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Call-By-Push-Value has famously subsumed both call-by-name and call-by-value by decomposing programs

along the axis of “values” versus “computations.” Here, we introduce Call-By-Unboxed-Value which further

decomposes programs along an orthogonal axis separating “atomic” versus “complex.” As the name suggests,

these two dimensions make it possible to express the representations of values as boxed or unboxed, so that

functions pass unboxed values as inputs and outputs. More importantly, Call-By-Unboxed-Value allows for

an unrestricted mixture of polymorphism and unboxed types, giving a foundation for studying compilation

techniques for polymorphism based on representation irrelevance. In this regard, we use Call-By-Unboxed-

Value to formalize representation polymorphism independently of types; for the first time compiling untyped

representation-polymorphic code, while nonetheless preserving types all the way to the machine.
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1 Introduction
High-level polymorphism and low-level machine representations can be like oil and water. The

most common implementation techniques avoid mixing them altogether, either specializing all

polymorphic code at compile-time (i.e., monomorphization) or forcing everything to look the

same (i.e., uniform representation). Both options have a cost: monomorphization can limit the

expressiveness of polymorphism and cause code duplication, while uniform representation can

introduce severely costly indirection due to boxing that replaces complex data with a pointer.

But there is a third option [15, 19, 47] that attempts to combine the best of both approaches by

instead using representation irrelevance to compile programs. The main idea is to still allow for

polymorphic source code to generalize over different types of data that might be implemented with

representations at run-time, but only if the choice of representation has no real run-time impact

on the generated code. This technique relies on using a static type system to both statically track

the representation of each type of value, as well as to reject instances of polymorphism where the

compiled machine code would change for different specializations.

One of the biggest complications with implementing representation irrelevance is that the type

system—and thus the dividing line between permitted and rejected programs—seems to depend on

some ambient notion of “the compiler.” For example, consider the polymorphic application function:

app :: (𝑎 → 𝑏) → 𝑎 → 𝑏

app 𝑓 𝑥 = 𝑓 𝑥
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265:2 Paul Downen

The question is: can 𝑎 and 𝑏 have any representation, or must they be statically fixed to some

choice (e.g., a pointer) at compile-time? 𝑓 is a function that is surely represented as a pointer (to a

closure), but 𝑥 has the generic type 𝑎. Thus, app’s code needs to statically fix 𝑎’s representation

at compile-time to find where 𝑥 is passed in. On the right-hand-side, we have an application 𝑓 𝑥

which will return a value of type 𝑏, so app needs to fix 𝑏’s representation as well to find where 𝑓 𝑥

returns its result.

But wait! We might know the compiler is always going to optimize tail calls so that the final

application 𝑓 𝑥 will overwrite and reuse app′𝑠 stack space. If so, then 𝑓 𝑥 doesn’t actually return

anything to app itself—it can’t—but instead returns directly to app’s original caller. In other words,

app’s return type 𝑏 can have any representation sometimes, depending on whether or not our

compiler will optimize the tail call. The question of when representation is really irrelevant becomes

even more murky when we consider other, seemingly minor, variants of app:

app′ :: (𝑎 → 𝑏) → 𝑎 → 𝑏 app′ 𝑓 = 𝑓

app′ seems to be fine with any 𝑎 and 𝑏 since all 𝑎 → 𝑏 values are represented as closures, making

the choice irrelevant for moving 𝑓 around. In other words, app′ can have a more generic type than
app, even though they differ only by a routine 𝜂-reduction. There is much left unsaid in this code.

This paper introduces a new parameter-passing paradigm, Call-By-Unboxed-Value, where pro-
grams fully spell out the details needed to unequivocally answer these kinds of questions. Instead

of relying on the intuition of seasoned compiler writers to decide when representation is relevant,

Call-By-Unboxed-Value provides a single, compiler-independent language with the motto:

If you can write it, you can run it.
In particular, Call-By-Unboxed-Value provides a stable basis for exploring the field of representation

irrelevance and polymorphism with the following benefits compared to previous work:

• It provides an unambiguous syntax for separating complex versus atomic unboxed values,

making it possible to predict when atomic values (ultimately stored in registers) will be

moved or copied or when the contents of references (ultimately stored in long-term memory)

will be read/written, without information about the compiler.

• All Call-By-Unboxed-Value programs can be directly compiled and run, as-is, without type

checking, to the benefit of compilers with untyped intermediate languages. Instead of type

checking, the program is annotated with just enough information about representation that,

in addition to the boxed versus unboxed status, spells out where atomic values are held.

• Nevertheless, compilation of Call-By-Unboxed-Value preserves types if it happens to be

given a well-typed program, to the benefit of compilers that work with typed intermediate

languages. This is in stark contrast with previous work [15, 19], that compiles well-typed

source code into impossible-to-type target code.

Happily, Call-By-Unboxed-Value also expresses the efficient higher-order calling conventions

[15, 17], where function calls can pass several arguments at once to unknown functions without

checking any run-time information. For example, consider the common zipWith function:

zipWith 𝑓 (𝑥 :𝑥𝑠) (𝑦:𝑦𝑠) = 𝑓 𝑥 𝑦 : zipWith 𝑓 𝑥𝑠 𝑦𝑠 zipWith 𝑓 𝑥𝑠 𝑦𝑠 = []

Ideally, the call 𝑓 𝑥 𝑦 could be compiled as a fast call by just passing 𝑥 and 𝑦 in two registers,

unpacking 𝑓 ’s closure, and jumping to 𝑓 ’s code. But this calling convention would crash if 𝑓 is

bound to a function expecting three arguments, like 𝜆𝑥 𝑦 𝑧. (𝑥 +𝑦) ∗𝑧, or to a function expecting one

at a time, like 𝜆𝑥. if 𝑥 == 0 then(𝜆𝑦.𝑦) else(𝜆𝑦.𝑦/𝑥). Call-By-Unboxed-Value’s foundation naturally

has the tools to spell out these different calling conventions. In fact, the separate run-time actions

of (1) allocating a closure on a heap, (2) calling a closure, (3) delaying a function call until the
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Call-by-Unboxed-Value 265:3

function code is calculated, and (4) popping the next frame off the stack are all expressed by separate

syntactic forms, and reflected in the type system, giving fine-grain control over closure allocation

and function calls that is safe across function and module boundaries.

In developing the Call-By-Unboxed-Value paradigm, we make the following contributions:

• Section 3 defines the Call-By-Unboxed-Value 𝜆-calculus, its syntax, type-and-kind system,

operational semantics, and equational theory.

• Section 4 presents examples using Call-By-Unboxed-Value to explicate run-time details of

functional programs. In particular, ordinary type polymorphism alone can already take

advantage of representation irrelevance without abstracting over representations.
1

• Section 5 shows how to embed the well-studied Call-By-Push-Value [32] into Call-By-

Unboxed-Value, and proves that a polymorphic Call-By-Push-Value corresponds (in types

and equality) to a Call-By-Unboxed-Value encoding of uniform representation.

• Section 6 gives a low-level abstract machine where representations map to different types

of registers, and the boxing and unboxing primitives map to read and write operations in a

global store. With this, we show how to compile and run (untyped) Call-By-Unboxed-Value

and prove correspondences between both their operational semantics and type systems.

2 Key Ideas: The Advantage of Being Second-Class
Avoid Lifting at All Costs. The first semantic analysis of unboxed values [47] observed that theymust
be evaluated first before they can be passed to functions or bound to variables. Delayed arguments

are compiled as thunks—addresses to code that can generate their value on-demand—represented

by pointers. A thunk pointer cannot be stored in a floating-point register, so even a lazy language

needs to make sure unboxed arguments are passed strictly by value.

Elegantly, the indirection cost of a lazy floating-point number is reflected in denotational seman-

tics: the domain of efficient unboxed numbers must be unlifted. So for an efficient implementation,

we need a semantics that lets us avoid lifting as much as possible, such as Call-By-Push-Value [32]

which avoids implicit lifts since they are easy to add but hard to remove. This is achieved by

separating values that already are versus computations that will do as two different kinds of types:

ValueType ∋ 𝐴 ::= 𝐴0 ×𝐴1 | 𝐴0 +𝐴1 | U𝐵 ComputationType ∋ 𝐵 ::= 𝐴→ 𝐵 | 𝐵
0
& 𝐵

1
| F𝐴

Costly lifts only happen in the explicit transitions (U𝐵 and F𝐴) between values and computations.

This arrangement is no accident, appearing again in the Calculus of Unity [55]—an interpretation

of proof-theoretic focusing [3, 29] as pattern matching—for completely different reasons. A key

step of focusing is to recognize positive versus negative types, divided like so:

PositiveType ∋ 𝑃+ ::= 𝑃+
0
⊗ 𝑃+

1
| 𝑃+

0
⊕ 𝑃+

1
| ´𝑄− NegativeType ∋ 𝑄− ::= 𝑃+ → 𝑄− | 𝑄−

0
&𝑄−

1
| ˆ𝑃+

Interesting. The two foundations arose for different reasons, but make identical divisions: value

types seem positive, and computation types seem negative. So the two are the same, right?

Disagreements onWho is First-Class. The parallel seems to line up perfectly in many ways. Value and

positive types model call-by-value whereas computation and negative types model call-by-name.

Value and positive types model data types whereas computation and negative types model things

like functions. Surprisingly, there is one glaring exception: they disagree on first-class status. Only

values can be named in Call-By-Push-Value. With focusing, interesting positive values are second

class: they cannot be given one name, because the program can—and must—deconstruct them.

1
This is not to say there would be anything wrong with adding kind or representation polymorphism, but rather the design

of the Call-By-Unboxed-Value 𝜆-calculus seems to be able to handle the motivating examples already. If polymorphism over

kinds is desired anyway, we expect no special difficulty in adding it.
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Atomic Value: 𝐴 Complex Value: 𝑃+

Atomic Computation: 𝐵 Complex Computation: 𝑄−

Val

F

Box

Ret ˆ

Eval

U

Proc

Clos

´

F𝐴 = Ret(Val𝐴) U𝐵 = Clos(Eval𝐵) ˆ𝑃+ = Eval(Ret 𝑃+) ´𝑄− = Val(Clos𝑄−)

Fig. 1. The four kinds of types, and embeddings between them (dotted arrows are derived from solid ones).

Our main idea is to combine these two similar systems while respecting their disagreement

about first-class status. Like Call-By-Push-Value, a variable always denotes an unknown value.

Like focusing, pattern matching is mandatory, and data structures cannot be named. The key to

simultaneously satisfying both constraints was already hinted at in [55]. To account for machine

primitives like numbers, the Calculus of Unity has special exceptions for “atomic” positive types

with no known structure in the language, but since their structure is unknown, they are always just

an unhelpfully generic “𝑥 .” What if we could talk about what goes on inside atomic values, too?

The result is Call-By-Unboxed-Value. It splits programs twice between two orthogonal dimen-

sions: value versus computation, and atomic versus complex. The atomic half of Call-By-Unboxed-

Value corresponds to Call-By-Push-Value, wherein values are simple to name (representing machine

primitives like numbers and pointers) and computations are ready to run (needing only a pointer to

the top of a call stack, or nothing at all). The complex half of Call-By-Unboxed-Value corresponds

to focusing and describes unboxed data structures and multi-part calling conventions. There is no

limit to how many registers an unboxed data structure can occupy, which is why pattern matching

is mandatory. Matching on a tuple (𝑥,𝑦, 𝑧) is the instruction for moving the three separate atoms

into the three registers named 𝑥 , 𝑦, and 𝑧. Dually, complex computations denote code that is not
ready to run without more information, such as a function that needs arguments to safely call.

“Here” Versus “There”: Why Two Dimensions Are Better Than One. The two-dimensional division of

programs is illustrated in fig. 1, alongwith the transition between each quadrant. Solid arrows denote

primitive operations within Call-By-Unboxed-Value; dotted arrows are derived and correspond to

ones found in Call-By-Push-Value and the Calculus of Unity. While the twofold division creates

more modes of transition, each one has a single familiar and operational significance. By more

finely decomposing the complex dotted arrows, the primitive transitions can be combined in new

ways that are familiar in low-level programs but couldn’t be explicated in either system.

The top row is concerned with values. Of course, atomic values like integers and pointers can be

stored in a larger complex data structure, signaled by Val. But to go the other way, a complex data

structure—which might bring together multiple registers and a tag to describe its shape—cannot

just be stuffed in one register. Instead, it has to be Boxed by storing its information in memory

and then using an atomic pointer to it. Similarly, the bottom is concerned with computations. A

complex computation may need many immediate inputs in registers to run correctly, but an atomic

computation just wants something simple like a pointer to the call stack. Eval punctuates the end

of a complex computation’s input, giving a single action to evaluate. Proc boxes a complex calling

context—pushing a new frame on the stack—and runs an atomic action with the new stack. The

diagonal arrows are the only transitions between values and computations. Ret describes an atomic

computation that is ready to run, eventually returning multiple results in registers (a complex

value). Likewise, Clos describes an atomic pointer value to a closure around a complex computation.
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quotRem :: Nat→ Nat→ (Nat×Nat) -- Haskell-like, functional style
quotRem 𝑥 𝑦 | 𝑥 < 𝑦 = (0, 𝑥)

| otherwise = let (𝑞, 𝑟 ) = quotRem (𝑥 − 𝑦) 𝑦 in (1 + 𝑞, 𝑟 )
quotRem : Nat→ Nat→ F(Nat×Nat) -- Call-by-push-value
quotRem = 𝜆𝑥.𝜆𝑦. do𝑏 ← 𝑥 < 𝑦;

match𝑏 as { True → return (0, 𝑥)
False→ do𝑥 ′ ← 𝑥 − 𝑦;

do 𝑧 ← quotRem 𝑥 ′ 𝑦;
match 𝑧 as (𝑞, 𝑟 ) → do𝑞′ ← 1 + 𝑞;

return (𝑞′, 𝑟 ) }
quotRem : Val Nat→ Val Nat→ Eval(Ret(Val Nat×Val Nat)) -- Call-by-unboxed-value
quotRem = { val int𝑥 · val int𝑦 · eval sub→ do𝑥 < 𝑦 as {

1, () → ret (val 0, val𝑥) -- true case
0, () → do val int𝑥 ′ ← 𝑥 − 𝑦; -- false case

do (val int𝑞, val int 𝑟 ) ← quotRem (val𝑥 ′) (val𝑦) . eval sub;
do val int𝑞′ ← 1 + 𝑞;
ret (val𝑞′, val 𝑟 ) }}

Fig. 2. The same numeric algorithm in functional style, call-by-push-value, and call-by-unboxed-value.

In contrast, the two columns correspond to the two inspirational calculi: Call-By-Push-Value on

the left and Calculus of Unity on the right. Notice that the U and F transitions and ´ and ˆ polarity

shifts can be faithfully derived from the other ones, but not vice versa. Round trips via Val and Box

let us describe the details of pointer indirection to fully-evaluated data structures, like linked lists,

without adding laziness. Call-By-Push-Value or focusing on their own do not distinguish between

“here” and “there,” but they can when they are put together in Call-By-Unboxed-Value.

A First Taste of Call-By-Unboxed-Value. To get an initial impression of what call-by-unboxed-value

programs look like, we present an example function for simultaneously calculating the quotient and

remainder of two numbers at the same time in fig. 2. First, the function is presented in a familiar,

Haskell-like syntax. Next, we show the translation into call-by-push-value which brings out details

of its step-by-step execution. Namely, the result of each operation — like an arithmetical operator

or function call — is named in a sequence of steps annotated by the do keyword, reminiscent of

monadic do-notation, and the final result is given by an explicit return statement represented by the

F in the function’s type. Additionally, pattern-matching or branching is represented as a separate

match statement. Despite explicating these details, more still remain. Are the returned pairs (𝑞′, 𝑟 )
and (0, 𝑥) allocated on the heap? Are the function arguments passed one at a time (requiring a

closure to be allocated and consumed in each recursive loop)? These are left open-ended.

These kinds of questions are answered by the final call-by-unboxed-value version. Variable

bindings of the form val int𝑥 denote a named value stored in an integer-sized register (or on the

stack, if all such registers are full). The result bound by a do must be immediately matched on,

including destructuring a tuple (as in the recursive result (val int𝑞, val int 𝑟 )) or choosing a response
(as in the boolean branches for 1, () representing True and 0, () representing False). This means the

pair ret (val𝑞′, val 𝑟 ) is returned unboxed, without allocation. Additionally, applying a function

never triggers evaluation on its own; that second action is explicated by the “eval sub” operation

that evaluates a subroutine. So from its syntax, we know the call-by-unboxed quotRem will never

touch the heap, and will only push a single return pointer on the stack for each recursive call.
2

2
This, too, could be eliminated by rewriting the function in accumulator style so the recursive call to quotRem is the final

tail call. Doing so would syntactically guarantee that the function is implemented as a loop that runs in constant space.
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Syntax of complex values and complex computations:

StructShape ∋ 𝑠 ::= () | 𝑠0, 𝑠1 | 𝑏, 𝑠 | □, 𝑠 | val□ StackShape ∋ 𝑘 ::= 𝑠 · 𝑘 | 𝑏 · 𝑘 | □ · 𝑘 | eval𝑂
Struct ∋ 𝑆 ::= 𝑠 [𝑉 ...] Stack ∋ 𝐾 ::= 𝑘 [𝑉 ...]
Pattern ∋ 𝑝 ::= 𝑠 [𝑅 𝑥 : 𝐴...] Copattern ∋ 𝑞 ::= 𝑘 [𝑅 𝑥 : 𝐴...]

MatchCode ∋ 𝐺 ::= { 𝑝 → 𝑀... } | 𝑔 FunCode ∋ 𝐹 ::= {𝑞 → 𝑀... } | 𝑓
Bit ∋ 𝑏 ::= 0 | 1 Call ∋ 𝐿 ::= 𝜆𝐹 | 𝑀. enter | 𝑉 . call

Syntax of atomic values and computations:

Value ∋ 𝑉 ::= 𝑅 𝑥 | box 𝑆 | clos 𝐹 | 𝑛 | 𝑛.𝑛 | 𝑇 Rep ∋ 𝑅 ::= ref | int | flt | ty
Comp ∋ 𝑀 ::= 𝑆 as𝐺 | unbox𝑉 as𝐺 | do𝑀 as𝐺 Obs ∋ 𝑂 ::= run | sub

| ret 𝑆 | proc 𝐹 | ⟨𝐿 ∥ 𝐾⟩
Syntax of types:

Type ∋ 𝑇 ::= 𝐴 | 𝐵 | 𝑃 | 𝑄
Kind ∋ 𝜏 ::= 𝑅 val | cplx val | 𝑂 comp | cplx comp

CmplxValTy ∋ 𝑃 ::= 𝑥 | 1 | 𝑃0 × 𝑃1 | 0 | 𝑃0 + 𝑃1 | ∃𝑅 𝑥 : 𝐴. 𝑃 | Val𝐴
AtomValTy ∋ 𝐴 ::= 𝑥 | Box 𝑃 | Clos𝑄 | Int | Nat | Float | Type𝜏

CmplxCompTy ∋ 𝑄 ::= 𝑥 | 𝑃 → 𝑄 | ⊤ | 𝑄0 &𝑄1 | ∀𝑅 𝑥 : 𝐴. 𝑄 | Eval𝐵
AtomCompTy ∋ 𝐵 ::= 𝑥 | Ret 𝑃 | Proc𝑄 | Void

Fig. 3. The syntax of the Call-By-Unboxed-Value 𝜆-calculus.

