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ABSTRACT
Closure conversion, an essential step in compiling functional pro-
grams, is traditionally presented as a global transformation from a
language with higher-order functions to one without. Optimizing
this transformation can be done at any of its three stages with vari-
ous tradeoffs. After conversion, optimizations will be in the target
language at the cost of a weaker equational theory. During con-
version, optimizations may be embedded into the transformation
itself at the cost of increasing its complexity and correctness. And
before conversion, optimizations may be planned and anticipated
in a specialized intermediate language (IL) where all the properties
of the source program are still known, with the hope that they will
survive the rest of the compilation process.

By building on the notion of abstract closures, we blur the dis-
tinctions between these three approaches to closure conversion and
optimizations thereof, by combining all of their strengths and avoid-
ing their weaknesses. Specifically, we develop an IL that includes
closures alongside unclosed higher-order code, even inhabiting
the same type. The IL comes equipped with an equational theory
that is shown sound and complete with respect to an environment
abstract machine. Thereby, a baseline closure conversion and com-
mon optimizations become provable equalities and thus are correct
by construction. Moreover, the transformation and its correctness
proof are broken down into little steps—as instances of the 𝛽 and 𝜂
axioms—instead of being expressed in terms of a recursive proce-
dure.

Our proposed IL is based on call-by-push-value which we extend
with sharing in order to capture closure conversion for both strict
and lazy languages.
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1 INTRODUCTION
In the compilation from a higher-order language to a first-order, low-
level language like C, functions are converted into data structures
containing an environment and a code pointer. Often, the source
and target languages are different. However, it would be really
convenient for closure conversion to be expressed in the same
language. Specifically, we would like the following to hold:

Theorem 1.1. If Γ ⊢ 𝑀 : 𝜏 , then Γ ⊢ 𝑀 = CC(𝑀) : 𝜏 .

That is, we want an expression𝑀 to be axiomatically equal, via the
typical 𝛽 and 𝜂 axioms, to its closure converted form CC(𝑀). Such
a language enables not only the simple definition of the transforma-
tion but for optimized versions, e.g. those that share environments,
to be implemented locally and incrementally. Indeed, it is the com-
patibility and transitivity of equational theories that allow these
closures optimizations to compose with themselves and other opti-
mizations within a compiler. There are also benefits to reasoning
about correctness. Whereas in previous work [16] different closure
conversion techniques correspond to different cross-language log-
ical relations, closure transformations encoded via the axioms of
a compiler intermediate language (IL) are proven correct merely
by the soundness of these axioms. That is, for a sound equational
theory, axiomatic equality implies contextual equivalence.

Working within a single equational theory as the main focus of
optimizations has a history of success in compilers [3, 19, 21, 26].
A key idea therein is that a core IL is modified repeatedly, in a
series of passes, by a set of small, local transformations. Some
global transformations, e.g. strictness analysis, are still necessary
but are less modular. Inlining, constant folding, and common sub-
expression elimination are all examples of local transformations.
Local transformations may be built from smaller ones, e.g. common
sub-expression elimination is a case of 𝛽 expansion when we give a
name to a repeated sub-program. Such an approach has even been
successful for optimization problems that are typically handled
in lower-level code, like join points [14] and unboxed types [20],
by extending the IL to capture some essential properties of these
concepts. Once included, the low-level parts may be optimized with
existing optimizations; for instance, redundant unboxing operations
can be eliminated via common sub-expression elimination.

To date, closures have been excluded from this local approach
because the canonical closure conversion [2, 16–19] does not make
this goal easy. For example, we have that:

CC(𝜆𝑥.𝑦 + 𝑧) = ⟨⟨𝑦, 𝑧⟩, 𝜆⟨𝑒, 𝑥⟩. case 𝑒 of {⟨𝑦, 𝑧⟩ → 𝑦 + 𝑧}⟩
If we want Theorem 1.1 to be true, then we immediately run into
a problem since the type has changed from a function to a pair.
Therefore, to say that something is 𝛽𝜂 equal to its closure converted
form is false because we cannot apply a pair as we can a function. Of
course, we could remedy this problem by changing all of the calling
contexts of a function, but then we have a global transformation
thereby losing the local reasoning that enables optimization in
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little pieces. Our solution to this problem is not to consider closure
conversion a data representation for functions, instead we build on
the work on abstract closures [5, 10, 16]. These are special objects
for which we may give bespoke semantics, distinct from a usual
function’s semantics. An abstract closure object “knows” about the
relationship between the environment and code parts of a closure;
that is, the environment part of the closure will be substituted at
the same time as the formal parameter.

To capture several closure conversions in a single language, we
choose call-by-push-value (CBPV) [12] as our starting point, since
it already subsumes the theories of call-by-name and call-by-value
source languages. Moreover, it provides the strongest possible 𝛽 and
𝜂 laws for functions and data making it a good candidate for an IL.
However, in practice, it is call-by-need that our IL needs to support
since the call-by-name repetitions of identical computations make
its algorithmic complexity unacceptable in practice. Previous work
[27] has shown that closure conversion of shared computations
requires special consideration; thus, we extend CBPV with both
closures and sharing to study their interaction. To our knowledge,
CBPV is also a novel language for closure conversion. So to justify
where we place abstract closures in such a language, we develop
environment abstract machines, like the SECD [7] and Krivine [11]
machines, which must capture closures as part of its runtime. It is
with respect to these machines that the soundness of our abstract
closures is proved.

This paper presents the following contributions:

• We extend CBPV with the notion of abstract closures and
define an equational theory that embraces both eager and
lazy languages.

• We prove soundness and completeness of the extended CBPV
(including sharing) with respect to an abstract machine, us-
ing a logical relation argument.

• We define closure conversion not as a global cross-language
transformation but in terms of little pieces that correspond
to provable equalities. Thus, closure conversion is correct by
construction.

• We elevate closure conversion to be on par with other op-
timizations. In other words, it is done within the IL itself.
Thereby, closure conversion optimizations can be expressed
by standard IL transformations.

• We show how a closed converted program can be executed
on an abstract machine that does not construct closures at
runtime. Thus providing evidence that indeed all the neces-
sary machinery for higher-order functions can be handled
at compile time.

Section 2 describes how we arrive at using and strengthening ab-
stract closures to solve problems that arise in the canonical closure
conversion. Section 3 presents our syntactic theory of closures as an
extension to CBPV and defines naïve notion of closure conversion.
Section 4 shows how common closure optimizations are derivable
in our IL. Section 5 extends our work to the closures required for
sharing languages; along the way, we present an approach to shar-
ing in CBPV. Section 6 presents environment abstract machines
that serve as the operational semantics of our language. Section 7
establishes the correctness of the equational theory with respect to

the machines. Section 8 proves that performing closure conversion
removes the need to capture closures in the machines.

2 WHY ABSTRACT CLOSURES
If our goal is to promote reasoning about closures from a low-level
or code generation phase of compilation to the IL’s optimization
passes, then the canonical closure conversion presents more prob-
lems than just being a global transformation. The transformation
is defined for call-by-value languages by the following recursive
function over expressions:

CC(𝑥) = 𝑥

CC(𝜆𝑥 .𝑀) = ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑀)⟩
where {𝑦0, . . . , 𝑦𝑛} = FV(𝑀) − {𝑥}

CC(𝑀 𝑁 ) = case CC(𝑀) of {⟨𝑒, 𝑓 ⟩ → 𝑓 ⟨𝑒,CC(𝑁 )⟩}
A function is turned into a pair where the first component is some
representation of the free variables of the function body and the sec-
ond component is a version of that function which also knows how
to re-instantiate that environment. An application is turned into a
pattern match on a pair, thereafter applying the second component
to a pair of the first component and the original argument.

Instead of a transformation between a different source and target
language, in some works [2, 19] the two languages are the same.
Alas, this still does not work well with equational theories. If it
did, then it should be the case that the transformation preserves
equality:

𝑀 = 𝑁 implies CC(𝑀) = CC(𝑁 )
For example, let us attempt to preserve the call-by-value 𝛽-axiom:

CC((𝜆𝑥 .𝑀) 𝑉 ) = CC(𝑀 [𝑉 /𝑥])
For any closure conversion, preserving this law is hard since the
transformation changes the number of free variables in the function
body; therefore, it does not commute with substitution:

CC(𝑀) [CC(𝑉 )/𝑥] ≠ CC(𝑀 [𝑉 /𝑥])
For example, if𝑀 is 𝜆𝑧. 𝑥 , we will need to prove the following:

CC(𝜆𝑧. 𝑥) [CC(𝑉 )/𝑥] = CC((𝜆𝑧. 𝑥) [𝑉 /𝑥])
The variable 𝑥 will be part of the closure on the left but not on the
right; and therefore, the following equation does not hold (assume
𝑉 is closed):

⟨⟨𝑥⟩, 𝜆⟨⟨𝑥⟩, 𝑧⟩. 𝑥⟩[CC(𝑉 )/𝑥]
= ⟨⟨CC(𝑉 )⟩, 𝜆⟨⟨𝑥⟩, 𝑧⟩. 𝑥⟩
≠ ⟨⟨⟩, 𝜆⟨⟨⟩, 𝑧⟩.CC(𝑉 )⟩

A problem also arises in preserving 𝜂-laws, we need to show
that CC(𝜆𝑥 .𝑉 𝑥) = CC(𝑉 ). If 𝑉 is a 𝜆-expression, then we may
prove this with 𝛽 ; but if 𝑉 is a variable, say 𝑧, then we get stuck, as
shown below:

