′||µ̃x.c′⟩= c[V/x]
Red

Γ | ∆ ⊢ c[V/x] = ⟨V ′||µ̃x.c′⟩
Symm

⟨V ′||µ̃x.c′⟩ 7→µ̃ c′[V ′/x]

Γ | ∆ ⊢ c[V/x] = c′[V ′/x]
Red

And the derivation of the dual substitution of covalues for covariables follows analogously
to the above, using the dual µ activation and operational steps.

Example 3.2. Consider this basic application of corec which just (corecursively) forwards
all observations onto some underlying stream xs:

parrot xs := corec{head α→ head α | tail α→ γ. tail γ}with xs

Intuitively, parrot xs produces a stream that produces exactly the same elements as xs. We
can understand parrot at a higher level in terms of these equations that show how it reacts
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to head and tail observations:

⟨parrot xs||head β ⟩= ⟨xs||head β ⟩ ⟨parrot xs||tail α⟩= ⟨parrot (tail xs)||α⟩

Both of these equalities are derivable from the intensional equational theory by just applying
the operational rules (and expanding any syntactic sugar from Fig. 3 as necessary). The
head case follows directly from the βhead step:

⟨parrot xs||head β ⟩ 7→ ⟨xs||head β ⟩ (βhead)

The tail case is slightly more involved because its reduction depends on whether the
command is evaluated according to the call-by-name or call-by-value. In the call-by-name
operational semantics, we have the forward reduction (where according to Fig. 3, tail xs
corresponds to µγ.⟨xs||tail γ⟩):

⟨parrot xs||tail α⟩ 7→ ⟨tail xs||µ̃xs′.⟨parrot xs′||α⟩⟩ (βtail)

7→ ⟨parrot (tail xs)||α⟩ (µ̃)

In the call-by-value operational semantics, we have this conversion instead:

⟨parrot xs||tail α⟩ 7→ ⟨tail xs||µ̃xs′.⟨parrot xs′||α⟩⟩ (βtail)

←[ ⟨µβ .⟨tail xs||µ̃xs′.⟨parrot xs′||β ⟩⟩||α⟩ (µ)

:= ⟨parrot (tail xs)||α⟩ (Fig. 3)

3.2 Extensional program logic

It’s often unsatisfactory to only consider two expressions equal when they reduce to some
common reduct; that misses out on far too many equalities. Instead, we will enhance the
intensional equational theory with a program logic that is extensional, in the sense that
it considers expressions equal when they appear to be the same from the outside. This
means we will have to add additional rules for saying when two terms (or two coterms)
are equal because they cannot be distinguished by some observer. But which observer
is that? The other side of the command! Terms are observed by coterms, and vice versa.
Therefore, the idea of extensionality in the abstract machine comes down to the idea that
(co)terms of any type are equal if and only if they always form equal computations when
interacting with equal counterparts of that type. The extensional program logic is given in
Fig. 5. The distinctive feature of this theory is that it is applicable to both call-by-name and
call-by-value. That is why some properties needed to be restricted.

Propositions - Φ: We enrich the language of properties that we are proving by internalizing
the implicit “for all” generalization made by the free x : A and α ÷ A in the environment
in terms of an explicit ∀ quantifier in the syntax of propositions. In addition to the same
three cases of equality as before, we now have two dual forms of universal quantification as
properties: ∀x:A.Φ generalizes the property Φ over all choices of equal values of type A for
x, and ∀α÷A.Φ generalizes Φ over all choices of equal covalues for α of type A. The rules
governing these two ∀ properties are given in Fig. 5 as well.

Universal quantifiers can be introduced by IntroL and IntroR, which state that ∀ inter-
nalizes a free (co)variable in the environment, and eliminated by ElimL and ElimR. The
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Equational properties (Φ), environments (Γ), hypotheses (∆), and judgements (J)::

Prop∋Φ ::= c = c′ | v = v′ : A | e = e′ ÷ A | ∀x:A.Φ | ∀α÷A.Φ

Env∋ Γ ::= • | Γ, x : A | Γ, α ÷ A (all x and α assigned in Γ are distinct)
Hyp∋ ∆ ::= • | ∆, Φ

Judge∋ J ::= Γ | ∆ ⊢Φ (FV (∆)∪ FV (Φ)⊆ AV (Γ))

Equational properties strict on x (written Ψ(x)) and productive on α (written Ψ(α)):

StrictProp∋ Ψ(x) ::= ⟨x||E⟩= ⟨x||E ′⟩ (x /∈ FV (E)∪ FV (E ′))

| ∀y:B.Ψ(x) | ∀β÷B.Ψ(x) (x ̸= y)

|Φ⇒Ψ(x) |Ψ1(x)∧Ψ2(x) (x /∈ FV (Φ))

ProdProp∋Ψ(α) ::= ⟨V ||α⟩= ⟨V ′||α⟩ (α /∈ FV (V )∪ FV (V ′))

| ∀y:B.Ψ(α) | ∀β÷B.Ψ(α) (α ̸= β )

|Φ⇒Ψ(α) |Ψ1(α)∧Ψ2(α) (α /∈ FV (Φ))

Γ | ∆, Φ ⊢Φ
Ax

Γ | ∆, Φ′ ⊢Φ

Γ | ∆ ⊢Φ′⇒Φ
IntroH

Γ | ∆ ⊢Φ′⇒Φ Γ | ∆ ⊢Φ′

Γ | ∆ ⊢Φ
Lemm

Γ, x : A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀x:A.Φ
IntroL

Γ | ∆ ⊢ ∀x:A.Φ Γ | ∆ ⊢V =V ′ : A

Γ | ∆ ⊢Φ[V/x =V ′/x]
ElimL

Γ, α ÷ A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀α÷A.Φ
IntroR

Γ | ∆ ⊢ ∀α÷A.Φ Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢Φ[E/α = E ′/α]
ElimR

Γ | ∆ ⊢Φ1 Γ | ∆ ⊢Φ2

Γ | ∆ ⊢Φ1 ∧Φ2
ConjI

Γ | ∆ ⊢Φ1 ∧Φ2

Γ | ∆ ⊢Φ1
ConjE1

Γ | ∆ ⊢Φ1 ∧Φ2

Γ | ∆ ⊢Φ2
ConjE2

Γ, x : A | ∆ ⊢ ⟨x||e⟩= ⟨x||e′⟩
Γ | ∆ ⊢ e = e′ ÷ A

σ µ̃
Γ, α ÷ A | ∆ ⊢ ⟨v||α⟩= ⟨v′||α⟩

Γ | ∆ ⊢ v = v′ : A
σ µ

Γ, x : A, β ÷ B | ∆ ⊢Ψ[x · β/α]

Γ, α ÷ A→ B | ∆ ⊢Ψ(α)
ω→

Γ | ∆ ⊢Ψ[zero/x] Γ, x : Nat | ∆, Ψ(x) ⊢Ψ[succ x/x]
Γ, x : Nat | ∆ ⊢Ψ(x)

ωNat

Γ, β ÷ A | ∆ ⊢Ψ[head β/α] Γ, α ÷ Stream A | ∆, Ψ(α) ⊢Ψ[tail α/α]

Γ, α ÷ Stream A | ∆ ⊢Ψ(α)
ωStream

Plus all the intensional equality rules from Fig. 4

Fig. 5: Extensional program logic.

notation Φ[V/x =V ′/x] (and likewise Φ[E/α = E ′/α]) means to perform the substitution
[V/x] on the left-hand side of the equation in Φ and [V ′/x] on the right-hand side. For
example, the base cases of this substitution are when Φ is just an equality; for a command
equality, this looks like:

(c = c′)[V/x =V ′/x] := (c[V/x]) = (c′[V ′/x])

(c = c′)[E/α = E ′/α] := (c[E/α]) = (c′[E ′/α])
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ElimL and ElimR generalize the substitution rules previously derived in 3.1 to instantiate
the quantified (co)variables by any equal (co)values of the appropriate type:

Γ, x : A | ∆ ⊢Φ Γ | ∆ ⊢V =V ′ : A.... SubstL
Γ | ∆ ⊢Φ[V/x =V ′/x]

Γ, α ÷ A | ∆ ⊢Φ Γ | ∆ ⊢ E = E ′ ÷ A.... SubstR
Γ | ∆ ⊢Φ[E/α = E ′/α] (3.2)

which are derived from the Intro and Elim rules like so:

Γ, x : A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀x:A.Φ
IntroL

Γ | ∆ ⊢V =V ′ : A

Γ | ∆ ⊢Φ[V/x =V ′/x]
ElimL

Γ, α ÷ A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀α÷A.Φ
IntroR

Γ | ∆ ⊢ E = E ′ ÷ A

Γ | ∆ ⊢Φ[E/α = E ′/α]
ElimR

A special case of Elim is to reverse the Intro rules:

Γ | ∆ ⊢ ∀x:A.Φ.... ElimLx

Γ, x : A | ∆ ⊢Φ

Γ | ∆ ⊢ ∀α÷A.Φ.... ElimRα

Γ, α ÷ A | ∆ ⊢Φ (3.3)

These can be derived from the Elim and Var rules by weakening the premise (adding
additional (co)variable type assignments which are never used).2 ElimLx is derived like so:

Γ | ∆ ⊢ ∀x:A.Φ.... WeakL
Γ, x : A | ∆ ⊢ ∀x:A.Φ Γ, x : A | ∆ ⊢ x = x : A

VarR

Γ, x : A | ∆ ⊢Φ
ElimL

Similar to the quantifiers, we also have plain propositional implication, written Φ′⇒Φ,
for stating that the truth of Φ′ implies the truth of Φ. The rules governing Φ′⇒Φ are
IntroH, which introduces an implication that internalizes a hypothesis in the environment,
and Lemm, which lets us eliminate an implication by proving its hypothesis in the
style of instantiating a lemma. While propositional implication is not strictly necessary
for the kinds of simple equalities we have considered thus far, their addition makes
it possible for us to explore some more complex forms of reasoning that can all be
derived from the same rules of structural (co)induction. For the same reason, we also
introduce propositional conjunction, written Φ1 ∧Φ2, to describe the compositionality of
(co)induction. Propositional conjunction is introduced and eliminated with the familiar
ConjI and ConjE rules.

Strict and productive propositions - Ψ(x) and Ψ(α): In some rules, we need to impose
some constraints on the use of (co)variables. This is because we aim for the program logic
to be applicable in both the call-by-value and call-by-name setting. This requires careful
attention to avoid equating a value with a non-value, as well as ensuring the same distinction
for co-values. These restrictions are defined syntactically, and approximate the two dual
notions of control flow and data flow:

• A property Ψ(x) is strict on x when it uses x directly with some covalue on both
sides of its underlying equality, with the base case of a strict property on x being

2 Weakening follows by an induction on the given typing derivation and allowing for a larger Γ in each axiom.
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⟨x||E⟩= ⟨x||E ′⟩ where x is not free in E or E ′. Intuitively, Ψ(x) is some property
which observes x exactly once with a covalue, since all covalues are strict, forcing
their input to be computed first before they act.

• Dually, a property Ψ(α) is productive on α when it immediately returns a value to α

on both side of its underlying equality, with the base case of a productive property
on α being ⟨V ||α⟩= ⟨V ′||α⟩ where α is not free in V or V ′. Intuitively, Ψ(α) is some
property which produces exactly one value to α .

The σ µ and σ µ̃ rules implement the idea of observational equality, we would like formal
inference rules that embody these two relationships between different forms of equality.

• Γ | ∆ ⊢ v = v′ : A if and only if Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩ for all Γ | ∆ ⊢ e = e′ ÷ A.
• Γ | ∆ ⊢ e = e′ ÷ A if and only if Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩ for all Γ | ∆ ⊢ v = v′ : A.

Thankfully, the “only if” direction of both of these can be derived by the Cut congruence
rule already present in the intensional equational theory (Fig. 4):

Γ | ∆ ⊢ v = v′ : A Γ | ∆ ⊢ e = e′ ÷ A
Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩ Cut

If we already know two terms Γ | ∆ ⊢ v = v′ : A are equal, then for any other equal co-
terms Γ | ∆ ⊢ e = e′ ÷ A, Cut lets us conclude that their pointwise combination gives equal
commands Γ | ∆ ⊢ ⟨v||e⟩= ⟨v′||e′⟩. Dually, starting with two equal coterms, Cut lets us
combine them with any equal terms to give equal commands. Whereas the “if” direction
is implemented by the σ µ and σ µ̃ rules, which establish a logical equivalence between
equality of commands versus equality of (co)terms. These rules say that any two terms
(dually coterms) are equal when they form equal commands when interacting with a generic
covariable (dually variable). The σ rules allow the derivation of the extensional η rules for
µ and µ̃ (Herbelin, 2005):

Γ ⊢ v : A.... ηµ

Γ | ∆ ⊢ µα.⟨v||α⟩= v : A

Γ ⊢ e÷ A.... ηµ̃

Γ | ∆ ⊢ µ̃x.⟨x||e⟩= e÷ A

They can be derived from the σ µ , σ µ̃ inference rules and µµ̃ reductions. ηµ is derived as:

Γ ⊢ v : A.... Cut,VarL, ActR
Γ, α ÷ A ⊢ ⟨µα.⟨v||α⟩||α⟩ ⟨µα.⟨v||α⟩||α⟩ 7→µ ⟨v||α⟩.... Red

Γ, α ÷ A | ∆ ⊢ ⟨µα.⟨v||α⟩||α⟩= ⟨v||α⟩
Γ | ∆ ⊢ µα.⟨v||α⟩= v : A

σ µ
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Analogously for ηµ̃ :

Γ ⊢ e÷ A.... Cut,VarR, ActL
Γ, x : A ⊢ ⟨x||µ̃x.⟨x||e⟩⟩ ⟨x||µ̃x.⟨x||e⟩⟩ 7→µ̃ ⟨x||e⟩.... Red

Γ, x : A | ∆ ⊢ ⟨x||µ̃x.⟨x||e⟩⟩= ⟨x||e⟩
Γ | ∆ ⊢ µ̃x.⟨x||e⟩= e÷ A

σ µ̃

Note that the µ and µ̃ reduction apply to both call-by-name and call-by-value since (co)-
variables are considered values in these strategies. This means that the ηµ and ηµ̃ axioms
are sound in both semantics.