⟨𝐿 𝑆 ∥ 𝐾⟩ = ⟨𝐿 ∥ 𝑆 · 𝐾⟩ ⟨𝐿 𝑏 ∥ 𝐾⟩ = ⟨𝐿 ∥ 𝑏 · 𝐾⟩
⟨𝐿 𝑉 ∥ 𝐾⟩ = ⟨𝐿 ∥ 𝑉 · 𝐾⟩ 𝐿. eval𝑂 = ⟨𝐿 ∥ eval𝑂⟩

do𝑝 ← 𝑀 ;𝑁 = do𝑀 as { 𝑝 → 𝑁 } unbox𝑝 ← 𝑉 ;𝑁 = unbox𝑉 as { 𝑝 → 𝑁 }

Fig. 4. Syntactic sugar for writing call stacks in functional style and single-case matching.

3 Call-By-Unboxed-Value 𝜆-Calculus
We now present the polymorphic Call-By-Unboxed-Value 𝜆-calculus: its syntax (section 3.1), op-

erational semantics (section 3.2), type system (section 3.3), and equational theory (section 3.4).

Peculiarly, functions are called with complex unboxed data structures as parameters, and yet these

very unboxed structures are second-class citizens that cannot be directly named. Reconciling these

two seemingly contrary design decisions is the key ingredient that makes this calling convention

useful for combining both polymorphism with multiple kinds of atomic value representations.

3.1 Syntax
The Call-By-Unboxed-Value 𝜆-calculus’s syntax is given in fig. 3. Based on the 𝜆-calculus, it is not

as perfectly symmetric as the Calculus of Unity [55]; nevertheless, we aim to highlight its implicit

dualities that and eliminate unnecessary redundancies whenever possible. To clarify examples,

we use syntactic sugar to write structures, stacks, and (co)patterns inline, in the usual way. For

example, writing (1, val int𝑥, val 3.14) instead of (1, val□, val□) [int𝑥, 3.14]. We also use syntactic

sugar given in fig. 4 to write curried function applications in the more familiar 𝜆-calculus style, or

to list out a nested chain of single-case, pattern-matching bindings as a sequence of steps like fig. 2.
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Complex Structures (𝑠, 𝑆, 𝑝,𝐺). Every complex data structure has a particular shape that describes
how it was constructed out of atomic parts. As such, a structure shape 𝑠 is a context where

constructors surround multiple holes □ where atomic values can be inserted. Many of these

constructors are familiar: an empty tuple (), a pair (𝑠0, 𝑠1), an injection (𝑏, 𝑠) into the sum type

𝑃0 + 𝑃1 where 𝑏 is a 0 or 1 bit. We also have the base case val□ of type Val𝐴 where an atomic value

(of type 𝐴) is inserted, as well as the modular (i.e., existential ∃) package □, 𝑠 of type ∃𝑅 𝑥 : 𝐴. 𝑃 in

which an atomic value (importantly, a type) is named 𝑥 and can be mentioned in 𝑠’s type.

Actual concrete structures 𝑆 are introduced by filling all □’s with real values, written as 𝑠 [𝑉 ...],
and are eliminated by pattern matching. Patterns 𝑝 are formed by filling a shape with distinct

variables 𝑠 [𝑅 𝑥 : 𝐴...] annotated by their representations and types; we may omit these annotations

when they are clear from context or unneeded. Pattern-matching code 𝐺 is a set of alternatives

{ 𝑝 → 𝑀... } sending patterns to an atomic computation𝑀 , or else some primitive operation 𝑔.

Complex Call Stacks (𝑘, 𝐾, 𝑞, 𝐹 ). Every complex computation must be executed in a context with a

very specific shape, taking the form of a call stack. Like structures, complex call stack shapes 𝑘

are multi-holed contexts where each hole □ surrounds an atomic value. Possible call stack shapes

include an unboxed function call 𝑠 · 𝑘 , in which 𝑠 is the argument’s shape and 𝑘 specifies the rest

of the call, and a projection 𝑏 · 𝑘 out of a binary product 𝑄0 &𝑄1 in which 𝑏 says which option 𝑘

calls. Polymorphic (i.e., universal) specialization □ · 𝑘 of type ∀𝑅 𝑥 : 𝐴. 𝑄 names the value (e.g., a
type) placed in the □ as 𝑥 in the type of 𝑘 . eval𝑂 marks a finished calling context that can now be

evaluated. The annotation 𝑂 describes the context of evaluation: will it run as a sub-computation

of the larger program (sub) and return to some caller, or is it “naked” and running with no larger

context (run). Like structures, call stacks 𝐾 are built by filling the stack shapes with values, written

𝑘 [𝑉 ...], and used by copattern matching [1]. Copatterns 𝑞 fill a stack shape with distinct variables

𝑘 [𝑅 𝑥 : 𝐴...]. Copattern-matching code 𝐹 , i.e., function code, is a set of alternatives {𝑞 → 𝑀... }
sending copatterns to atomic computations𝑀 , or some primitive function 𝑓 .

Atomic Values (𝑉 , 𝑅). Atomic values have simple enough run-time representations to store directly

in a register, like a number. Each atomic value 𝑉 has a self-evident representation 𝑅, spelling out

the low-level details needed to implement operations on values. Both signed (Int) and unsigned

(Nat) whole numbers 𝑛 are represented as int, and a floating-point number 𝑛.𝑛 is represented as

flt. Some values are represented as references (ref) into long-term storage, including the boxed

complex structures (box 𝑆 of type Box 𝑃 ) or closure around function code (clos 𝐹 of type Clos𝑄).

We also admit types 𝑇 as atomic to be used as parameters for polymorphism ∀ ty𝑥 : Type𝜏 . 𝑄 à

la System F [22, 23] and modular packages ∃ ty𝑥 : Type𝜏 . 𝑃—this is a syntactic convenience used in
practice by compilers like GHC to easily include types in the list of function parameters, instead

of 𝑘 [𝑇 ...,𝑉 ...]. But to be sure, these type parameters should still be erasable because they never

impact run-time behavior (see section 6.4). Thus, we give type values the representation ty, with

the understanding that they occupy “phantom” registers that don’t really exist in a real machine.

The only atomic value left is a variable, which reads a value already stored in a register. Variables

are the only form of value whose representation is not immediately obvious: 𝑥 could be assigned

a reference or a number. Therefore, we annotate variable access with its representation as 𝑅 𝑥

(omitted when clear from context), to distinguish different instructions like ref 𝑥 for reading an

address register named 𝑥 or flt𝑥 for reading a floating-point register coincidentally named 𝑥 , too.

Atomic Computations (𝑀,𝑂). The last group of syntax involves atomic computations that can just

run on their own accord without referencing their context. The computation 𝑆 as𝐺 matches the

structure 𝑆 against the patterns of 𝐺 . But notice how trivial this is: 𝑆 must already be a fully-built

structure made with known constructors that have to exactly match against the patterns in 𝐺 .
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Operational reduction rules 𝑀 ↦→ 𝑀 ′

(𝛽 Box) unbox box 𝑆 as𝐺 ↦→ 𝑆 as𝐺 (𝛽 Clos) ⟨clos 𝐹 . call ∥𝐾⟩ ↦→ ⟨𝜆𝐹 ∥ 𝐾⟩
(𝛽 Ret) do ret 𝑆 as𝐺 ↦→ 𝑆 as𝐺 (𝛽 Proc) ⟨proc 𝐹 . enter ∥𝐾⟩ ↦→ ⟨𝜆𝐹 ∥ 𝐾⟩
(Prim𝑔) 𝑆 as𝑔 ↦→ 𝑔(𝑆) (Prim𝑓 ) ⟨𝜆𝑓 ∥ 𝐾⟩ ↦→ 𝑓 (𝐾)

(𝛽 as) 𝑠′ [𝑉𝑖 𝑖∈𝐼...] as { 𝑠 [𝑅𝑠𝑖 𝑥𝑠𝑖 : 𝐴𝑠𝑖
𝑖∈𝐼...] → 𝑀𝑠

𝑠∈𝑃... } ↦→ 𝑀𝑠′ [𝑉𝑖/(𝑅𝑠′𝑖 𝑥𝑠′𝑖 ) 𝑖∈𝐼...] (𝑠′ ∈ 𝑃)
(𝛽𝜆) ⟨𝜆 { 𝑘 [𝑅𝑘𝑖 𝑥𝑘𝑖 : 𝐴𝑘𝑖

𝑖∈𝐼...] → 𝑀𝑘
𝑘∈𝑄... } ∥ 𝑘 ′ [𝑉𝑖 𝑖∈𝐼...]⟩ ↦→ 𝑀𝑘 ′ [𝑉𝑖/(𝑅𝑘 ′𝑖 𝑥𝑘 ′𝑖 )𝑖∈𝐼...] (𝑘 ′ ∈ 𝑄)

Evaluation contexts (𝐸) and terminal forms:

EvalCxt ∋ 𝐸 ::= □ | do𝐸 as𝐺 | ⟨𝐸. enter ∥𝐾⟩
𝑀 ↦→ 𝑀

𝐸 [𝑀] ↦→ 𝐸 [𝑀 ′]
𝑔(𝑆) = terminal

𝑆 as𝑔 terminal

𝑓 (𝐾) = terminal

𝐸 [⟨𝜆𝑓 ∥ 𝐾⟩] terminal

Fig. 5. The Call-By-Unboxed-Value operational semantics.

In effect, every 𝑆 as𝐺 expression can either be statically resolved now, as-is, or it never will be,
independent of its context. For example, 𝑆 might refer to some free variables, but their values will

never be relevant for deciding the branch in 𝑆 as𝐺 . Instead, loading the contents of a boxed data

structure is accomplished exclusively by unbox𝑉 as𝐺 , which immediately deconstructs its shape.

We still need to sequence sub-computations and remember the results they return. Call-By-Push-

Value does this with a do𝑥 ← 𝑀 ;𝑀 ′ computation which runs 𝑀 until it returns a result named

𝑥 before continuing to 𝑀 ′. Call-by-Unboxed-Value has a similar atomic computation do𝑀 as𝐺
with one key difference: the sub-computation returns𝑀 as an unboxed result that is matched in

place. The unboxed 𝑆 returned by ret 𝑆 is a second-class entity that cannot be named directly, since

it can contain multiple values with many different shapes. Therefore, a do-statement is forced to

immediately pattern-match on the result to name the atomic values and decide how to continue.

Finally, we need a way to operate with function code. A fully applied function call can be

written as ⟨𝐿 ∥ 𝐾⟩ where 𝐾 is the complete call stack and 𝐿 describes how the call is initiated,

either: (1) directly invoking known code as 𝜆𝐹 , (2) calling a first-class closure object as 𝑉 . call, or

(3) running a second-class procedure as proc 𝐹 . Procedures are useful when a function is being used

imminently (so no closure is allocated), but its code is not yet known and needs to be computed.

To do so, 𝐾 is put aside into long-term storage as a frame on the call stack until the computation

finishes, yielding proc 𝐹 which pops that frame off the stack and continues as 𝐹 .

3.2 Operational Semantics
The Call-By-Unboxed-Value operational semantics is given in fig. 5, containing only eight reduction

rules, many similar to one another. 𝛽 Box and 𝛽 Ret handle unboxing and returning, respectively;

both dissolve into a known pattern match 𝑆 as𝐺 . Likewise, 𝛽 Clos and 𝛽 Proc handle calling a

closure and entering a computed sub-procedure, respectively, via a known function call ⟨𝜆𝐹 ∥ 𝐾⟩.
All that remains is to reduce these statically-known forms of (co)pattern matching. With the

shape of a complex structure and the matching code at hand, 𝛽 as just looks up the chosen shape

among the alternatives and substitutes the contained atomic values for the variables bound by the

matching pattern, continuing as the associated computation. 𝛽𝜆 works in much the same way by

comparing stack shapes to choose a branch and substituting atomic values for local variables to run

the associated response. Note that substitution is only defined for values and variables of the same

representation. For example,𝑀 [box 𝑆/ref 𝑥] is defined, as is𝑀 [ref 𝑦/ref 𝑥], but𝑀 [3.14/ref 𝑥] and
𝑀 [flt𝑦/ref 𝑥] are undefined, since floating-point numbers are never stored in address registers.
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Primitive Operations. The last two reduction rules cover the behavior of primitive operations 𝑓 and

𝑔, which are meant to express instructions of the machine for built-in atomic types like int and flt.

Each primitive operation needs to be given a specification for what it does on structures, written

𝑔(𝑆), or stacks, written 𝑓 (𝐾). Here are some examples of primitive arithmetic:

eqint#(val𝑛 · val𝑛 · eval sub) = ret 1, ()
eqint#(val𝑛 · val𝑛′ · eval sub) = ret 0, () (𝑛 ≠ 𝑛′)

sqrt#(val𝑛.𝑛 · eval sub) = ret val
√
𝑛.𝑛

where the equality check eqint# encodes the boolean result as an unboxed 1 + 1. Some cases of a

primitive operation might have no result, like division by zero, and must safely exit the program:

divmod#(val𝑛 · val𝑛′ · eval sub) = ret val𝑑, val 𝑟 (𝑑 × 𝑛′ + 𝑟 = 𝑛, 𝑛′ ≠ 0)
divmod#(val𝑛 · val 0 · eval sub) = terminal

We expect some primitive applications, like divmod#(val 12 · val 0 · eval sub), will fail to return any

result; these are called terminal. In other cases, this operation simultaneously returns two unboxed

integers at once—the dividend and the remainder—if there is an answer.

A terminal operation—which is terminal on every possible application—can be used intentionally

to model the final state where the program exits normally (end#) or abnormally (error#), like so:

end#(val𝑛) = terminal error#(val𝑛 · 𝐴 · 𝐾) = terminal

Note that end# takes a complex value, so it represents primitive matching code that can be triggered

in a program do𝑀 as end#. end# is just expecting to receive an integer (the exit code), and stops

the program when there is nothing left to do. In contrast, error# is meant to be a polymorphic

function (from the fact that it takes a type parameter 𝐴) that can be used anywhere, which is useful

for (safely) aborting a program when some unexpected condition occurs.

Primitive Parametricity. Primitive operations could be defined arbitrarily. To ensure they are reason-

able in some sense and compatible with the semantics, we assume they are parametric in both types

and references: they can take types and references as parameters, but cannot read or write their

contents or directly compare addresses. Formally, we express parametricity as equations letting us

abstract out the specific contents of any type or reference passed to a primitive operation.

Assumption 3.1 (Primitive Parametricity). All primitive operations must satisfy these equalities:

𝑔(𝑆 [𝑇 /ty𝑥]) = 𝑔(𝑆) [𝑇 /ty𝑥] 𝑓 (𝐾 [𝑇 /ty𝑥]) = 𝑓 (𝐾) [𝑇 /ty𝑥]
𝑔(𝑆 [𝑉 /ref 𝑥]) = 𝑔(𝑆) [𝑉 /ref 𝑥] 𝑓 (𝐾 [𝑉 /ref 𝑥]) = 𝑓 (𝐾) [𝑉 /ref 𝑥]

As a consequence, note that these equations imply that pointer equality is forbidden as a primitive

operation. Suppose we had such an operation defined as:

eq#(val ref 𝑥 · val ref 𝑥 · eval sub) = ret 1, ()
eq#(val ref 𝑥 · val ref 𝑦 · eval sub) = ret 0, () (𝑥 ≠ 𝑦)

Then the parametricity of references forces the following equations for an arbitrary reference value

𝑉 (where 𝑘 = val ref □ · val ref □ · eval sub):
eq#(𝑘 [𝑉 ,𝑉 ]) = eq#(𝑘 [ref 𝑥, ref 𝑥]) [𝑉 /ref 𝑥] = (ret 1, ()) [𝑉 /ref 𝑥] = ret 1, ()
eq#(𝑘 [𝑉 ,𝑉 ]) = eq#(𝑘 [ref 𝑥, ref 𝑦]) [𝑉 /ref 𝑥] [𝑉 /ref 𝑦] = (ret 0, ()) [𝑉 /ref 𝑥] [𝑉 /ref 𝑦] = ret 0, ()
So pointer equality operations like eq# have to be barred since they would force invalid equivalences
like ret 1, () = ret 0, (). Likewise, type equality is forbidden as a primitive operation.
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ValueEnv ∋ Γ,Δ ::= • | Γ, 𝑅 𝑥 : 𝐴 CompEnv ∋ Φ ::= 𝐵 : 𝑂 comp

Base types 𝑇 : 𝜏

Int : int val Nat : int val Float : flt val Type𝜏 : ty val
1 : cplx val 0 : cplx val ⊤ : cplx comp Void : run comp

Kinds of types Γ ⊢ 𝑇 : 𝜏

Γ, ty𝑥 : Type𝜏, Γ′ ⊢ 𝑥 : 𝜏
TyVar 𝑇 : 𝜏

Γ ⊢ 𝑇 : 𝜏
BaseTy

Γ ⊢ 𝑃 : cplx val
Γ ⊢ Box 𝑃 : ref val Box𝑇

Γ ⊢ 𝑄 : cplx comp
Γ ⊢ Clos𝑄 : ref val Clos𝑇

Γ ⊢ 𝑃 : cplx val
Γ ⊢ Ret 𝑃 : sub comp Ret𝑇

Γ ⊢ 𝑄 : cplx comp
Γ ⊢ Proc𝑄 : sub comp Proc𝑇

Γ ⊢ 𝑃0 : cplx val Γ ⊢ 𝑃1 : cplx val
Γ ⊢ 𝑃0 × 𝑃1 : cplx val

×𝑇
Γ ⊢ 𝑃0 : cplx val Γ ⊢ 𝑃1 : cplx val

Γ ⊢ 𝑃0 + 𝑃1 : cplx val
+𝑇

Γ ⊢ 𝐴 : 𝑅 val Γ, 𝑅 𝑥 : 𝐴 ⊢ 𝑃 : cplx val
Γ ⊢ ∃𝑅 𝑥 : 𝐴. 𝑃 : cplx val ∃𝑇 Γ ⊢ 𝐴 : 𝑅 val

Γ ⊢ Val𝐴 : cplx val Val𝑇

Γ ⊢ 𝑃 : cplx val Γ ⊢ 𝑄 : cplx comp
Γ ⊢ 𝑃 → 𝑄 : cplx comp →𝑇

Γ ⊢ 𝑄0 : cplx comp Γ ⊢ 𝑄1 : cplx comp
Γ ⊢ 𝑄0 &𝑄1 : cplx comp &𝑇

Γ ⊢ 𝐴 : 𝑅 val Γ, 𝑅 𝑥 : 𝐴 ⊢ 𝑄 : cplx comp
Γ ⊢ ∀𝑅 𝑥 : 𝐴. 𝑄 : cplx comp ∀𝑇

Γ ⊢ 𝐵 : 𝑂 comp
Γ ⊢ eval𝐵 : cplx comp Eval𝑇

Fig. 6. The kinds of types and typing environments.