⟨⟨𝑧⟩, 𝜆⟨⟨𝑧⟩, 𝑥⟩. case 𝑧 of {⟨𝑒, 𝑓 ⟩ → 𝑓 ⟨𝑒, 𝑥⟩}⟩ ?
= 𝑧

Both of these failures are because closure conversion creates
products that have a distinct relation between the first and second
components: the second will always expect the first as an argument
when applied. However, products and functions do not have this
property in general. This is why we step outside of the equational
theory and use logical relations, which capture the lost information,



Closure Conversion in Little Pieces PPDP 2023, October 22–23, 2023, Lisboa, Portugal

to prove the correctness of closure conversion. Working directly
in the syntax, abstract closures [5, 10, 16] solve all of the above
problems. They have the same type as the non-closure versions of
functions and consume the same applicative contexts. Thus, they
solve the global transformation problem and enable type-preserving
reductions. Additionally, consuming the same contexts allows their
𝜂 laws to be preserved. Finally, the environment and the formal
parameter of a function are substituted at the same time when
entering the code part. Thus, they solve the disconnection of envi-
ronment and code that happens with the product encoding thereby
enabling us to equate closures that capture different environments.

3 CLOSURES IN CALL-BY-PUSH-VALUE
Being a new language for the transformation, our first challenge
is discovering where CBPV should have closures. CBPV achieves
its strong equational theory by separating the objects that have
different 𝛽 and 𝜂 laws. There is a syntactic distinction between
expressions that are, called values, and expressions that do, called
computations. Only values are substitutable and only computations
are 𝛽 reducible. Previous work [5, 10, 16] constructs abstract clo-
sures only for functions. This is essential in strict languages since
their functions are the only values containing delayed code—which
is a 𝛽 reducible expression—that may be bound to variables and
passed to separate parts of the program, which may have a differ-
ent local environment. In non-strict languages, the arguments of
functions also require this treatment. In CBPV, only values have the
potential to be bound to variables and passed to other parts of the
program. The only time these expressions can contain unevaluated
code is when a computation is delayed within a value. Thus, this
is where we must add closures. Surprisingly and in contrast with
much of the previous work, we do not need closures for functions.
A function is a computation in CBPV, and therefore, is never bound
to a variable.

3.1 Syntax and Typing Rules
The syntax, some syntactic sugar, and typing rules for CBPV with
closures is shown in Figure 1. We write values in green and compu-
tations in orange. In the typing rules and elsewhere in this paper,
we use juxtaposition, e.g. ΓΓ′, to denote combining the two together.
Additionally, this paper makes use of program contexts, written
as 𝐶 , which are any expression with a single hole and evaluation
contexts, written as 𝐸 or 𝐹 , that are a subset of program contexts.

By the rules of the syntax, arguments to function calls and the
interrogated expression of the case-expression are already values
and no reduction will be needed. This conveys the idea that values
are, and that they can be predicted based on their type. Moreover,
we see that the syntax and typing rules restrict variables to only
range over value types so that substitutions only occur with values.
On the other hand, computations are the only expressions that are
allowed to do work to find an answer; so to have a computation
that returns a value of type 𝜏 , it will have to be shifted to the type
𝐹 𝜏 . For example, a computation returning ⟨4, 2⟩ will be written as
ret ⟨4, 2⟩ in a manner reminiscent of returning from a statement
in C. A to-expression, which consumes computations of type 𝐹 𝜏 ,
may need to evaluate its interrogated computation before being
able to match on the pattern and extract a value to bind it to 𝑥 .

𝜏, 𝜎 ∈ Type ::= 𝜏 | 𝜏
𝜏, 𝜎 ∈ Value Type ::= 𝐵 | 𝜏 ⊗ 𝜎 | 𝑈 𝜏

𝜏, 𝜎 ∈ Comp. Type ::= 𝜏 & 𝜎 | 𝜏 → 𝜎 | 𝐹 𝜏

𝐴, 𝐵,𝐶 ∈ Expr . ::= 𝑉 | 𝑀
𝜍 ∈ Env. ::= 𝜀 | 𝜍,𝑉 /𝑥

𝑉 ,𝑊 ∈ Value ::= 𝑥 | b | ⟨𝑉 ,𝑊 ⟩ | {𝜍, force → 𝑀}
𝑀, 𝑁 ∈ Comp. ::= case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀}

| {fst → 𝑀 ; snd → 𝑁 }
| 𝑀.fst | 𝑀.snd | 𝜆𝑥. 𝑀 | 𝑀 𝑉

| ret 𝑉 | 𝑀 to 𝑥 in 𝑁 | 𝑉.force

(a) Syntax

{force → 𝑀} = {𝜀, force → 𝑀}
let 𝑥 be 𝑉 in𝑀 = (𝜆𝑥 .𝑀) 𝑉

(b) Syntactic Sugar

𝑥 :𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏

𝑣𝑎𝑟
Γ ⊢ b : 𝐵 𝑏

Γ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Γ ⊢ 𝜆𝑥 .𝑀 : 𝜏 → 𝜎

→𝐼
Γ ⊢ 𝑀 : 𝜎 → 𝜏 Γ ⊢ 𝑉 : 𝜎

Γ ⊢ 𝑀 𝑉 : 𝜏
→𝐸

Γ ⊢ 𝑀 : 𝜏 Γ ⊢ 𝑁 : 𝜌
Γ ⊢ {fst → 𝑀 ; snd → 𝑁 } : 𝜏 & 𝜌

&𝐼

Γ ⊢ 𝑀 : 𝜏 & 𝜌

Γ ⊢ 𝑀.fst : 𝜏
&𝐸1

Γ ⊢ 𝑀 : 𝜏 & 𝜌

Γ ⊢ 𝑀.snd : 𝜌 &𝐸2

Γ ⊢ 𝑉 : 𝜏 Γ ⊢𝑊 : 𝜎
Γ ⊢ ⟨𝑉 ,𝑊 ⟩ : 𝜏 ⊗ 𝜎

⊗𝐼
Γ ⊢ 𝑉 : 𝜎 ⊗ 𝜌 Γ, 𝑥 :𝜎,𝑦:𝜌 ⊢ 𝑀 : 𝜏
Γ ⊢ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} : 𝜏

⊗𝐸

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ ret 𝑉 : 𝐹 𝜏 𝐹 𝐼

Γ ⊢ 𝑀 : 𝐹 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑁 : 𝜏
Γ ⊢ 𝑀 to 𝑥 in 𝑁 : 𝜏 𝐹𝐸

Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑀 : 𝜏
Γ ⊢ {𝜍, force → 𝑀} : 𝑈 𝜏

𝑈𝐼
Γ ⊢ 𝑉 : 𝑈 𝜏

Γ ⊢ 𝑉.force : 𝜏
𝑈 𝐸

Γ ⊢ 𝜀 : 𝜀
Γ𝐼𝐵

Γ ⊢ 𝜍 : Γ′ Γ ⊢ 𝑉 : 𝜏
Γ ⊢ (𝜍,𝑉 /𝑥) : (Γ′, 𝑥 :𝜏)

Γ𝐼𝐼

(c) Typing Rules

Figure 1: CBPV - Call-by-Push-Value with Closures

We use an unconventional syntax for values containing compu-
tations that wait for method calls, i.e. thunk 𝑀 is written as the
closure {𝜀, force → 𝑀}, to emphasize how delayed computations
behave like objects; we will introduce more expressions of a similar
kind later in this paper. The value now includes a local environment
𝜍 , which is in essence a delayed substitution. When that environ-
ment is empty, 𝜀, we use the syntactic sugar {force → 𝑀}. Note
that we refer to these objects as closures following the usage from
previous work [5, 10, 16], but we have generalized them so that
they do not need to close over the entire environment of𝑀 in rule
𝑈 𝐼 .