The ω→ rule expresses a form of extensionality for functions in terms of call stacks.
It states that the only canonical covalue of type A→ B has the form V · E, and testing a
property on a generic call stack x · β is sufficient to generalize that property over all α of
type A→ B. The rule allows the derivation of the following η axiom for functions (Curien
& Herbelin, 2000):

Γ ⊢V : A→ B.... η→
Γ | ∆ ⊢ λx.µα.⟨V ||x · α⟩=V : A→ B

which is equivalent to the familiar η law of the λ -calculus, as it can be seen by
macro-expanding the syntactic sugar for application according to Fig. 3: λx.(V x) =
λx.µα.⟨V ||x · α⟩=η→ V . The derivation is as follows:

Γ ⊢V : A→ B....
Γ, y : A, β ÷ B ⊢ ⟨λx.µα.⟨V ||x · α⟩||y · β ⟩ ⟨λx.µα.⟨V ||x · α⟩||y · β ⟩ 7→→β→µ ⟨V ||y · β ⟩.... Refl, Reds

Γ, y : A, β ÷ B | ∆ ⊢ ⟨λx.µα.⟨V ||x · α⟩||y · β ⟩= ⟨V ||y · β ⟩
Γ, γ ÷ A→ B | ∆ ⊢ ⟨λx.µα.⟨V ||x · α⟩||γ⟩= ⟨V ||γ⟩

ω→

Γ | ∆ ⊢ λx.µα.⟨V ||x · α⟩=V : A→ B
σ µ

Second from the bottom, ω→ can be applied to γ ÷ A→ B because the equation
⟨λx.µα.⟨V ||x · α⟩||γ⟩= ⟨V ||γ⟩ is productive on γ; both sides of the equation immediately
produce a syntactic value to γ .

Remark 3.3. If we relax the restriction on the ω→ rule and instead allow it for any property
Φ (which we’ll refer to as σ→), then it would be possible to conclude that

...
Γ, γ ÷ A→ B | ∆ ⊢ ⟨λx.µα.⟨v||x · α⟩||γ⟩= ⟨v||γ⟩

σ→

Γ | ∆ ⊢ λx.µα.⟨v||x · α⟩= v : A→ B
σ µ

The problem is that ⟨v||γ⟩ may not produce a single value to γ—v might throw γ away, as
shown in the example below.

β ÷Nat, γ ÷ A→ B ⊢ ⟨λx.µα.⟨µδ .⟨zero||β ⟩||x · α⟩||γ⟩= ⟨µδ .⟨zero||β ⟩||γ⟩ : A→ B

This equality is fine under call-by-name evaluation but is inconsistent under call-by-value,
wherein not all covalues of function type have the form α or x · α . For example, the coterm
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µ̃ .⟨succ zero||α⟩ lets us observe the difference call-by-value evaluation makes between the
two sides of the equation. On the left, we have

⟨λx.µα.⟨µδ .⟨zero||β ⟩||x · α⟩||µ̃ .⟨succ zero||β ⟩⟩ 7→→ ⟨succ zero||β ⟩

whereas on the right, we have

⟨µδ .⟨zero||β ⟩||µ̃ .⟨succ zero||β ⟩⟩ 7→→ ⟨zero||β ⟩

Therefore, we would be able to derive zero = succ zero : Nat using call-by-value evaluation,
making the theory inconsistent.

This inconsistency in call-by-value should not be surprising. It is well known that unre-
stricted η equivalence is unsound in the call-by-value λ -calculus with general recursion or
side effects. The usual counter-example is that the term Ω = (λx.x) (λx.x) is observationally
different from a λ -abstraction, but the η law requires Ω = λx.(Ω x). Instead, the sound
version of the call-by-value η law only applies to values: λx.(V x) =V .

The induction rule ωNat summarizes the following deduction for proving a property Ψ

over any number x using an infinite number of premises:

Γ | ∆ ⊢Ψ[zero/x] Γ | ∆ ⊢Ψ[succ zero/x] Γ | ∆ ⊢Ψ[succ(succ zero)/x] . . .

Γ, x : Nat | ∆ ⊢Ψ

This deduction is justified from the reasoning that zero, succ zero, succ(succ zero)—are
all the canonical values of Nat; testing Ψ on all of them is sufficient to generalize Ψ over
any x of type Nat. ωNat uses the usual structure of primitive induction on the numbers to
summarize this kind of argument in a finite form, and can be understood as an inference
rule representing the usual axiom of induction:

Ψ(zero)⇒ (∀x:Nat.Ψ(x)⇒Ψ(succ x))⇒ (∀x:Nat.Ψ(x)) (ωNat)

Rather than listing a separate proof for each number, just start with a proof for zero
specifically, and give a transformation from a proof of Ψ on an arbitrary number to the
next proof of Ψ for the successor of that same number. Because this second step is a
transformation, we first assume that the property Ψ is true on a generic x : Nat by placing Ψ

in the environment Γ of other assumptions, with the intention that the assumed Ψ in Γ can
be used to prove Ψ with x replaced by succ x.

As an example of the application of induction, we would like to prove the following
deep extensionality axiom for “trivial” uses of recursion (where a stands for an unused
variable):

(δNat) ∀α÷Nat. rec

{
zero→ zero

succ → y. succ y

}
with α = α ÷Nat

The above is saying that any generic observer α cannot tell the difference if a natural number
is first broken down and rebuilt from scratch from the base case (zero) up. Let us use the
following shorthand:

noop α := rec{zero→ zero | succ → y. succ y}with α
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and proceed as follows:

α ÷Nat ⊢ ⟨zero||noop α⟩= ⟨zero||α⟩
α ÷Nat, x : Nat | ⟨x||noop α⟩= ⟨x||α⟩ ⊢ ⟨succ x||noop α⟩= ⟨succ x||α⟩

α ÷Nat, x : Nat ⊢ ⟨x||noop α⟩= ⟨x||α⟩ ωNat

α ÷Nat ⊢ noop α = α
σ µ̃

⊢ ∀α.noop α = α
IntroR

We can apply the induction rule ωNat here because the property ⟨x||noop α⟩= ⟨x||α⟩ is
strict on x. This is evident because both sides of the equation observe x with a covalue
(rec . . . with α on the left and α on the right) in both call-by-name and -value.

We can just evaluate the left-hand-side to prove the base case:

⟨zero||noop α⟩= ⟨zero||α⟩

What remains is to show ⟨succ x||noop α⟩= ⟨succ x||α⟩ from the inductive hypothesis (IH)
⟨x||noop α⟩= ⟨x||α⟩. We would like to put together the following equality:

⟨succ x||noop α⟩= ⟨µβ .⟨x||noop β ⟩||µ̃y.⟨succ y||α⟩⟩
= ⟨µβ .⟨x||β ⟩||µ̃y.⟨succ y||α⟩⟩ (IH?)

= ⟨succ x||α⟩ (ηµ , µ̃)

The problem is that the induction hypothesis holds only for α , but we now need to apply it
in a different context. This requires a generalization of the context:

⊢ ∀α ÷Nat . ⟨zero||noop α⟩= ⟨zero||α⟩
x : Nat | ∀α ÷Nat .⟨x||noop α⟩= ⟨x||α⟩ ⊢ ∀α ÷Nat .⟨succ x||noop α⟩= ⟨succ x||α⟩

x : Nat ⊢ ∀α ÷Nat .⟨x||noop α⟩= ⟨x||α⟩ ωNat
.... ElimRα

α ÷Nat, x : Nat ⊢ ⟨x||noop α⟩= ⟨x||α⟩
α ÷Nat ⊢ noop α = α

σ µ̃

⊢ ∀α ÷Nat .noop α = α
IntroR

Note that the ω Nat rule can still be applied since quantifying over a strict property gives
another strict property. Now we can instantiate the inductive hypothesis

∀α ÷Nat .⟨x||noop α⟩= ⟨x||α⟩

to the new context β : ⟨x||noop β ⟩= ⟨x||β ⟩.
The need to generalize over the context does not show up when one does inductive proofs

in λ -calculus since the context is left implicit. In fact, let’s go back to the proof of Example
Theorem 2.1. Notice how we applied the inductive hypothesis not at the top level, which we
can represent as □, but in the bigger context succ □. The inductive hypothesis should be
better expressed as: ∀C[□],C[plus x′ zero] =C[x′].

Analogously, we can also prove the following “shallow” extensionality property ηNat
that just look at the outermost structure of a numeric value or a stream projection:

(ηNat) ∀α÷Nat. rec

{
zero→ zero

succ y→ . succ y

}
with α = α ÷Nat
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Remark 3.4. Note that the property ∀α.⟨x||noop α⟩= ⟨x||α⟩ is strict in x, since the recursor
is a co-value in both call-by-value and call-by-name. If we remove that restriction and
apply induction on an arbitrary proposition Φ we can derive inconsistent equations under
call-by-name because it can equate any coterm e÷Nat with a rec covalue, whether or not e
itself is a covalue. For example, we would be able to prove this property:

α ÷Nat, x : Nat ⊢ ⟨x||rec{zero→ zero | succ → zero}with α⟩= ⟨zero||α⟩

The call-by-name version of the derived SubstL rule, see (3.1) and (3.2), allows for the
call-by-name value µ .⟨succ zero||α⟩ to be substituted for x in this equation, leading to the
inconsistent equality α÷Nat ⊢ ⟨succ zero||α⟩=⟨zero||α⟩ .

The coinduction rule ωStream specifies a form of structural coinduction for streams. It
works in exactly the same way as structural induction for numbers—just with the roles of
values and covalues reversed. The ωStream rule summarizes this deduction for proving a
property Ψ over any stream projection α using an infinite number of premises:

Γ, β ÷ A ⊢Ψ[head β/α] Γ, β ÷ A ⊢Ψ[tail(head β )/α] Γ, β ÷ A ⊢Ψ[tail(tail(head β ))/α] . . .

Γ, α ÷ Stream A ⊢Ψ

This deduction is justified by the reasoning that the listed projections—head β , tail(head β ),
tail(tail(head β ))—cover all the canonical covalues of Stream A; testing Ψ on all of them
is sufficient to generalize Ψ over any generic α of type Stream A. ωStream summarizes
this kind of argument in a finite form, avoiding the list of separate proofs for each of the
infinitely possible projections. Whereas ωNat corresponds to the usual induction axiom for
the natural numbers, the ωStream rule corresponds to the dual form of the coinduction axiom
for proving a property holds for all observations of infinite streams in both call-by-name
and call-by-value:

(∀β÷A.Ψ(head β ))

⇒ (∀α÷ Stream A.Ψ(α)⇒Ψ(tail α)) (ωStream)

⇒ (∀α÷ Stream A.Ψ(α))

Dual to induction on the numbers, we start with a proof for head β specifically, and give a
transformation from a proof of Ψ on an arbitrary observation on streams to the next proof
of Ψ for the same observation on the tail of the stream. As before, this transformation is
represented by assuming Ψ holds for a generic α ÷ Stream A by listing it in the environment
Γ, which can then be used to derive a proof of Ψ with α replaced by tail α .

As an example of application of co-induction, we would like to prove the following deep
extensional property of streams, which is the dual of δNat:

(δStream) ∀xs:Stream A. corec

{
head α→ head α

tail → β . tail β

}
with xs = xs : Stream A

The above is saying that any generic stream xs gives the same response when its projections
are broken down and rebuilt from scratch from the base case (head α) up. We should be
able to apply the rules from Fig. 5 to prove it.
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By using the shorthand parrot xs := corec{head α→ head α | tail α→ γ. tail γ}with xs
as in Example 3.2, the bottom of the derivation starts like this:

xs : Stream A, β ÷ A ⊢ ⟨parrot xs||head β ⟩= ⟨xs||head β ⟩
xs : Stream A, α ÷ Stream A | ⟨parrot xs||α⟩= ⟨xs||α⟩ ⊢ ⟨parrot xs||tail α⟩= ⟨xs||tail α⟩

xs : Stream A, α ÷ Stream A ⊢ ⟨parrot xs||α⟩= ⟨xs||α⟩ ωStream

xs : Stream A ⊢ parrot xs = xs : Stream A
σ µ

⊢ ∀xs : Stream A.parrot xs = xs : Stream A IntroL

We begin by assuming some generic stream value xs : Stream A is in scope. The first step
(from the bottom up) applies σ µ to generalize equality of terms to an equality of commands,
by introducing a generic continuation α ÷ Stream A expecting a stream. From here, we can
apply the ωStream coinductive rule since we invoke α with a value. We continue with two
proof obligations:

1. Show ⟨parrot xs||head β ⟩= ⟨xs||head β ⟩.
2. Show ⟨parrot xs||tail α⟩= ⟨xs||tail α⟩ follows from the coinductive hypothesis (CIH)
⟨parrot xs||α⟩= ⟨xs||α⟩.

Step 1 follows directly from βhead, as shown in Example 3.2. Step 2 proceeds as follows:

⟨parrot xs||tail α⟩= ⟨parrot (tail xs)||α⟩ (βtailµµ̃)

= ⟨tail xs||α⟩ (CIH?)