3.3 Type System
The Call-By-Unboxed-Value type system is given in figs. 6 to 8. The kinds of types are classified

in fig. 6—all 𝑃 : cplx val and 𝑄 : cplx comp types are just complex with no further specification,

but atomic value types 𝐴 are further separated by their representation 𝑅, written 𝐴 : 𝑅 val, and
atomic computation types 𝐵 are separated by the observational context 𝑂 , written 𝐵 : 𝑂 comp. For
example, both Int and Nat share the kind int val, since their values are represented as (respectively,

signed or unsigned) integers, whereas Box 𝑃 and Clos𝑄 share the kind ref val since their values are
references. For atomic computations, both Ret 𝑃 and Proc𝑄 are types of sub-computations, written

sub comp, since they both need to interact with the top of the stack (either to return some value(s)

to an evaluation context or to pop the stack frame off and run a procedure). The sole run comp
type is void, which classifies computations that need no context because they never return.

The types of values are classified in fig. 7. One set of rules involves introducing various shapes

of structures, written Γ | Δ ⊢ 𝑠 : 𝑃 ; where Δ lists the types of atomic values that fit in 𝑠’s holes, 𝑃 is

the type of structure built when those holes are filled, and Γ keeps track of any free type variables

in Δ or 𝑃 . Since the holes of 𝑠 are only distinguished by position, the order of Δ matters. Individual

atomic values can only be well-typed, written Γ ⊢ 𝑉 : 𝐴 : 𝑅 val, when their type has a known

representation 𝑅. Note that the premise of the Match rule must check for all the possible patterns
(i.e., all the possible shapes, up to renaming the holes) of type 𝑃 to ensure that every case is covered.
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Structure shapes Γ | Δ ⊢ 𝑠 : 𝑃 ;

Γ | • ⊢ () : 1 ; 1𝐼
Γ | Δ0 ⊢ 𝑠0 : 𝑃0 ; Γ | Δ1 ⊢ 𝑠1 : 𝑃1 ;

Γ | Δ0,Δ1 ⊢ 𝑠0, 𝑠1 : 𝑃0 × 𝑃1 ;
×𝐼

Γ | Δ ⊢ 𝑠0 : 𝑃0 ;
Γ | Δ ⊢ 0, 𝑠0 : 𝑃0 + 𝑃1 ;

+𝐼0
Γ | Δ ⊢ 𝑠1 : 𝑃1 ;

Γ | Δ ⊢ 1, 𝑠1 : 𝑃0 + 𝑃1 ;
+𝐼1

No 0𝐼 rules

Γ, 𝑅 𝑥 : 𝐴 | Δ ⊢ 𝑠 : 𝑃 ;

Γ | (𝑅 𝑥 : 𝐴,Δ) ⊢ (□, 𝑠) : (∃𝑅 𝑥 : 𝐴. 𝑃) ; ∃𝐼
Γ ⊢ 𝐴 : 𝑅 val

Γ | 𝑅 𝑥 : 𝐴 ⊢ val□ : Val𝐴 ;
Val 𝐼

Structures Γ ⊢ 𝑆 : 𝑃 , patterns Γ | Δ ⊢ 𝑝 : 𝑃 ; , and pattern match Γ ; 𝐺 : 𝑃 ⊢ Φ

Γ | Δ ⊢ 𝑠 : 𝑃 ; Γ ⊢ 𝑉𝑖 𝑖∈𝐼... : Δ
Γ ⊢ 𝑠 [𝑉𝑖 𝑖∈𝐼...] : 𝑃

Struct
Γ | Δ ⊢ 𝑠 : 𝑃 ;

Γ | Δ ⊢ 𝑠 [Δ] : 𝑃 ;

Pat

∀(Γ | Δ𝑝 ⊢ 𝑝 : 𝑃 ;). Γ,Δ𝑝 ⊢ 𝑀𝑝 : Φ

Γ ; { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } : 𝑃 ⊢ Φ Match

𝑔 : 𝑃

Γ ; 𝑔 : 𝑃 ⊢ void : run comp PrimMatch

Atomic values Γ ⊢ 𝑉 : 𝐴 : 𝑅 val

Γ, 𝑅 𝑥 : 𝐴, Γ′ ⊢ 𝑅 𝑥 : 𝐴 : 𝑅 val 𝑉𝑎𝑟 Γ ⊢ 𝑛.𝑛 : Float : flt val Float 𝐼

Γ ⊢ 𝑛 : Int : int val Int 𝐼
𝑛 ≥ 0

Γ ⊢ 𝑛 : Nat : int val Nat

Γ ⊢ 𝑇 : 𝜏

Γ ⊢ 𝑇 : Type𝜏 : ty val
Type𝐼

Γ ⊢ 𝑆 : 𝑃

Γ ⊢ box 𝑆 : Box 𝑃 : ref val Box𝐼
Γ ⊢ 𝐹 : 𝑄 ;

Γ ⊢ clos 𝐹 : Clos𝑄 : ref val Clos𝐼

Value sequences Γ ⊢ 𝑉 ... : Δ

Γ ⊢ • : •
Γ ⊢ 𝑉 : 𝐴 : 𝑅 val Γ ⊢ 𝑉 ′ ... : Δ[𝑉 /𝑅 𝑥]

Γ ⊢ 𝑉 ,𝑉 ′ ... : (𝑅 𝑥 : 𝐴),Δ

Fig. 7. Types of complex and atomic values.

The types of computations are classified in fig. 8. We have rules for introducing various shapes

of stacks, written Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ, where Δ lists the types of atomic values that fit in 𝑘’s holes, 𝑄

is the type of complex computation the stack can call to produce an atomic computation Φ, and Γ
keeps track of free type variables in Δ, 𝑄 , or Φ. We follow Gentzen’s tradition [20] and write 𝑘 : 𝑄

to the left of the ⊢, similar to [11, 53], since these rules correspond to the sequent calculus’ left

rules. As before, CoMatch requires covering all possible copatterns of type𝑄 . Atomic computations,

Γ ⊢ 𝑀 : Φ, can only be well-typed when we statically know how to observe them. For certain

atomic computations, like ret 𝑆 : Ret 𝑃 : sub comp and proc 𝐹 : Proc𝑄 : sub comp, this is fixed to

sub, but the block forms like do and unbox could have any type of result with any observation.

Aside 3.2. Every complex value type 𝑃 classifies a finite number (zero or more) of possible

structure shapes 𝑠; likewise 𝑄 classifies a finite number of stack shapes 𝑘 . As such, the number of

premises to the Match and CoMatch rules can vary but is always finite. Moreover, polymorphism

in 𝑃 or 𝑄 can force their set of shapes to be zero if a generic type variable is seen before reaching

something atomic. For example, Val Float×Val Int describes only the shape (val□, val□) but ∃ ty𝑎 :

Type cplx val . Val Float×𝑎 describes no shapes, since a generic ty𝑎 : cplx val has no known pat-

terns. Some polymorphism—both atomic and complex—allows for pattern-matching, however. For
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Stack shapes Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ

Γ | Δ ⊢ 𝑠 : 𝑃 Γ | Δ′ ; 𝑘 : 𝑄 ⊢ Φ
Γ | Δ,Δ′ ; 𝑠 · 𝑘 : 𝑃 → 𝑄 ⊢ Φ →𝐿

Γ | Δ ; 𝑘0 : 𝑄0 ⊢ Φ
Γ | Δ ; 0 · 𝑘0 : 𝑄0 &𝑄1 ⊢ Φ

&𝐿0
Γ | Δ ; 𝑘1 : 𝑄1 ⊢ Φ

Γ | Δ ; 1 · 𝑘1 : 𝑄0 &𝑄1 ⊢ Φ
&𝐿1

No ⊤𝐿 rules

Γ, 𝑅 𝑥 : 𝐴 | Δ ; 𝑘 : 𝑄 ⊢ Φ
Γ | (𝑅 𝑥 : 𝐴,Δ) ; (□ · 𝑘) : (∀𝑅 𝑥 : 𝐴. 𝑄) ⊢ Φ ∀𝐿

Γ ⊢ 𝐵 : 𝑂 comp
Γ | • ; eval𝑂 : Eval𝐵 ⊢ 𝐵 : 𝑂 comp Eval𝐿

Stacks Γ | 𝐾 : 𝑄 ⊢ Φ , copatterns Γ | Δ ; 𝑞 : 𝑄 ⊢ Φ , and function definitions Γ ⊢ 𝐹 : 𝑄 ;

Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ Γ ⊢ 𝑉 ... : Δ
Γ | 𝑘 [𝑉 ...] : 𝑄 ⊢ Φ Stack

Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ
Γ | Δ ; 𝑘 [Δ] : 𝑄 ⊢ Φ CoPat

∀(Γ | Δ𝑞 ; 𝑞 : 𝑄 ⊢ Φ𝑞). Γ,Δ𝑞 ⊢ 𝑀𝑞 : Φ𝑞

Γ ⊢ {𝑞 → 𝑀𝑞
𝑞∈𝑄... } : 𝑄 ;

CoMatch
𝑓 : 𝑄

Γ ⊢ 𝑓 : 𝑄 ;

PrimFun

Complex computation Γ ⊢ 𝐿 : 𝑄

Γ ⊢ 𝐹 : 𝑄 ;

Γ ⊢ 𝜆𝐹 : 𝑄

Γ ⊢ 𝑉 : Clos𝑄 : ref val
Γ ⊢ 𝑉 . call : 𝑄 Clos𝐸

Γ ⊢ 𝑀 : Proc𝑄 : sub comp
Γ ⊢ 𝑀. enter : 𝑄 Proc𝐸

Atomic computations Γ ⊢ 𝑀 : Φ

Γ ⊢ 𝑆 : 𝑃

Γ ⊢ ret 𝑆 : Ret 𝑃 : sub comp Ret 𝐼
Γ ⊢ 𝑀 : Ret 𝑃 : sub comp Γ ; 𝐺 : 𝑃 ⊢ Φ

Γ ⊢ do𝑀 as𝐺 : Φ
Ret𝐸

Γ ⊢ 𝑆 : 𝑃 Γ ; 𝐺 : 𝑃 ⊢ Φ
Γ ⊢ 𝑆 as𝐺 : Φ

StructCut
Γ ⊢ 𝑉 : Box 𝑃 : ref val Γ ; 𝐺 : 𝑃 ⊢ Φ

Γ ⊢ unbox𝑉 as𝐺 : Φ
Box𝐸

Γ ⊢ 𝐿 : 𝑄 Γ | 𝐾 : 𝑄 ⊢ Φ
Γ ⊢ ⟨𝐿 ∥ 𝐾⟩ : Φ StackCut

Γ ⊢ 𝐹 : 𝑄 ;

Γ ⊢ proc 𝐹 : Proc𝑄 : sub comp Proc 𝐼

Fig. 8. Types of complex and atomic computations.

example, ∃ ty𝑎 : Type ref val . Val Float×Val𝑎 and ∃ ty𝑎 : Type cplx val . Val Float×Val(Box𝑎)
both describe the same shape (□, val□, val□). The same scenario occurs in stack shapes, where

Val Float→ Eval Void describes (val□ · eval run), both ∀ ty𝑎 : Type sub comp . Val Float→ Eval𝑎

and ∀ ty𝑎 : Type cplx comp . Val Float → Eval(Proc𝑎) describe (□ · val□ · eval sub), but ∀ ty𝑎 :

Type cplx comp . Val Float→ 𝑎 describes no shapes. The second-class status of complex structures

and call stacks automatically enforces the ad-hoc monomorphism restrictions imposed by [15, 19].

Aside 3.3. Note that the typing rules for ∃𝐼 , ∀𝐿, and for value sequences 𝑉 ,𝑉 ′ : (𝑅 𝑥 : 𝐴),Δ
make it appear that types could depend on any kind of atomic value. However, in reality, only

meaningful dependencies are on ty-represented values — standing in for a type — which can be

accessed via the TyVar rule. There are no other rules in fig. 6 that allow the free variables of other

representations (int, flt, etc.) to actually appear in well-formed types. Vice versa, the only allowed

use of a ty-value is as a parameter to ∀ ty𝑥 : Type𝜏 .𝑄 or ∃ ty𝑥 : Type𝜏 .𝑃 ; there are no other

operations on Type𝜏 values. As such, we could restrict ∀ and ∃ to exactly these special cases, and

limit the appearance of types only to parameters of stacks or structures, and get a syntax that more

closely resembles System F [22] — a familiar basis for typed intermediate languages — without any
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(𝜂 Proc) proc {𝑞 → ⟨𝑀. enter ∥𝑞⟩ 𝑞∈𝑄... } = 𝑀 (𝑀 : Proc𝑄 𝐹𝑉 (𝑀) ∩ 𝐹𝑉 (𝑞...) = ∅)
(𝜂 Clos) clos {𝑞 → ⟨𝑉 . call ∥𝑞⟩ 𝑞∈𝑄... } = 𝑉 (𝑉 : Clos𝑄 𝐹𝑉 (𝑉 ) ∩ 𝐹𝑉 (𝑞...) = ∅)
(𝜂 Box) unbox𝑉 as { 𝑝 → 𝑀 [box𝑝/𝑥]𝑝∈𝑃... } = 𝑀 [𝑉 /𝑥] (𝑉 : Box 𝑃 𝐹𝑉 (𝑀) ∩ 𝐹𝑉 (𝑝...) = ∅)
(𝜂 Ret) do𝑀 as { 𝑝 → 𝐸 [ret𝑝]𝑝∈𝑃... } = 𝐸 [𝑀] (𝑀 : Ret 𝑃 𝐹𝑉 (𝐸) ∩ 𝐹𝑉 (𝑝...) = ∅)

Fig. 9. Extensional 𝜂 axioms of the typed equational theory.

change of expressiveness. We avoid doing so because the extra restrictions further complicate the

grammar of syntax without providing any extra benefits that cannot already be inferred as-is.

Type Safety. The only thing remaining is types for primitive operations. As these are defined outside

of the calculus itself, we use an abstract notion to classify when they can be safely assigned a type.

Assumption 3.4 (Primitive Safety). 𝑔 : 𝑃 implies that Γ ⊢ 𝑔(𝑆) : void : run comp or 𝑔(𝑆) terminal

for every Γ ⊢ 𝑆 : 𝑃 such that Γ binds only ref or ty variables. Likewise, 𝑓 : 𝑄 implies that

Γ ⊢ 𝑓 (𝐾) : Φ or 𝑓 (𝐾) terminal for every Γ | 𝐾 : 𝑄 ⊢ Φ such that Γ binds only ref or ty variables.

For example, some primitive operations defined in section 3.2 can be safely assigned these types:

eqint# : Val Int→ Val Int→ Eval(Ret(1 + 1))
divmod# : Val Int→ Val Int→ Eval(Ret(Val Int×Val Int))

error# : Val Int→ ∀ ty𝑎 : Type cplx comp . 𝑎

In error#’s type, after receiving an Int error code, it proceeds as any type of complex computation.
That means error# can be asked to return any complex result by instantiating 𝑎 = Eval(Ret𝑏) for
an arbitrary 𝑏 : Type cplx val. We can also instantiate 𝑎 to a function (𝑃 → 𝑄) or product (𝑄 &𝑄 ′)
in case we need to signal an error during a complex computation.

Assuming all primitive operations are safe, the Call-By-Unboxed-Value 𝜆-calculus is type safe.

Lemma 3.5 (Progress). If • ⊢ 𝑀 : void : run comp, then either𝑀 ↦→ 𝑀 ′ or𝑀 terminal.

Lemma 3.6 (Preservation). If Γ ⊢ 𝑀 : 𝐵 : 𝑂 comp and𝑀 ↦→ 𝑀 ′ then Γ ⊢ 𝑀 ′ : 𝐵 : 𝑂 comp.

3.4 Equational Theory
If we want to reason extensionally about program equality—based only on their input-output

behavior—then we need some additional rules stating that taking things apart and putting them

back together is unobservable. We only need four rules, written as familiar 𝜂-style axioms of the

𝜆-calculus, given in fig. 9. With them, the Call-By-Unboxed-Value equational theory is defined as

the reflexive, transitive, symmetric, and compatible closure of these 𝛽 and 𝜂 rules (figs. 5 and 9).

Although we only list four extensional 𝜂-axioms, other familiar properties are derivable from

them. The do identity 𝜂 axiom and commuting conversions are both derivable:

(𝜂 Ret𝐼𝑑 ) do𝑀 as { 𝑝 → ret𝑝 𝑝∈𝑃... } = 𝑀
(𝑐𝑐 Ret) 𝐸 [do𝑀 as { 𝑝 → 𝑀 ′𝑝∈𝑃... }] = do𝑀 as { 𝑝 → 𝐸 [𝑀 ′]𝑝∈𝑃... }

𝜂 Ret𝐼𝑑 is just a special case of 𝜂 Ret, and 𝐸 [do□ { 𝑝 → 𝑀 ′𝑝∈𝑃... }] is another evaluation context, so

𝐸 [do𝑀 as { 𝑝 → 𝑀 ′𝑝∈𝑃... }] =𝜂 Ret do𝑀 as { 𝑝 → 𝐸 [do ret𝑝 as { 𝑝 → 𝑀 ′𝑝∈𝑃... }]𝑝∈𝑃... }
=𝛽 Ret do𝑀 as { 𝑝 → 𝐸 [𝑀 ′]𝑝∈𝑃... }
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4 Examples of Representation Irrelevance in Call-By-Unboxed-Value
We now turn to some examples of writing some simple polymorphic code into Call-By-Unboxed-

Value, both to get familiar with its differences to high-level functional code, as well as to explore

ways in which it can already express the representation-polymorphic code of [15, 19] without the

need to fully characterize complex representations or to abstract over them.