The environments are typed in such a way that they may freely
depend on Γ, but not on previous bindings within. In this way, the
substitutions in our IL are simultaneous, meaning each element is
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(𝜆𝑥 .𝑀) 𝑉 =→ 𝑀 [𝑉 /𝑥]
{fst → 𝑀 ; snd → 𝑁 }.fst =&1 𝑀

{fst → 𝑀 ; snd → 𝑁 }.snd =&2 𝑁

case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑀} =⊗ 𝑀 [𝑉 /𝑥,𝑊 /𝑦]
{𝜍, force → 𝑀}.force =𝑈 𝑀 [𝜍]

(ret 𝑉 ) to 𝑥 in𝑀 =𝐹 𝑀 [𝑉 /𝑥]

(a) 𝛽-laws

𝜆𝑥 .𝑀 𝑥 =→ 𝑀

{fst → 𝑀.fst; snd → 𝑀.snd} =& 𝑀

case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀 [⟨𝑥,𝑦⟩/𝑧]} =⊗ 𝑀 [𝑉 /𝑧]
{force → 𝑉.force} =𝑈 𝑉

𝑀 to 𝑥 in 𝐸 [ret 𝑥] =𝐹 𝐸 [𝑀]

(b) 𝜂-laws

where 𝐸 ∈ Eval. Cont . ::= □ | 𝐸 𝑉 | 𝐸.fst | 𝐸.snd | 𝐸 to 𝑥 in𝑀

Figure 2: CBPV Axioms

independent. When acting on a closure, the substitution is applied
to both the closure’s local environment and the free variables of
the body:

{𝜍 ′, force → 𝑀}[𝜍] = {𝜍 ′ [𝜍], force → 𝑀 [𝜍]}
Applying one environment to another is defined as substituting on
the values therein:

𝜀 [𝜍] = 𝜀 (𝜍 ′,𝑉 /𝑥) [𝜍] = 𝜍 ′ [𝜍],𝑉 [𝜍]/𝑥

3.2 Equational Theory
The equational theory is shown in Figure 2. For an expression to
be equal to another, we require that both sides have the same type.
For the most part, the axioms are identical to Levy [12] except for
𝐹 𝜏 and𝑈 𝜏 types. For type 𝐹 𝜏 , we have strengthened its 𝜂 law to
apply in any evaluation context. When that evaluation context is
empty, this law coincides with Levy.

The 𝛽 law for 𝑈 𝜏 has been replaced with one for closures
wherein we merely perform the delayed substitution when the
force method is called. The 𝜂 law remains unchanged and applies
only to force-expressions with an empty environment. Indeed, the
more general 𝜂 law, which we call 𝜂𝑈 ′ , with a non-empty environ-
ment:

{𝜍, force→𝑉.force} =𝜂𝑈 ′ 𝑉 [𝜍]
can be derived as follows:

𝑉 [𝜍] =𝜂𝑈 {force→𝑉 [𝜍] .force}
=subst. {force → (𝑉 .force) [𝜍]}
=𝛽𝑈 {force→{𝜍, force→𝑉.force}.force}
=𝜂𝑈 {𝜍, force → 𝑉.force}

Remark 1. A set of laws that appear to be missing is the sequenc-
ing laws of Levy [12], which lift to-expressions out of computations
of various types. We excluded these laws because they are derivable
from the strengthened 𝜂 law for 𝐹 𝜏 types. First, a useful law for
lifting to-expression out of evaluation contexts:

𝐸 [𝑀 to 𝑥 in 𝑁 ] =lift 𝑀 to 𝑥 in 𝐸 [𝑁 ]

is derived as follows:
𝐸 [𝑀 to 𝑥 in 𝑁 ] =𝜂𝐹 𝑀 to 𝑦 in 𝐸 [ret 𝑦 to 𝑥 in 𝑁 ]

=𝛽𝐹 𝑀 to 𝑦 in 𝐸 [𝑁 [𝑦/𝑥]]
=𝛼 𝑀 to 𝑥 in 𝐸 [𝑁 ] .

Thereafter, the three sequencing laws for 𝐹 𝜏 , (→), and (&) types
are easily derivable. For instance, the sequencing law for functions:

𝑀 to 𝑥 in 𝜆𝑦. 𝑁 = 𝜆𝑦.𝑀 to 𝑥 in 𝑁

is proved by the following:

𝑀 to 𝑥 in 𝜆𝑦. 𝑁 =𝜂→ 𝜆𝑦. (𝑀 to 𝑥 in 𝜆𝑦. 𝑁 ) 𝑦
=lift 𝜆𝑦.𝑀 to 𝑥 in (𝜆𝑦. 𝑁 ) 𝑦
=𝛽→ 𝜆𝑦.𝑀 to 𝑥 in 𝑁 .

3.3 Deriving a Closure Conversion
Transformation

As an example of Theorem 1.1, we can now construct a naïve flat
closure conversion transformation syntactically. We do this by
deriving a simple rewriting rule that adds one free variable at a
time.

𝑥 ∈ FV(𝑀) − Dom(𝜍)
{𝜍, force → 𝑀} −→CC {(𝜍, 𝑥/𝑥), force → 𝑀}

For each application of the rule, the local environment 𝜍 grows by
an identity substitution 𝑥/𝑥 . If we started from an empty environ-
ment, then the entire 𝜍 after closure conversion is the identity. In
the case where 𝜍 already had some non-identity part within, e.g.
{(3/𝑥,𝑦/𝑦), force → 𝑀}, the delayed substitution is preserved.

We show next that the rewrite rule is derivable, where we let
the environment 𝜍 be 𝑉0/𝑥0, . . . ,𝑉𝑛/𝑥𝑛 and 𝑦 be a free variable in
FV(𝑀) − Dom(𝜍):

{𝜍, force → 𝑀} =subst.
{𝜍, force → 𝑀 [𝑥0/𝑥0, . . . , 𝑥𝑛/𝑥𝑛, 𝑦/𝑦]} =𝛽𝑈

{𝜍, force→{(𝑥0/𝑥0, . . . , 𝑥𝑛/𝑥𝑛, 𝑦/𝑦), force→𝑀}.force} =𝜂𝑈 ′

{(𝑥0/𝑥0, . . . , 𝑥𝑛/𝑥𝑛, 𝑦/𝑦), force → 𝑀}[𝜍] =subst.
{(𝜍,𝑦/𝑦), force → 𝑀}

We say that an expression is closure converted when it is a nor-
mal formwith respect to the CC-rule. Such normal forms are unique
up to the reordering of the substitutions. A closure conversion pro-
cedure can be derived by applying the transformation until this
normal form is reached. This step-by-step approach to closures is
why our abstract closures can be partial, in constrast with previous
work.

Definition 3.1 (Naïve Closure Conversion).
NCC(𝐴) = 𝐵 iff 𝐴 −→∗

CC 𝐵 and 𝐵 is in CC-normal form.

4 INCREMENTAL OPTIMIZATION OF
CLOSURES

The above closure conversion is a flat closure representation; this
is but one approach for choosing a layout for a closure’s environ-
ment. There is a diverse collection of work on closure analysis and
optimizations [9, 16, 19, 25], but they assume a global closure con-
version phase. Using a language with abstract closures allows us
to do these locally after the naïve transformation has been applied.
Here, we focus on two of these examples.
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4.1 Choosing an Environment Representation
Minamide et al. [16] combine the environments of different closures
to save space when allocating a closure, at the cost of possible space-
leaks [25] and extended lookup times for closure variables. To do
this with abstract closures, we need an easy way to combine sub-
parts of environments together so they may be shared with other
closures. Whereas in the closure laws above, we only substitute a
flat environment of values, we now wish to represent environments
with nested structures via pattern matching on finite products.

Like empty closures and let-expressions, pattern matching can
be considered syntactic sugar. For instance, the pattern-matching
closure {(𝜀,𝑉 // ⟨𝑥, ⟨𝑦, 𝑧⟩⟩), force → 𝑀} desugars into the follow-
ing:

{(𝜀,𝑉 /𝑣), force →
case 𝑣 of {⟨𝑥, 𝑣 ′⟩ →

case 𝑣 ′ of {⟨𝑦, 𝑧⟩ → 𝑀}}}

Using this sugar, the environment sharing of the example from
Shao and Appel [25] is a derivable equality in our language. In
the following program, we have already run our naïve closure
conversion:

let 𝑔 be {(𝜀, 𝑔/𝑔, 𝑣/𝑣,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), force → 𝐴} in
let ℎ be {(𝜀, ℎ/ℎ,𝑢/𝑢,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), force → 𝐵} in
let 𝑗 be {(𝜀, 𝑖/𝑖,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), force → 𝐶} in
𝐷

=

let 𝑒 be ⟨𝑤, 𝑥,𝑦, 𝑧⟩ in
let 𝑔 be {(𝜀, 𝑔/𝑔, 𝑣/𝑣, 𝑒 // ⟨𝑤, 𝑥,𝑦, 𝑧⟩), force → 𝐴} in
let ℎ be {(𝜀, ℎ/ℎ,𝑢/𝑢, 𝑒 // ⟨𝑤, 𝑥,𝑦, 𝑧⟩), force → 𝐵} in
let 𝑗 be {(𝜀, 𝑖/𝑖, 𝑒 // ⟨𝑤, 𝑥,𝑦, 𝑧⟩), force → 𝐶} in
𝐷

The first instance of the program allocates three closures named ℎ,
𝑔, and 𝑗 , which all contain the variables𝑤 , 𝑥 ,𝑦, and 𝑧. To save space,
we may derive an equality wherein these three closures point to a
single sub-environment containing those values. In a runtime sys-
tem where products are passed by reference, the resulting program
will be more space efficient.

This is an example of taking naïve closure conversion as a start-
ing point and transforming our code further to optimize subpro-
grams. So not only does𝑀 = NCC(𝑀), but also𝑀 = (EnvShare ◦
NCC) (𝑀). Moreover, this transformation preserves the CC-normal
form property of NCC(𝑀).