= ⟨xs||tail α⟩ (µ)

The coinductive hypothesis does not apply in the middle step, because it is already fixed for
some previously-chosen xs, which is not the same as (tail xs) used here. What we need is the
ability to generalize the coinductive hypothesis. Rather than introducing a generic stream xs
first and then applying coinduction, we should apply coinduction to prove an equality holds
for all choices of xs, as shown below:

β ÷ A ⊢ ∀xs:Stream A.⟨parrot xs||head β ⟩= ⟨xs||head β ⟩
α ÷ Stream A | ∀xs.⟨parrot xs||α⟩= ⟨xs||α⟩ ⊢ ∀xs:Stream A. ⟨parrot xs||tail α⟩= ⟨xs||tail α⟩

α÷Stream A ⊢ ∀xs:Stream A.⟨parrot xs||α⟩= ⟨xs||α⟩ ω Stream
.... ElimLxs

xs : Stream A, α÷Stream A ⊢ ⟨parrot xs||α⟩= ⟨xs||α⟩
xs : Stream A ⊢ parrot xs = xs : Stream A

σ µ

⊢ ∀xs:Stream A.parrot xs = xs : Stream A IntroL

The base case is as before. For the co-inductive case, we have the following calculation in
call-by-value and -name:

⟨parrot xs||tail α⟩
7→ ⟨µβ .⟨xs||tail β ⟩||µ̃y.⟨parrot y||α⟩⟩ (βtail)

= ⟨µβ .⟨xs||tail β ⟩||µ̃y.⟨y||α⟩⟩ (CIH[y/x])

= ⟨µβ .⟨xs||tail β ⟩||α⟩ (ηµ̃ )

7→ ⟨xs||tail α⟩ (µ)

Note that the generalization over xs in the coinductive hypothesis is essential for instantiating
xs with the bound y newly introduced by βtail reduction.
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As we did for Nat, we can also derive the following “shallow” extensionality property
that just look at the outermost structure of a stream projection:

(ηStream) ∀x:Stream A. corec

{
head α→ head α

tail β → . tail β

}
with x = x : Stream A

Remark 3.5. The coinductive ωStream rule is similar in spirit to ω→: it matches over
the possible shapes of a generic covalue α ÷ Stream A in scope. The problem is that in
call-by-value there are more values than the ones we considered. If we relax the restriction
of productivity and allow the application of the rule to a generic proposition Φ we would
then prove:

α ÷Nat, β÷ Stream A ⊢ ⟨corec{head →α| tail →α.α}with zero||β ⟩= ⟨zero||α⟩

and yet the call-by-value version of the derived SubstR rule, see (3.1) and (3.2), lets us
substitute µ̃ .⟨succ zero||α⟩ as a covalue for β , leading to an inconsistent equality:

⟨corec{head →α| tail →α.α}with zero||µ̃ .⟨succ zero||α⟩⟩= ⟨succ zero||α⟩= ⟨zero||α⟩

3.3 Consistency of the extensional program logic

Ultimately, the program logic is not useful if it derives inconsistent results. One very
simplistic version of consistency is that 0 is different from any successor (like 1); and dually,
we should also know that a head projection is different from a tail projection.

Definition 3.6 (Consistency). An equational theory or program logic for the (co)recursive
abstract machine is consistent iff the following equalities are not derivable:

• ⊢ zero = succ V : Nat, and
• ⊢ head E = tail E ′ ÷ Stream A.

As with most systems, equating 0 and 1 collapses the notion of equality. Assuming
zero = succ zero : Nat lets us prove that any two terms v and w of type A are equal by
abstracting over the output α ÷ A in this derivation with σ µ:

⟨v||α⟩= ⟨zero||rec{zero→ v | succ → .w}with α⟩ (βzero)

= ⟨succ zero||rec{zero→ v | succ → .w}with α⟩ (zero = succ zero)

= ⟨w||α⟩ (βsuccµµ̃)

This forces every v = w : A to hold, which we can use to equate any two commands and
any two coterms of the same type, as well. Likewise, equating the head and tail projections
leads to the same collapse, due to a similar derivation. Assuming head α = tail(head α), we
can prove any two coterms e and f of type A are equal by abstracting over the input x : A
via σ µ̃ in this derivation:

⟨x||e⟩= ⟨corec{head → e | tail → . f}with x||head α⟩ (βhead)

= ⟨corec{head → e | tail → . f}with x||tail(head α)⟩ (head α = tail(head α))

= ⟨x|| f ⟩ (βtailµµ̃)
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Γ, x : A, β ÷ B | ∆ ⊢Φ[x · β/α]

Γ, α ÷ A→ B | ∆ ⊢Φ
σ→

Γ, β ÷ A | ∆ ⊢Φ[head β/α] Γ, α ÷ Stream A | ∆, Φ ⊢Φ[tail α/α]

Γ, α ÷ Stream A | ∆ ⊢Φ
σStream

Γ | ∆ ⊢Φ[zero/x] Γ, x : Nat | ∆, Φ ⊢Φ[succ x/x]
Γ, x : Nat | ∆ ⊢Φ

σNat

Fig. 6: Unrestricted coinduction rules σ→, σStream, and unrestricted induction rule σNat

By restricting induction to only apply to strict properties, and restricting coinduction to
only productive properties, we get a single extensional program logic (parameterized by the
definition of values and covalues) that is consistent in both call-by-value and call-by-name
evaluation. See Section 5 for the proof of consistency.

Theorem 3.7. The extensional program logic in Fig. 5 is consistent for both the call-by-name
and call-by-value semantics.

3.4 When is unrestricted (co)induction sound?

Common folklore says that induction holds only in call-by-value, and thus dually co-
induction should hold only in call-by-name. This is reflected in part through the restrictions
defining strict versus productive properties in the “universally” sound extensional program
logic given in Fig. 5. Call-by-value has a more permissive notion of covalue (any coterm is
a call-by-value covalue), so the induction principle ωNat applies to more properties in the
call-by-value logic than in the call-by-name one. Symmetrically, call-by-name has a more
permissive notion of value (any term is a call-by-name value), so the coinduction principle
ωStream applies to more properties in call-by-name than in call-by-value. In Fig. 6 we give
the unrestricted reasoning rules.

For non-recursive types like A→ B the full power of σ→ can be recovered from the
weaker ω→ in the right setting. In call-by-name, the productivity restriction of ω→ is not
important since any term can be a value, and we break down any property to apply ω→
at the root. However, this difference in power between (co)induction in the two semantics
is not quite enough to account for the true strength of call-by-value induction and call-by-
name coinduction, because the strategy of breaking down the property in advance weakens
the (co)inductive hypothesis. As a consequence, the fact that the sub-syntax of strict and
productive properties includes ∀ quantifiers but not implications (Φ′⇒Φ) of any form
means that choosing the “best” semantics still does not fully restore ωNat to σNat or
ωStream to σStream.

This essential difference in reasoning power raises the question: are the unrestricted
induction and coinduction principles ever safe? Thankfully, it turns out that the full (co)-
induction rules σNat and σStream can be consistently added to the program logic, even in
the presence of computational effects like first-class control, under the correct evaluation
strategy (see Section 5).
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Definition 3.8 (Strong Program Logics). The two strong program logics, which
generalize the common extensional program logic (Fig. 5) with additional sound rules
specifically for call-by-name and call-by-value reduction are:

• The strong call-by-name program logic extends the call-by-name instance of Fig. 5
with the σStream and σ→ rules of coinduction from Fig. 6.

• The strong call-by-value program logic extends the call-by-value instance of Fig. 5
with the σNat rule of induction from Fig. 6.

Theorem 3.9. The strong call-by-name and call-by-value program logics are consistent.

4 The Strength of Strong (Co)Induction

Due to the lack of propositional implication, there are certain forms of inductive reasoning
(for example, “strong” induction on the numbers) that are possible using σNat with a
property Φ′⇒Φ that cannot be derived from the ωNat—even in call-by-value. Likewise,
there are certain forms of coinductive reasoning (for example, bisimulation) that are possible
with σStream but cannot be derived from ωStream—even in call-by-name.

Next, we will explore the strength of full σNat and σStream versus the weaker ωNat and
ωStream, and the use of structural (co)induction for encoding several different reasoning
principles for (co)inductive types.

Compositionality of weak mutual (co)induction

Before we get to the full strength of strong structural (co)induction, consider an example of
what can be done with just the weak version all on its own. Mutual induction lets us prove
two properties at the same time, where the correctness of each one depends simultaneously
on the other. To prove Ψ1(x) and Ψ2(x) for all natural numbers x, there are two inductive
cases: one showing Ψ1(succ x) and the other showing Ψ2(succ x). The two cases can be
proved separately from one another, but each one gets to assume both inductive hypotheses
Ψ1(x) and Ψ2(x) hold. This principle is especially useful for generalizing the inductive
hypotheses in situations where we are only interested in Ψ1(x) at the end, but the proof of
Ψ1(x) requires additional knowledge about Ψ2(x) during the inductive step.

This mutual induction reasoning principle can be derived by applying the weak induction
rule ωNat on the conjunction Ψ1(x)∧Ψ2(x) first, before splitting the two apart like so:

Γ | ∆ ⊢Ψ1[zero/x] Γ | ∆ ⊢Ψ2[zero/x]

Γ | ∆ ⊢Ψ1[zero/x]∧Ψ2[zero/x]
ConjI

Γ, x : Nat | ∆, Ψ1(x)∧Ψ2(x) ⊢Ψ1[succ x/x]
Γ, x : Nat | ∆, Ψ1(x)∧Ψ2(x) ⊢Ψ2[succ x/x]

Γ, x : Nat | ∆, Ψ1(x)∧Ψ2(x) ⊢Ψ1[succ x/x]∧Ψ2[succ x/x]
ConjI

Γ, x : Nat | ∆ ⊢Ψ1(x)∧Ψ2(x)
ωNat

This application of the weak ωNat is allowed because the conjunction of two strict properties
Ψ1(x)∧Ψ2(x) is also strict on x.

Since the rules for induction and coinduction mirror each other, we can encode mutual
(weak) coinduction on streams in the exact same way using the ωStream and ConjI rules.
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This mutual weak coinduction rule looks like:
Γ, β ÷ A | ∆ ⊢Ψ1[head β/α]

Γ, β ÷ A | ∆ ⊢Ψ2[head β/α]

Γ, β ÷ A | ∆ ⊢ (Ψ1 ∧Ψ2)[head β/α]
ConjI

Γ, α ÷ Stream A | ∆, Ψ1(α)∧Ψ2(α) ⊢Ψ1[tail α/α]

Γ, α ÷ Stream A | ∆, Ψ1(α)∧Ψ2(α) ⊢Ψ2[tail α/α]

Γ, α ÷ Stream A | ∆, Ψ1(α)∧Ψ2(α) ⊢ (Ψ1 ∧Ψ2)[tail α/α]
ConjI

Γ, α ÷ Stream A | ∆ ⊢Ψ1(α)∧Ψ2(α)
ωStream

For example, we can apply this rule to formalize our previous mutually-coinductive proof
of Example Theorem 2.5 about evens and odds like so:3

β ÷ A ⊢ ∀s1∀s2.⟨evens (merge s1 s2)||head β ⟩= ⟨s1||head β ⟩
β ÷ A ⊢ ∀s1∀s2. ⟨odds (merge s1 s2)||head β ⟩= ⟨s2||head β ⟩

α ÷ Stream A |Ψ1(α)∧Ψ2(α) ⊢ ∀s1∀s2. ⟨evens (merge s1 s2)||tail α⟩= ⟨s1||tail α⟩
α ÷ Stream A |Ψ1(α)∧Ψ2(α) ⊢ ∀s1∀s2. ⟨odds (merge s1 s2)||tail α⟩= ⟨s2||tail α⟩

.... ωStream, ConjI

α ÷ Stream A ⊢ ∀s1∀s2.⟨evens (merge s1 s2)||α⟩= ⟨s1||α⟩
∧ ∀s1∀s2. ⟨odds (merge s1 s2)||α⟩= ⟨s2||α⟩

Where the two coinductive hypotheses are:

Ψ1(α) = ∀s1∀s2.⟨evens (merge s1 s2)||α⟩= ⟨s1||α⟩
Ψ2(α) = ∀s1∀s2.⟨odds (merge s1 s2)||α⟩= ⟨s2||α⟩

Both of these two propositions are productive on α because on the right side they are
given si which is always a value, and on the left side they are immediately matched on
by evens or odds (which are represented by a corec which is itself a value). From here,
the calculations showing all four required equalities follow the same steps as the informal
proof in Example Theorem 2.5. Since only the weak form of coinduction is used, this fact
about evens and odds holds true in languages with side effects under both call-by-name and
call-by-value evaluation.

Notice that, for both mutual induction and coinduction, the strong rules σStream or σNat
are only needed to verify fundamentally non-productive or non-strict propositions Φ1 ∧Φ2,
respectively.

Strong induction on the naturals

In contrast to mutual induction, which can be derived from ωNat, the traditional notion of
strong induction on the natural numbers really requires the full σNat. How can we formalize
the derivation of strong induction? First, define the ordering relation on numbers in terms
of the following equality and translation of the usual minus function (replacing negative
results with zero) specified as follows:

M ≤N : Nat := minus M N = zero : Nat

⟨minus||x · zero ·α⟩= ⟨x||α⟩
⟨minus||succ x · succ y · α⟩= ⟨minus||x · y · α⟩
⟨minus||zero · succ y · α⟩= ⟨zero||α⟩

3 Note that while evens (merge s1 s2) and odds (merge s1 s2) are not syntactically values, they both simplify to a
value in both call-by-value and call-by-name. So we can get the equivalent productive property by simplifying
the two equations, applying ωStream, and then expanding back to this form.
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We then write ∀y≤ x : Nat .Φ as shorthand for the property ∀y : Nat . y≤ x : Nat⇒Φ.
Applying σNat to the free x in this property gives:

Γ ⊢ ∀y≤ zero : Nat .Φ Γ, x : Nat | ∀y≤ x : Nat .Φ ⊢ ∀y≤ succ x : Nat .Φ
Γ, x : Nat ⊢ ∀y≤ x : Nat .Φ σNat

Since we can derive the properties ∀y≤ zero : Nat . y = zero : Nat (by definition of ≤) and
∀x : Nat . x≤ x : Nat (by induction with σNat), we can specialize the above application to
derive the following simpler statement of strong induction on the naturals:

Γ ⊢Φ[zero/x] Γ, x : Nat | ∀y≤ x : Nat .Φ ⊢Φ[succ x/x]....
Γ, x : Nat ⊢Φ

Notice that we can never use ωNat for this derivation, even if Φ happens to be strict on x.
Why not? Because the property to which we apply induction,

∀y : Nat. y≤ succ x : Nat =⇒ Φ

includes an implication where the inducted-upon x is referenced to the left of =⇒ , which
is not allowed in properties that are strict on x.