The Humble Identity Function. Let’s start with the simplest possible example: the polymorphic

identity function: id 𝑥 = 𝑥 . It is no surprise that this function can’t really be polymorphic over

different representations of 𝑥 ; eventually, its machine code will hard-wire details about moving 𝑥

around. For example, here are two hard-wired choices for fixing 𝑎’s representation:

idFlt : Val Float→ Eval(Ret(Val Float))
idFlt = { val flt𝑥 : Float · eval sub→ ret val flt𝑥 }
idIntFlt : ∀ ty𝑎 : Type int val .Val𝑎 × Val Float→ Eval(Ret(Val𝑎 × Val Float)))
idIntFlt = { ty𝑎 : Type int val ·(val int𝑥 : 𝑎, val flt𝑦 : Float) · eval sub→ ret(val int𝑥, val flt𝑦) }

so that calling ⟨𝜆idFlt ∥ val 3.14 · eval sub⟩ successfully matches the copattern, which computes

to ret val 3.14, but ⟨𝜆idFlt ∥ (val 5, val 3.14) · eval sub⟩ is intuitively not OK, and this intuition is

supported by the fact that the copattern does not match causing the computation to get stuck here.

Likewise, the second specialization can be passed an unboxed pair with Nat ·(val 2, val 1.41)·eval sub,
since Nat is represented by int, but a call stack with a single floating-point value doesn’t match.

However, trying to write a fully general function of type ∀ ty𝑎 : Type cplx val .𝑎 → Eval(Ret𝑎)
would fail—not from some arbitrary restriction, but simply because we don’t know any patterns of

a generic ty𝑎 : cplx val; it’s not an atomic value so we cannot name it as val𝑥 , and the type-specific

rules don’t apply. Instead, the most general-purpose identity function takes an atomic reference:

idRef : ∀ ty𝑎 : Type ref val .Val𝑎 → Eval(Ret(Val𝑎))
idRef = { ty𝑎 : Type ref val · val ref 𝑥 : 𝑎 · eval sub→ ret val ref 𝑥 }

idRef can take all kinds of values at the usual cost of indirection. For example, idRef can be given

the argument box(val−4), box(val 3.14), or box(val 2, val 1.41) (by instantiating 𝑎 to BoxVal Int,

BoxVal Float, and Box(Val Nat×Val Float), respectively). We can also pass closures around code

to idRef , like clos idRef itself, since a Clos(. . . ) is also an atomic reference value.

The fact that we can pass closures to idRef means that it already can be used for call-by-name

application in a way: given a delayed argument clos { . . . } : Clos(Eval(Ret(Val Int))) that will
eventually return an integer, it can be passed to idRef and it will be returned back unevaluated.

However, as is painfully obvious from the type, there is a lot of costly indirection to this calling

convention: after the caller passes the delayed argument to idRef , it will wait for idRef to return a

closure that the caller can then evaluate and then wait again for the real answer. Yikes!

It would be better to cut down on all the back and forth. Even lazy languages evaluate id 𝑥 only

when the result 𝑥 is needed. So id might as well do the evaluation itself, like so:

idEval : ∀ ty𝑎 : Type sub comp .Val(Clos(Eval𝑎)) → Eval𝑎

idEval = { ty𝑎 : Type sub comp · val ref 𝑥 : Clos(Eval𝑎) · eval sub→ ⟨ref 𝑥 . call ∥ eval sub⟩ }

Notice the different type of idEval: its parameter 𝑥 is a closure around a subroutine that can be

evaluated directly with no extra input, of type 𝑎 : sub comp . For example, 𝑎 = Ret(Val Int) means

the closure returns an integer, and 𝑎 = Ret(Val Int×Val Float) means it returns an unboxed pair.
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Unboxed Sum Fusion. Next, let’s consider some unboxed sum types to see how they behave when

combined together or with other unboxed types. For example, to translate the boolean and function:

and True𝑥 = 𝑥 and False𝑥 = False

we can use the usual encoding of booleans as Bool = 1 + 1, where True = 1, () and False = 0, ().
When we try to rewrite this definition of and in Call-By-Unboxed-Value, we cannot just name

the second boolean parameter 𝑥 , because 𝑥 is not a pattern of 1 + 1. Instead, it must elaborate the
possible shapes that 𝑥 might be and replace them for 𝑥 on both sides,

3
like so:

and : Bool→ Bool→ Eval(Ret Bool)
and = {1, () · 1, () · eval sub→ ret 1, (); 0, () · 1, () · eval sub→ ret 0, ();

1, () · 0, () · eval sub→ ret 0, (); 0, () · 0, () · eval sub→ ret 0, (); }
Of course, there are four possible options, enumerated by the four different stack shapes that contain

no atomic values. We might ask how this information might be represented in a real machine, and

what other types might have the same run-time representation. For example, it’s correct to expect

that rewriting and to have the type (Bool×Bool) → Eval(Ret Bool) rearranges the parentheses
slightly, but essentially corresponds to the same low-level code. What may be more surprising is

that merging the two booleans together into another sum type Bool+Bool, or even folding the

choice of function arguments into one big product has essentially no change at run-time. Here are

two other versions of and (where we use the shorthand ˆ𝑃 = Eval(Ret 𝑃) from fig. 1):

and′ : (Bool+Bool) → ˆBool
and′ = {1, 1, () · eval sub→ ret 1, ();

1, 0, () · eval sub→ ret 0, ();
0, 1, () · eval sub→ ret 0, ();
0, 0, () · eval sub→ ret 0, (); }

and′′ : (ˆBool) & (ˆBool) & (ˆBool) & (ˆBool)
and′′ = {1 · 1 · eval sub→ ret 1, ();

1 · 0 · eval sub→ ret 0, ();
0 · 1 · eval sub→ ret 0, ();
0 · 0 · eval sub→ ret 0, (); }

All three versions of and have equivalent run-time calling conventions, and are implemented in

the exact same way: a single switch statement over the four possible options.

Of course, this implementation won’t do if we want to interpret and non-strictly; we should

take care that the second argument is never evaluated if it isn’t needed in the answer. This can be

done by passing delayed boolean-generating closures of type ´ˆBool (where we use the shorthand
´𝑄 = Val(Clos𝑄) from fig. 1) as is usual in similar mixed evaluation order calculi [32, 56], like so:

andCBN : ´ˆBool→ ´ˆBool→ ˆBool
andCBN = {val ref 𝑦 : Clos ˆBool · val ref 𝑥 : Clos ˆBool · eval sub→

do𝑦. call . eval sub as {1, () → ref 𝑥 . call . eval sub;

0, () → ret 0, (); }
where we now use familiar functional-style application from fig. 4. Here, the different boolean

options can’t be fused: they haven’t been evaluated yet, and pattern-matchingmust stop at closures.
This fusion into a single complex (co)pattern is not a special for simple enumerations. Any

unboxed sum containing any amount of atomic values are all fused into a single shape. For example,

maybeAdd Nothing 𝑦 = 𝑦 maybeAdd (Just𝑥) 𝑦 = 𝑥 + 𝑦
is translated into Call-By-Unboxed-Value (using a primitive add# : Val Nat→ Val Nat→ ˆNat) as:

maybeAdd : (1 + Val Nat) → Val Nat→ ˆNat
maybeAdd = {(0, ()) · val int𝑦 · eval sub → ret val int𝑦;

(1, val int𝑥) · val int𝑦 · eval sub→ 𝜆add# (val int𝑥) (val int𝑦). eval sub; }
3
Although we can alleviate much of this burden through some additional syntactic sugar. See appendix A for how to do so.
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Now, regrouping the parentheses changes the type of maybeAdd, but does not affect where infor-
mation is stored or how it will be moved around. That means that the second argument val int𝑦

might as well be part of the first argument, as in

maybeAdd′ : Val Nat+(Val Nat×Val Nat) → ˆNat
maybeAdd′ = {(0, val int𝑦) · eval sub → ret val int𝑦;

(1, (val int𝑥, val int𝑦)) · eval sub→ 𝜆add# (val int𝑥) (val int𝑦). eval sub; }

or the one complex function might as well be divided into a product of two simpler ones, as in

maybeAdd′′ : (Val Nat→ ˆNat) & (Val Nat→ Val Nat→ ˆNat)
maybeAdd′′ = {0 · val int𝑦 · eval sub → ret val int𝑦

1 · val int𝑥 · val int𝑦 · eval sub;→ 𝜆add# (val int𝑥) (val int𝑦). eval sub; }

All three maybeAdd functions correspond to equivalent run-time code: a binary switch that loads

one or two numbers into registers after deciding whether to add or not.

If wewere unhappywith fusing the two arguments, we could forcibly separate them by boxing the

first one, asmaybeAdd : Val(Box(1+Val Nat)) → Val Nat→ ˆNat; this passes the first argument in

a box, but otherwise it has the same evaluation order (both arguments must still be computed before

maybeAdd is called). The non-strict version, of typemaybeAdd : ´ˆ(1+Val Nat) → ´ˆNat→ ˆNat,
naturally has its arguments separated into two heap-allocated closures.

Higher-Order Calling Conventions. Now, we’ll see how the four different kinds of types give greater

precision over calling conventions for higher-order functions. The most basic one, app 𝑓 𝑥 = 𝑓 𝑥 ,

translated to Call-By-Unboxed-Value becomes:

app : ∀ ty𝑎 : Type ref val .∀ ty𝑏 : Type sub comp . ´(Val𝑎 → Eval𝑏) → Val𝑎 → Eval𝑏

app = {ty𝑎 · ty𝑏 · val ref 𝑓 · val ref 𝑥 · eval sub→ ⟨𝑓 . call ∥ val ref 𝑥 · eval sub⟩}

Here, we must pass the function and its argument to app so we need to know their representations

to even write the function code: a closure 𝑓 is always a reference, but 𝑥 : 𝑎 might be anything, so we

pick 𝑎 : Type ref val to specify it is a reference, too. We need to know how to call 𝑓 , so we assume

that 𝑓 can be evaluated as a sub-routine after being given exactly one argument (a reference); this

requires 𝑏 to be an atomic sub comp. Even still, we have the freedom to instantiate 𝑏 to Ret(Val Int)
to return just one result or Ret(Val Float×Val Nat×Val Clos𝑄) to return an unboxed triple; that

complex representation is irrelevant to app’s code. But maybe we can be even more generic. Recall

that app can be 𝜂-reduced to app′ 𝑓 = 𝑓 , which seems not to manipulate the second argument at

all. In fact, this definition is the same as the identity function, which we can reuse as

app′ : ∀𝑎 : Type cplx val .∀𝑏 : Type cplx comp . ´(𝑎 → 𝑏) → ˆ(Clos(𝑎 → 𝑏))
app′ = {ty𝑎 · ty𝑏 · val 𝑓 : Clos(𝑎 → 𝑏) · eval sub→ 𝜆idRef (Clos(𝑎 → 𝑏)) 𝑓 . eval sub}

This time, 𝑎 and 𝑏 can be any complex types; they are never relevant to (co)pattern matching.

If we want to pass more than one argument at a time in a higher-order call, like dup 𝑓 𝑥 = 𝑓 𝑥 𝑥 ,

it can be translated to Call-By-Unboxed-Value as

dup : ∀ ty𝑎 : Type ref val .∀ ty𝑏 : Type sub comp . ´(Val𝑎 → Val𝑎 → Eval𝑏) → Val𝑎 → Eval𝑏

dup = {ty𝑎 · ty𝑏 · val ref 𝑓 · val ref 𝑥 · eval sub→ ⟨𝑓 . call ∥ val ref 𝑥 · val ref 𝑥 · eval sub⟩}

Here, we can assume that 𝑓 . call is expecting exactly two (reference) arguments passed during the

same call—anything else would be a type error because the call stack val ref 𝑥 · val ref 𝑥 · eval sub
cannot match a copattern naming only one argument or naming three arguments—so dup’s code
only has to handle the case of a perfect arity match, like [15].
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Dictionary-Passing Type Classes. One of the more exciting applications of [19] is generalizing over

unboxed representations used for type classes. For example, a simplified numeric type class

classNum𝑎where (+) :: 𝑎 → 𝑎 → 𝑎

negate :: 𝑎 → 𝑎

introduces overloaded operators (+) :: Num𝑎 ⇒ 𝑎 → 𝑎 → 𝑎 and negate :: Num𝑎 ⇒ 𝑎 → 𝑎 → 𝑎

that work for any instance of Num𝑎. Ideally, we would like to have efficient instances of Num for

various kinds of unboxed numeric types like Int and Float, but that’s only possible if these are valid

specializations of 𝑎. Eisenberg and Peyton Jones [19] allow for this through the use of polymorphism

over representations. The Call-By-Unboxed-Value 𝜆-calculus that we’ve introduced here only has

monomorphic representations; nevertheless, it can still express the same generalization because all
unboxed types have the same kind cplx val with no further specificity.

To see how the unspecified cplx val helps, consider how type classes are typically compiled using

dictionary-passing style. The type class declaration of Num introduces a type of Num dictionaries—

tuples of closures implementing each operation—that we would translate as:

Num(ty𝑎 : cplx val) : cplx val = Clos(𝑎 → 𝑎 → ˆ𝑎) × Clos(𝑎 → ˆ𝑎)
The Num𝑎 ⇒ . . . constraint in generic code—like (+) and negate themselves, or other functions

defined in terms of them—is then translated as a regular parameter of the dictionary type Num𝑎

that the code uses to extract concrete definitions of the Num𝑎 operations. There is clearly no

hope for defining overloaded operators of type negate : ∀ ty𝑎 : Type cplx val . Num𝑎 → 𝑎 → ˆ𝑎
because there is no pattern for an unknown ty𝑎 : cplx val. However, we can easily implement

these functions which merely extract and return one of the closures in the dictionary.

(+) : ∀ ty𝑎 : Type cplx val . Num𝑎 → ˆ´(𝑎 → 𝑎 → ˆ𝑎)
(+) = { ty𝑎 · (val ref 𝑓 : Clos(𝑎→𝑎→ˆ𝑎), val ref 𝑔 : Clos(𝑎→ˆ𝑎)) · eval sub→ ret val ref 𝑓 }
negate : ∀ ty𝑎 : Type cplx val . Num𝑎 → ˆ´(𝑎 → ˆ𝑎)
negate = { ty𝑎 · (val ref 𝑓 : Clos(𝑎→𝑎→ˆ𝑎), val ref 𝑔 : Clos(𝑎→ˆ𝑎)) · eval sub→ ret val ref 𝑔 }

Notice how the subtle—but essential!—detail that a closure is returned, as opposed to these operations
calculating the result themselves, is recorded very conspicuously in the ˆ´ shift in the types. Later,

specific instances of Num𝑎 are just values of the dictionary type Num𝑎. When picking 𝑎, they may

choose types with any representation at all; since the instance chooses the 𝑎, it also knows how it

is represented. For example, the unboxed integer and floating-point instances for Num are:

NumInt : Num Int

NumInt = (clos add#, clos negate#)
NumFlt : NumFloat

NumFlt = (clos addFlt#, clos negateFlt#)

5 Translating Functional Programs to Call-By-Unboxed-Value
To be sure that unboxed data structures and call stacks don’t cause any unintended issues, Call-By-

Unboxed-Value should faithfully preserve the semantics of source-level functional programs that

don’t mention unboxed types at all. Rather than studying strict and non-strict languages separately,

we will just demonstrate how to embed Call-By-Push-Value, since it subsumes both. And since

polymorphism is one of our primary concerns, we extend Call-By-Push-Value with polymorphism

à la System F—with universal abstraction Λ𝑋 : 𝜏 .𝑀 and application𝑀 𝑇 and existential packages

(𝑇,𝑉 ) and unpacking match𝑉 as (𝑋 : 𝜏, 𝑥 : 𝐴) → 𝑀—without mention of representations.
4

We can then embed this Polymorphic Call-By-Push-Value 𝜆-calculus into Call-By-Unboxed-Value

as shown in fig. 10. The key idea of this embedding is to interpret the (potentially polymorphic) types

4
For the full formal definition, see appendix B.
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Translation of types CBPV J𝐴K = 𝐴′ and CBPV J𝐴K = 𝐵′ and kinds CBPV J𝜏K = 𝜏 ′

CBPV JvalK = ref val

CBPV J1K = Box 1

CBPV J𝐴0×𝐴1K = Box(ValCBPV J𝐴0K× ValCBPV J𝐴1K )
CBPV J0K = Box 0

CBPV J𝐴0+𝐴1K = Box(ValCBPV J𝐴0K+ValCBPV J𝐴1K )
CBPV J∃𝑋 :𝜏 .𝐴K = Box(∃ty𝑋 : Type J𝜏K .ValCBPV J𝐴K )

CBPV JU𝐵K = Clos(EvalCBPV J𝐵K )

CBPV JcompK = sub comp

CBPV J𝑋 K = 𝑋

CBPV J𝐴→𝐵K = Proc(ValCBPV J𝐴K→EvalCBPV J𝐵K )
CBPV J⊤K = Proc⊤

CBPV J𝐵
0
&𝐵

1
K = Proc(EvalCBPV J𝐵

0
K & EvalCBPV J𝐵

1
K )

CBPV J∀𝑋 :𝜏 .𝐵K = Proc(∀ty𝑋 : Type J𝜏K . EvalCBPV J𝐵K )
CBPV JF𝐴K = Ret(ValCBPV J𝐴K )

Translation of values CBPV J𝑉 K = 𝑉 ′

CBPV J𝑥K = ref 𝑥 CBPV Jthunk𝑀K = clos { eval sub→ CBPV J𝑀K }
CBPV J()K = box() CBPV J(𝑉 ,𝑉 ′)K = box(valCBPV J𝑉 K, valCBPV J𝑉 ′K)

CBPV J(𝑏,𝑉 )K = box(𝑏, valCBPV J𝑉 K) CBPV J(𝑇,𝑉 )K = box(CBPV J𝑇 K, valCBPV J𝑉 K)
Translation of computations CBPV J𝑀K = 𝑀′

CBPV Jmatch𝑉 as { 𝑝𝑖 → 𝑀𝑖
𝑖∈𝐼... }K = unboxCBPV J𝑉 K as { 𝑝𝑖 [val ref 𝑥/𝑥, 𝑥 ∈𝐹𝑉 (𝑝𝑖 )... ] → CBPV J𝑀𝑖K𝑖∈𝐼... }

CBPV Jmatch𝑉 as { (𝑋,𝑦) → 𝑀 }K = unboxCBPV J𝑉 K as { (ty𝑋, val ref 𝑦) → CBPV J𝑀K }
CBPV Jdo𝑥 ← 𝑀 ;𝑀′K = doCBPV J𝑀K as { val ref 𝑥 → CBPV J𝑀′K }

CBPV Jreturn𝑉 K = ret valCBPV J𝑉 K

CBPV J𝜆𝑥.𝑀K = proc { val ref 𝑥 · eval sub→ CBPV J𝑀K }
CBPV J𝑀 𝑉 K = ⟨CBPV J𝑀K . enter ∥ valCBPV J𝑉 K · eval sub⟩
CBPV J𝜆 { }K = proc { }

CBPV J𝜆 {𝑏.𝑀𝑏
𝑏∈{0,1}... }K = proc {𝑏 · eval sub→ CBPV J𝑀𝑏K𝑏∈{0,1}... }

CBPV J𝑀 𝑏K = ⟨CBPV J𝑀K . enter ∥𝑏 · eval sub⟩
CBPV JΛ𝑋 .𝑀K = proc { ty𝑋 · eval sub→ CBPV J𝑀K }
CBPV J𝑀 𝑇 K = ⟨CBPV J𝑀K . enter ∥CBPV J𝑇 K · eval sub⟩

CBPV J𝑉 . forceK = ⟨CBPV J𝑉 K . call ∥ eval sub⟩

Fig. 10. The translation from Polymorphic Call-By-Push-Value to Call-By-Unboxed-Value.

with uniform representations. Every value type 𝐴 : val is an atomic reference J𝐴K : ref val, and
every computation type 𝐵 : comp is an atomic subroutine J𝐵K : sub comp. Uniform representation,

unsurprisingly, forces boxes around every complex value (tuples, sum types, and packages). On the

computation side, all computation is coerced to simple subroutines via sub-procedures (proc { . . . })
that we can just evaluate. Note that the Proc𝑄 type hasn’t appeared much in the examples seen

thus far (in section 4), but here they are absolutely essential: the semantics of proc preserves the

extensional properties (i.e., 𝜂 and sequencing equalities) of Call-By-Push-Value computation types.