4.2 Choosing Environment Passing Technique
Another optimization presented for closures is lambda-lifting [9, 19].
In essence, lambda-lifting as an optimization is meant to pass parts
of a code’s environment on the call stack instead of its closure
environment. It is enabled by 𝛽-expansion on the free variables of
functions whose code is visible from the call site, in other words
“known functions”. For instance, consider the following example
where the closure bound to 𝑥 is transformed and whose body 𝑀

has the free variable 𝑛:
let 𝑥 be {(𝜍, 𝑛/𝑛), force → 𝑀} in . . . 𝑥 .force . . . =𝛽→

. . . {(𝜍, 𝑛/𝑛), force → 𝑀}.force . . . =𝛽𝑈
. . . 𝑀 [𝜍, 𝑛/𝑛] . . . =subst.
. . . 𝑀 [𝜍] [𝑛/𝑛] . . . =𝛽→

. . . (𝜆𝑛.𝑀) [𝜍] 𝑛 . . . =𝛽𝑈
. . . {𝜍, force → 𝜆𝑛.𝑀}.force 𝑛 . . . =𝛽→

let 𝑥 be {𝜍, force → 𝜆𝑛.𝑀} in . . . 𝑥 .force 𝑛 . . .

To avoid passing 𝑛 within the closure’s environment, which may
require more allocation, the body of the closure is converted to
a function and 𝑛 is placed as an argument where the closure is
entered. In the special case where the rest of the environment 𝜍 is
empty, such an optimization may completely avoid allocating space
for the environment part of a closure.

Such a transformation only depends on being able to 𝛽-expand,
so many existing ILs can already do this. The advantage of having
closures in our IL is that we may encode both environments sharing
and lambda-lifting directly in the syntax and have the two opti-
mizations interact with one another. Indeed, the final program here
could have been specified incrementally, by first applying the naïve
closure conversion followed by environment sharing and lambda-
lifting. Additionally, transformations unrelated to closures will need
to respect them as closures, in contrast to closure conversions that
represent functions as normal products.

5 CLOSURES FOR SHARING
Since CBPV subsumes call-by-name and call-by-value, this closure
conversion in CBPV is now enough to support the transformation of
those source languages, but it is not enough to support languages
with memoization like Haskell. For that, we need a CBPV that
supports sharing before we can consider closures. This section first
specifies a call-by-need calculus, extends CBPV with the necessary
features for sharing in a manner that preserves the equational
theory of call-by-need, and then specifies its closures. Our new
language, which we refer to as CBPVS for short (“S” for sharing), is
shown in Figure 4.

In a language with sharing, the problems of the canonical closure
conversion are exacerbated from those mentioned in Section 2. For
function arguments, closures are necessary because the arguments
are delayed until their variable is demanded within the function
body. And since sharing requires that these closures are evaluated
at most once, their evaluation must be followed by an update. There-
fore, the target of a sharing closure conversion ends up as a strict
language with mutation [27], a language that is much harder to
reason about than call-by-need. Using abstract closures instead, in
the same manner as we just did for CBPV, means that we are able
to remain in an equational theory more similar to call-by-need.

5.1 A Call-by-Need Calculus
In work by Ariola et al. [4] andMaraist et al. [13], a computation can
be shared by constructing a let-expression that binds it, only forcing
the reduction of the bound expression when the evaluation of the
variable is required, and substituting its value thereafter.1. This is

1Ariola et al. [4] show that the let-expression is not necessary since sharing can be
captured by not reducing the function application.
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apparent in the axioms given in Figure 3 wherein the 𝛽 rule for
functions creates a binding and the deref-rule for let-expressions
performs substitutions incrementally only when the bound expres-
sion is a value. We can think of values as expressions that are safe
to substitute without duplicating work. In addition to those axioms,
rules for lifting and reassociating let-expressions are required to
expose reducible expressions. Note that unlike CBPV which has
a syntactic distinction between values and computation that is
reflected in the typing rules, this calculus (CBNeed) has no such
distinction and thus uses the standard typing rules of the 𝜆-calculus.

The 𝜂 axioms for CBNeed functions and product types must be
more restrictive than CBPV in order to preserve sharing. The law
for functions requires that the function be a value; otherwise, 𝜂
would change it from a value to a non-value thereby modifying its
sharing property. The law for products only applies when the pair
is reconstructed within an evaluation context. Without that restric-
tion,𝑀 will be forced on the left-hand side, but not necessarily on
the right.

5.2 CBPV with Sharing and Closures
The first place to start when extending our intermediate language
with sharing is to, like in CBNeed, add a binding construct that
gives names to the computation that we wish to share and only
evaluates it when needed. Such a binding looks like𝑀 memo 𝑎 in 𝑁 .
Of course, we would like to save computations that return values:
imagine having 𝑀 be the program 1 + 2 to 𝑥 in ret 𝑥 . To maxi-
mize sharing, we also need to be able to memoize the evaluation
of intermediate computations of all types. For instance, we would
only want to perform the 𝛽 reduction on the argument 42 once
where 𝑀 is (𝜆𝑥.𝜆𝑦. ret 𝑥) 42 if we were to bind it to a variable
and apply it in multiple parts of the program. In general, the point
at which we may substitute without work duplication is when an
introduction form for a computation type is reached, i.e. ret 𝑉 ,
{fst → 𝑀 ; snd → 𝑁 }, and 𝜆𝑥 .𝑀 . We could merely declare these
forms “computational values” that are substituted without duplicat-
ing work, but then we would have to sacrifice our strong 𝜂 law for
CBPV function types for the weaker one found in call-by-need. We
instead package computations that will be shared under a third syn-
tactic category which stands apart from values and computations.
This way, computations can keep their axioms from CBPV.

The new syntactic category that we introduce, which we write
in purple, is for shared computations and its substitutable forms
are the subset of shared values (Figure 4). Shared computations will
be 𝛽 reducible similar to computations, but with the addition of
variables that refer only to them. There is an overlap of the block
structures of the language where both computations and shared
computations can pattern match on values, sequence computations,
and bind shared computations. This is captured in the idea of block
contexts, which contain one of these structures with a hole at the
bottom. Where computations and shared computations overlap, we
describe them as computable expressions and write them in the
color black.

Since we will not be using computation introduction forms for
sharing, like in 𝜆𝑥 . ret 42, we need a shift from computations to
shared values, which we write {enter → 𝜆𝑥. ret 42} and give the
type 𝑈 (𝜏 → 𝐹 N). Similarly, we want a shift from values, which

we write val 42 and give the type 𝐹 N. The opposite direction is
true as well. We will want to embed shared computations within
a data structure; this we do with the shift box 𝑉 with the type
�̃� 𝜏 . And we want shared computations to be capable of being
embedded within the normal computations to make use of com-
putation types within a program: {eval → 𝑅} with the type 𝐹 𝜏 .
Indeed, computational types like functions and & can only con-
tain shared sub-computations through such a shift; for example,
{fst → {eval → 𝑅}; fst → {eval → 𝑆}}. In summary, the new
shifts into shared expressions, 𝑈 𝜏 and 𝐹 𝜏 , are used to capture the
CBPV values and computations that a shared expression reduced
to, whereas that new shifts from shared expressions �̃� 𝜏 and 𝐹 𝜏 are
there so that we canmake use of the existing value and computation
types when building shared computations.

Regarding closures, there are now more places where uneval-
uated code with free variables may be substituted to other parts
of the program in an environment machine. This is a result of
adding new kinds of expressions to the language that can be bound
to variables. Although they are not substituted with unevaluated
code, the CBNeed evaluation context let 𝑥 be 𝐸 in 𝐹 [𝑥] suggests
that while we are evaluating 𝐹 [𝑥] inside of the let-binding we will
need to “jump” to the location 𝐸 to evaluate there. In an environ-
ment machine, this amounts to entering a different environment
at runtime; therefore, it requires a closure as we see in the lazy
abstract machine of Sestoft [24]. So in CBPVS, we must have a
closure for the memo-expression {𝜍, 𝑅} memo 𝑎 in 𝑃 . Like with
force-expressions, the enter-expression, which delays a computa-
tion within a shared computation, may be substituted and thus
will need to be a closure. As with CBPV with closures, there is
syntactic sugar for when the environment of a closure is empty:
𝑅 memo 𝑎 in 𝑃 and {enter → 𝑀}.

The additional typing rules for CBPVS are given in Figure 5;
the rest are the same as those for CBPV, with the difference that
the typing context Γ is now composed of both value and shared
variables. For sharing, we had to break the convention that CBPV
only substitutes values. The type system reveals the similarities
between the shared shifts and the ones that already existed in
CBPV. Like the sequencing to-expression consuming values shifted
to computations, the shared to-expression will bind a shifted value
of type 𝐹 𝜏 in another computation or shared computation. The
typing rules for the new closure forms follow the same pattern as
those that we saw before.

5.3 Equational Theory
The axioms for CBPVS are given in Figure 6. The rules are divided
into three sets wherein the first two are the usual 𝛽 and 𝜂 laws and
the last includes rules for lifting and reassociating shared binders
as in CBNeed. In general, we see that the 𝛽 and 𝜂 laws for shared
computations and values operate in a similar manner to the other
𝑈 and 𝐹 types already in CBPV. Using the syntactic sugar, we see
that the memo-expression laws are all restricted to the case where
the environment is empty; this is sufficient to subsume CBNeed.