Strong coinduction on streams

As with induction on the natural numbers, we can derive the dual notion of strong co-
induction on infinite streams. First, define the ordering relation on stream projections
as:

Q≤ R÷ Stream A := depth Q≤ depth R : Nat

where depth Q computes the depth of any stream projection Q, effectively converting
tailn(head α) to succn zero:

depth Q := µα.⟨corec{head α→ α | tail _→ γ.µ̃y.⟨succ y||γ⟩}with zero||Q⟩

As before, we write the quantification ∀β ≤ α ÷ Stream A.Φ as shorthand for ∀β ÷
Stream A. β ≤ α ÷ Stream A⇒Φ. Applying σStream to this property gives:

Γ, δ ÷ A | ∆ ⊢ ∀β ≤ head δ ÷ Stream A.Φ

Γ, α ÷ Stream A | ∆, ∀β ≤ α ÷ Stream A.Φ ⊢ ∀β ≤ tail α ÷ Stream A.Φ

Γ, α ÷ Stream A | ∆ ⊢ ∀β ≤ α ÷ Stream A.Φ
σStream

Analogous to strong induction on the naturals, we can use this application to derive the
following simpler statement of strong coinduction on streams:

Γ, δ ÷ A | ∆ ⊢Φ[head δ/α]

Γ, α ÷ Stream A | ∆, ∀β ≤ α ÷ Stream A.Φ[β/α] ⊢Φ[tail α/α]
....

Γ, α ÷ Stream A | ∆ ⊢Φ

From this, we can derive the following special case of strong coinduction, where we must
show the first n + 1 base cases (for head β , tail(head β ), . . . tailn(head β )) directly, and then
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take the n + 1th tail projection in the coinductive case:

Γ, β÷A | ∆ ⊢Φ[head β/α] . . . Γ, β÷A | ∆ ⊢Φ[tailn(head β )/α] Γ, α÷ Stream A | ∆, Φ ⊢Φ[tailn+1
α/α]....

Γ, α ÷ Stream A | ∆ ⊢Φ

The above principle can prove that

α ÷ Stream A ⊢ ∀s : Stream A.⟨merge (evens s) (odds s)||α⟩= ⟨s||α⟩ (4.1)

by stepping by 2. We prove the property for the base cases (head β and tail(head β )) and
then prove the coinductive case

α ÷ Stream A ⊢ ∀s : Stream A.⟨merge (evens s) (odds s)||tail(tail β )⟩= ⟨s||tail(tail β )⟩

assuming that the property holds for β . This principle captures the proof of Example
Theorem 2.6, with the difference that it avoids the case analysis. From (4.1), we can then
prove

∀s : Stream A. merge (evens s) (odds s) = s : Stream A (4.2)

by IntroL, σ µ, ElimR.

Bisimulation on streams

To conclude our exploration, we now turn to one of the most commonly used principles for
reasoning about coinductive structures—bisimulation—which allows us to prove two objects
are equal whenever they are related by any valid bisimulation relation of our choosing.
The traditional principle of bisimulation on streams can be represented by the following
inference rule, where the property Φ (with free variables s1 and s2) stands for an arbitrary
relationship between two streams s1 and s2:

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢ head s1 = head s2 : A

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢Φ[tail s1/s1, tail s2/s2]

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢ s1 = s2 : Stream A
Bisim

The two assumptions confirm that Φ is a valid bisimulation relation: Φ only relates streams
with equal heads, and is closed under tail projection. We show that this principle is also
subsumed by the strong coinduction rule σStream. We are going to prove

Γ, α : Stream A | ∆ ⊢ ∀s1, s2 : Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩ (4.3)

Where we use the shorthand ∀s1, s2 : Stream A.Φ to stand for multiple quantifications of the
same type ∀s : Stream A.∀s′ : Stream A.Φ. From the above the goal follows:

Γ, α : Stream A | ∆ ⊢ ∀s1, s2 : Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩.... ElimLs1,s2 , Ax, Lemm
Γ, s1 : Stream A, s2 : Stream A, α ÷ Stream A | ∆, Φ ⊢ ⟨s1||α⟩= ⟨s2||α⟩

Γ, s1 : Stream A, s2 : Stream A | ∆, Φ ⊢ s1 = s2 : Stream A
σ µ

We are proving property 4.3 by strong coinduction (σStream):
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• For the head case, we must show that

Γ, α÷A | ∆ ⊢ ∀s1, s2 : Stream A.Φ⇒⟨head s1||α⟩= ⟨head s2||α⟩

The first bisimulation assumption already guarantees that head s1 = head s2 : A when-
ever Φ holds on s1 and s2, so this sub-goal follows directly from the congruence rules,
as shown below:

Γ, s1: Stream A, s2: Stream A, Φ ⊢ head s1 = head s2 : A.... WeakR, Cut, VarL
Γ, β÷A, s1: Stream A, s2: Stream A, Φ ⊢ ⟨head s1||β ⟩= ⟨head s2||β ⟩.... IntroH, IntroL

Γ, β÷A ⊢ ∀s1, s2: Stream A.Φ⇒⟨head s1||β ⟩= ⟨head s2||β ⟩

• For the tail case, from the coinductive hypothesis (referred to locally as CIH)

∀s1, s2 : Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩ (CIH)

we must show

Γ, α ÷ Stream A | ∆,CIH ⊢ ∀s1, s2 : Stream A.Φ⇒⟨tail s1||α⟩= ⟨tail s2||α⟩

The second bisimulation assumption guarantees that Φ[tail s1/s1, tail s2/s2] holds as
well. Therefore, substituting tail s1 and tail s2 in the coinductive hypothesis gives the
required result ⟨tail s1||α⟩= ⟨tail s2||α⟩. More precisely, using the shorthand

ΓCIH := Γ, α ÷ Stream A

ΓSim := Γ, s1 : Stream A, s2 : Stream A

Γ
′ := Γ, α ÷ Stream A, s1 : Stream A, s2 : Stream A

we can derive the goal of the coinductive step by weakening the given bisimulation
premise ΓSim | ∆, Φ ⊢Φ[tail s1/s1, tail s2/s2] as follows:

ΓCIH | ∆,CIH ⊢ ∀s1, s2: Stream A.Φ⇒⟨s1||α⟩= ⟨s2||α⟩
Ax

.... ElimL, ReflL

ΓCIH | ∆,CIH ⊢ ∀s2: Stream A.Φ[tail s1/s1]⇒⟨tail s1||α⟩= ⟨s2||α⟩.... ElimL, ReflL

Γ′ | ∆,CIH ⊢Φ[tail s1/s1, tail s2/s2]⇒⟨tail s1||α⟩= ⟨tail s2||α⟩

ΓSim | ∆, Φ ⊢Φ[tail s1/s1, tail s2/s2].... WeakL

Γ′ | ∆,CIH, Φ ⊢Φ[tail s1/s1, tail s2/s2]

Γ′ | ∆,CIH ⊢ ⟨tail s1||α⟩= ⟨tail s2||α⟩
Lemm

.... IntroL

Γ, α ÷ Stream A | ∆,CIH ⊢ ∀s1, s2: Stream A.Φ⇒⟨tail s1||α⟩= ⟨tail s2||α⟩

5 Consistency of the Program Logic

We’ve seen the (strong) program logics used to encode and prove a variety of different
reasoning principles and program equalities. But how do we know if and when the syntactic
rules in Figs. 5 and 6 imply real equivalences between the results of programs? Applying β

reductions may be easy enough to believe since they correspond to actual steps of execution,
but what about the (co)induction rules? They do not correspond to steps taken by the abstract
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machine, and we have already seen counterexamples where some of them, like σNat and
σStream, can be inconsistent in certain contexts.

In order to prove that the syntactic program logics are consistent, we will show that they
are all approximations of a more general notion of observational equivalence (also known as
contextual equivalence (Pitts, 1997b)), defined directly in terms of the behavior of running
programs. First, we need to characterize the valid stopping points where computation has
ended and we can observe the last attempt at communication between a constructor or
observer and some free (co)variable. Two such commands are considered equivalent if the
top-level structure is the same (ignoring anything deeper, since the computation is finished).

Definition 5.1 (Observable). The set of observable typing environments (Θ) and observable
commands (d) is

ObsEnv∋ Θ ::= • |Θ, α ÷Nat |Θ, x : Stream A |Θ, x : A→ B

ObsCommand ∋ d ::= ⟨zero||α⟩ | ⟨succ V ||α⟩ | ⟨x||head E⟩ | ⟨x||tail E⟩ | ⟨x||V · E⟩

The weak equivalence relation on observable commands, d ∼ d′, is:

⟨zero||α⟩ ∼ ⟨zero||α⟩ ⟨x||head E⟩ ∼ ⟨x||head E ′⟩ ⟨x||V · E⟩ ∼ ⟨x||V ′ · E ′⟩
⟨succ V ||α⟩ ∼ ⟨succ V ′||α⟩ ⟨x||tail E⟩ ∼ ⟨x||tail E ′⟩

This weak equivalence relation is extended to any two commands, c≈ c′, via computation:
c≈ c′ if and only if there are observable commands d, d′ such that c 7→→ d ∼ d′←←[ c′.

Definition 5.2 (Observational Equivalence). Typed observational equivalence is defined as:

1. Γ ⊢ c1 ≈ c2 iff Γ ⊢ ci and for all contexts C, Θ ⊢C[ci] implies C[c1]≈C[c2].
2. Γ ⊢ v1 ≈ v2 : A iff Γ ⊢ vi : A and for all contexts C, Θ ⊢C[vi] implies C[v1]≈C[v2].
3. Γ ⊢ e1 ≈ e2 ÷ A iff Γ ⊢ ei ÷ A and for all contexts C, Θ ⊢C[ei] implies C[e1]≈C[e2].

where a context C is any command with a hole (written □) somewhere in it. Filling the
context (written C[c], C[v], or C[e]) means replacing the hole □ by the given sub-expression,
potentially capturing that sub-expression’s free variables.

Observational equivalence is particularly interesting since it is a consistent, computational
congruence by definition:

Congruence Meaning it is a reflexive, transitive, and symmetric equivalence relation,
which is also compatible with all contexts of the appropriate type. For example, if
Γ ⊢ v1 ≈ v2 : A, and C is a context such that Γ ⊢C[vi] is a well-typed command, then
Γ ⊢C[v1]≈C[v2] holds by definition, because contexts compose.

Computational In the sense that it is closed under the reductions of the operational
semantics: if Γ ⊢ c1 ≈ c2 and ci 7→→ c′i then Γ ⊢ c′1 ≈ c′2.

Consistent As per Definition 3.6. • ⊢ zero≈ succ V : Nat does not hold, due to the coun-
terexample context ⟨□||α⟩; both α ÷Nat ⊢ ⟨zero||α⟩ and α ÷Nat ⊢ ⟨succ V ||α⟩ are
well-typed, irreducible commands in an observable environment, and yet ⟨zero||α⟩ ̸∼
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⟨succ V ||α⟩. Similarly, • ⊢ head E ≈ tail E ′ ÷ Stream A does not hold, due to the
counterexample context ⟨x||□⟩ in the observable environment x : Stream A.

In fact, observational equivalence is the coarsest such relation (Harper, 2016, Theorem
46.6), meaning that any other relation with these properties are included in Definition 5.2. So,
proving that another computational congruence relation is consistent (such as the syntactic
theories in Fig. 5 and Definition 3.8) can be reduced to proving they are included within
observational equivalence.

Our primary goal, then, is to prove that these syntactic theories of equality all imply
observational equivalence, from which their consistency falls out as a corollary. To do
so, we will generalize the model of (co)inductive types from (Downen & Ariola, 2023)—
based on the techniques of classical realizability (Krivine, 2005), (bi)orthogonality (Girard,
1987; Munch-Maccagnoni, 2009), ⊤⊤-closure (Pitts, 2000), and symmetric candidates
(Barbanera & Berardi, 1994) for proving strong normalization of classical calculi—from
unary predicates describing safety to binary relations describing equivalence.

5.1 Orthogonal relations and equality candidates

The safety model of (Downen & Ariola, 2023, Section 6) is a logical relation built around
the idea of orthogonality (Girard, 1987; Pitts, 2000; Munch-Maccagnoni, 2009): a safety
predicate (written ‚) classifying when producers (v) and consumers (e) can safely interact
with one another in a command (⟨v||e⟩ ∈‚). Here we are interested in equality, in the sense
that two commands have equivalent behavior when run. As such, we need to generalize
orthogonality beyond the unary safety predicate c∈‚ on one command, and instead
consider a binary equivalence relation c ‚ c′ between two commands.

We can now give our main definition of binary orthogonality c ‚ c′ serving in terms of
the untyped weak equivalence among commands. Orthogonality, in turn, lets us describe a
semantics for typed equality as a certain pair of relations between terms and coterms. This
forms the potential (i.e., candidate (Girard, 1972)) denotations of types, so each type of our
language can be interpreted as a particular candidate of equality.