Without Proc𝑄 , we would be forced to return closures instead, which is observably different from
the source semantics. As such, Call-By-Push-Value is equivalent to an aggressively boxed subset of

Call-By-Unboxed-Value that preserves not just typing but also all program equalities.

Theorem 5.1 (Type Preservation). Let J_K denote CBPV J_K in the following:
(1) Γ ⊢ 𝐴 : 𝜏 in Polymorphic CBPV if and only if JΓK ⊢ J𝐴K : J𝜏K in CBUV .
(2) Γ ⊢ 𝑉 : 𝐴 in Polymorphic CBPV if and only if JΓK ⊢ J𝑉 K : J𝐴K : ref val in CBUV .
(3) Γ ⊢ 𝑀 : 𝐴 in Polymorphic CBPV if and only if JΓK ⊢ J𝑀K : J𝐵K : sub comp in CBUV .

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 265. Publication date: August 2024.



Call-by-Unboxed-Value 265:19

Theorem 5.2 (Soundness & Completeness). Polymorphic Call-By-Push-Value’s equational theory
is sound and complete with respect to Call-By-Unboxed-Value:𝑀 = 𝑀 ′ iff CBPV J𝑀K = CBPV J𝑀 ′K.

Optimizing Away Boxes and Closures. One might notice the translation in fig. 10 gives code with

drastically more indirection—and thus worse performance—than the examples given in fig. 2

and section 4. How do we actually use call-by-unboxed-value in a compiler to express optimizations

that avoid boxes and currying to generate efficient code? One temptation is to give a better

compilation translation with less indirection, but this involves some non-trivial understanding the

source to identify boxes and closures that can be safely eliminated without changing the results.

An alternative approach is the worker/wrapper transformation [21] used by the Glasgow Haskell

Compiler and previous work [15, 19, 47]. The idea is to naïvely translate source terms, and then

afterward apply optimizations directly to the call-by-unboxed-value code to eliminate indirection.

Since this optimization will involve changing the type of the code, it is split into two parts: the

“worker” that efficiently executes the function at a new type, and the “wrapper” that just calls

the worker and marshals between the old and the new types. For example, the naïve translation

JquotRemK (fig. 2) can be optimized as the following wrapper quotRem and worker quotRem′:

quotRem : CBPV JNat→ Nat→ F(Nat×Nat)K
quotRem = proc{val ref 𝑥 · eval sub→ proc{val ref 𝑦 · eval sub→

unbox val int𝑥 ′ ← 𝑥 ; unbox val int𝑦′ ← 𝑥 ;

do (val int𝑞, val int 𝑟 ) ← 𝜆quotRem′ (val𝑥 ′) (val𝑦′) . eval sub;
ret box(val(box(val𝑞)), val(box(val 𝑟 ))) }}

quotRem′ : Nat→ Nat→ Eval(Ret(Val Nat×Val Nat))
quotRem′ = { val int𝑥 · val int𝑦 · eval sub→

do val ref 𝑧 ← CBPV JquotRemK . enter(val(box(val𝑥))). enter(val(box(val𝑦))) . eval sub;
unbox (val ref 𝑧1, val ref 𝑧2) ← 𝑧; unbox val int𝑞 ← 𝑧1; unbox val int 𝑟 ← 𝑧2;

ret (val𝑞, val 𝑟 )}

The code for the worker quotRem′ is generated by applying the simple translation JquotRemK in
a context that actually uses it; though this seems inefficient, other standard optimizations (based

on the equational theory in section 3.4) can reduce it to the efficient form shown in fig. 2. The

remaining wrapper quotRem is small and can be inlined aggressively; if a call site actually passes

unboxed arguments to quotRem then this will simplify to a fast direct call to quotRem′.

6 An Unboxed Abstract Machine
Having studied Call-By-Unboxed-Value from the high-level—as a suitable target for semantics-

preserving compilation of functional programs—we now consider it from a lower-level perspective

to be sure that it can actually be implemented with the intended memory behavior on realistic

machines. Specifically, the only objects in long-term storage are reference values box 𝑆 and clos 𝐹 , as

well as contiguously-stored subroutine stack frames corresponding to do□ as𝐺 and ⟨□. enter ∥𝐾⟩—
everything else can be held in simple but fast register locations. Moreover, our contribution is to

show how programs can be compiled and run using only the information in their syntax, ignoring

all typing information at compile-time and run-time, but nevertheless preserving typability.

6.1 Annotated Machine Code
Call-By-Unboxed-Value variables are already annotated with fixed representations and the evalua-

tion of functions is annotated by what kind of computation to expect. The missing information to

compile code is about closure environments: when code pointers are stored, we need to know what

are the relevant free variables to copy into the closure, and thus how they are represented. We can
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explicate this information by extending the Call-By-Unboxed-Value syntax like so

Value ∋ 𝑉 ::= · · · | clos 𝐹 [Γ] Comp ∋ 𝑀 ::= · · · | do𝑀 as𝐺 [Γ,𝑂]

Thankfully, closure information is easy to recover just from the program itself—whether or not we

have any type-checking information. In fact, we can even annotate ill-typed programs, though they

may go wrong at run-time. The most interesting steps for compiling atomic values (𝐴𝑀J𝑉 KΓ = 𝑉 ′),
computations (𝐴𝑀J𝑀K𝑂Γ = 𝑀 ′), and (co)matching code (𝐴𝑀J𝐺K𝑂Γ = 𝐺 ′ and 𝐴𝑀J𝐹KΓ = 𝐹 ′) are:

𝐴𝑀Jclos 𝐹KΓ = clos𝐴𝑀J𝐹KΓ [Γ |𝐹𝑉 (𝐹 ) ]
𝐴𝑀Jdo𝑀 as𝐺K𝑂Γ = do𝐴𝑀J𝑀KsubΓ as𝐴𝑀J𝐺K𝑂Γ [Γ |𝐹𝑉 (𝐺 ) ,𝑂]

𝐴𝑀J{ 𝑘 [Γ𝑘 ,𝑂𝑘 ] → 𝑀𝑘
𝑘∈𝑄... }KΓ = { 𝑘 [Γ𝑘 ,𝑂𝑘 ] → 𝐴𝑀J𝑀𝑘K

𝑂𝑘

Γ,Γ𝑘
𝑘∈𝑄... }

𝐴𝑀J{ 𝑠 [Γ𝑠 ] → 𝑀𝑠
𝑠∈𝑃... }K𝑂Γ = { 𝑠 [Γ𝑠 ] → 𝐴𝑀J𝑀𝑠K𝑂Γ,Γ𝑠 𝑠∈𝑃... }

where the parameter Γ collects information about the local variables from their binding sites, and

𝑂 is the expected observation of a computation. The operation Γ |𝐹𝑉 (𝐹 ) means to restrict Γ to only

the free variables actually found in 𝐹 (i.e., 𝐹𝑉 (𝐹 )). As shorthand for inspecting copatterns, we write
𝑘 [Γ,𝑂] to mean 𝑘 ends in eval𝑂 . The rest of the cases follow directly by induction. Of note, we can

always determine how to observe computation sub-terms from context. Usually, this𝑂 comes from

the expectation imposed on matching code 𝐺 (as in do above) or from a surrounding copattern,

but in 𝑀. eval we know 𝑀 should have some sort of Proc𝑄 type, which is always a subroutine

computation, thus 𝐴𝑀J𝑀. enterKΓ = 𝐴𝑀J𝑀KsubΓ . eval.

6.2 Machine Configurations and Transitions
The abstract machine is defined in fig. 11. Notice that a machine configuration𝑚 combines three

parts: a command 𝑐 saying what to do, local registers 𝜌 and 𝜅, and long-term storage 𝜎 . Each 𝜌

register is fixed to one atomic representation 𝑅 and only holds compatible 𝑅-represented values𝑊 :

numeric constants, reference pointers (ref 𝑥) into storage, or closed types 𝑇 . As such, reading or

writing a variable’s value in 𝜌 requires knowing its name and its representation.While type registers

[ty 𝑥 := 𝑇 ] may seem to hold a large, complex type 𝑇 , the ty representation denotes a phantom

register that is erased for real execution; it is only maintained hypothetically to correspond with

typing information from the source language. 𝜅 denotes the context of evaluation, and points to the

top of the call stack sub𝑥 during a subroutine computation, or is empty during a run computation.

Long-term storage 𝜎 contains a combination of heap objects [𝑥 := 𝐻 ] as well as stack frames

[𝑥 := 𝐸]. The two address spaces are kept separate to accommodate distinct allocation strategies: 𝑥

addresses are heap-allocated and garbage collected, but 𝑥 addresses follow a linear stack discipline

and can be allocated and freed as a traditional, contiguous call stack. Stored code objects, clos 𝐹 [𝜌]
and do𝐺 [𝜌𝜅], are closed over the contents of (value and stack) registers at storage time.

At times, we need to simplify a sequence of values 𝑉 ... into a sequence of constants𝑊 ... that

can actually be stored locally in registers. This is done through the multi-value storing operation

𝜌∗ (𝑉 ...) that returns a both a sequence of constants𝑊 ..., which may include references, along with

heap-allocated objects that close over those references. For example, just storing 𝜌∗ (clos 𝐹 [Γ]) will
allocate the closure clos 𝐹 [𝜌 |Γ] (where 𝜌 |Γ denotes the restriction of 𝜌 to only variables listed in Γ)
to some location 𝑥 on the heap, and return the pair ref 𝑥 ; [𝑥 := clos 𝐹 [𝜌 |Γ]]. In the other direction,

sometimes we need the real value of a source code 𝑉 , which may be a variable reference. 𝜎𝜌 (𝑉 )
looks up 𝑉 if it is a reference into 𝜎 , and returns the heap object representation in either case.

Lastly, the command 𝑐 itself may take three different forms. ⟨𝑀⟩ is the standard command, which

just executes the given computation 𝑀 corresponding to the operational semantics. The other

two, ⟨𝑠 ∥𝑊 ... ∥ 𝐺⟩ and ⟨𝐹 ∥ 𝑘 ∥𝑊 ...⟩ are intermediate states that unify the cases where a pattern
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RegValue ∋𝑊 ::= 𝑛 | 𝑛.𝑛 | 𝑇 | ref 𝑥 Registers ∋ 𝜌 ::= • | 𝑅 𝑥 :=𝑊 ; 𝜌

HeapObject ∋ 𝐻 ::= box 𝑠 [𝑊 ...] | clos 𝐹 [𝜌] Store ∋ 𝜎 ::= • | 𝜎, 𝑥 := 𝐻 | 𝑥 := 𝐸, 𝜎

StackFrame ∋ 𝐸 ::= enter𝑘 [𝑊...𝜅] | do𝐺 [𝜌𝜅] StackReg ∋ 𝜅 ::= run | sub𝑥
Machine ∋𝑚 ::= 𝑐 [𝜌𝜅] [𝜎] Command ∋ 𝑐 ::= ⟨𝑀⟩ | ⟨𝑠 ∥𝑊... ∥𝐺⟩ | ⟨𝐹 ∥ 𝑘 ∥𝑊...⟩

𝑉 ...; 𝜌′ = Load 𝑓 (𝑘,𝑊 ...) 𝑓 (𝑘 [𝑉 ...]) = terminal

⟨𝑓 ∥ 𝑘 ∥𝑊 ...⟩ [𝜌𝜅] [𝜎] terminal

𝑉 ...; 𝜌′ = Load𝑔 (𝑠,𝑊 ...) 𝑔(𝑠 [𝑉 ...]) = terminal

⟨𝑠 ∥𝑊 ... ∥ 𝑔⟩ [𝜌 run] [𝜎] terminal

Transition rules 𝑚 ↦→𝑚′

(do) ⟨do𝑀 as𝐺 [Γ,𝑂]⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝑀⟩ [𝜌 sub𝑥] [𝑥 := do𝐺 [𝜌 |Γ 𝜅 (𝑂)], 𝜎]
(enter) ⟨⟨𝑀.enter ∥ 𝑘 [𝑉 ...,𝑂]⟩⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝑀⟩ [𝜌 sub𝑥] (if𝑊 ...;𝜎′ = 𝜌∗ (𝑉 ...))

[𝑥 := enter𝑘 [𝑊 ..., 𝜅 (𝑂)], 𝜎, 𝜎′]
(as) ⟨𝑠 [𝑉 ...] as𝐺⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝑠 ∥𝑊 ... ∥ 𝐺⟩ [𝜌𝜅] [𝜎, 𝜎′] (if𝑊 ...;𝜎′ = 𝜌∗ (𝑉 ...))
(𝜆) ⟨⟨𝜆𝐹 ∥ 𝑘 [𝑉 ...]⟩⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝐹 ∥ 𝑘 ∥𝑊 ...⟩ [𝜌′𝜅] [𝜎, 𝜎′] (if𝑊 ...;𝜎′ = 𝜌∗ (𝑉 ...))

(Box) ⟨unbox𝑉 as𝐺⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝑠 ∥𝑊 ... ∥ 𝐺⟩ [𝜌𝜅] [𝜎, 𝜎′] (if box 𝑠 [𝑊 ...];𝜎′ = 𝜎𝜌 (𝑉 ))
(Clos) ⟨⟨𝑉 ′ .call ∥ 𝑘 [𝑉 ...]⟩⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝐹 ∥ 𝑘 ∥𝑊 ...⟩ [𝜌′𝜅] [𝜎, 𝜎′] (if clos 𝐹 [𝜌′]; • = 𝜎𝜌 (𝑉 ′)

and𝑊 ...;𝜎′ = 𝜌∗ (𝑉 ...))
(Ret) ⟨ret 𝑠 [𝑉 ...]⟩[𝜌 sub𝑥] [𝑥 :=do𝐺 [𝜌′𝜅′], 𝜎] ↦→ ⟨𝑠 ∥𝑊 ... ∥ 𝐺⟩ [𝜌′𝜅′] [𝜎, 𝜎′] (if𝑊 ...;𝜎′ = 𝜌∗ (𝑉 ...))
(Proc) ⟨proc 𝐹 ⟩ [𝜌 sub𝑥] [𝑥 := enter𝑘 [𝑊 ...𝜅′], 𝜎] ↦→ ⟨𝐹 ∥ 𝑘 ∥𝑊 ...⟩ [𝜌𝜅′] [𝜎]

(Fun) ⟨{ 𝑘 [Γ𝑘 ] → 𝑀𝑘
𝑘∈𝑄... ∥ 𝑘′ ∥𝑊 ... }⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝑀𝑘 ′ ⟩ [𝜌, (Γ𝑘 ′ :=𝑊 ...)𝜅] [𝜎]

(Match) ⟨𝑠′ ∥𝑊 ... ∥ { 𝑠 [Γ𝑠 ] → 𝑀𝑠
𝑠∈𝑃... }⟩ [𝜌𝜅] [𝜎] ↦→ ⟨𝑀𝑠′ ⟩ [𝜌, (Γ𝑠′ :=𝑊 ...)𝜅] [𝜎]

(Prim𝑓 ) ⟨𝑓 ∥ 𝑘 ∥𝑊 ...⟩ [𝜌𝜅] [𝜎] ↦→ ⟨Prim𝑓 (𝑘 [𝑉 ...])⟩ [𝜌′𝜅] [𝜎] (if 𝑉 ...; 𝜌′ = Load 𝑓 (𝑘,𝑊 ...))
(Prim𝑔) ⟨𝑠 ∥𝑊 ... ∥ 𝑔⟩ [𝜌𝜅] [𝜎] ↦→ ⟨Prim𝑔 (𝑠 [𝑉 ...])⟩ [𝜌′𝜅] [𝜎] (if 𝑉 ...; 𝜌′ = Load𝑔 (𝑠,𝑊 ...))

Value loading 𝜎𝜌 (𝑉 ) = 𝐻 ;𝜎 , value storing 𝜌∗ (𝑉 ...) =𝑊 ...;𝜎 , and primitive operations

𝜎𝜌 (clos 𝐹 [Γ]) = clos 𝐹 [𝜌 |Γ]; • 𝜎𝜌 (ref 𝑥) = 𝜎 (𝜌 (ref 𝑥)); •
𝜎𝜌 (box 𝑠 [𝑉 ...]) = box 𝑠 [𝑊 ...];𝜎′ (if𝑊 ...;𝜎′ = 𝜌∗ (𝑉 ...))

