MuULTIPLE PROMPTS

IN LITTLE STEPS

Paul Downen

Shonan 203: Effect Handlers & General Purpose Languages
Tuesday, September 26, 2023 — Implementor-Facing Aspects

WHY MULTIPLE PROMPTS?

AVOID CROSSTALK

try
lookup(dict, total) / lookup(dict, count)
catch KeyNotFound(err) = 0

WHY MULTIPLE PROMPTS?

AVOID CROSSTALK

try
lookup(dict, total) / lookup(dict, count)
catch KeyNotFound(err) = 0

handle
handle
Print("Hello")
with Get(), k= ...
Put(x), k= ...

with Print(msg), k = ...

A SYSTEMATIC APPROACH

To BUILD UP TO MULTIPLE PROMPTS

Goal: Reason flexibly about complex control flow

For optimizing code ahead of time
For comparing equality of programs
For understanding the

Idea: Break down big operations into little pieces

combined into more familiar operators

Small, localized, fine-grained reduction steps

Approach: model in CPS, reflect back to source
Can
Can justify that theory is sound

Gives an effective implementation method

TuEe Basic CPS

OF THE CALL-BY-VALUE \-CALCULUS

Value 5 V = Ax. M | x Term> M,N :=V | MN

(Ax. M) V= M{V/x}

Clx] = da.ax
C[Ax. M] = Ao a (Ax.C[M])
CIMN] = Aa.C[M] Af.C[N] Ax.f x «

WRITING THE INITIAL CONTINUATION
IN THE SOURCE
The target CPS language:
CPSValue > Vg ::= Ax. Vi | x
CPSTerm > Vi i= Aa. Mceom
CPSContinuation > Vit ::= AX. Meom | @
CPSCommand > Mcom ::= Verm Vit | Vint Vvat | Vvat Vvat Vit

C[M] € CPSTerm

CPS Terms are inert.

WRITING THE INITIAL CONTINUATION
IN THE SOURCE
The target CPS language:
CPSValue > Vg ::= Ax. Vi | x
CPSTerm > Vi i= Aa. Mceom
CPSContinuation > Vit ::= AX. Meom | @
CPSCommand > Mcom ::= Verm Vit | Vint Vvat | Vvat Vvat Vit

C[M] € CPSTerm

CPS Terms are inert.

C[{M|tp)] =C[M] € CPSCommand

ADDING CLASSICAL CONTROL

THE 11 OF PARIGOT’S A\l

Values> V :i=Ax.M|x Continuation > q ::= « |
Term > M,N ::=V | M N | Command > ¢ ::=

E:=0|EM|VE

(Elua.c]|q) = {(EM]lq)/M]a)}

Cla] =«
Cltp] = Ax. x
Cluc.c] = Aa.C[(]
ClMlg)] = CIM] Clq]

DeLiMITED CONTROL A LA shift

VIA A DYNAMICALLY-REBINDABLE “TOP-LEVEL” tp

tp is like the “top-level” tp, but it can be rebound

(E[utp-(tp] V)1lq) — (E[Vlq)

C[[t/l\o]] = AX. X
Clutp.c] = Aa.a (C[])

DeLiMITED CONTROL A LA shift

VIA A DYNAMICALLY-REBINDABLE “TOP-LEVEL” tp

tp is like the “top-level” tp, but it can be rebound

(E[utp-(tp] V)1lq) — (E[Vlq)

C[[t/l\o]] = AX. X
Clutp.c] = Aa.a (C[])

Oops...a (C[c]) is

DeLiMITED CONTROL A LA shift

VIA A DYNAMICALLY-REBINDABLE “TOP-LEVEL” tp

tp is like the “top-level” tp, but it can be rebound

(E[utp-(tp] V)1lq) — (E[Vlq)

C[[t/l\o]] = AX. X
Clutp.c] = Aa.a (C[])
Oops...a (C[c]) is

No problem, just

ANOTHER “META” CONTINUATION

From “DOUBLE-BARREL” CPS

C’[] =clel]
C? [[t/f)]] = C[Ax. x| = AXx. Ay, yx
C? [utAp.c]] = C[Aa. o (C[])] = Aa. M. C?[c] Ax. e x y
C*[(Mlg)] = CICIM] Clql]l = Ay.C*[M] C*[q]

ANOTHER “META” CONTINUATION

From “DOUBLE-BARREL” CPS

¢’ =clell

C? [[t/f)]] = C[Ax. x| = AXx. Ay, yx
C? [utAp.c]] = C[Aa. o (C[])] = Aa. M. C?[c] Ax. e x y
C*[(Mlg)] = CICIM] Clql]l = Ay.C*[M] C*[q]

Need a second level of initial continuation (c|¢®) to run

C*[(elg®)] = C?lcl c*[4’]