Definition 5.3 (Orthogonality). The equivalence pole ‚ is the untyped equivalence relation
on arbitrary commands (c≈ c′) given in terms of weak equivalence of observable commands
(d ∼ d′) from Definition 5.1:

c ‚ c′ := c≈ c′

:= ∃d, d′. c 7→→ d ∼ d′←←[ c′

Orthogonality of two binary relations A+ ⊆ Term2 and A− ⊆CoTerm2 is defined as:4

A+ ‚A− := ∀v A+v′, e A−e′. ⟨v||e⟩‚ ⟨v′||e′⟩
We write A+‚ to denote the largest coterm relation orthogonal to the term relation A+,

and symmetrically write A−‚ to denote the largest term relation orthogonal to the coterm

4 Note that we denote membership of a binary relation R⊆X×Y as an infix operation x R y instead of set
membership notation (x, y)∈R. Furthermore, we use Y 2 as shorthand for the product Y ×Y
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relation A−, which are respectively defined as:

e A+‚ e′ := ∀v A+v′. ⟨v||e⟩‚ ⟨v′||e′⟩
v A−‚ v′ := ∀e A−e′. ⟨v||e⟩‚ ⟨v′||e′⟩

Definition 5.4 (Candidates). A pre-candidate is any pair A= (A+,A−) where A+ is a
binary relation on terms, and A− is a binary relation on coterms, i.e.,

A∈℘(Term2)×℘(CoTerm2) .

A sound (pre-)candidate A= (A+,A−) satisfies the following soundness requirement:

• Soundness: every combination of A+-related terms v A+ v′ and A−-related coterms
e A− e′ forms ‚-equivalent commands ⟨v||e⟩‚ ⟨v′||e′⟩.

A complete (pre-)candidate A= (A+,A−) satisfies these two completeness requirements:

• Positive completeness: if ⟨v||E⟩‚ ⟨v′||E ′⟩ for all A−-related covalues E A− E ′, then
v A+ v′ are related by A+.

• Negative completeness: if ⟨V ||e⟩‚ ⟨V ′||e′⟩ for all A+-related values V A+ V ′, then
e A− e′ are related by A−.

An equality candidate is any sound and complete pre-candidate. PC denotes the set of all
pre-candidates, S C denotes the set of sound ones, C C the set of complete ones, and E C

denotes the set of all equality candidates.
As notation, given any pre-candidate A, we will always write A+ to denote the first

component of A and A− to denote the second one, so that A= (A+,A−). Given a binary
relation on terms A+, we will occasionally write the sound candidate (A+, {}) as just A+

when the difference is clear from the context (notice that (A+, {}) is trivially sound by
definition, but is incomplete). Likewise, we will occasionally write the sound candidate
({},A−) as just the binary coterm relation A− when unambiguous. The common case of
the empty set {}—which could be read as either the empty set of terms or the empty set of
coterms—denotes the same sound candidate ({}, {}) according to either reading.

5.2 Dual lattices and completion

With its two halves—one describing terms the other coterms—candidates provide multiple
views on the relationship between types. These appear in the unary case of typed (co)terms,
as in (Downen & Ariola, 2023, Definition 6.5), and carry over, essentially unchanged, to
binary relationships, too. In particular, the set of candidates supports two separate, but
complementary, lattice structures with different orderings; one based on a refinement notion
of plain containment, and the other based on a notion of subtyping from programming
languages.

Definition 5.5 (Refinement and Subtyping). There are two ways of ordering pre-candidates:
refinement (denoted by A⊑B meaning “A refines B” and “B extends A) and subtyping
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(denoted by A≤B meaning “A is a subtype of B” and “B is a supertype of A”), defined as:

(A+,A−)⊑ (B+,B−) := (A+ ⊆B+) and (A− ⊆B−)
(A+,A−)≤ (B+,B−) := (A+ ⊆B+) and (A− ⊇B−)

Refinement and subtyping both define a complete lattice on pre-candidates with the
following unions and intersections for refinement (⊔,⊓) and subtyping (∨,∧), defined over
any set of pre-candidates {Ai}i ⊆PC as:⊔

i(A+
i ,A

−
i ) := (

⋃
i A+

i ,
⋃

i A−i )
∨

i(A+
i ,A

−
i ) := (

⋃
i A+

i ,
⋂

i A−i )d
i(A

+
i ,A

−
i ) := (

⋂
i A+

i ,
⋂

i A−i )
∧

i(A+
i ,A

−
i ) := (

⋂
i A+

i ,
⋃

i A−i )

where
⋃

and
⋂

denote the union and intersection of binary relations, respectively.

There are many other ways in which refinement and subtyping differ from one another,
and reveal different structures of equality candidates. Of note, the orthogonality operation
distributes over the two orderings in completely opposite directions.

Property 5.6 (Orthogonal Ordering). Given any pre-candidates A and B:

1. Antitonicity: If A⊑B then A‚ ⊒B‚.
2. Monotonicity: If A≤B then A‚ ≤B⊥.

Furthermore, the way the union and intersection operations in the two lattices preserve
(or fail to preserve) soundness and completeness conditions also differ.

Property 5.7 (Sound and Complete Lattices). Given any subset {Ai}i ⊆S C of sound
candidates and {Bi}i ⊆C C complete candidates:

1.
∧

i Ai and
∨

i Ai are sound, but
∧

i Bi and
∨

i Bi may be incomplete.
2.

d
i Ai is sound, but

⊔
i Ai may be unsound.

3.
⊔

i Bi is complete, but
d

i Bi may be incomplete.

In order to build the interpretation of (co)inductive types, we need a complete lattice of
equality candidates, not just a lattice of pre-candidates, that preserves both soundness and
completeness. Since subtyping naturally gives us a complete sub-lattice of sound candidates,
we will begin there, with the subgoal of filling in the missing parts of a sound candidate to
generate the fully completed equality candidate.

Beginning with some initial starting point, completeness demands that we include all
other relationships which are compatible with what is already there. Since completeness
only tests potential (co)term relations w.r.t the (co)values already related by a candidate,
we will have to isolate these (co)values as part of our testing criteria. For this purpose,
the (co)value restriction Av of a candidate A= (A+,A−) includes only those values and
covalues related by A, defined as:

v Av+ v′ := v A+ v′ and v, v′ ∈ Value e Av− e′ := e A− e′ and e, e′ ∈CoValue
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We can use this (co)value restriction to form a complete equality candidate by interleaving
it with the orthogonality operation. But there is a dual choice in our starting point: the
positive viewpoint uses the values related by A as the defining axioms to define the equality
candidate, and the negative viewpoint uses the covalues related by A as the defining axioms.

Definition 5.8 (Positive and Negative Candidates). Given a sound candidate A, the positive
and negative constructions of equality candidates around A are respectively defined as:

Pos(A) := (A+,A+v‚)v‚v‚ Neg(A) := (A−v‚,A−)v‚v‚

The positive and negative viewpoints give complementary equality candidates. By starting
with the values first, Pos gives a smaller equality candidate (w.r.t subtyping) compared to
Neg. In fact, these two are the canonically largest and smallest equality candidates that
extend any sound starting point. This fact lets us modify the subtyping lattice to preserve
both soundness and completeness in both directions.

Lemma 5.9 (Positive & Negative Completion). For any sound candidate A, Pos(A) is the
smallest sound and complete extension of Av w.r.t subtyping, and Neg(A) is the largest
sound and complete extension of Av w.r.t subtyping. In other words, both Pos(A) and
Neg(A) are equality candidates such that Pos(A)⊒Av and Neg(A)⊒Av, and given any
other equality candidate C⊒Av,

Pos(A)≤C≤Neg(A)

Proof sketch The proof follows the same structure as in (Downen & Ariola, 2023,
Lemma 6.7) extended from sets to binary relations, which uses the facts that Pos(A)
and Neg(A) are fixed points of v‚ and, furthermore, that the set of these fixed points is
exactly the set of all equality candidates (Downen et al., 2020, Property 9). □

Definition 5.10 (Equality Candidate Lattice). Equality candidates form a complete lattice
w.r.t subtyping whose unions (⋎) and intersections (⋏) are (Downen et al., 2019):

c
i Ai := Neg(

∧
i Ai)

b
i Ai := Pos(

∨
i Ai)

Notice that the least equality candidate w.r.t subtyping is Pos{}= ({}, CoValue2)‚v‚ and
the greatest one is Neg{}= (Value2, {})‚v‚.

From this perspective, we can re-describe the positive and negative completions in terms
of the subtyping lattice of equality candidates. As per Lemma 5.9, Pos and Neg are the
intersection and union (respectively) of all extensions of a restricted sound candidate Av:

Pos(A) =
k
{C∈ E C |C⊒Av} Neg(A) =

j
{C∈ E C |C⊒Av}

As a corollary of Lemma 5.9 and the definition of Pos and Neg, we get the following
facts that let us reason about positively and negatively constructed equality candidates.

Property 5.11 (Positive & Negative Invariance). For any sound candidates A and B:



1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42 P. Downen and Z.M. Ariola

• If A and B relate the same values, then Pos(A) = Pos(B).
• If A and B relate the same covalues, then Neg(A) = Neg(B).

Property 5.12 (Strong Positive & Negative Completeness). For any sound candidate A:

• E Pos(A)− E ′ if and only if ⟨V ||E⟩‚ ⟨V ′||E ′⟩ for all V A+ V ′.
• V Neg(A)+ V ′ if and only if ⟨V ||E⟩‚ ⟨V ′||E ′⟩ for all E A− E ′.

Property 5.13. For any set of equality candidates {Ai}i:

1. If e A−i e′ for some i, then e ⋏i Ai e′. If V A+
i V ′ for all i, then V ⋏i Ai V ′.

2. If v Ai v′ for some i, then v ⋎i Ai v′. If E A−i E ′ for all i, then E ⋎i Ai E ′.

5.3 Interpretation of types and properties

We now have enough infrastructure to define the model of observational equivalence—as
shown in Fig. 7—by interpreting each syntactic entity (types, properties, environments, and
judgements) into its semantic counterpart.

Each syntactic type A is interpreted as an equality candidate, denoted by JAK, which is
defined by induction on the syntax of A. This interpretation has three main cases—one for
each type constructor—which are all defined in the style of Knaster-Tarski (Knaster, 1928;
Tarski, 1955) fixed points in the subtyping lattice of equality candidates:

• A function type A→ B is interpreted as the equality candidate relating the fewest
covalues possible, while still relating any two call stacks built from JAK-related
arguments and JBK-related return continuations. Dually, this is the equality candidate
relating the most values possible, as long as they have equivalent behavior when
observed by those previously described related call stacks.

• The number type Nat is interpreted as the equality candidate relating the fewest terms
possible, while still relating 0 to itself, and ensuring that the successors of any two
related values are still related. Dually, this is the equality candidate relating the most
covalues possible, as long as they respond the same to any of those related numbers.

• A stream type Stream A is interpreted as the equality candidate relating the fewest
covalues possible, while still relating any two head projections with JAK-related
continuations, and ensuring that the tail of any two related Stream A projection are
still related. Dually, this equality candidate relates the most terms possible, as long as
they have equivalent behavior when observed by those related stream projections.

Each typing environment Γ is interpreted as a binary relation on substitutions, JΓK, both
of which replace some variables with values, and some covariables with covalues. The
interpretation of Γ (written ρ JΓK ρ ′) relates two such substitutions ρ and ρ ′ that abide by
all three of the following criteria:
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Interpretation of types J K : Type→ E C

JA→ BK :=
j
{C∈ E C | ∀ V JAK V ′, E JBK E ′. (V · E) C (V ′ · E ′)}

JNatK :=
k
{C∈ E C | zero C zero

and ∀ V C V ′. (succ V ) C (succ V ′)}

JStream AK :=
j
{C∈ E C | ∀ E JAK E ′. (head E) C (head E ′)

and ∀ E C E ′. (tail E) C (tail E ′)}

Interpretation of environments J K : Env→℘(Subst2)

Subst ∋ ρ ::=V/x, . . . , E/α, . . .

ε J•K ε := trivially true

ρ[V/x] JΓ, x : AK ρ
′[V ′/x] := ρ JΓK ρ

′ and V JAK V ′

ρ[E/α] JΓ, α ÷ AK ρ
′[E ′/α] := ρ JΓK ρ

′ and E JAK E ′

Interpretation of properties J K : Prop→℘(Subst2)

ρ Jc = c′K ρ
′ := c[ρ]‚ c′[ρ ′]

ρ Jv = v′ : AK ρ
′ := v[ρ] JAK v′[ρ ′]

ρ Je = e′ ÷ AK ρ
′ := e[ρ] JAK e′[ρ ′]

ρ J∀x : A.ΦK ρ
′ := ∀ V JAK V ′. ρ[V/x] JΦK ρ

′[V ′/x]

ρ J∀α ÷ A.ΦK ρ
′ := ∀ E JAK E ′. ρ[E/α] JΦK ρ

′[E ′/α]

ρ JΦ⇒Φ
′K ρ

′ := ρ JΦK ρ
′ implies ρ JΦ

′K ρ
′

ρ JΦ∧Φ
′K ρ

′ := ρ JΦK ρ
′ and ρ JΦ

′K ρ
′

Interpretation of hypotheses J K : Hyp→℘(Subst2)

ρ J•K ρ := trivially true

ρ J∆, ΦK ρ
′ := ρ J∆K ρ

′ and ρ JΦK ρ
′

Interpretation of judgements J K : Judge→{true, false}

JΓ | ∆ ⊢ΦK := JΓK ∩ J∆K ⊆ JΦK

Fig. 7: Model of observational equivalence in the abstract machine.