𝜌∗ (𝑉 ..., 𝑅 𝑥) =𝑊 ..., 𝜌 (𝑅 𝑥);𝜎 (if 𝜌∗ (𝑉 ...) =𝑊 ...;𝜎)
𝜌∗ (𝑉 ..., const) =𝑊 ..., const;𝜎 (if const ∈ {𝑛, 𝑛.𝑛}, 𝜌∗ (𝑉 ...) =𝑊 ...;𝜎)

𝜌∗ (𝑉 ..., box 𝑠 [𝑉 ′ ...]) =𝑊 ..., ref 𝑥 ; (𝑥 := box 𝑠 [𝑊 ′ ...], 𝜎′, 𝜎) (if 𝜌∗ (𝑉 ′ ...) =𝑊 ′ ...;𝜎′, 𝜌∗ (𝑉 ...) =𝑊 ...;𝜎)
𝜌∗ (𝑉 ..., clos 𝐹 [Γ]) =𝑊 ..., ref 𝑥 ; (𝑥 := clos 𝐹 [𝜌 |Γ], 𝜎) (if 𝜌∗ (𝑉 ...) =𝑊 ...;𝜎)

𝜌∗ (𝑉 ...,𝑇 ) =𝑊 ...,𝑇 [𝜌 (ty𝑥)/ty𝑥 𝑥 ∈𝐹𝑉 (𝑇 )... ];𝜎 (if 𝜌∗ (𝑉 ...) =𝑊 ...;𝜎)
Prim𝑓 (𝑘 [𝑉 ...,𝑂]) = 𝐴𝑀J𝑓 (𝑘 [𝑉 ...])K𝑂Sig𝑓 (𝑘 ) Prim𝑔 (𝑔, 𝑠 [𝑉 ...]) = 𝐴𝑀J𝑔(𝑠 [𝑉 ...])KrunSig𝑔 (𝑠 )

Fig. 11. The Call-By-Unboxed-Value abstract machine.

or copattern match is ready to happen. When 𝐹 or 𝐺 are defined as source code { 𝑘 [Γ] → 𝑀... }
or { 𝑠 [Γ] → 𝑀... }, then the Fun and Match rules do a switch statement on the shape 𝑠 or 𝑘 , and

then bind the associated values𝑊 ... to the registers named by Γ. For primitive operations 𝑓 and

𝑔, we assume that they are implemented in a way compatible with the operational semantics,

as specified by Prim𝑓 and Prim𝑔, which fundamentally relies on the parametricity of references

(assumption 3.1). Specifically, runtime-allocated store locations can’t be compiled into the definitions
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of primitive operations. Thus, we also assume that each operation has an associated run-time

parameter signature Sig 𝑓 (𝑘) = Γ and Sig𝑔 (𝑠) = Γ known at compile-time for each shape, as well as

a parameter-loading routine Load 𝑓 (𝑘,𝑊 ...) = 𝑉 ...; 𝜌 and Load𝑔 (𝑠,𝑊 ...) = 𝑉 ...; 𝜌 that abstracts out

parameters from𝑊 ... into 𝜌 and replaces them with their 𝜌-bound names.

Aside 6.1. It may seem like matching on shapes 𝑘 and 𝑠 in the Fun and Match rules would be a

complex operation to implement. But remember: shapes are devoid of any information about the

atomic values held “inside,” and don’t even assign some name to positions, leaving them blank □s.
Furthermore, structures and stacks are second-class and must be fully formed in-place, since the

syntax statically separates shapes from their contents. The only run-time requirement of complex

types of shapes is that they are all distinct. As such, the whole shape can be reduced to a single

constant and choosing a branch is just one switch statement. Once the branch has been selected, the

associated atomic values𝑊 ... can be assigned their local names to evaluate the next computation.

For example, a pointer 𝑥 : Box((Val Int+Val Float×Val Int) + 1) to a boxed value can have three

possible shapes: (0) 0, 0, val□ contains a single int, (1) 0, 1, val□, val□ contains a pair of a float and

int, and (2) 1, () contains nothing. To generate code, we need an enumeration mapping each shape

to a different constant distinguish the options. For instance, we could use the numeric labels of the

above enumeration, so box(0, 1, val 3.14, val 42) is represented as a pointer to a single-byte tag 1, a

64-bit floating-point 3.14, and a 32-bit integer 42. If 𝑥 points to this sequence, the unboxing

unbox𝑥 as { 0, 0, val int𝑦 → 𝑀1;

0, 1, val flt𝑦, val int 𝑧 → 𝑀2;

1, () → 𝑀3}

should be compiled to a C-like tagged union and switch statement as shown in fig. 12a.

Copatterns are more difficult to express in a C-like pseudo code, since we only know what

arguments to expect after checking the tag denoting the stack frame’s shape. However, it still

follows the same principle in a lower-level language with an explicit call stack. All versions of the

maybeAdd function should be compiled to the same low-level code with two possible stack shapes:

(0) 0 · val□ · eval sub describes a frame with 1 integer argument and 1 return pointer, and

(1) 1 · val□ · val□ · eval sub describes a frame with 2 integer arguments and 1 return pointer.

As before, we can generate code for this complex type by following the enumeration to assign a

numeric index to each stack shape. The function can be called by passing the number stack shape

tag in the first register, followed by any additional parameters. fig. 12b shows an example of an Intel

x86 implementation of register-passing code, where the tag is passed in %al and the arguments are

passed in the remaining registers and spill onto the stack as usual. On the other side, maybeAdd’s
code first starts with a switch or conditional to check the tag describing the stack shape, then

jumps to the code for that case that knows how to access the remaining parameters for that branch.

Function code with more copattern cases would likely be implemented by a jump table, rather

than a long sequence of conditional jumps. Effectively, this spells out a “switch function” which

branches on the first special argument before loading the rest.

6.3 Back-Translation and Bisimulation
The abstract machine in fig. 11 is meant to correctly implement the low-level details left abstract in

operational semantics in fig. 5. To be sure that the two give the same results, we can show that

the steps of the two systems remain in sync by relating machine configurations back to the source

calculus. To decompile machine code (𝐴𝑀J𝑀K−1, 𝐴𝑀J𝑉 K−1, etc.), we just need to erase the extra

annotations that were added to function closures and do-statements.
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struct {
char tag;
union {
int zero; // case 0 = 0, 0, val int
// case 1 = 0, 1, val flt, val int
struct { float fst; int snd; } one;
// empty case 2 = 1, ()

} body;
} *x;
switch (x->tag) {
case 0:
int y = x->body.zero;
M1...
break;

case 1:
float y = x->body.one.fst;
int z = x->body.one.snd;
M2...
break;

case 2:
M3...

}

(a) Unboxing a complex value in C.

# at the call site of: maybeAdd (1, val 10) (val 20).eval sub
movb $1, %al # case 1 = (1, val []) · val [] · eval sub
movl $10, %edi # first argument = 10
movl $20, %esi # second argument = 20
call maybeAdd # maybeAdd (1, val 10) (val 20).eval sub

# at the function definition site...
maybeAdd:
cmpb $1, %al # check for case 1
je maybeAdd1 # jump to convention = 1 · val [] · val [] · eval sub

# otherwise, use convention = 0 · val [] · eval sub
maybeAdd0:
# %edi holds the only argument y
movl %edi, %eax # only return result is y held in %eax
ret # return val int y

maybeAdd1:
# %edi holds first argument, %esi holds second argument
movl %edi, %eax
addl %esi, %eax # add both arguments
ret # return the only result

(b) Function code with complex calling conventions in x86
assembly.

Fig. 12. Examples of generating low-level code for pattern and copattern matching.

Commands 𝐴𝑀J𝑐K−1 = 𝑀 and configurations 𝐴𝑀J𝑚K−1 = 𝑀

𝐴𝑀J⟨𝑀⟩K−1 = 𝐴𝑀J𝑀K−1 𝐴𝑀J⟨𝑠 ∥𝑊 ... ∥ 𝐺⟩K−1 = 𝑠 [𝑊 ...] as𝐴𝑀J𝐺K−1

𝐴𝑀J𝑐 [𝜌𝜅]K−1𝜎 = 𝐴𝑀J𝜅K−1𝜎 [𝐴𝑀J𝑐K−1 [𝐴𝑀J𝜌K−1]] 𝐴𝑀J⟨𝐹 ∥ 𝑘 ∥𝑊 ...𝑂⟩K−1 = ⟨𝜆𝐴𝑀J𝐹K−1 ∥ 𝑘 [𝑊 ...]⟩
𝐴𝑀J𝑐 [𝜌𝜅] [𝜎]K−1 = 𝐴𝑀J𝑐 [𝜌𝜅]K−1𝜎 [𝐴𝑀J𝜎K−1]

Stack pointers 𝐴𝑀J𝜅K−1𝜎 = 𝐸 and stored stack frames 𝐴𝑀J𝐸K−1𝜎 = 𝐸

𝐴𝑀Jdo𝐺 [𝜌𝜅]K−1𝜎 = 𝐴𝑀J𝜅K−1𝜎
[
do□ as𝐴𝑀J𝐺K−1 [𝐴𝑀J𝜌K−1]

]
𝐴𝑀JrunK−1𝜎 = □

𝐴𝑀Jenter𝑘 [𝑊 ...𝜅]K−1𝜎 = 𝐴𝑀J𝜅K−1𝜎 [⟨□. enter ∥𝑘 [𝑊 ...]⟩] 𝐴𝑀Jsub𝑥K−1𝜎 = 𝐴𝑀J𝜎 (𝑥)K−1𝜎

Registers 𝐴𝑀J𝜌K−1 =𝑊 /𝑅 𝑥... , heap objects 𝐴𝑀J𝐻K−1𝜎 = 𝑉 and the heap 𝐴𝑀J𝜎K−1 = 𝑉 /𝑥 ...

𝐴𝑀Jclos 𝐹 [𝜌]K−1 = clos𝐴𝑀J𝐹K−1 [𝐴𝑀J𝜌K−1] 𝐴𝑀Jbox 𝑠 [𝑊 ...]K−1 = box 𝑠 [𝑊 ...]
𝐴𝑀J𝑥 := 𝐸, ..., •K−1 = • 𝐴𝑀J𝑅 𝑥 :=𝑊 ...K−1 =𝑊 /𝑅 𝑥...
𝐴𝑀J𝜎, 𝑥 := 𝐻, 𝜎′K−1 = 𝐴𝑀J𝜎K−1, (𝐴𝑀J𝐻K−1 [𝐴𝑀J𝜎, 𝜎′K−1])/𝑥,𝐴𝑀J𝜎′K−1 (if 𝑥 ∉ 𝐹𝑉 (𝜎, 𝜎′))

Fig. 13. Decompilation of the abstract machine.

Decompiling commands and configurations, as shown in fig. 13, takes more work. The main idea

is that the registers (𝜌) and the store (𝜎) hold information about deferred substitutions that would

have happened already in the operational semantics. In 𝐴𝑀J𝑐 [𝜌𝜅]K−1, registers 𝜌 are decompiled

as a substitution applied to 𝑐 , while the stack register 𝜅 gets rebuilt as an evaluation context

surrounding 𝑐 . The last step is to sort through the heap in 𝜎 and substitute each reconstructed heap

object back into the computation. Doing so relies on the fact that 𝜎 is non-cyclic, which means we

can always find (at least) one object that nothing else depends on to build. With this decompilation

complete, we can create a bisimulation that links both semantics, under the assumption that

primitive parameter passing correctly abstracts out values into registers.
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Definition 6.2 (Bisimulation Relation). The bisimulation relation𝑀 ∼𝑚 between closed Call-By-

Unboxed-Value terms and closed configurations of the abstract machine is:𝑀 ∼𝑚 iff𝑀 = 𝐴𝑀J𝑚K−1

Assumption 6.3. 𝑉 [𝐴𝑀J𝜌K−1] ... =𝑊 ... for all 𝑉 ...; 𝜌 = Load 𝑓 (𝑘,𝑊 ...) or 𝑉 ...; 𝜌 = Load𝑔 (𝑠,𝑊 ...).

Lemma 6.4 (Bisimilarity). CBUV’s operational semantics and abstract machine are bisimilar,
(1) For all closed𝑀 ,𝑀 ∼ ⟨𝐴𝑀J𝑀Krun• ⟩ [run] [•],
(2) for all closed𝑚 with a non-cyclic 𝜎 , 𝐴𝑀J𝑚K−1 ∼𝑚,
(3) if𝑀 ∼𝑚 then𝑀 terminal if and only if𝑚 ↦→∗do enter as𝜆 𝑚

′
terminal,

(4) if𝑀 ∼𝑚 and𝑀 ↦→∗ 𝑀 ′ then𝑚 ↦→∗ 𝑚′ such that𝑀 ′ ∼𝑚′, and
(5) if𝑀 ∼𝑚 and𝑚 ↦→∗ 𝑚′ then𝑀 ↦→∗ 𝑀 ′ such that𝑀 ′ ∼𝑚′.

Theorem 6.5 (Operational Correspondence). For any closed 𝑀 , 𝑀 ↦→∗ 𝑀 ′ terminal if and
only if ⟨𝐴𝑀J𝑀Krun• ⟩ [run] [•] ↦→∗ 𝑚′ terminal, and in such a case,𝑀 ′ ∼𝑚′.

6.4 Type System, Safety, and Erasure
Decompilation does more than relate dynamic semantics; it also relates static semantics of the

two as well. If the source program happens to be well-typed, that information is preserved in the

machine and can be reflected back. Well-typed programs correspond to well-typed abstract machine

configurations—following the typing rules given in fig. 14—with their own type safety property.

The key to typing the machine is to understand the two levels of environments corresponding to

𝜌𝜅 versus 𝜎 in 𝑐 [𝜌𝜅]𝜎 . The free variables Γ and results Φ in 𝑐 refer to registers bound by 𝜌 and 𝜅,

while the references out of 𝜌 and 𝜅 refer to a surrounding environment Ψ and Ξ bound by 𝜎 . From

there, we get type safety for the machine that is equivalent to typing in the source.

Assumption 6.6. (1) If Ψ ⊢ ⟨𝑓 ∥ 𝑘 ∥𝑊 ...⟩ : Φ and 𝑉 ...; 𝜌 = Load 𝑓 (𝑘,𝑊 ...) then Ψ ⊢ 𝜌 : Sig 𝑓 (𝑘)
and Sig 𝑓 (𝑘) ⊢ 𝑓 (𝑘 [𝑉 ...]) : Φ.
(2) If Ψ ⊢ ⟨𝑠 ∥𝑊 ...∥𝑔⟩ :Φ and𝑉 ...; 𝜌 = Load𝑔 (𝑠,𝑊 ...) then Ψ ⊢ 𝜌 : Sig 𝑓 (𝑠) and Sig𝑔 (𝑠) ⊢ 𝑔(𝑠 [𝑉 ...]) :Φ.

Theorem 6.7 (Type Preservation). (1) If𝑚OK then • ⊢ 𝐴𝑀J𝑚K−1 : void : run comp.
(2) If Γ ⊢ 𝑀 : 𝐵 : 𝑂 comp then Γ ⊢ 𝐴𝑀J𝑀K𝑂Γ : 𝐵 : 𝑂 comp.

Lemma 6.8 (Progress & Preservation). If𝑚OK then𝑚 ↦→𝑚′ OK or𝑚 terminal.

The ty registers in the machine are helpful for maintaining the type preservation link, as they

keep track of how generic type variables are instantiated as the program runs. However, they have

no impact on the behavior of the machine or the overall result of a program. Note that in fig. 11,

the only time the machine reads a ty register is for the purpose of loading another ty register, and

the contents of ty registers cannot affect the result of a primitive operation by assumptions 3.1

and 6.3. Therefore, we can erase all types in the program without changing the answer.

Theorem 6.9 (Type Erasure). Let erased be a type constant and terminal states be similar, written
𝑚 ≃𝑚′, if they share the same primitive operation and shape. ⟨𝑀⟩ [𝜌𝜅] [𝜎] [𝑇 /ty𝑥 ...] ↦→∗ 𝑚1 terminal

if and only if ⟨𝑀⟩ [𝜌𝜅] [𝜎] [erased/ty𝑥 ...] ↦→∗ 𝑚2 terminal, such that𝑚1 ≃𝑚2.

7 Future and Related Work
Optimizing Unboxed Data and Curried Functions. Call-By-Unboxed-Value follows [47]’s tradition of

modeling a value’s boxed versus unboxed status as a feature in a compiler’s intermediate language.

This idea was extended to allow for polymorphism over representation of values [19] and the calling

convention of functions [15]. Call-By-Unboxed-Value stays closer to more modest roots [17] by

keeping representations simple and monomorphic, yet is still able to express many programs that
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Updated typing rules for annotated closures and do-sequences:

Γ |Δ ⊢ 𝐹 : 𝑄 ;

Γ ⊢ clos 𝐹 [Δ] : Clos𝑄 : ref val
Clos 𝐼

Γ ⊢ 𝑀 : ret 𝑃 : sub comp Γ |Δ ; 𝐺 : 𝑃 ⊢ 𝐵 : 𝑂 comp

Γ ⊢ do𝑀 as𝐺 [Δ,𝑂] : 𝐵 : 𝑂 comp
Ret𝐸

StoreEnv ∋ Ψ ::= • | Ψ, 𝑥 : 𝐴 StackEnv ∋ Ξ ::= • | 𝑥 : 𝐵

Types for register values Ψ ⊢𝑊 : 𝐴 : 𝑅 val and the stack registers 𝜅 : Φ ⊢ Ξ

Ψ ⊢ 𝑛 : Int : int val Ψ ⊢ 𝑛.𝑛 : Float : flt val Ψ, 𝑥 : 𝐴,Ψ′ ⊢ 𝑥 : 𝐴 : ref val
• ⊢ 𝑇 : 𝜏

Ψ ⊢ 𝑇 : Type𝜏 : ty val sub𝑥 : 𝐵 : sub comp ⊢ 𝑥 : 𝐵 run : void : run comp ⊢ •

Types for heap objects Ψ ⊢ 𝐻 : 𝐴 and stack frames Ψ | 𝐸 : 𝐵 ⊢ Ξ

Ψ ⊢𝑊 ... : Δ • | Δ ⊢ 𝑠 : 𝑃 ;

Ψ ⊢ box 𝑠 [𝑊 ...] : Box 𝑃
Ψ ⊢ 𝜌 : Γ Γ ⊢ 𝐹 : 𝑄 ;

Ψ ⊢ clos 𝐹 [𝜌] : Clos𝑄

Ψ ⊢𝑊 ... : Δ • | Δ ; 𝑘 : 𝑄 ⊢ Φ Ψ | 𝜅 : Φ ⊢ Ξ
Ψ | enter𝑘 [𝑊 ...𝜅] : Proc𝑄 ⊢ Ξ

Ψ ⊢ 𝜌 : Γ Ψ | 𝜅 : Φ ⊢ Ξ
Ψ | do𝐺 [𝜌𝜅] : Ret 𝑃 ⊢ Ξ

Typed value registers Ψ ⊢ 𝜌 : Γ and sequences Ψ ⊢𝑊 ... : Δ

Ψ ⊢𝑊 : 𝐴 : 𝑅 val Ψ ⊢ 𝜌 : Γ [𝑊 /𝑅 𝑥]
Ψ ⊢ 𝑅 𝑥 :=𝑊, 𝜌 : (𝑅 𝑥 : 𝐴, Γ) Ψ ⊢ • : •

Ψ ⊢𝑊 : 𝐴 : 𝑅 val Ψ ⊢𝑊 ′ ... : Δ[𝑊 /𝑅 𝑥]
Ψ ⊢𝑊,𝑊 ′ ... : (𝑅 𝑥 : 𝐴,Δ)

Types for the long-term store 𝜎 : (Ψ ⊣ Ξ) binding heap objects (Ψ) and a top stack frame (Ξ)

• : (• ⊢ •)
𝜎 : (Ψ ⊣ Ξ) Ψ ⊢ 𝐻 : 𝐴

(𝜎, 𝑥 := 𝐻 ) : (Ψ, 𝑥 : 𝐴 ⊣ Ξ)
Ψ | 𝐸 : 𝐵 ⊢ Ξ 𝜎 : (Ψ ⊣ Ξ)
(𝑥 := 𝐸, 𝜎) : (Ψ ⊣ 𝑥 : 𝐵)

Machine commands Ψ | Γ ⊢ 𝑐 : Φ and closing configurations:

Γ ⊢ 𝑀 : Φ
Ψ | Γ ⊢ ⟨𝑀⟩ : Φ

Γ | Δ ⊢ 𝑠 : 𝑃 ; Ψ ⊢𝑊 ... : Δ Γ ; 𝐺 : 𝑃 ⊢ Φ
Ψ | Γ ⊢ ⟨𝑠 ∥𝑊 ... ∥ 𝐺⟩ : Φ

Γ ⊢ 𝐹 : 𝑄 ; Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ Ψ ⊢𝑊 ... : Δ

Ψ | Γ ⊢ ⟨𝐹 ∥ 𝑘 ∥𝑊 ...⟩ : Φ
Ψ ⊢ 𝜌 : Γ Ψ | Γ ⊢ 𝑐 : Φ 𝜅 : Φ ⊢ Ξ

𝑐 [𝜌𝜅] : Ψ ⊢ Ξ
RegCut

𝑐 [𝜌𝜅] : (Ψ ⊢ Ξ) 𝜎 : (Ψ ⊣ Ξ)
𝑐 [𝜌𝜅] [𝜎] OK StoreCut

Fig. 14. The Call-By-Unboxed-Value abstract machine type system.

abstract over types with different representations (section 4). Still, there may yet be applications

that want to abstract over representations or observations, which we leave to future work.