Concerning 𝜂, there is a notable difference between the laws for
the �̃� types and those for 𝐹 and 𝐹 even though they all reconstruct
a data-like expression; that is, the former does not have a restriction
that the reconstructed data appears within an evaluation context.
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(𝜆𝑥 .𝑀) 𝑁 =𝛽→ let 𝑥 be 𝑁 in𝑀
case ⟨𝑀, 𝑁 ⟩ of {⟨𝑥,𝑦⟩ → 𝐿} =𝛽⊗ let 𝑥 be𝑀 in let 𝑦 be 𝑁 in 𝐿

𝜆𝑥.𝑉 𝑥 =𝜂→ 𝑉

case𝑀 of {⟨𝑥,𝑦⟩ → 𝐸 [⟨𝑥,𝑦⟩]} =𝜂⊗ 𝐸 [𝑀]

(let 𝑥 be𝑀 in 𝑁 ) 𝐿 =lift1 let 𝑥 be𝑀 in (𝑁 𝐿)
𝑀 (let 𝑥 be 𝑁 in 𝐿) =lift2 let 𝑥 be 𝑁 in (𝑀 𝐿)
𝜆𝑥. let 𝑦 be 𝑉 in𝑀 =lift3 let 𝑦 be 𝑉 in 𝜆𝑥 .𝑀

case (let 𝑥 be𝑀 in 𝑁 ) of {⟨𝑥,𝑦⟩ → 𝐿} =lift4 let 𝑥 be𝑀 in (case 𝑁 of {⟨𝑥,𝑦⟩ → 𝐿})

let 𝑥 be (let 𝑦 be𝑀 in 𝑁 ) in 𝐿 =merge let 𝑦 be𝑀 in let 𝑥 be 𝑁 in 𝐿
let 𝑥 be 𝑉 in 𝐶 [𝑥] =deref let 𝑥 be 𝑉 in 𝐶 [𝑉 ]
let 𝑥 be𝑀 in 𝑁 =GC 𝑁

𝑀 =name let 𝑥 be𝑀 in 𝑥

where 𝑉 ,𝑊 ∈ Value ::= 𝑥 | b | 𝜆𝑥 .𝑀 | ⟨𝑉 ,𝑊 ⟩
𝐸, 𝐹 ∈ EvalCxt ::= □ | 𝐸 𝑁 | case 𝐸 of {⟨𝑥,𝑦⟩ → 𝑁 } | let 𝑥 be𝑀 in 𝐸 | let 𝑥 be 𝐸 in 𝐹 [𝑥]

Figure 3: CBNeed - Call-by-Need Axioms

𝜏, 𝜎 ∈ Value Type ::= 𝐵 | 𝜏 ⊗ 𝜎 | 𝑈 𝜏 | �̃� 𝜏

𝜏, 𝜎 ∈ Shared Type ::= 𝑈 𝜏 | 𝐹 𝜏
𝜏, 𝜎 ∈ Comp. Type ::= 𝜏 & 𝜎 | 𝜏 → 𝜎 | 𝐹 𝜏 | 𝐹 𝜏

𝑉 ,𝑊 ∈ Value ::= 𝑥 | b | ⟨𝑉 ,𝑊 ⟩ | {𝜍, force → 𝑀}
| box 𝑉

𝑉 ,𝑊 ∈ Shared Value ::= 𝑎 | val 𝑉 | {𝜍, enter → 𝑀}
𝑅, 𝑆 ∈ Shared Comp. ::= 𝑉 | 𝑀.eval | 𝐵 [𝑅]
𝑀, 𝑁 ∈ Comp. ::= {fst→𝑀 ; snd→𝑁 } | 𝑀.fst | 𝑀.snd

| 𝜆𝑥 .𝑀 | 𝑀𝑉 | 𝑉.force | ret 𝑉 | 𝐵 [𝑀]
| 𝑅.enter | {eval → 𝑅}

𝐵 ∈ Block Ctxt . ::= 𝑃 to𝑥 in□ | {𝜍, 𝑅} memo𝑎 in□
| case 𝑉 of {⟨𝑥,𝑦⟩ → □}
| case 𝑉 of {box 𝑎 → □}

𝑃,𝑄 ∈ Comp. Expr . ::= 𝑅 | 𝑀
𝜍 ∈ Env. ::= 𝜀 | 𝜍,𝑉 /𝑥 | 𝜍,𝑉 /𝑎

(a) Syntax

{force → 𝑀} = {𝜀, force → 𝑀}
{enter → 𝑀} = {𝜀, enter → 𝑀}
𝑅 memo 𝑎 in 𝑃 = {𝜀, 𝑅} memo 𝑎 in 𝑃

(b) Syntactic Sugar

Figure 4: CBPVS - CBPV with Sharing and Closures

This lack of a restriction in the axiom, despite containing a shared
expression, is possible because of the syntactic restriction to shared
values for box 𝑉 . Without the syntactic restriction, a program like
the following will duplicate work:

case ⟨42, box 𝑅⟩ of {⟨𝑥,𝑦⟩ → . . . 𝑦 . . . 𝑦 . . . } −→𝛽

. . . box 𝑅 . . . box 𝑅 . . .

This duplication will happen whenever a box-shift is nested inside
of another value. Note that we can still describe a program like the
one above where 𝑅 is shared, but this time we will need to bind the

Γ ⊢ 𝑉 : 𝜎 ⊗ 𝜌 Γ, 𝑥 :𝜎,𝑦:𝜌 ⊢ 𝑃 : 𝜏
Γ ⊢ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑃} : 𝜏

⊗𝐸

Γ ⊢ 𝑀 : 𝐹 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑃 : 𝜏
Γ ⊢ 𝑀 to 𝑥 in 𝑃 : 𝜏 𝐹𝐸

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ box 𝑉 : �̃� 𝜏

�̃�𝐼
Γ ⊢ 𝑉 : �̃� 𝜎 Γ, 𝑎:𝜎 ⊢ 𝑃 : 𝜏

Γ ⊢ case 𝑉 of {box 𝑎 → 𝑃} : 𝜏 �̃�𝐸

𝑎:𝜏 ∈ Γ
Γ ⊢ 𝑎 : 𝜏

svar
Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑅 : 𝜎 Γ, 𝑎:𝜎 ⊢ 𝑃 : 𝜏

Γ ⊢ {𝜍, 𝑅} memo 𝑎 in 𝑃 : 𝜏 H

Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑀 : 𝜏
Γ ⊢ {𝜍, enter → 𝑀} : 𝑈 𝜏

𝑈𝐼
Γ ⊢ 𝑅 : 𝑈 𝜏

Γ ⊢ 𝑅.enter : 𝜏 𝑈𝐸

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ val 𝑉 : 𝐹 𝜏

𝐹𝐼
Γ ⊢ 𝑅 : 𝐹 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑃 : 𝜏

Γ ⊢ 𝑅 to 𝑥 in 𝑃 : 𝜏 𝐹𝐸

Γ ⊢ 𝑅 : 𝜏
Γ ⊢ {eval → 𝑅} : 𝐹 𝜏

𝐹𝐼

Γ ⊢ 𝑀 : 𝐹 𝜏
Γ ⊢ 𝑀.eval : 𝜏 𝐹𝐸

Γ ⊢ 𝜍 : Γ′ Γ ⊢ 𝑉 : 𝜏
Γ ⊢ (𝜍,𝑉 /𝑎) : (Γ′, 𝑎:𝜏)

Γ𝐼𝐼 2

Figure 5: Additional and Extended CBPVS Typing Rules

non-duplicated part to a memo-expression first:

𝑅 memo 𝑎 in case ⟨42, box 𝑎⟩ of {⟨𝑥,𝑦⟩ → . . . 𝑥 . . . 𝑥 . . . } −→𝛽

𝑅 memo 𝑎 in . . . box 𝑎 . . . box 𝑎 . . .

Now the shared computation 𝑅 is shared among the various places
where 𝑎 may occur.

Whereas 𝜂 for �̃� is flexible because of a syntactic restriction,
the law for 𝑈 types has a value restriction. This is for the same
reason as the CBNeed value restriction for function type 𝜂: we must
preserve that the expression is a shared value before and after an
𝜂-reduction.