• For each variable x of type A in the environment Γ, both ρ and ρ ′ must substitute
some value for x (call them x[ρ] =V and x[ρ ′] =V ′, respectively), such that V and
V ′ are related by the interpretation of A.

• For each covariable x of type A in the environment Γ, both ρ and ρ ′ must substitute
some covalue for α (call them α[ρ] = E and α[ρ ′] = E ′, respectively) such that E
and E ′ are related by the interpretation of A.

• For each property Φ assumed in the environment Γ, the interpretation of Φ must be
true when given both ρ and ρ ′. Or in other words, Φ must relate ρ and ρ ′.

Singular syntactic properties Φ — as well as collections of hypotheses ∆ — are interpreted
as a binary predicate deciding whether or not that property holds under a given pair of
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substitutions. This is equivalent to interpreting Φ or ∆ as a binary relation on substitutions,
just like we did for typing environments, that identifies which substitutions make the
property true. The interpretation of these properties as relations comes in three different
flavors, which correspond to the three different roles served by each specific Φ:

• Equalities: There are three different forms of equalities. Two commands are consid-
ered equal under a pair of substitutions when they are ‚-related after applying the
left substitution to the left command and the right substitution to the right command.
Similarly, two (co)terms are considered equal at a type A under a pair of substitutions
when applying those substitutions leads to JAK-related (co)terms.

• Quantifiers: Universal quantifiers signify that a property holds under any possible
extension allowed by the type of the quantified (co)variable. Universal quantification
over a variable, ∀x:A.Φ, relates two substitutions when Φ does, after extending the
substitutions with any pair JAK-related values for x. Universal quantification over a
covariable is defined in the same way.

• Logical connectives: The logical connectives of implication (Φ⇒Φ′) and conjunction
(Φ∧Φ′) are interpreted directly for each pair of substitutions. Equivalently, we can
say that JΦ∧Φ′K means JΦK ∩ JΦ′K using the intersection of relations (∩) that
we’ve used previously, and JΦ⇒Φ′K means JΦK =⇒ JΦ′K where ( =⇒ ) denotes
the implication of relations.

Speaking more broadly, we can generalize the universal quantification and environment
extension from Fig. 7 to range over pre-candidates that lie outside the syntactic type system.
This generality will be needed as we simplify away the extraneous elements of a type that
we don’t need to consider while proving a property. For any pre-candidate A and binary
substitution relations γ and φ , the two universal quantifiers and environment extensions are:

ρ (∀x:A.φ) ρ
′ := ∀ V A V ′. ρ[V/x] φ ρ

′[V ′/x]

ρ (∀α÷A.φ) ρ
′ := ∀ E A E ′. ρ[E/α] φ ρ

′[E ′/α]

ρ (γ, x : A) ρ
′ := ρ γ ρ

′ and x[ρ] A x[ρ ′]

ρ (γ, α ÷A) ρ
′ := ρ γ ρ

′ and α[ρ] A α[ρ ′]

Last but not least are judgements of the form Γ | ∆ ⊢Φ, which are interpreted as just
true or false statements. The syntactic entailment ⊢ is interpreted as the boolean test for
relational implication ⊆, so that JΓ | ∆ ⊢ΦK whenever the environment JΓK combined
with the constraints in J∆K implies the property JΦK. In other words, we can understand
JΓ | ∆ ⊢ΦK pointwise as the equivalent statement

JΓ | ∆ ⊢ΦK = ∀ ρ JΓK ρ
′. if ρ J∆K ρ

′ then ρ JΦK ρ
′

that ρ JΦK ρ ′ holds for all possible substitutions ρ JΓK ρ ′ given by the typing environment
and satisfying the pre-condition ρ J∆K ρ ′. This implicational interpretation of entailment
gives rise to some useful structure to reason about the semantics of judgements.

Property 5.14. For any pre-candidate A and binary substitution relations γ , φ , and φ ′:

JΓ, x : AK = JΓK, x : JAK J∀x:A.ΦK = ∀x:JAK.JΦK γ, x : A⊆ φ = γ ⊆∀x:A. φ
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JΓ, α÷AK = JΓK, α÷JAK J∀α÷A.ΦK = ∀α÷JAK.JΦK γ, α÷A⊆ φ = γ ⊆∀α÷A. φ

J∆, ΦK = J∆K ∩ JΦK JΦ⇒Φ
′K = JΦK =⇒ JΦ

′K (γ ∩ φ)⊆ φ
′ = γ ⊆ (φ =⇒ φ

′)

(γ, x : A)∩ J∆K = (γ ∩ J∆K), x : A (if x /∈ FV (∆))

(γ, α ÷A)∩ J∆K = (γ ∩ J∆K), α ÷A (if α /∈ FV (∆))

Furthermore, for any related ρ γ ρ ′, we have related extensions ρ[V/x] (γ, x : A) ρ[V ′/x]
for all V A V ′, and ρ[E/α] (γ, α : A) ρ[E ′/α] for all E A E ′.

5.4 Universal consistency of weak (co)induction

We now turn to justifying inductive and coinductive reasoning in terms of the above model.
One key component is that (co)induction seeks to reason about a type by only considering
the concrete structures of a type. For an inductive type like Nat, that means we want to
consider only the zero and succ cases of values, and ignore the rest. Dually for coinductive
types like Stream A and A→ B, we want to consider only the head and tail cases of stream
covalues and only the stack V · E cases for function covalues.

The first step in this direction is to notice that certain universal properties need to consider
fewer cases for positively and negatively complete equality candidates. A strict property
on x holds for all related values of Pos(A) exactly when it holds on only the values related
by A. Dually, a productive property on α holds for all related covalues of Neg(A) exactly
when it holds on only the covalues related by A. Note that this fact does not depend on the
evaluation strategy of the language, but is instead ensured by the strictness or productivity
of the underlying property.

Lemma 5.15 ((De)Constructive (Co)Induction). For any sound candidate A and substitu-
tion relation γ:

1. γ, x : Pos(A)⊆ JΨ(x)K if and only if γ, x : A⊆ JΨ(x)K, and
2. γ, α ÷Neg(A)⊆ JΨ(α)K if and only if γ, α ÷A⊆ JΨ(α)K.

Proof We use Property 5.14 to prove γ, x : A⊆ JΨ(x)K and γ, x : Pos(A)⊆ JΨ(x)K are
equivalent statements generically for all γ by induction on the syntax of Ψ(x):

• ⟨x||E⟩= ⟨x||E ′⟩ where x is not free in E or E ′. First, note that A⊑ Pos(A), so
that ∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K implies ∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K via this inclusion.
Furthermore, ∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K means

⟨x||E⟩[V/x] = ⟨V ||E⟩‚ ⟨V ′||E ′⟩= ⟨x||E ′⟩[V ′/x]

for all V A V ′ (since E[V/x] = E and E ′[V ′/x] = E ′), and thus E Av‚ E ′ by the
definition of orthogonality. Therefore E Pos(A) E ′ by Property 5.12, and thus

⟨x||E⟩[V/x] = ⟨V ||E⟩‚ ⟨V ′||E ′⟩= ⟨x||E ′⟩[V ′/x]

for any V Pos(A) V ′, which means ∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K. In other words,

∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K = ∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K
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are equivalent substitution relations, and thus more generally

γ, x : A⊆ J⟨x||E⟩= ⟨x||E ′⟩K = γ ⊆∀x:A.J⟨x||E⟩= ⟨x||E ′⟩K
= γ ⊆∀x:Pos(A).J⟨x||E⟩= ⟨x||E ′⟩K
= γ, x : Pos(A)⊆ J⟨x||E⟩= ⟨x||E ′⟩K

• ∀y:B.Ψ(x) where y ̸= x. Applying Property 5.14:

γ, x : A⊆ J∀y:B.Ψ(x)K = γ, x : A⊆∀y:JBK.JΨ(x)K
= γ, x : A, y : JBK ⊆ JΨ(x)K
= γ, y : JBK, x : A⊆ JΨ(x)K (x ̸= y)

= γ, y : JBK, x : Pos(A)⊆ JΨ(x)K (IH)

= γ, x : Pos(A), y : JBK ⊆ JΨ(x)K (x ̸= y)

= γ, x : Pos(A)⊆∀y:JBK.JΨ(x)K
= γ, x : Pos(A)⊆ J∀y:B.Ψ(x)K

• ∀α÷B.Ψ(x). Follows by permuting the bindings of x and α and applying the inductive
hypothesis to γ extended with α ÷ JBK analogously to the previous case.

• Φ⇒Ψ(x) where x is not free in Φ. Applying Property 5.14:

γ, x : A⊆ JΦ⇒Ψ(x)K = γ, x : A⊆ (JΦK =⇒ JΨ(x)K)
= (γ, x : A)∩ JΦK ⊆ JΨ(x)K
= (γ ∩ JΦK), x : A⊆ JΨ(x)K (x /∈ FV (Φ))

= (γ ∩ JΦK), x : Pos(A)⊆ JΨ(x)K (IH)

= (γ, x : Pos(A))∩ JΦK ⊆ JΨ(x)K (x /∈ FV (Φ))

= γ, x : Pos(A)⊆ JΦK =⇒ JΨ(x)K
= γ, x : Pos(A)⊆ JΦ⇒Ψ(x)K

• Ψ1(x)∧Ψ2(x). Note that JΨ1(x)∧Ψ2(x)K = JΨ1(x)K ∩ JΨ2(x)K so

γ, x : A⊆ JΨ1(x)∧Ψ2(x)K
= γ, x : A⊆ JΨ1(x)K ∩ JΨ2(x)K
= (γ, x : A⊆ JΨ1(x)K) and (γ, x : A⊆ JΨ2(x)K)
= (γ, x : Pos(A)⊆ JΨ1(x)K) and (γ, x : Pos(A)⊆ JΨ2(x)K) (IH)

= γ, x : Pos(A)⊆ JΨ1(x)K ∩ JΨ2(x)K
= γ, x : Pos(A)⊆ JΨ1(x)∧Ψ2(x)K

The “if” direction for property 2 follows analogously to the above using Property 5.12 for
Neg(A) in the base case of an equality ⟨V ||α⟩= ⟨V ′||α⟩. ■

Lemma 5.15 is enough to prove the extensional rule ω→ for function types, since the
interpretation JA→ BK corresponds exactly to a negatively-constructed type. As the largest
equality candidate which relates call stacks built from related parts, we can isolate these
call stacks as a negative type.
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Property 5.16 (Negative Functions). JA→ BK = Neg(JAK ⊙ JBK) where A⊙B is the least
relation on covalues such that:

(V · E) (A⊙B) (V ′ · E ′) :=V A V ′ and E B E ′

Lemma 5.17 (ω→). Given α, β , x /∈ FV (∆), JΓ, α ÷ A→ B | ∆ ⊢Ψ(α)K if and only if
JΓ, x : A, β ÷ B | ∆ ⊢Ψ(x · β )K.

Proof By viewing JA→ BK in terms core call-stack relation JAK ⊙ JBK (Property 5.16), and
using the fact that α /∈ FV (∆) to commute the hypothesis with the binding (Property 5.14),

JΓ, α ÷ A→ B | ∆ ⊢Ψ(α)K = (JΓK, α ÷ JA→ BK)∩ J∆K ⊆ JΨ(α)K
= (JΓK ∩ J∆K), α ÷ JA→ BK ⊆ JΨ(α)K
= (JΓK ∩ J∆K), α ÷Neg(JAK ⊙ JBK)⊆ JΨ(α)K

we learn from Lemma 5.15 that the quantification over α ÷Neg(JAK ⊙ JBK) is equivalent
to the same quantification over call stacks:

(JΓK ∩ J∆K), α ÷Neg(JAK ⊙ JBK)⊆ JΨ(α)K
= (JΓK ∩ J∆K), α ÷ JAK ⊙ JBK ⊆ JΨ(α)K (Lemma 5.15)

= (JΓK ∩ J∆K), x : JAK, β ÷ JBK.⊆ JΨ(x · β )K (x, β /∈ AV (Γ)∪ FV (∆)∪ FV (∆))

= (JΓK, x : JAK, β ÷ JBK)∩ J∆K ⊆ JΨ(x · β )K
= JΓ, x : A, β ÷ BK ∩ J∆K ⊆ JΨ(x · β )K
= JΓ, x : A, β ÷ B | ∆ ⊢Ψ(x · β )K

■

We can perform a similar inversion on the (co)inductive types, although not all at once.
Rather, this bottom-up redefinition of natural numbers and streams must work incrementally.
Beginning with the most extreme starting point (the least equality candidate Pos{} for
inductive numbers and the greatest equality candidate Neg{} for coinductive streams), we
iteratively build toward the final answer one step at a time. For the natural numbers, we use
these interpretations of the zero and succ constructors as relations between values built by
those constructors

zero JzeroK zero := trivially true (succ V ) JsuccK(A) (succ V ′) :=V A V ′

in order to define larger and larger approximations of the JNatK equality candidate:

JNatK0 := Pos{} JNatKi+1 := Pos(JzeroK ∨ JsuccK(JNatKi))

At the limit, the union of all under-approximations
b

i JNatKi is the Kleene-style fixed
point definition (Kleene, 1971) of natural numbers. Thankfully, the dual construction of
coinductive streams can be done in exactly the same way, just working from the other
direction of the subtyping lattice. With these interpretations of the head and tail projections
as relations between covalues built by those destructors

(head E) JheadK(A) (head E ′) := E A E ′ (tail E) JtailK(A) (tail E ′) := E A E ′
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we can define smaller and smaller approximations of JStream AK:

JStream AK0 := Neg{} JStream AKi+1 := Neg(JheadK(JAK)∧ JtailK(JStream AKi))

Here, the intersection of over-approximations
c

i JStream AKi is the dual Kleene-style fixed
point definition of streams. These incremental fixed points define the same equality candidate
as the Tarski-style fixed points from Fig. 7.