By decoupling the four-way split between atomic versus complex and value versus computation,

Call-By-Push-Value gives a platform for expressing optimizations for curried functions, too. These

optimizations are important in practice to avoid wastefully allocating intermediate closures [9, 30,

35]. Usually, the question of how many arguments a function “really” requires (i.e., its arity) is
an informal property from complex compile-time analysis [9, 48, 54] and can be easily changed

by program optimizations [24]. Call-By-Unboxed takes a type-based approach à la [15, 17] where

a function’s arity is a property of its type, not just its code. One issue we do not capture here is

closure conversion [5, 28]. More recent approaches to typed closure conversion [2, 38] represent

them abstractly [8], which has also been modeled in a Call-By-Push-Value framework [50].
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Adjoint Calculi. Call-By-Unboxed-Value is explicitly inspired by adjoint calculi [31, 32, 42, 43, 55, 56],
which are similar to the monadic framework of computation [41], except that they explicitly divide

the program into two parts in the same way that a monad can be decomposed into an adjoint

pair of functors. This decomposition is able to accurately express the semantics of types, such as

“strong sums” [44], especially in the presence of side effects [33], making good on the promise that

even effectful programs have the expected isomorphisms between types [34] and can be losslessly

compiled down to basic, finite, building blocks [13, 14]. Combining multiple evaluation orders in

the same program makes it possible to represent programs that are seemingly polymorphic over

evaluation order when the result is the same either way [15, 19] or may be different [18].

Memoization. The interplay between call-by-name and call-by-value is motivated by multiple

foundations in denotational semantics and polarized logic. But in practice, non-strict functional

languages use call-by-need [6, 7] evaluation to memoize (i.e., remember) answers and avoid re-

computation. As such, we cannot simply “evaluate” a memoized computation; somewhere the

answer must be recorded for efficient future retrieval. Call-By-Push-Value has been extended with

call-by-need, but at the cost of losing 𝜂 equalities [37] or an explicitly type-based semantics [13].

Promisingly, we already have a mechanism to talk about different observations—i.e., represen-
tations of evaluation contexts—that gives a direct path to insert memoization as another kind of

atomic computation different from a simple subroutine (sub comp). The evaluation of memoizing
computation (memo comp) is always represented as two references memo𝑥, 𝑥 : one (𝑥 ) to the stack

frame needing the answer, and another (𝑥) to the thunk itself to be overwritten. More concretely,

we could add memoizing computations as tagless [46] thunks to Call-By-Unboxed-Value machine:

Γ |Γ′ ⊢ 𝑀 : 𝐵 : sub comp

Γ ⊢ start𝑀 [Γ′] : Tape𝐵 : ref val
Γ ⊢ ref 𝑥 : Tape𝐵 : ref val
Γ ⊢ 𝑥 . play : 𝐵 : memo comp

Γ |Γ′ ⊢ 𝑀 : sub comp

Γ ⊢ pause𝑀 [Γ′] : memo comp

𝜌∗ (𝑉 ..., start𝑀 [Γ]) =𝑊 ..., ref 𝑥 ;𝑥 := start𝑀 [𝜌 |Γ] (𝜌∗ (𝑉 ...) =𝑊 ...;𝜎)
⟨𝑥 . play⟩ [𝜌 sub𝑥] [𝜎] ↦→ ⟨𝑀⟩ [𝜌 ′memo𝑥, 𝑥] [𝜎] (𝜎 (𝜌 (ref 𝑥)) = start𝑀 [𝜌 ′])

⟨pause𝑀 [Γ]⟩ [𝜌 memo𝑥, 𝑥] [𝜎] ↦→ ⟨𝑀⟩ [𝜌 sub𝑥] [𝜎, 𝑥 := start(pause𝑀 [Γ]) [𝜌 |Γ]]
Tagless thunks are like a cassette tape: they start at the beginning and, when forced, begin to

play out until they reach the end where the answer is ready. The tape then stays paused at this

end position on all future access. Unlike usual presentations, the program is given control over

when to pause the Tape. Call-By-Unboxed-Value could be a good setting to explore mechanisms for

memoization—including tagged and tagless styles—and their optimizations, even letting a compiler

choose exactly when and how memoization happens depending on the specific application.

Type-Safe Coercions. Sometimes two different types will have identical representations or calling

conventions at runtime, like the unboxed sum examples in section 4. Yet, the type system separates

programs of these runtime-equivalent types; this is part of the reason that compilation to the

machine model preserves types. However, this separation prevents some optimizations, such as

using an uncurried function (𝑃0 × 𝑃1) → 𝑄 in place of a curried one 𝑃0 → (𝑃1 → 𝑄) without any
runtime overhead. This is justified because the two different types of call stacks have a one-to-one

correspondence with the flattened sequence of atomic arguments in the same order.

In lieu of using more complex kinds [15, 19] to calculate when types are runtime-equivalent, we

could instead employ the more general technique of type-safe coercions [51] to add extra equations

between types whose programs are interchangeable. This would make it possible to add other

type equalities about unboxed sums discussed in section 4—justified from compiling shapes as in

aside 6.1—such as (𝑃0 +𝑃1) → 𝑄 ≈ (𝑃0 → 𝑄)& (𝑃1 → 𝑄) and (𝑃0 +𝑃1) ×𝑃2 ≈ (𝑃0 ×𝑃2) + (𝑃1 ×𝑃2),
while keeping order-changing inequalities like 𝑃0 + 𝑃1 0 𝑃1 + 𝑃0 and 𝑃0 × 𝑃1 0 𝑃1 × 𝑃0 separate.
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Join Points. Sharing code is an important concern in practical implementations, especially when the

representation forces the program to do the same work in multiple possible branches [27]. There

are multiple approaches to this problem, the most popular being Static Single Assignment (SSA) [12]
for imperative programs and Continuation-Passing Style (CPS) [4] for functional ones, which are

known to be related [10, 26]. Another way to share code is with join points [36] that keep functional
programs in direct style. Extending Call-By-Unboxed-Value with join points would alleviate code

duplication problems caused by the mandate to pattern match on complex structures and stacks

even if the answer is the same, as we saw in the and example in section 4. The code in and is small

enough to not matter, but in larger examples this doubling is unacceptable. A potential avenue for

integrating join points may be a look at the Calculus of Unity [55] which is primarily concerned

about naming code, not values; both it and the predecessor to functional join points [16] share a

common foundation in the sequent calculus [20] in the style of [11, 53], which could be the key.

Effective Dependent Types. To be clear, studying dependent types is not an objective of this paper.

Types are treated as regular first-class, atomic values (represented as erasable phantom ty registers)

simply because it is easier if they are not special: the parameter list in an unboxed call stack is just

a sequence of values, rather than some interleaving of types and values. The same convenience is

used in practice in GHC’s Core representation for similar reasons. This simplifying assumption

makes it easier to formalize quantifiers as ∀𝑅 𝑥 : 𝐴. 𝑄 and ∃𝑅 𝑥 : 𝐴. 𝑃 for generic atomic value

types 𝐴. Even so, the only interesting choice is to quantify over ty variables, since they are the only

ones we are allowed to meaningfully use in the types 𝑃 or 𝑄 (via the TyVar rule in fig. 6).

But what if types could refer to other kinds of atomic values, and not just other Type𝜏 parameters?

It seems like the natural expression of type abstraction and the quantifiers lends itself readily to a

dependently typed calculus. We take pause here and do not jump in eagerly, because the adjoint

foundation of Call-By-Unboxed-Value is fundamentally engineered to handle computational effects,

and the mixture of effects and dependent types is notoriously fraught with danger [25, 45]. Despite

this, there have been some promising starts based on Call-By-Push-Value [45, 52] and sequent

calculi [39, 40, 49]. Call-By-Unboxed-Value could be particularly interesting in this space, since it

would allow for a richer type system for describing type-safe, low-level representations. What if

the programmer wants first-class access to the tags in a tagged union (i.e., unboxed sum type) and

control pattern matching? That could be expressed by ∃ int𝑥 : Nat . 𝑃 .

8 Conclusion
Here, we have introduced the Call-By-Unboxed-Value paradigm, which further decomposes Call-

By-Push-Value and focusing regimes based on an operational semantics distinguishing boxed

versus unboxed values in real machines. Our goal is to give a more robust foundation for studying

the combination of parametric polymorphism with the representation of values and the calling

conventions of higher-order functions. It turns out many motivating examples of representation

polymorphism can be expressed with a more modest type system, and in fact, representation-

irrelevant polymorphic code can be compiled and run without any type information. We hope

this enables the study of new applications and implementations of representation irrelevance in

other settings. The strength of this approach is to pursue a fine-grained set of tools that can be

recombined in new ways. Sometimes the parts are greater than the sum.
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Extended syntax:

StructShape ∋ 𝑠 ::= · · · | □ ∈ { 𝑠 ... } StackShape ∋ 𝑘 ::= · · · | more ∈ { 𝑘... }
Struct ∋ 𝑆 ::= 𝑠 [𝛿] Stack ∋ 𝐾 ::= 𝑘 [𝛿]
Values ∋ 𝛿 ::= • | 𝛿,𝑉 | 𝛿, 𝑆 Call ∋ 𝐿 ::= · · · | 𝑀

Γ::= · · · | Γ, 𝑥 : 𝑃 : cplx val Δ ::= · · · | 𝑃 : cplx val,Δ Φ::= · · · | 𝑄 : cplx comp

∀(Γ | Δ ⊢ 𝑠 : 𝑃 ;)
Γ, 𝑥 : 𝑃 cplx val, Γ′ ⊢ 𝑥 ∈ { 𝑠 𝑠∈𝑃... } : 𝑃

∀(Γ | Δ ⊢ 𝑠 : 𝑃 ;)
Γ | 𝑃 : cplx val ⊢ □ ∈ { 𝑠 𝑠∈𝑃... } : 𝑃 ;

Γ | Δ ⊢ 𝑠 : 𝑃 ; Γ ⊢ 𝛿 : Δ

Γ ⊢ 𝑠 [𝛿] : 𝑃 Struct
Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ Γ ⊢ 𝛿 : Δ

Γ | 𝑘 [𝛿] : 𝑄 ⊢ Φ Stack

Γ ⊢ 𝑆 : 𝑃 Γ ⊢ 𝛿 : Δ
Γ ⊢ (𝑆, 𝛿) : (𝑃 : cplx val,Δ)

∀(Γ | Δ ; 𝑘 : 𝑄 ⊢ Φ)
Γ | • ; more ∈ { 𝑘 𝑘∈𝑄... } : 𝑄 ⊢ 𝑄 : cplx comp

Γ ⊢ 𝑀 : 𝑄 : cplx comp
Γ ⊢ 𝑀 : 𝑄

Fig. 15. Complex Call-By-Unboxed-Value: the extension with (co)pattern disjunction.

A Complex Variables in Call-By-Unboxed-Value
Sometimes, being forced to elaborate all pattern-matching options can be rather burdensome when

the result is the same in multiple cases. Not only does it waste more bits or ink, it can cause serious

code duplication problems. In lieu of a more serious solution, like join points [36], we can easily

add some syntactic sugar for letting us assign a name to a whole complex value, corresponding to

Zeilberger’s complex variables [56]. However, [56]’s notion of complex variables are only meaningful

in a typed setting: the missing patterns are elaborated by checking the type of the variable and

expanding the options. Instead, we still want to be able to compile and run untyped code, even

when using this shorthand to combine redundant cases.

Our solution is to extend Call-By-Unboxed-Value with the ability to summarize multiple (co)-

patterns within the same alternative branch, as shown in fig. 15. Intuitively, the idea is that we

might combine multiple patterns disjunctively, by saying what to do if either “this or that” matches.

This disjunction can be embedded inside of a larger pattern, in which case we can assign a name

to the whole complex choice, written as 𝑥 ∈ { 𝑠𝑖 𝑖∈𝐼... }, where the set { 𝑠𝑖 𝑖∈𝐼... } disambiguates all the

possible different shapes that the complex variable 𝑥 might take.

Disjunction shouldn’t just be limited to pattern variables: it’s useful in the result of a call, too. In

particular, we might want to define a complex curried function with partial copattern matching by

writing only the relevant parameters and projection options and leaving the right-hand side as

another complex computation. We can end the partial copattern early by writing more ∈ { 𝑘𝑖 𝑖∈𝐼... },
where the set { 𝑘𝑖 𝑖∈𝐼... } disambiguates all the possible ways that the complex call could continue.

The reason to include the disambiguating set for complex variables 𝑥 ∈ { 𝑠 ... } and complex

continuations more ∈ { 𝑘... } is to give just enough information that programs can be desugared

into the simpler Call-By-Unboxed-Value syntax in fig. 3. This elaboration is shown in fig. 16. Notice

that no type information is needed for the macro expansion, so untyped programs can still be

compiled and run. This serves as an untyped alternative to the explicitly-typed complex variables

of [56]. Moreover, we did not need to complicate the language of representations or observations to
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PatternCxt ∋ 𝑝1 ::= □ | 𝑝1, 𝑝 | 𝑝, 𝑝1 | 𝑏, 𝑝1 | 𝑅 𝑥 : 𝑇, 𝑝1

CoPatternCxt ∋ 𝑞1 ::= □ | 𝑝1 · 𝑞 | 𝑝 · 𝑞1 | 𝑏 · 𝑞1 | 𝑅 𝑥 : 𝐴 · 𝑞1

{ . . . ;𝑝1 [𝑥 ∈ { 𝑠𝑖 𝑖∈𝐼... }] → 𝑀 } → { . . . ;𝑝1 [𝑠𝑖 [𝑥𝑖 ...]] → 𝑀 [𝑠𝑖 [𝑥𝑖 ...]/𝑥]𝑖∈𝐼... }
{ . . . ;𝑞1 [𝑥 ∈ { 𝑠𝑖 𝑖∈𝐼... }] → 𝑀 } → { . . . ;𝑞1 [𝑠𝑖 [𝑥𝑖 ...]] → 𝑀 [𝑠𝑖 [𝑥𝑖 ...]/𝑥]𝑖∈𝐼... }

{ . . . ;𝑞1 [more ∈ { 𝑘𝑖 𝑖∈𝐼... }] → 𝑀 } → { . . . ;𝑞1 [𝑘𝑖 [𝑥𝑖 ...]] → ⟨𝑀 ∥ 𝑘𝑖 [𝑥𝑖 ...]⟩ 𝑖∈𝐼... }

⟨𝑆 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } ∥ 𝐾⟩ → 𝑆 as { 𝑝 → ⟨𝑀𝑝 ∥ 𝐾⟩ 𝑝∈𝑃... }

⟨unbox𝑉 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } ∥ 𝐾⟩ → unbox𝑉 as { 𝑝 → ⟨𝑀𝑝 ∥ 𝐾⟩ 𝑝∈𝑃... }

⟨do𝑀 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } ∥ 𝐾⟩ → do𝑀 as { 𝑝 → ⟨𝑀𝑝 ∥ 𝐾⟩ 𝑝∈𝑃... }

𝑠 [𝛿] ∈ { 𝑠𝑖 𝑖∈𝐼... } → 𝑠 [𝛿] (𝑠 ∈ { 𝑠𝑖 𝑖∈𝐼... })
⟨⟨𝐿 ∥ 𝑞1 [𝛿,more ∈ { 𝑘𝑖 𝑖∈𝐼... }]⟩ ∥ 𝑘 [𝛿 ′]⟩ → ⟨𝐿 ∥ 𝑞1 [𝛿, 𝑘 [𝛿 ′]]⟩ (𝑘 ∈ { 𝑘𝑖 𝑖∈𝐼... })

Fig. 16. Untyped macro expansion of complex (co)pattern disjunction

do so, either. In that way, the (co)pattern shape sets serve as a more modest alternative to complex,

multi-faceted representations [19] and calling conventions [15].

As an example, the shared code in the boolean and function

and :: Bool→ Bool→ Bool

and True𝑥 = 𝑥

and False𝑥 = False

can be kept in tact using pattern disjunction like so:

and : Bool→ Bool→ Eval(Ret Bool)
and = {1, () · 𝑥 ∈ { 1, (); 0, () } · eval sub→ ret𝑥 ∈ { 1, (); 0, () }

0, () · 𝑥 ∈ { 1, (); 0, () } · eval sub→ ret 0, ()}

Desugaring this definition using fig. 16 gives exactly the fully-elaborated, four-way branching

version from section 4.