In CBPV, we were able to derive the sequencing laws of to-
expressions with the generalized 𝜂-law for 𝐹 ; we may do this for
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(𝜆𝑥. 𝑀) 𝑉 =→ 𝑀 [𝑉 /𝑥]
{fst → 𝑀 ; snd → 𝑁 }.fst =&1 𝑀
{fst → 𝑀 ; snd → 𝑁 }.snd =&2 𝑁

case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑃} =⊗ 𝑃 [𝑉 /𝑥,𝑊 /𝑦]
{𝜍, force → 𝑀}.force =𝑈 𝑀 [𝜍]

(ret 𝑉 ) to 𝑥 in 𝑃 =𝐹 𝑃 [𝑉 /𝑥]
case (box 𝑉 ) of {box 𝑎 → 𝑃} =

�̃�
𝑃 [𝑉 /𝑎]

(val 𝑉 ) to 𝑥 in 𝑃 =
𝐹

𝑃 [𝑉 /𝑥]
{𝜍, enter → 𝑀}.enter =

�̌�
𝑀 [𝜍]

{eval → 𝑅}.eval =
𝐹

𝑅

(a) 𝛽-laws

𝜆𝑥. 𝑀 𝑥 =→ 𝑀

{fst → 𝑀.fst; snd → 𝑀.snd} =& 𝑀

case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑃 [⟨𝑥,𝑦⟩/𝑧]} =⊗ 𝑃 [𝑉 /𝑧]
{force → 𝑉.force} =𝑈 𝑉

𝑀 to 𝑥 in 𝐸 [ret 𝑥] =𝐹 𝐸 [𝑀]
case 𝑉 of {box 𝑎 → 𝑃 [box 𝑎/𝑥]} =

�̃�
𝑃 [𝑉 /𝑥]

𝑅 to 𝑥 in 𝐸 [val 𝑥] =
𝐹

𝐸 [𝑅]
{enter → 𝑉 .enter} =

�̌�
𝑉

{eval → 𝑀.eval} =
𝐹

𝑀

(b) 𝜂-laws

𝐸 [𝑅 memo 𝑎 in 𝑃] =𝜅 𝑅 memo 𝑎 in 𝐸 [𝑃]
(𝑅 memo 𝑏 in 𝑆) memo 𝑎 in 𝑃 =𝜒 𝑅 memo 𝑏 in (𝑆 memo 𝑎 in 𝑃)

{𝜍, 𝑅} memo 𝑎 in 𝑃 =cl 𝑅 [𝜍] memo 𝑎 in 𝑃
𝑉 memo 𝑎 in 𝐶 [𝑎] =deref 𝑉 memo 𝑎 in 𝐶 [𝑉 ]

𝑅 memo 𝑎 in 𝑃 =GC 𝑃

𝑅 =name 𝑅 memo 𝑎 in 𝑎

(c) Other laws

where 𝐸, 𝐹 ::= □ | 𝐸 𝑉 | 𝐸.fst | 𝐸.snd | 𝐸 to 𝑥 in 𝑃
| 𝐸.enter | 𝐸.eval
| {𝜍, 𝑅} memo 𝑎 in 𝐸 | {𝜍, 𝐸} memo 𝑎 in 𝐹 [𝑎]

Figure 6: CBPVS Axioms

𝐹 as well. This is not true for lifting shared memoization bindings
out of an evaluation context since the expression does not force its
bound expression and that expression may be of any shared type.
Therefore, the equational theory has a 𝜅-law specifically for this.

Considering the new closures, the 𝛽 and 𝜂 laws for enter-closures
work like those of force-closures: the delayed environment is sub-
stituted when their method is called. On the other hand, the cl-law
for the memo-closures allows the closure to be entered at any time.
In the abstract machine, these are only entered when their bound
variables occur in an evaluation context.

5.4 Compiling CBNeed to CBPVS
Figure 7 shows how a CBNeed source program will be compiled
into our IL. The transformation turns both types and expressions
into their shared version in CBPVS. Those familiar with the sub-
sumption of call-by-name and call-by-value into CBPV may see the

𝑥0:𝜎0, . . . , 𝑥𝑛 :𝜎𝑛 ⊢ 𝑀 : 𝜏 = 𝑥0:𝜎0, . . . , 𝑥𝑛 :𝜎𝑛 ⊢ 𝑀 : 𝜏

𝜏 → 𝜎 = 𝑈 (�̃� 𝜏 → 𝐹 𝜎)
N = 𝐹 N

𝜏 × 𝜎 = 𝐹 (�̃� 𝜏 ⊗ �̃� 𝜎)
𝑥 = 𝑥

b = val b
𝜆𝑥 .𝑀 = {enter → 𝜆𝑦. case 𝑦 of

{box 𝑥 → {eval → 𝑀}}}
𝑀 𝑁 = 𝑀 memo 𝑎 in 𝑁 memo 𝑏 in

(𝑎.enter (box 𝑏)) .eval
let 𝑥 be𝑀 in 𝑁 = 𝑀 memo 𝑥 in 𝑁

⟨𝑀, 𝑁 ⟩ = 𝑀 memo 𝑎 in 𝑁 memo 𝑏 in

val ⟨box 𝑎, box 𝑏⟩
case𝑀 of {⟨𝑥,𝑦⟩ → 𝑁 } = 𝑀 to 𝑧 in case 𝑧 of

{⟨box 𝑥, box 𝑦⟩ → 𝑁 }

Figure 7: Compiling CBNeed to CBPVS

transformation as merging the two: functions must delay their ar-
gument type with �̃� instead of𝑈 , return their result with 𝐹 instead
of 𝐹 , and the whole computation must be delayed with 𝑈 instead
of𝑈 . For expressions, the transformation has striking similarities
to the call-by-value compilation. First, functions are placed in an
enter-expression and expect their argument to come in a box-value;
this means that arguments of a function must be given a shared
binding before entering the function. Second, in an application, we
must give names to the parts whose evaluation we want to share;
in the call-by-value transformation, it is the parts that we simply
want to evaluate. Though it is only the argument part that we wish
to share, we must also give a name to the function part in order to
preserve the ordering of memoized binders from the source. Sim-
ilarly, we must give memoized binders to the sub-components of
products. In so doing, we have preserved the Haskell-like product
property that the sub-components will share their evaluation.

For brevity, the compilation from call-by-need makes use of
nested pattern-matching in the case-expression transform, i.e. in
unpacking a box-value inside of a product. Like with CBPV, nested
pattern-matching is equivalent to doing a pattern match one at a
time in CBPVS.

Theorem 5.1 (CBNeed Compilation Preserves Eqations). If
Γ ⊢ 𝑀 =CBNeed 𝑁 : 𝜏 , then Γ ⊢ 𝑀 =CBPVS 𝑁 : 𝜏 .

Since the laws of the original CBPV part of CBPVS were left
unchanged, the call-by-name and call-by-value compilations to
CBPV still preserve equations for CBPVS.

5.5 Deriving a Closure Conversion
Transformation

As in Section 3.3, we can derive a naïve closure conversion from the
equational theory. In addition to the rules for 𝑈 𝜏 types from the
naïve CBPV closure conversion, there are two other places where a
closure must be built: enter-expression and introductions and the
expressions bound by memoization blocks. For each, we have a
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Conf ∈ Configuration ::= ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩
Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥

V,W ∈ Machine Value ::= b | ⟨V,W⟩ | {Σ, force → 𝑀}
𝐾 ∈ Stack ::= ★ | 𝐹 · 𝐾
𝐹 ∈ Frame ::= □ V | □.fst | □.snd

| (Σ,□ to 𝑥 in𝑀)

Figure 8: CBPV Machine Syntax

Build𝑉 : Mach. Env. × Value → Mach. Value
Build𝑉 (Σ, 𝑥) = 𝑥 [Σ]
Build𝑉 (Σ, b) = b

Build𝑉 (Σ, ⟨𝑉 ,𝑊 ⟩) = ⟨Build𝑉 (Σ,𝑉 ), Build𝑉 (Σ,𝑊 )⟩
Build𝑉 (Σ, {𝜍, force → 𝑀}) = {Σ Build𝜍 (Σ, 𝜍), force → 𝑀}

Build𝜍 : Mach. Env. × Env. → Mach. Env.
Build𝜍 (Σ, 𝜀) = 𝜀

Build𝜍 (Σ, (𝜍,𝑉 /𝑥)) = Build𝜍 (Σ, 𝜍), Build𝑉 (Σ,𝑉 )/𝑥

Figure 9: Building CBPV Machine Values

similar rule for incrementally adding free variables:
𝑥 ∈ FV(𝑀) − Dom(𝜍)

{𝜍, enter → 𝑀} −→CC {(𝜍, 𝑥/𝑥), enter → 𝑀}
𝑥 ∈ FV(𝑅) − Dom(𝜍)

{𝜍, 𝑅} memo 𝑎 in 𝑃 −→CC {(𝜍, 𝑥/𝑥), 𝑅} memo 𝑎 in 𝑃
Note that we use black 𝑉 and 𝑥 here for values and variables that
may be shared or not.

6 ENVIRONMENT MACHINES
To elucidate how abstract closures interact with the construction
of closures at runtime in a machine, we specify our ILs’ operational
semantics as environment machines. We present two machines: a
simple one for just CBPV and one that builds on it to add sharing.

6.1 CBPV Environment Machine
The machine is essentially Levy’s CK-machine [12] augmented
with an environment that delays substitutions. Its syntax is pre-
sented in Figure 8. Machine environments Σ are local, i.e. they may
disappear when an intermediate result is returned, which is why
we use closures. The continuation part of the machine is a list of
stack frames which for the most part are evaluation contexts. Ex-
ceptionally, the to-expression frame (Σ,□ to 𝑥 in𝑀) also contains
a local environment to re-instantiate when we evaluate𝑀 after an
intermediate result is returned. Such a frame may be implemented
using stack pointers in a C-like runtime; that is, returning to one of
these saved environments is simply moving the stack frame back
to that location.