Lemma 5.18 (Positive Numbers & Negative Streams). Under both call-by-value and
call-by-name evaluation,

JNatK =
∞j

i=0

JNatKi JStream AK =
∞k

i=0

JStream AKi

Proof sketch Generalizing the proof from (Downen & Ariola, 2023, Lemma 6.13) from
sets to binary relations requires the analogous facts (Downen & Ariola, 2023, Lemmas 1.19
and 1.22) that

∞j

i=0

JNatKi =
∞∨

i=0

JNatKi

∞k

i=0

JStream AKi =
∞∧

i=0

JStream AKi

The key to demonstrating that these two instances of unions of numbers and intersections of
streams are equal is in showing that we can fully observe a constructed number or a stream
projection of any size.

For numbers, notice
b

∞

i=0 JNatKi relates the following instance of the recursor to itself:

rec∞ := rec{zero→ zero | succ → x.x}with α rec∞

∞j

i=0

JNatKi rec∞

Then, given any V
b

∞

i=0 JNatKi rec∞ V ′, we can use the fact that ⟨V ||rec∞⟩‚ ⟨V ′||rec∞⟩
to trace the reductions of the commands and show that V JNatKiV

′ for some ith finite
approximation.

Streams follow a similar logic. Notice that
c

∞

i=0 JStream AKi relates this stream to itself
for any V JAK V ′:

corec∞[V ] := corec{head α→ α→ tail → γ.γ}with V

corec∞[V ]

∞k

i=0

JStream AKi corec∞[V ′]

Then, given any V JAK V ′ and E
b

∞

i=0 JNatKi rec∞ E ′, we can use the fact that
⟨corec∞[V ]||E⟩‚ ⟨corec∞[V ′]||E ′⟩ to trace the reductions of the commands and show that
E JStream AKiE

′ for some ith finite approximation.
It follows that these provide another definition of the least equality candidate closed under

zero and succ, and the greatest equality candidate closed under head and tail, respectively.
Since there can be only one least/greatest equality candidate satisfying the same closure
condition, they must be the same as the ones in Fig. 7. □

The incremental nature of the Kleene-style redefinitions makes it easy to reason (co)-
inductively over the ith approximation steps. This way, we can show that the premises to the
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(co)inductive inference rules ωNat and ωStream are interpreted as equivalent statements to
their conclusions.

Lemma 5.19 (ωNat). Given x /∈ FV (∆), JΓ, x : Nat | ∆ ⊢Ψ(x)K if and only if
JΓ | ∆ ⊢Ψ(zero)K and JΓ, x : Nat | ∆, Ψ(x) ⊢Ψ(succ x)K.

Proof The “only if” direction follows immediately, since the relations zero JNatK zero
and (succ V ) JNatK (succ V ′) hold for any V JNatK V ′.

For the “if” direction, assume JΓ | ∆ ⊢Ψ(zero)K and JΓ, x : Nat | ∆, Ψ(x) ⊢Ψ(succ x)K
hold, and we will show that JΓ, x : Nat | ∆ ⊢Ψ(x)K holds, too. From Property 5.14
and Lemmas 5.15 and 5.18, it suffices to show that the following equivalent proposition
holds:

JΓ, x : Nat | ∆ ⊢Ψ(x)K = (JΓK, x : JNatK)∩ J∆K ⊆ JΨ(x)K
= (JΓK ∩ J∆K), x : JNatK ⊆ JΨ(x)K (Property 5.14)

= (JΓK ∩ J∆K), x :
∞j

i=0

JNatKi ⊆ JΨ(x)K (Lemma 5.18)

= (JΓK ∩ J∆K), x :
∞∨

i=0

JNatKi ⊆ JΨ(x)K (Lemma 5.15)

Let γ = JΓK ∩ J∆K, and we can now proceed by proving each individual approximation
γ, x : JNatKi ⊆ JΨ(x)K by induction on i.

• (Base case: 0) JNatK0 = Pos{}, so we must show γ, x : Pos{} ⊆ JΨ(x)K. By
Lemma 5.15, this statement is equivalent to γ, x : {} ⊆ JΨ(x)K, which is vacuously
true since there are no possible choices for x in the empty pre-candidate {}.

• (Inductive case: i + 1) JNatKi = Pos(JzeroK ∨ JsuccK(JNatKi)). By Lemma 5.15, these
statements

γ, x : JNatKi+1 ⊆ JΨ(x)K
= γ, x : Pos(JzeroK ∨ JsuccK(JNatKi))⊆ JΨ(x)K
= γ, x : JzeroK ∨ JsuccK(JNatKi)⊆ JΨ(x)K
= (γ, x : JzeroK ⊆ JΨ(x)K) and (γ, x : succ(JNatKi)⊆ JΨ(x)K)

are equivalent, and we must show that they hold. Since zero JzeroK zero is the
only related values of JzeroK, the assumption JΓ | ∆ ⊢Ψ(zero)K is equivalent to
γ, x : JzeroK ⊆ JΨ(x)K. Similarly, (succ V ) JsuccK(JNatKi) (succ V ′) are the only
related values of JsuccK(JNatKi) for any V JNatKi V ′. By the inductive hypoth-
esis, we know γ, x : JNatKi ⊆ JΦ(x)K. Because JNatKi ≤ JNatK, the assumption
JΓ, x : Nat | ∆, Φ(x) ⊢Φ(succ x)K implies (JΓK, x : JNatKi)∩ ∆⊆ JΦ(succ x)K which
is equivalent to γ, x : JsuccK(JNatKi)⊆ JΦ(x)K. Therefore, the equivalent statements

(γ, x : JzeroK ⊆ JΨ(x)K) and (γ, x : succ(JNatKi)⊆ JΨ(x)K)
= γ, x : JNatKi+1 ⊆ JΨ(x)K

hold.
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So since γ, x : JNatKi ⊆ JΨ(x)K holds for every i, so too does

γ, x :
∞∨

i=0

JNatiK ⊆ JΨ(x)K = JΓ, x : Nat | ∆ ⊢Ψ(x)K

■

Lemma 5.20 (ωStream). Given α, β /∈ FV (∆), JΓ, α ÷ Stream A | ∆ ⊢Ψ(α)K if and only
if JΓ, β ÷ A | ∆ ⊢Ψ(head β )K and JΓ, α ÷ Stream A | ∆, Ψ(α) ⊢Ψ(tail α)K.

Proof Analogous to Lemma 5.19. The “only if” direction is immediate since
(head E) JStream AK (head E ′) holds for any E JAK E ′ and (tail E) JStream AK (tail E ′)
holds for any E JStream AK E ′. For the “if” direction, it suffices to show the equivalent state-
ment (JΓK ∩ J∆K), α ÷

∧
i JStream AKi ⊆ JΨ(α)K holds via Property 5.14 and Lemmas 5.15

and 5.18, which follows by induction on i using Lemma 5.15 in a similar manner as in
Lemma 5.19. ■

From this semantics of the main (co)inductive principles, we can prove soundness with
respect to the model, analogous to (Downen & Ariola, 2023), which in turn lets us derive
the fact that the universal program logic is a consistent approximation of observational
equivalence in both call-by-name and call-by-value evaluation.

Theorem 5.21 (Soundness). If Γ | ∆ ⊢Φ is derivable in the extensional program logic, then
JΓ | ∆ ⊢ΦK is true for both call-by-value and call-by-name evaluation.

Lemma 5.22. α JNatK α , and x JStream AK x and x JA→ BK x for any α and x.

Proof ⟨x||V · E⟩‚ ⟨x||V ′ · E ′⟩ by definition of ‚, so that x Neg(JAK ⊙ JBK) x by
Property 5.12, and thus x JA→ BK x by Property 5.16.

Dually, both ⟨zero||α⟩‚ ⟨zero||α⟩ and ⟨succ V ||α⟩‚ ⟨succ V ′||α⟩ by definition of ‚. As
a result, we have α JNatKi α for all i: the case for JNatK0 = Pos{} is trivial since all covalues
are related by Pos{}, and the case for JNatKi+1 = Pos(JzeroK ∨ JsuccKJNatKi) follows from
the previously mentioned fact about ‚ and Property 5.12. Finally, α

b
i JNatKi α by

Property 5.13, and thus α JNatK α by Lemma 5.18.
The fact that x JStream AK x follows from Properties 5.12 and 5.13 and Lemma 5.18 simi-

larly to the above, using the fact that ⟨x||head E⟩‚ ⟨x||head E ′⟩ and ⟨x||tail E⟩‚ ⟨x||tail E ′⟩
by definition of ‚. ■

Theorem 5.23. In the extensional program logic, the following holds for both call-by-name
and call-by-value evaluation:

1. If Γ ⊢ c = c′ then Γ ⊢ c≈ c′.
2. If Γ ⊢ v = v′ : A then Γ ⊢ v≈ v′ : A.
3. If Γ ⊢ e = e′ ÷ A then Γ ⊢ e≈ e′ ÷ A.

Proof Suppose Γ ⊢ c = c′ (the cases for Γ ⊢ v = v′ : A and Γ ⊢ e = e′ ÷ A are analogous)
and let C be any context such that Θ ⊢C[c] and Θ ⊢C[c′], and thus Θ ⊢C[c] =C[c′] by
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congruence. From Theorem 5.21 it must be that JΘ ⊢C[c] =C[c′]K, i.e., for any substitution
ρ JΘK ρ ′, then C[c][ρ]‚C[c′][ρ]. Note that all (co)variable type assignments in Θ have
the form α ÷Nat, x : Stream A, and x : A→ B, so by Lemma 5.22, we know that the JΘK
relates the identity substitution to itself. Thus a valid instance of JΘ ⊢C[c] =C[c′]K is
just C[c]‚C[c′], meaning C[c] 7→→ d ∼ d′←←[C[c′]. In other words, we know Γ ⊢ c≈ c′ by
definition of observational equivalence. ■

Theorem 3.7. The extensional program logic in Fig. 5 is consistent for both the call-by-name
and call-by-value semantics.

Proof A corollary of Theorem 5.23, since observational equivalence is a consistent
congruence by definition. ■

5.5 Strong call-by-value induction and call-by-name coinduction

In the general case, we need to interleave a (positive or negative) completion while building
up a (co)inductive equality candidate like JNatKi or JStream AKi. But in the specific case
where the evaluation strategy lines up nicely, we get a much simpler definition for call-by-
value inductive types and call-by-name coinductive types.

Lemma 5.24 (Strict Construction of Naturals). Under call-by-value evaluation, V JNatK V ′

if and only if V =V ′ = succn zero for some n. Furthermore JNatK = Pos(N) under call-
by-value evaluation, where N is the reflexive relation on only the hereditary numeric
constructions, i.e., the smallest binary relation such that (succn zero) N (succn zero).

Proof Let deepNat = rec{zero→ zero | succ → y. succ y}with α , and note that α ÷
Nat ⊢ deepNat ÷Nat is a well-typed covalue, so by reflexivity it is equal to itself at type Nat.
Adequacy (Theorem 5.21) then ensures that α ÷ JNatK ⊆ JdeepNat = deepNat ÷NatK and
since α JNatK α (Lemma 5.22), we know specifically that deepNat JNatK deepNat. From the
soundness of JNatK, we know that V JNatK V ′ implies ⟨V ||deepNat⟩‚ ⟨V ′||deepNat⟩, or in
other words ⟨V ||deepNat⟩ 7→→ d ∼ d′←←[ ⟨V ′||deepNat⟩ In call-by-value, the only such values
that satisfy this relationship are V = succn zero and V ′ = succn′ zero, for some n, n′ itera-
tions of the successor. Specifically, µ-abstractions are not values in call-by-value, and the
only other choices for values all lead to computations that get stuck at some unobservable
command.

To see that n = n′, consider what happens if n ̸= n′, and suppose (without loss of
generality) that n < n′. Here is a family of well-typed covalues that peel off n successors:

minus0 := α minusn+1 := rec{zero→ zero | succ x→ .x}with minusn

So that, for any m≤m′, ⟨succm′ zero||minusm⟩ 7→→ ⟨succm′−m zero||α⟩. Note again that α ÷
Nat ⊢minusn ÷Nat is a well-typed covalue, so that it is equal to itself by reflexivity, and
thus by adequacy (Theorem 5.21) and Lemma 5.22, minusn JNatK minusn. From soundness
of JNatK, it follows that the following inconsistent equivalence holds

⟨succn zero||minusn⟩ 7→→ ⟨zero||α⟩ ∼ ⟨succ(succn′−n−1 zero)||α⟩←←[ ⟨succn′ ||minusn⟩
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which contradicts the definition of ∼. Therefore, n = n′, and thus V JNatK V ′ if and only if
V =V ′ = succn zero exactly.

In other words, N= JNatKv+, and so Pos(N) = Pos(JNatKv+) = Pos(JNatK) by
Property 5.11, and Pos(JNatK) = JNatK, because JNatK is already a complete equality
candidate. ■

Lemma 5.25 (Strict Destruction of Streams). Under call-by-name evaluation,
E JStream AK E ′ if and only if E = tailn(head E1) and E ′ = tailn(head E ′1) for some n and
E JAK E ′. Furthermore JStream AK = Neg(S(JAK)) under call-by-value evaluation, where
S(JAK) is the reflexive relation on only the hereditary stream projections, i.e., the smallest
binary relation such that (tailn(head E)) S(A) (tailn(head E ′)) if and only if E A E ′.