B Polymorphic Call-By-Push-Value 𝜆-Calculus
The full definition of the polymorphic Call-By-Push-Value 𝜆-calculus is given in figs. 17 to 20.

Notice that Call-By-Push-Value’s sequencing axioms from fig. 20 don’t seem to appear in Call-

By-Unboxed-Value simple 𝛽𝜂 equational theory in section 3.4. These are equivalent to conversions

that commute a proc computation to pull out of any block statement—do, unbox, or a plain as—to
pop the stack first before running the computation, like so:

(𝑐𝑐 Proc) do𝑀 as { 𝑝 → proc {𝑞 → 𝑀′𝑞𝑝
𝑞∈𝑄... } 𝑝∈𝑃... } = proc {𝑞 → do𝑀 as { 𝑝 → 𝑀′𝑞𝑝

𝑝∈𝑃... } 𝑞∈𝑄... }
(𝑐𝑐 Proc) unbox𝑉 as { 𝑝 → proc {𝑞 → 𝑀𝑞𝑝

𝑞∈𝑄... } 𝑝∈𝑃... } = proc {𝑞 → unbox𝑉 as { 𝑝 → 𝑀𝑞𝑝
𝑝∈𝑃... } 𝑞∈𝑄... }

(𝑐𝑐 Proc) 𝑆 as { 𝑝 → proc {𝑞 → 𝑀𝑞𝑝
𝑞∈𝑄... } 𝑝∈𝑃... } = proc {𝑞 → 𝑆 as { 𝑝 → 𝑀𝑞𝑝

𝑝∈𝑃... } 𝑞∈𝑄... }
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Kind ∋ 𝜏 ::= val | comp
Type ∋ 𝑇 ::= 𝐴 | 𝐵

ValueType ∋ 𝐴 ::= 𝑋 | 1 | 𝐴0 ×𝐴1 | 0 | 𝐴0 +𝐴1 | ∃𝑋 : 𝜏 .𝐴 | U𝐵
CompType ∋ 𝐵 ::= 𝑋 | 𝐴→ 𝐵 | ⊤ | 𝐵

0
& 𝐵

1
| ∀𝑋 : 𝜏 .𝐵 | F𝐴

Value ∋ 𝑉 ::= 𝑥 | () | (𝑉0,𝑉1) | (0,𝑉 ) | (1,𝑉 ) | thunk𝑀
Comp ∋ 𝑀 ::= do𝑥 : 𝐴← 𝑀 ;𝑀 ′ | return𝑉 | 𝑉 . force

| match𝑉 as { () → 𝑀 } | match𝑉 as { (𝑥0 : 𝐴0, 𝑥1 : 𝐴1) → 𝑀 }
| match𝑉 as { (𝑏, 𝑥𝑏 : 𝐴𝑏) → 𝑀𝑏

𝑏∈{0,1}... } | match𝑉 as { (𝑋 : 𝜏, 𝑥 : 𝐴) → 𝑀 }
| 𝜆𝑥 :𝐴.𝑀 | 𝑀 𝑉 | 𝜆 { } | 𝜆 {𝑏.𝑀𝑏∈{0,1}... } | 𝑀 0 | 𝑀 1 | Λ𝑋 :𝜏 .𝑀 | 𝑀 𝑇

Fig. 17. Polymorphic Call-By-Push-Value syntax.

EvalCxt ∋ 𝐸 ::= □ | do𝑥 : 𝐴← 𝐸;𝑀 | 𝐸 𝑉 | 𝐸 0 | 𝐸 1 | 𝐸 𝑇

(𝛽 F) do𝑥 : 𝐴← return𝑉 ;𝑀 ↦→ 𝑀 [𝑉 /𝑥]
(𝛽1) match () as { () → 𝑀 } ↦→ 𝑀

(𝛽×) match (𝑉0,𝑉1) as { (𝑥0 : 𝐴0, 𝑥1 : 𝐴1) → 𝑀 } ↦→ 𝑀 [𝑉0/𝑥0,𝑉1/𝑥1]
(𝛽+0) match (0,𝑉 ) as { (𝑏, 𝑥𝑏 : 𝐴𝑏) → 𝑀𝑏

𝑏∈{0,1}... } ↦→ 𝑀0 [𝑉 /𝑥0]
(𝛽+1) match (1,𝑉 ) as { (𝑏, 𝑥𝑏 : 𝐴𝑏) → 𝑀𝑏

𝑏∈{0,1}... } ↦→ 𝑀1 [𝑉 /𝑥1]
(𝛽∃) match (𝑇,𝑉 ) as { (𝑋 : 𝜏, 𝑥 : 𝐴) → 𝑀 } ↦→ 𝑀 [𝑇 /𝑋,𝑉 /𝑥]
(𝛽 U) (thunk𝑀). force ↦→ 𝑀

(𝛽→) (𝜆𝑥 :𝐴.𝑀) 𝑉 ↦→ 𝑀 [𝑉 /𝑥]
(𝛽&0) (𝜆 {𝑏.𝑀𝑏

𝑏∈{0,1}... }) 0 ↦→ 𝑀0

(𝛽&1) (𝜆 {𝑏.𝑀𝑏
𝑏∈{0,1}... }) 1 ↦→ 𝑀1

(𝛽∀) (Λ𝑋 :𝜏 .𝑀) 𝑇 ↦→ 𝑀 [𝑇 /𝑋 ]

Fig. 18. Polymorphic Call-By-Push-Value operational semantics.

If we want to look at things the other way, we can likewise push the stack frames downward

into block statements, toward the sub-procedures that want them, like so:

(𝑐𝑐 enter) ⟨do𝑀 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } . enter ∥𝐾⟩ = do𝑀 as { 𝑝 → ⟨𝑀𝑝 . enter ∥𝐾⟩ 𝑝∈𝑃... }

(𝑐𝑐 enter) ⟨unbox𝑉 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } . enter ∥𝐾⟩ = unbox𝑉 as { 𝑝 → ⟨𝑀𝑝 . enter ∥𝐾⟩ 𝑝∈𝑃... }

(𝑐𝑐 enter) ⟨𝑆 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } . enter ∥𝐾⟩ = 𝑆 as { 𝑝 → ⟨𝑀𝑝 . enter ∥𝐾⟩ 𝑝∈𝑃... }

All of the 𝑐𝑐 enter and 𝑐𝑐 Proc equations are derivable from the 𝛽𝜂 axioms already seen in figs. 5

and 9. For example, here is a derivation of 𝑐𝑐 enter using only the 𝛽 Ret and 𝜂 Ret axioms:

⟨do𝑀 as { 𝑝 → 𝑀𝑝
𝑝∈𝑃... } . enter ∥𝐾⟩ =𝜂 Ret do𝑀 as { 𝑝 → ⟨do ret𝑝 as { 𝑝 → 𝑀𝑝

𝑝∈𝑃... } . enter ∥𝐾⟩ 𝑝∈𝑃... }
=𝛽 Ret do𝑀 as { 𝑝 → ⟨𝑀𝑝 . enter ∥𝐾⟩ 𝑝∈𝑃... }
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Kinds of types Γ ⊢ 𝑇 : 𝜏

Γ, 𝑋 : 𝜏, Γ′ ⊢ 𝑋 : 𝜏
TyVar

Γ ⊢ 1 : val 1𝑇
Γ ⊢ 0 : val 0𝑇

Γ ⊢ ⊤ : comp ⊤𝑇

Γ ⊢ 𝐴0 : val Γ ⊢ 𝐴1 : val
Γ ⊢ 𝐴0 ×𝐴1 : val

×𝑇
Γ ⊢ 𝐴0 : val Γ ⊢ 𝐴1 : val

Γ ⊢ 𝐴0 +𝐴1 : val
+𝑇

Γ, 𝑋 : 𝜏 ⊢ 𝐴 : val
Γ ⊢ ∃𝑋 : 𝜏 .𝐴 : val ∃𝑇

Γ ⊢ 𝐵 : comp
Γ ⊢ U𝐵 : val U𝑇

Γ ⊢ 𝐴 : val Γ ⊢ 𝐵 : comp
Γ ⊢ 𝐴→ 𝐵 : comp →𝑇

Γ ⊢ 𝐵
0
: comp Γ ⊢ 𝐵

1
: comp

Γ ⊢ 𝐵
0
& 𝐵

1
: comp &𝑇

Γ, 𝑋 : 𝜏 ⊢ 𝐵 : comp
Γ ⊢ ∀𝑋 : 𝜏 .𝐵 : comp ∀𝑇

Γ ⊢ 𝐴 : val
Γ ⊢ F𝐴 : comp ∃𝑇

Types of values Γ ⊢ 𝑉 : 𝐴

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴
Var

Γ ⊢ () : 1 1𝐼
No 0𝐼 rules

Γ ⊢ 𝑉0 : 𝐴0 Γ ⊢ 𝑉1 : 𝐴1

Γ ⊢ (𝑉0,𝑉1) : 𝐴0 ×𝐴1

×𝐼
Γ ⊢ 𝑉 : 𝐴0

Γ ⊢ (0,𝑉 ) : 𝐴0 +𝐴1

+𝐼0
Γ ⊢ 𝑉 : 𝐴1

Γ ⊢ (1,𝑉 ) : 𝐴0 +𝐴1

+𝐼1

Γ ⊢ 𝑇 : 𝜏 Γ ⊢ 𝑉 : 𝐴[𝑇 /𝑋 ]
Γ ⊢ (𝑇,𝑉 ) : ∃𝑋 : 𝜏 .𝐴

∃𝐼
Γ ⊢ 𝑀 : 𝐵

Γ ⊢ thunk𝑀 : U𝐵
U 𝐼

Types of computations Γ ⊢ 𝑀 : 𝐵

Γ ⊢ 𝑀 : F𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀 ′ : 𝐵
Γ ⊢ do𝑥 :𝐴← 𝑀 ;𝑀 ′ : 𝐵

F𝐸
Γ ⊢ 𝑉 : 𝐴

Γ ⊢ return𝑉 : F𝐴
F 𝐼

Γ ⊢ 𝑉 : 1 Γ ⊢ 𝑀 : 𝐵

Γ ⊢ match𝑉 as { () → 𝑀 } : 𝐵 1𝐸
Γ ⊢ 𝑉 : 𝐴0 ×𝐴1 Γ, 𝑥0 : 𝐴0, 𝑥1 : 𝐴1 ⊢ 𝑀 : 𝐵

Γ ⊢ match𝑉 as { (𝑥0 : 𝐴0, 𝑥1 : 𝐴1) → 𝑀 } : 𝐵 ×𝐸

Γ ⊢ 𝑉 : 0

Γ ⊢ match𝑉 as { } : 𝐵 0𝐸
Γ ⊢ 𝑉 : 𝐴0 +𝐴1 Γ, 𝑥0 : 𝐴0 ⊢ 𝑀0 : 𝐵 Γ, 𝑥1 : 𝐴1 ⊢ 𝑀1 : 𝐵

Γ ⊢ match𝑉 as { (0, 𝑥0 : 𝐴0) → 𝑀0; (1, 𝑥1 : 𝐴1) → 𝑀1 } : 𝐵
&𝐸

Γ ⊢ 𝑉 : ∃𝑋 : 𝜏 .𝐴 Γ, 𝑋 : 𝜏, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ match𝑉 as { (𝑋 : 𝜏, 𝑥 : 𝐴) → 𝑀 } : 𝐵 ×𝐸
Γ ⊢ 𝑉 : U𝐵

Γ ⊢ 𝑉 . force : 𝐵 U𝐸

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥 :𝐴.𝑀 : 𝐴→ 𝐵
→𝐼

Γ ⊢ 𝑀 : 𝐴→ 𝐵 Γ ⊢ 𝑉 : 𝐴

Γ ⊢ 𝑀 𝑉 : 𝐵
→𝐸

Γ ⊢ 𝑀0 : 𝐵
0

Γ ⊢ 𝑀1 : 𝐵
1

Γ ⊢ 𝜆 { 0.𝑀0; 1.𝑀1 } : 𝐵
0
& 𝐵

1

&𝐼
Γ ⊢ 𝑀 : 𝐵

0
& 𝐵

1

Γ ⊢ 𝑀 0 : 𝐵
0

&𝐸0
Γ ⊢ 𝑀 : 𝐵

0
& 𝐵

1

Γ ⊢ 𝑀 1 : 𝐵
1

&𝐸1

Γ ⊢ 𝜆 { } : ⊤ ⊤𝐼 No ⊤𝐸 rules.

Γ, 𝑋 : 𝜏 ⊢ 𝑀 : 𝐵

Γ ⊢ Λ𝑋 :𝜏 .𝑀 : ∀𝑋 :𝜏 .𝐵 ∀𝐼
Γ ⊢ 𝑀 : ∀𝑋 :𝜏 .𝐵 Γ ⊢ 𝑇 : 𝜏

Γ ⊢ 𝑀 𝑇 : 𝐵 [𝑇 /𝑋 ] ∀𝐸

Fig. 19. Polymorphic Call-By-Push-Value type system.
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Rules for congruence (equality can be applied in any context) plus:

Γ ⊢ 𝑀 : 𝐵

Γ ⊢ 𝑀 = 𝑀 : 𝐵
Refl

Γ ⊢ 𝑀 = 𝑀 ′ : 𝐵

Γ ⊢ 𝑀 ′ = 𝑀 : 𝐵
Symm

Γ ⊢ 𝑀 = 𝑀 ′ : 𝐵 Γ ⊢ 𝑀 ′ = 𝑀 ′′ : 𝐵
Γ ⊢ 𝑀 = 𝑀 ′′ : 𝐵

Trans

Γ ⊢ 𝑀 = 𝑀 ′ : 𝐵 𝑀 ′ ↦→ 𝑀 ′′

Γ ⊢ 𝑀 = 𝑀 ′′ : 𝐵
Step

Extensional 𝜂 axioms:

(𝜂→) 𝜆𝑥 :𝐴.(𝑀 𝑥) = 𝑀 : 𝐴→ 𝐵 (𝑥 ∉ 𝐹𝑉 (𝑀))
(𝜂0) 𝜆 { } = 𝑀 : ⊤
(𝜂&) 𝜆 { 0.(𝑀 0); 1.(𝑀 1) } = 𝑀 : 𝐵

0
& 𝐵

1

(𝜂∀) Λ𝑋 :𝜏 .(𝑀 𝑋 ) = 𝑀 : ∀𝑋 :𝜏 .𝐵 (𝑋 ∉ 𝐹𝑉 (𝑀))
(𝜂 U) thunk(𝑀. force) = 𝑀 : U𝐵

(𝜂 F) do𝑥 : 𝐴← 𝑀 ; return𝑥 = 𝑀 : F𝐴

(𝜂1) match𝑉 as { () → 𝑀 [()/𝑥] } = 𝑀 [𝑉 /𝑥] (𝑉 : 1)
(𝜂×) match𝑉 as { (𝑥0:𝐴0, 𝑥1:𝐴1) → 𝑀 [(𝑥0, 𝑥1)/𝑥] } = 𝑀 [𝑉 /𝑥] (𝑉 : 𝐴0 ×𝐴1, 𝑥0, 𝑥1 ∉ 𝐹𝑉 (𝑀))
(𝜂0) match𝑉 as { } = 𝑀 [𝑉 /𝑥] (𝑉 : 0)
(𝜂+) match𝑉 as { (𝑏, 𝑥𝑏 :𝐴𝑏) → 𝑀𝑏 [(𝑏, 𝑥𝑏)/𝑥]𝑏∈{0,1}... } = 𝑀 [𝑉 /𝑥] (𝑉 : 𝐴0 + 𝐵0, 𝑥𝑏 ∉ 𝐹𝑉 (𝑀𝑏))
(𝜂×) match𝑉 as { (𝑋 :𝜏, 𝑥 :𝐴) → 𝑀 [(𝑋, 𝑥)/𝑥] } = 𝑀 [𝑉 /𝑥] (𝑉 : ∃𝑋 :𝜏 .𝐴, 𝑋, 𝑥 ∉ 𝐹𝑉 (𝑀))

Sequencing axioms:

(𝑐𝑐→) do𝑥 ← 𝑀 ; (𝜆𝑦.𝑀 ′) = 𝜆𝑦.(do𝑥 ← 𝑀 ;𝑀 ′) (𝑦 ∉ 𝐹𝑉 (𝑀))

(𝑐𝑐&) do𝑥 ← 𝑀 ; (𝜆 {𝑏. 𝑀𝑏
𝑏∈{0,1}... }) = 𝜆 {𝑏.(do𝑥 ← 𝑀 ;𝑀𝑏)𝑏∈{0,1}... }

(𝑐𝑐∀) do𝑥 ← 𝑀 ; (Λ𝑋 .𝑀 ′) = Λ𝑋 .(do𝑥 ← 𝑀 ;𝑀 ′) (𝑋 ∉ 𝐹𝑉 (𝑀))

(𝑐𝑐 F)
do𝑥 ← ( do𝑦 ← 𝑀 ′;

𝑀);
𝑀 ′′

=

do𝑥 ← 𝑀 ;

do𝑦 ← 𝑀 ′;

𝑀 ′′
(𝑥 ∉ 𝐹𝑉 (𝑀 ′), 𝑦 ∉ 𝐹𝑉 (𝑀))

Fig. 20. Polymorphic Call-By-Push-Value equational theory.

In their most general form, we can summarize all of these small-step commutations by a single

commutation between tail contexts 𝐶𝑡𝑙
—which surround all the places that an atomic computation

might return from, a.k.a tail positions—with the introduction and elimination forms of the Proc𝑄

type, expressed by just these two axioms:

TailCxt ∋ 𝐶𝑡𝑙
::= □ | 𝑆 as𝐶𝑚𝑟 | unbox𝑉 as𝐶𝑚𝑟 | do𝑀 as𝐶𝑚𝑟

MatchRespCxt ∋ 𝐶𝑚𝑟
::= { 𝑝 → 𝐶𝑡𝑙

𝑝
𝑝∈𝑃... }

(𝑐𝑐 proc) 𝐶𝑡𝑙 [proc {𝑞 → 𝑀𝑖𝑞
𝑞∈𝑄... } 𝑖∈𝐼...] = proc {𝑞 → 𝐶𝑡𝑙 [𝑀𝑖𝑞

𝑖∈𝐼...]𝑞∈𝑄... }
(𝑐𝑐 enter) ⟨𝐶𝑡𝑙 [𝑀𝑖

𝑖∈𝐼...] . enter ∥𝐾⟩ = 𝐶𝑡𝑙 [⟨𝑀𝑖 . enter ∥𝐾⟩ 𝑖∈𝐼...]

which can be derived from the small-step commutations by induction on 𝐶𝑡𝑙
.
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