MuULTIPLE PROMPTS: FIRST ATTEMPT

Idea: (second-level) meta-continuation -y is an environment,

mapping many rebindable “top-levels” to (first-level) continuations

(Elua-(VI@]lq) = (E[V]IIg)
(EluB(VIaN]lg) = (VI&)

Cla] = Ax. Av. (&) x
Clud.cl = A8. My.Cld] (v{a ~ 8})

MuULTIPLE PROMPTS: FIRST ATTEMPT

DESTROY THE TRAIL THROUGH THE META-CONTINUATION —

Idea: (second-level) meta-continuation -y is an environment,

mapping many rebindable “top-levels” to (first-level) continuations

(Elua-(VI@]lq) = (E[V]IIg)
(EluB(VIaN]lg) = (VI&)

Cla] = Ax. Av. (&) x
Clud.cl = A8. My.Cld] (v{a ~ 8})

DeELiMITED CONTROL A LA shift,

PASSING THROUGH THE “TOP-LEVEL” tp

shift’s prompt only lets values through; shift, passes through

ptp.(Vltp) — V ptp.(tp M) — M

Ctutp.c] = Ct{]
cr [[tAp]] = M. Ay v x
Ct[(tp t M)] = CHM]

Ctutp-(Mltp)] a = CHM] (Ax. Ay.7 x) a
o [ufp-(XI)] @ — a x
Ct [(6p + M)] @ = CHIM] a

MuULTIPLE PROMPTS: SECOND ATTEMPT

REMEMBERING THE TRAIL THROUGH THE META-CONTINUATION =

D =0 | (E[ud.D|q)

pé.D[{& 1+ A. M)] = M{D|c]/Ac}
(& not bound by D)

Ctlpd.c] = AB. Xy.Ctlc] (v{a — B})
CHI(G 1 A M) = \v.let (A, B,7) = 4(a)
inCt[M] B+
CHlAd) = M. A (CH) v

FINE-GRAINED REDUCTION THEORY A LA A\l

FOR LOCAL OPTIMIZATIONS OF MULTI-PROMPT CONTROL

(Ax. M) V — M{V/x}

(na.c) M= pB.c{(N M|B)/(N|a)}
V (pa.c) = pp.c{(V N|B)/(N]a)}
(na.clq) — c{q/a}

FINE-GRAINED REDUCTION THEORY A LA A\l

FOR LOCAL OPTIMIZATIONS OF MULTI-PROMPT CONTROL

(Ax. M)V — M{V/x}
(ne.c) M — pB.c{(N M|B)/{N]a)}
V (nov.c) = pB.c{{V N|B)/(N|a)}
(pov.clq) — C{q/a}
pé.(V|a) —
) =

uBAV|&) = p_(VIa)

FINE-GRAINED REDUCTION THEORY A LA A\l

FOR LOCAL OPTIMIZATIONS OF MULTI-PROMPT CONTROL

(Ax. M)V — M{V/x}
(ne.c) M — pB.c{(N M|B)/{N]a)}
V (nov.c) = pB.c{{V N|B)/(N|a)}
(pov.clq) — C{q/a}
pa(Via) —
pBAVIa) = p_(V]a)
pd. (&1t A M) — M{c/Ac}
pBA& T A M) — pB(& 1 A M{A(uB.c|B)/Ac})

WHICH STYLE oF CONTROL Is MosT “PRIMITIVE”?

EXPRESSIVE “POWER” VERSUS REASONABILITY

(+F+) #E[shift V] — #V (Ax. #E[x])
(—F+) #E[shifty V] — V (Ax. #E[x])
(+F-) #E[control V] — #V (Ax. E[x])
(—F-) #E|[controly V] — V (Ax. E[x])

WHICH STYLE oF CONTROL Is MosT “PRIMITIVE”?

EXPRESSIVE “POWER” VERSUS REASONABILITY

(+F+) #E[shift V] — #V (Ax. #E[x])
(—F+) #E[shifty V] — V (Ax. #E[x])
(+F-) #E[control V] — #V (Ax. E[x])
(—F-) #E|[controly V] — V (Ax. E[x])

shift (+F+) and shifty (—F+) have a “nice” semantics

...but controly (—F —) leaves the fewest prompts around

Can always just put the ones you want back, right?
What’s the harm?

HAVE YouRrR CAKE AND EAT IT TOO

shift, = shift, AND WITH 2 PROMPTS, shifty, = control,

Positive expressiveness vs negative expressiveness

shifty subsumes shift (Materzok and Biernacki)
Actually, subsumes all levels of hierarchically-nested shift

And while respecting all equations & semantics of shift

Unlike control or controly

shifty with (at least) 2 prompts subsumes controly

Just reserve 1 prompt for the “unwanted” one used to
compose continuations “without” the prompt

If you never seek it out, it’s as if it’s never there

#oM = ptp.(ué.(M|tp)]tp)
controly f = pB.(a 1 A. f (Ax. utp.A(x[B)))