Proof Analogous to the proof for Lemma 5.24. Using the value deepStream =

corec{head α→ α | tail → β . tail β}with x, which has the type x : Stream A ⊢
deepStream A, we can conclude that E JStream AK E ′ if and only if E = tailn(head E0) and
E ′ = tailn

′
(head E ′0) for some E0 JAK E ′0. Furthermore, it must be that n = n′, because we

can peel off n tail projections using the value

raise0 := x raisen+1 := corec{head α→ head α | tail β → .β}with raisen

which derives an inconsistent equivalence ⟨x||head E0⟩ ∼ ⟨x||tail(tailn
′−n−1(head E ′0))⟩ that

contradicts the definition of ‚. Therefore, JStream AK = Neg(S(JAK)). ■

These simpler definitions for JNatK and JStream AK make it possible to verify the stronger
(co)inductive rules σNat and σStream, which do not place any restrictions on the kinds of
properties they may prove.

Lemma 5.26 (σNat).
JΓ, x : Nat ⊢ΦK if and only if JΓ ⊢Φ[zero/x]K and JΓ, x : Nat, Φ ⊢Φ[succ x/x]K.

Proof By Lemmas 5.15 and 5.24, the meaning of JΓ, x : Nat ⊢ΦK is equivalent to:

JΓ, x : Nat ⊢ΦK = JΓK, x : JNatK ⊆ JΦK
= JΓK, x : Pos(N)⊆ JΦK
= JΓK, x : N⊆ JΦK

Which can be proved equivalent to JΓK ⊆ JΦ[zero/x]K and JΓK, x : N⊆ JΦ[succ x/x]K by an
ordinary induction on the numeric constructions in N. ■

Lemma 5.27 (σStream). JΓ, α ÷ Stream A ⊢ΦK if and only if JΓ, β ÷ A ⊢Φ[head β/α]K
and JΓ, α ÷ Stream A, Φ ⊢Φ[tail α/α]K.

Proof Analogous to Lemma 5.26 by duality using Lemmas 5.15 and 5.25. ■

Theorem 5.28 (Soundness). If Γ ⊢Φ is derivable in the strong call-by-value program logic,
then JΓ ⊢ΦK is true under call-by-value evaluation. Likewise, If Γ ⊢Φ is derivable in the
strong call-by-name program logic, then JΓ ⊢ΦK is true under call-by-name evaluation.
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Proof The same as the proof of Theorem 5.21 with one additional case for σNat in
call-by-value or σStream and σ→ in call-by-name. ■

Theorem 5.29. In the strong call-by-value program logic and operational semantics, and
in the strong call-by-name program logic and operational semantics, the following hold:

1. If Γ ⊢ c = c′ then Γ ⊢ c≈ c′.
2. If Γ ⊢ v = v′ : A then Γ ⊢ v≈ v′ : A.
3. If Γ ⊢ e = e′ ÷ A then Γ ⊢ e≈ e′ ÷ A.

Theorem 3.9. The strong call-by-name and call-by-value program logics are consistent.

Proof Both Theorems 3.9 and 5.29 are proved the same as Theorems 3.7 and 5.23, using
the generalized Theorem 5.28 in place of Theorem 5.21. ■

6 Related Work

Foundations and implementations of coinduction

Coinduction has been heavily used in different domains: to prove security properties of
low-level code (Leroy & Rouaix, 1998; Appel & Felty, 2000), to prove regular expres-
sions containments (Henglein & Nielsen, 2011), to show language equivalence of a
non-deterministic finite automata (Bonchi & Pous, 2013), to reason about software-defined
networks (Foster et al., 2015), and probabilistic functional programs (Lago et al., 2014).
The relation between coinductive reasoning and programming languages theory has been
consolidated in (Hur et al., 2012).

Coq is one of the few formal verifiers with a long history of native support for coinduction
(Giménez, 1996; Chlipala, 2013). Yet, coinductive proof development in Coq is not easy:
such proofs are not checked until they are completed, which is too late for Coq’s interactive
proof development. It is often said that coinductive proofs have a very different “feel.”
Much work on improving the mechanization of coinduction has been done in a form of
structural coinduction in the Isabelle/HOL theorem prover (Traytel et al., 2012) with the
aim to improve the ease of use (Blanchette et al., 2014, 2015). There, the built-in notion
of coinductive proof is based on bisimulation, and so the implementation has support to
automatically derive the bisimulation relation. In contrast, here we formulate structural
coinduction directly on the shape of observations — with bisimulation as just one, optional,
mode of use — so bisimulation relations never arise for many proofs. Instead, the closest
direct implementation of structural coinduction as presented here is the implementation
of copatterns in Agda (Abel et al., 2013). Coinduction has also been brought to program
verification in Dafny (Leino & Moskal, 2014) and Liquid Haskell (Mastorou et al., 2022).

While we focus on methods of reasoning based on computation and formal classical
logic, other approaches have been employed for reasoning about corecursive programs.
From the domain-theoretic approach, Scott and de Bakker’s fixed-point induction (Bakker,
1980) is one of the early examples. However, applying fixed-point induction is not so easy,
because it requires knowledge of the CPO semantics of types and their properties. In its
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place, other lemmas such as the take lemma (Bird & Wadler, 1988), and its improvement,
the approximation lemma (Bird, 1998; Hutton & Gibbons, 2001), reframes the problem
of observing infinite objects through a family of more familiar questions about induction
on finite objects: two streams are equal if all their finite approximations are. Similarly,
Mastorou et al. (2022) encodes coinduction in terms of induction by adding an index.
Gibbons & Hutton (2005) give a survey of these other methods. The formalization here, in
contrast, identifies and reifies the “inductive” nature inherent in the context of coinduction
to use directly in the coinductive principle without encoding or a change of representation.

Another approach to coinduction involves the hidden algebras (Goguen & Malcolm,
1999) behind coinductive modules in the object-oriented paradigm. This has been used to
formulate circular coinductive proofs for object-oriented behavior (Goguen et al., 2000) and
concurrent processes (Popescu & Gunter, 2010). Circular coinduction has been implemented
in Coq (Endrullis et al., 2013), and generalized to a form of parameterized coinductive
proofs (Hur et al., 2013).

Coinductive reasoning principles

Using coinduction makes it possible to avoid working with numbers (Gordon, 1994).
Instead, coinductive proofs are completely based on the structure of programs, analogous
to bisimulation (Sangiorgi, 2009). Our notion of strong (co)induction also allows for
local reasoning about valid applications of the (co)inductive hypothesis, which leads to
a compositional development of (co)inductive proofs. Similarly, Paco (Hur et al., 2013)
aims to aid the development of coinductive proofs through both compositionality (local, not
global, correctness criteria) and incrementality (new knowledge may be accumulated as the
proof is developed). We showed how the strong version of our program logic encompasses
well-known principles of strong induction and bisimulation of corecursive processes.

Corecursion—and the coinductive principles to reason about them—have also been gen-
eralized to capture common patterns that occur in programming but which make structural
coinduction more difficult to verify. For example, consider the following usual definition of
the infinite Fibonacci stream in Haskell:

fibs = 0 : 1 : sums fibs (tail fibs)

sums (x : xs) (y : ys) = (x + y) : (sums xs ys)

From experience, we know this is a well-behaved infinite stream: we can access any
particular number in finite time. However, the reason why is non-trivial, which can be more
easily seen when translated as follows into the abstract machine language used here:

⟨fibs||head α⟩= ⟨0||α⟩
⟨fibs||tail(head α)⟩= ⟨1||α⟩
⟨fibs||tail(tail α)⟩= ⟨sums||µβ1.⟨fibs||β1⟩ · µβ2.⟨fibs||tail β2⟩ · α⟩

⟨sums||xs · ys · head α⟩= ⟨head xs + head ys||α⟩
⟨sums||xs · ys · tail α⟩= ⟨sums||µβ1.⟨xs||tail β1⟩ · µβ2.⟨xs||tail β2⟩ · α⟩

The trouble is that fibs’s coinductive case for tail(tail α) recursively references back to fibs
with some syntactically unknown observers—β1 and tail β2 respectively—which might be
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far larger than the smaller case tail α . Despite this, the reason fibs is well-founded has to
do with the helper function sums: the application ⟨sums||xs · ys · α⟩ will replicate a stream
projection of exactly α’s length (i.e., the same number of tail projections) to both xs and ys.
A function with this special property is known as “friendly” in Isabelle/HOL (Blanchette
et al., 2015, 2017) and “abstemious” in Dafny (Leino & Moskal, 2014).

Since justifying these kinds of definitions are well-founded is already complex, reasoning
about them is even more so. For example, consider this product function of two streams
from (Blanchette et al., 2015), also defined in terms of sums:

prods (x : xs) (y : ys) = (x× y) : (sums (prods (x : xs) ys) (prods xs (y : ys)))

Both the sum and product of two streams should be commutative. It is straightforward
enough to show commutativity of sums—sums xs ys = sums ys xs—directly because it
is defined only in terms of itself and plain addition. However, prod is defined in terms
of sums, which gets in the way of a bisimulation argument. Isabelle/HOL supports the
notion of coinduction “up to” (Blanchette et al., 2015, 2017) in order to better automate the
bisimulation relation for these kinds of programs. We conjecture that the notion of structural
coinduction developed here—which does not require bisimulation at all—can sidestep the
issue entirely in this kind of example. In particular, translating the above function to the
abstract machine language looks like:

⟨prods||xs · ys · head α⟩= ⟨x× y||α⟩
⟨prods||xs · ys · tail α⟩= ⟨sums||µβ1.⟨prods||xs · tail ys · β1⟩ · µβ2.⟨prods||tail xs · ys · β2⟩ · α⟩

Suppose we accept this definition as well-founded because of sums’ properties—either
marking sums “friendly” or “abstemious” as above, or using sized types (Abel, 2006). Then
we know that β1 and β2 will always be instantiated by another observation no bigger than α

(i.e., we know β1 ≤ α and β2 ≤ α according to Section 4). We could then proceed to prove

⟨prod||xs · ys · α⟩= ⟨prod||ys · xs · α⟩

using our notion of strong coinduction on α . The main case for α = tail α ′ would then look
like the following, with a coinductive hypothesis (CIH) applicable to any observation of
α ′s size or smaller, which includes the β1 ≤ α ′ and β2 ≤ α ′ instantiated by sums:

⟨prods||xs · ys · tail α
′⟩

= ⟨sums||µβ1.⟨prods||xs · tail ys · β1⟩ · µβ2.⟨prods||tail xs · ys · β2⟩ · α ′⟩ (prods def.)

= ⟨sums||µβ1.⟨prods||tail ys · xs · β1⟩ · µβ2.⟨prods||tail xs · ys · β2⟩ · α ′⟩ (CIH, β1 ≤ α
′)

= ⟨sums||µβ1.⟨prods||tail ys · xs · β1⟩ · µβ2.⟨prods||ys · tail xs · β2⟩ · α ′⟩ (CIH, β2 ≤ α
′)

= ⟨sums||µβ2.⟨prods||ys · tail xs · β2⟩ · µβ1.⟨prods||tail ys · xs · β1⟩ · α ′⟩ (sums commut.)

= ⟨prods||ys · xs · tail α
′⟩ (prods def.)

Logical relation and program equality

Our overall approach to proving properties about programs using syntactic rules (the
program logic) that are then shown to be part of a consistent-by-definition operational
model follows the general approach of logical relations (Statman, 1985), Tait’s method (Tait,
1967), and realizability (Kleene, 1945). However, we cannot use Tait’s original method
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as formulated, because types in our language classify both terms and coterms. Instead,
we use the formulation of logical relations based on orthogonality between two opposing
sets, which has been developed in multiple places including linear logic (Girard, 1987),
classical realizability (Krivine, 2005), and ⊤⊤-closed relations (Pitts, 2000, 1997a), and
symmetric candidates (Barbanera & Berardi, 1994). A key feature of our model is the
built-in notion that types are first modeled by a chosen set of values (for positive types) or
covalues (for negative types). This generation from (co)values comes from a study of polarity
and focusing in linear logic (Munch-Maccagnoni, 2009), which makes similar distinctions
between call-by-value and call-by-name interpretations of types as call-by-push-value (Levy,
2001).

We also make use of the notion of candidates — an initial definition describing all
possible models of types, whose interpretation will come later — as part of our proof.
Traditionally, the candidate-based approach is used to prove properties about programs
in languages that have impredicative polymorphism like system F (Girard, 1972). Here,
we use the same idea to construct inductive and coinductive types by quantifying over all
their possible approximations: either smaller subtypes in the case of induction or larger
supertypes in the case of coinduction. These approximations are then assembled into their
least or greatest fixed points using both the Knaster-Tarski (Knaster, 1928; Tarski, 1955)
and Kleene (Kleene, 1971) constructions — which are equivalent by Lemma 5.18 — using
the lattice structure present in the logical relations model corresponding to intersection and
union types (Coppo & Dezani-Ciancaglini, 1978; Sallé, 1978; Pottinger, 1980).

7 Conclusion

This paper defines a language for providing a computational foundation of (co)inductive
reasoning principles which brings out their duality. The impact of the evaluation strategy is
also illustrated. Whereas induction does not fully work in call-by-name, co-induction has
the same issues in call-by-value. The (co)inductive principles are derived from the definition
of types in terms of construction or destruction, using control flow instead of bisimulation to
guide the coinductive hypothesis. In the end, the logical dualities in computation—between
data and codata; information flow and control flow—provide a unified framework for using
and reasoning with (co)inductive types.

As future work, we would like to formalize more advanced notions of coinduction and
bisimilarity (Pous & Sangiorgi, 2012) that relax the constraint that the processes need to
proceed completely in sync, thus allowing one to compare processes that"almost" compute
in the same way. We would also like to show that Paco’s coinductive principles (Hur et al.,
2013) can also be encoded as an application of strong coinduction—giving a computational
model for its proofs—where accumulated knowledge may be represented as the accumulator
of a corecursive process.
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