The machine uses machine values instead of the ones in the
full equational theory of Section 3. Syntactic values can contain
variables, but machine ones only refer to objects that can be pattern
matched or forced; indeed, values are a superset of machine values
and thus environments are a superset of machine environments

as well. To transform between syntactic values and machine val-
ues, we must apply the delayed substitution manipulated by the
machine; this is given by the build rules in Figure 9. In most cases,
this is a standard substitution application; however, the case for
force-expressions is different since they contain unevaluated code.
To generate a fixed sequence of code for the body, building a ma-
chine value cannot perform a substitution on it. Additionally, we
must construct a totally closed form of the expression since it will
be evaluated in another environment; thus, we must capture the
current machine environment Σ and substitute values for variables
within the closure’s specified environment 𝜍 . If we could guarantee
that the closure was completely closed, then we would only need
to do the latter. Thus, these partial closures impose an overhead
and it would be better to fully close them before running programs
as we will see in Theorem 8.2.

The evaluation transitions are given in Figure 10. Note that since
in CBPV values are and computations do, there are only rules for
evaluating computations. Values, on the other hand, are built from
the local environment when needed.

6.2 CBPV Environment Machine with Sharing
Extending the machine to handle shared expressions requires a
heap to manage memoization and extra rules for the shared expres-
sions. Figure 11 presents the syntax for this machine. Heaps are
mappings from labels to closures, which will include both uneval-
uated and evaluated shared expressions. Machine environments
are extended to include substitutions of shared variables to either
machine-shared introductions or pointers to memoizable heap ob-
jects. Machine-shared introductions are the shared expressions
in the machine that may be safely duplicated. Stack frames are
extended to include evaluation contexts for the new shifts and a
memoization frame (Φ, 𝑙), which corresponds to the evaluation
context 𝐸 memo 𝑎 in 𝐹 [𝑎].

Figure 12 gives new building definitions extending the previous
definitions to include box-expressions, environments that include
shared values, and adding in a definition for building machine-
shared values and heap objects. The handling of closures here
operates in the same way as with the simpler machine.

Figure 13 specifies the additional machine transitions for the
sharing extension while making use of all of the rules from the
CBPV machine. We have divided it into the additional rules that do
not manipulate the heap and the ones that do. A memo-expression
will build a heap object with the Build𝑎 rules before evaluating
the body. When a shared variable is evaluated and it points to a
heap object, then a memoization frame is added and the closure it
points to is evaluated. Otherwise, the shared variable will point to
a machine-shared value that is in the local environment, which is
returned. Memoization frames are consumed when evaluating a
shared expression that may be built into a machine introduction;
in that case, the built object is added to the reconstructed heap.

7 CORRECTNESS
From our abstract machines, we may build evaluators that run
a reducible expression in an empty environment and stack. The
evaluators pull out the value of base type at the end.
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⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} ∥ 𝐾⟩⟩ ↦−→1 ⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑀 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉 ) = ⟨W,W′⟩

⟨⟨Σ ∥ 𝑀 to 𝑥 in 𝑁 ∥ 𝐾⟩⟩ ↦−→2 ⟨⟨Σ ∥ 𝑀 ∥ (Σ,□ to 𝑥 in 𝑁 ) · 𝐾⟩⟩
⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in𝑀) · 𝐾⟩⟩ ↦−→3 ⟨⟨Σ′, Build𝑉 (Σ,𝑉 )/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀.fst ∥ 𝐾⟩⟩ ↦−→4 ⟨⟨Σ ∥ 𝑀 ∥ □.fst · 𝐾⟩⟩
⟨⟨Σ ∥ 𝑀.snd ∥ 𝐾⟩⟩ ↦−→5 ⟨⟨Σ ∥ 𝑀 ∥ □.snd · 𝐾⟩⟩

⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.fst · 𝐾⟩⟩ ↦−→6 ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩
⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.snd · 𝐾⟩⟩ ↦−→7 ⟨⟨Σ ∥ 𝑁 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀 𝑉 ∥ 𝐾⟩⟩ ↦−→8 ⟨⟨Σ ∥ 𝑀 ∥ □ Build𝑉 (Σ,𝑉 ) · 𝐾⟩⟩
⟨⟨Σ ∥ 𝜆𝑥 .𝑀 ∥ □ V · 𝐾⟩⟩ ↦−→9 ⟨⟨Σ,V/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑉.force ∥ 𝐾⟩⟩ ↦−→10 ⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉 ) = {Σ′, force → 𝑀}

Figure 10: CBPVS Machine Transitions

Conf ∈ Configuration ::= ⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩
Φ ∈ Heap ::= 𝜀 | Φ, 𝑙 ↦→ {Σ, 𝑅}
I ∈ Machine Shared Intro ::= val V | {Σ, enter → 𝑀}

V,W ∈ Machine Shared Value ::= 𝑙 | I
Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥 | Σ,V/𝑎

V,W ∈ Machine Value ::= 𝑏 | ⟨V,W⟩ | {Σ, force → 𝑀}
| box V

𝐾 ∈ Stack ::= ★ | 𝐹 · 𝐾
𝐹 ∈ Frame ::= □ V | □.fst | □.snd

| (Σ,□ to 𝑥 in 𝑃)
| (Σ,□ to 𝑥 in 𝑃)
| □.enter | □.eval | (Φ, 𝑙)

Figure 11: CBPVS Machine Syntax

.

.

.

Build𝑉 (Σ, box 𝑉 ) = box Build𝑉 (Σ,𝑉 )

.

.

.

Build𝜍 (Σ, (𝜍,𝑉 /𝑎)) = Build𝜍 (Σ, 𝜍), Build𝑉 (Σ,𝑉 )/𝑎

Build𝑉 : Mach. Env. × Shared Value
→ Mach. Shared Value

Build𝑉 (Σ, 𝑎) = 𝑎[Σ]
Build𝑉 (Σ, val 𝑉 ) = val Build𝑉 (Σ,𝑉 )

Build𝑉 (Σ, {𝜍, enter→𝑀}) = {Σ Build𝜍 (Σ, 𝜍), enter → 𝑀}

Build𝑎 : Mach. Env. × {{𝜍, 𝑅}} → {{Σ, 𝑅}}
Build𝑎 (Σ, {𝜍, 𝑅}) = {Σ Build𝜍 (Σ, 𝜍), 𝑅}

Figure 12: Building CBPVSMachine Values and Heap Objects

Definition 7.1 (Machine Evaluator). Eval(𝑀) = b where
⟨⟨𝜀 ∥ 𝑀 ∥ ★⟩⟩ ↦−→∗ ⟨⟨Σ ∥ ret b ∥ ★⟩⟩.

Definition 7.2 (Sharing Machine Evaluator). EvalS(𝑃) = b where
⟨⟨𝜀 ∥ 𝜀 ∥ 𝑃 ∥ ★⟩⟩ ↦−→∗ ⟨⟨Φ ∥ Σ ∥ ret b ∥ ★⟩⟩.

The sharing machine contains as a subset the entire CBPV ma-
chine and CBPVS contains CBPV; therefore, the sharing machine

is enough to run programs from both languages. We know that if a
program computes a base value in the sharing machine and it con-
tains no shared expressions, then the CBPV evaluator will produce
the same value. Thus, the theorems in this paper only contain the
CBPVS evaluator.

For our equational theories to be correct, the following compari-
son between closed programs of type 𝐹 𝜏 and our shared evaluator
needs to be true:

Theorem 7.3. ⊢ 𝑀 = ret b : 𝐹 𝐵 if and only if EvalS(𝑀) = b.

This is enough for the whole equational theory because 𝑀 could
be𝐶 [𝑉 ],𝐶 [𝑁 ], or𝐶 [𝑅]. The theorem above is correct with respect
to both of these evaluators.

For the forward direction of the theorem, we use the ⊤⊤-closure
logical relation technique from Pitts [22]. Such an approach is espe-
cially helpful in proving the soundness of our 𝜂 laws. Unique to our
setting is that our operational semantics is defined with delayed
substitutions. Thus, related computations are defined as relations
between pairs of computations and their delayed substitution. For
the shared parts of the proof, we had to extend Pitts’ approach to a
Kripke logical relation since the shared abstract machine has a per-
sistent heap. Therein related computable expressions are relations
between triples of heaps, delayed substitutions, and expressions
such that they are closed with respect to heap extension.

For the backward direction, we define a decoding of configura-
tions to expressions. We show that every transition in both abstract
machines corresponds to a derivable equality. Since machine values
are included in values and machine environments included in envi-
ronments, the decoding is a simple unfolding of the stack followed
by applying the delayed substitution of the configuration.

8 ADEQUACY OF CLOSURE CONVERSION
A question left to answer, especially in a language for which clo-
sure conversion is novel, is whether or not the transformations we
have specified have an effect on the machine. More specifically, are
closures still left unspecified at runtime if we have done closure
conversion?

As mentioned earlier, any rule in the machine that uses the
build function to construct machine data may need to build its own
closure if it was not specified. For instance:

Build𝑉 (Σ, {𝜍, force → 𝑀}) = {Σ Build𝜍 (Σ, 𝜍), force → 𝑀}
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⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑅} ∥ 𝐾⟩⟩ ↦−→11 ⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑅 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉 ) = ⟨W,W′⟩

⟨⟨Σ ∥ case 𝑉 of {box 𝑎 → 𝑃} ∥ 𝐾⟩⟩ ↦−→12 ⟨⟨Σ,V/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉 ) = box V

⟨⟨Σ ∥ 𝑃 to 𝑥 in 𝑄 ∥ 𝐾⟩⟩ ↦−→13 ⟨⟨Σ ∥ 𝑃 ∥ (Σ,□ to 𝑥 in 𝑄) · 𝐾⟩⟩
⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ ↦−→14 ⟨⟨Σ′, Build𝑉 (Σ,𝑉 )/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩
⟨⟨Σ ∥ val 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ ↦−→15 ⟨⟨Σ′, Build𝑉 (Σ,𝑉 )/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑅.enter ∥ 𝐾⟩⟩ ↦−→16 ⟨⟨Σ ∥ 𝑅 ∥ □.enter · 𝐾⟩⟩
⟨⟨Σ ∥ {𝜍, enter → 𝑀} ∥ □.enter · 𝐾⟩⟩ ↦−→17 ⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩

where Build𝑉 (Σ,𝑉 ) = {Σ′, enter → 𝑀}
⟨⟨Σ ∥ 𝑀.eval ∥ 𝐾⟩⟩ ↦−→18 ⟨⟨Σ ∥ 𝑀 ∥ □.eval · 𝐾⟩⟩

⟨⟨Σ ∥ {eval → 𝑅} ∥ □.eval · 𝐾⟩⟩ ↦−→19 ⟨⟨Σ ∥ 𝑅 ∥ 𝐾⟩⟩
⟨⟨Σ ∥ 𝑎 ∥ 𝐾⟩⟩ ↦−→20 ⟨⟨𝜀 ∥ I ∥ 𝐾⟩⟩
where 𝑎[Σ] = I

(a) Additional Stateless Transitions

⟨⟨Σ ∥ 𝑃 ∥ 𝐾⟩⟩ ↦−→ ⟨⟨Σ′ ∥ 𝑃 ′ ∥ 𝐾 ′⟩⟩
⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩ ↦−→21 ⟨⟨Φ ∥ Σ′ ∥ 𝑃 ′ ∥ 𝐾 ′⟩⟩

⟨⟨Φ ∥ Σ ∥ {𝜍, 𝑅} memo 𝑎 in 𝑃 ∥ 𝐾⟩⟩ ↦−→22 ⟨⟨Φ, 𝑙 ↦→ Build𝑎 (Σ, {𝜍, 𝑅}) ∥ Σ, 𝑙/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩
⟨⟨(Φ0, 𝑎[Σ] ↦→ {Σ′, 𝑅})Φ1 ∥ Σ ∥ 𝑎 ∥ 𝐾⟩⟩ ↦−→23 ⟨⟨Φ0 ∥ Σ′ ∥ 𝑅 ∥ (Φ1, 𝑙) · 𝐾⟩⟩

⟨⟨Φ ∥ Σ ∥ 𝑉 ∥ (Φ′, 𝑙) · 𝐾⟩⟩ ↦−→24 ⟨⟨(Φ, 𝑙 ↦→ {𝜀, I})Φ′ ∥ Σ ∥ 𝑉 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉 ) = I

(b) Stateful Transitions

Figure 13: CBPVS Machine Transitions

The environment Σ is completely captured in the closure; it has
only the flat structure that the machine uses for its environment
and may contain more variables than needed for evaluating𝑀 later.
If our closure conversion were adequate, then the building machine
values ought to be equal to a restricted form of substitution:

Buildcl
𝑉
(Σ, {𝜍, force → 𝑀}) = {Build𝜍 (Σ, 𝜍), force → 𝑀}

Now building machine values for closures only looks up the vari-
ables in the environment specified in the syntax. Since it does not
go into the body of the closure (as substitution would), we may
generate a fixed code sequence for it.

To show that a conversion is adequate, we construct a new ab-
stract machine, denoted ↦−→CC, that uses Buildcl instead of Build. If
a program has been closure converted, then it should be able to run
on this machine and produce the same result as the larger machine
that creates closures dynamically.

Definition 8.1 (Closure Converted CBPVS Machine Evaluator).
EvalSCC (𝑃) = b where ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑃 ∥ ★⟩⟩ ↦−→∗

CC ⟨⟨Φ ∥ Σ ∥
ret b ∥ ★⟩⟩.

Theorem 8.2 (Adeqacy).
If 𝑃 is a well-typed expression in CC-normal form, then EvalS(𝑃) =

EvalSCC (𝑃).

There is still a sense in which abstract closures are less adequate
than the canonical closure conversion.Whereas our approach keeps
the contexts that consume closures (i.e. the application case for
call-by-value closure conversion), a full closure conversion in the

application case generates code for entering a function. Thus, a
machine that accepts our closures need not have special rules for
capturing environment—they are built the same as data—but will
need special rules for closure entry which will instantiate the envi-
ronment captured. This instantiation amounts to a pattern match
followed by a jump; the canonical closure conversion is fine-grained
enough to detach these two operations, but at the expense of being
a global transformation.

9 RELATEDWORK
Abstract closures have been used in the past for reasoning and
optimization. Hannan [10] used abstract closures in an IL to imple-
ment the optimizations of Wand and Steckler [28] which reduce
the variables in a closure. Minamide et al. [16] used them as an in-
termediate step in the typed closures conversion. These two works
use big-step semantics and global transformations. The work most
similar to ours is that of Bowman and Ahmed [5] because they give
a language with local rewriting rules instead. For them, abstract clo-
sures were necessary for their main goal: proving the correctness of
a closure conversion for the Calculus of Construction. Unlike their
theory, we did not need to give special 𝜂 laws for abstract closures,
only 𝛽 laws. Our work can be seen as promoting abstract closures
further by considering their use in an optimizing compiler’s IL.
Specifically, we treat the process of closure conversion itself as a
rewriting theory capable of being integrated into the optimization
passes.
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Explicit substitution calculi have a similar goal to ours: to close
the gap between an equational theory and a practical implemen-
tation. Indeed, after adding our abstract closures, we arrived at a
calculus that contains explicit substitutions like that of Abadi et al.
[1] and that of the later extension to sharing by Seaman and Iyer
[23]. A major difference is that we restrict where environments—for
them substitutions—can occur in an expression, whereas they allow
environments in any expression. For us, they can only occur for
computations being delayed to values or shared values and over
shared computations bound in a memo-expression; these are di-
rectly informed by where closures are constructed in our abstract
machines. Moreover, we still make use of a substitution function
over the syntax of our language, instead of embedding the entire
system in our equational theory. As a result, we can easily specify
what it means for a term to be in a closure converted form. The
notion of 𝛽 reduction in Abadi et al. and their Krivine machine
always construct closure objects. In our system, we can show that
a closure converted term does not do this.

Like us, McDermott and Mycroft [15] extend CBPV with shar-
ing. Their approach is to use computation variables of type 𝐹 𝜏 for
sharing whereas we add another syntactic class for shared objects.
In both cases, sharing required the addition of special binders to
reference the shared computation as in call-by-need. Their motiva-
tion was not specifically focused on using CBPV as a compiler IL
and thus their language falls short for us. First, we needed to show
the soundness of our theory with respect to an abstract machine
because we wanted to use the language for optimization. Second,
their approach does not subsume the full equational theory of call-
by-need. Since we were interested in these goals, our language
takes many ideas from Beyond Polarity (BP) [6] instead. As ANF [8]
can be seen as a focalized variant of the 𝜆-calculus, our language
can be seen as a focalized variant of BP; that is, we must give names
to all intermediate computations. We pursued a focalized language
because it eliminates syntactic differences between programs; and
thus, it is effective in compilation.

Ahmed and Blume [2] prove that closure conversion is fully
abstract; that is, sound and complete with respect to the source and
target language. Indeed, their approach also makes the source and
target language the same. Therein, they describe closure conversion
as a wrapper that changes a function into an abstract type; this also
includes the type translation. In so doing, they can prove a local
equality of closure conversion lemma; similar to our Theorem 1.1.
This proof is specialized to a given closure conversion; they choose
the type preserving one of Minamide et al. [16]. We, on the other
hand, provide a methodology for proving correctness of closure
conversion, wherein all transformations that are expressible within
the equational theory are correct by construction. There is also a
sense in which their approach proves that the “form” of closure
conversion is fully abstract, but not that closure conversion has
an impact on the target language’s semantics. Since their wrapper
transformation is based on functions, the question remains about
whether or not these wrappers need to be closure converted as
well. We specify explicitly with our notion of closure conversion
adequacy what is required from the runtime system by a closure
converted term.

10 CONCLUSION
Our goal has been to lift closure conversion into our optimization
language such that 𝑀 = CC(𝑀). We could not use the canonical
closure conversion because it is a global transformation that does
not play well with equational reasoning. Using abstract closures
was the way to get both a local transformation and a strong theory
for optimizations. In the case of sharing, not using abstract closures
would have the additional cost of mutation in the target language.
Our approach to closure conversion is a divergence from how the
transformation is implemented in optimizing compilers and how
its correctness is proved today. Common optimizations for closures
can be implemented directly without compiling to a lower-level
language with a weaker equational theory and correctness is given
merely by 𝛽 and 𝜂 conversion.

As future work, we want to implement these ideas within GHC’s
intermediate language, since it is organized around the small, local
transformations [21] that inspired this paper. In so doing, we would
also extend our theory of closures to handle polymorphism and
mutual recursion. Both cases have already received special attention
with regard to closure conversion byMinamide et al. [16] and Appel
[3], respectively.
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