EFFecTIVE EQUALITY

OVERCOMING OBSTACLES WITH BETA AND ETA
OR: How | LEARNED TO STOP WORRYING AND LOVE CONTROL

Paul Downen

Shonan 203: Effect Handlers & General Purpose Languages
Thursday, September 28, 2023 — Programmer-Facing Aspects

WHAT’s So HARD ABouT EQUALITY AND EFFECTS

NoOw THE ORDER MATTERS...

WHAT’s So HARD ABouT EQUALITY AND EFFECTS

NoOw THE ORDER MATTERS...

(a) Want Ax.M = Ay.M{y/x}. Ok.

WHAT’s So HARD ABouT EQuUALITY AND EFFECTS

NoOw THE ORDER MATTERS...

() Want Ax.M = Ay.M{y/x}. Ok.

(8) Want (Ax.M) N = M{N/x}, but
(Ax.M) (print 5) # M{print 5/x}, drat
(Ax.M) (Loop_forever) # M{loop_forever/x}
in CBV, anyway

WHAT’s S0 HARD ABouT EQUALITY AND EFFECTS

NoOw THE ORDER MATTERS...

() Want Ax.M = Ay.M{y/x}. Ok.

(8) Want (Ax.M) N = M{N/x}, but
(Ax.M) (print 5) # M{print 5/x}, drat
(Ax.M) (Loop_forever) # M{loop_forever/x}
in CBV, anyway

(n) Want Ax. M x = M (when x ¢ FV(M)), but
Ax.(raise " oops") x # raise "oops”, oops
Ax.loop_forever x # loop_forever,
in CBV, anwyay

WHAT DOES A VARIABLE STAND FOR?

CHOOSE YOUR OWN ADVENTURE!

Pick what expressions might replace a variable (V)
“Values” (V) are freely (i.e., by substitution)
| don’t care how you pick these

..but

Substitution {V/x} is defined for these “values”

WHAT DOES A VARIABLE STAND FOR?

CHOOSE YOUR OWN ADVENTURE!

Pick what expressions might replace a variable (V)
“Values” (V) are freely (i.e., by substitution)
| don’t care how you pick these

..but

Substitution {V/x} is defined for these “values”
Substitution of “values” V performed by lets

(Blet) (letx = Vin M) = M{V/x}
(nlet) (letx = Minx) =M if x ¢ FV(M)

let s not associated with specific type, but might decide using types

UNIVERSALLY SAFE 3 AND 7]
VIA THE SUBSTITUTION PRINCIPLE, FROM let
For functions,
(BN) (Ax.M) N = (letx = Nin M)
(nA) Ax.yx=y:A— B (if x £ y)

UNIVERSALLY SAFE 3 AND 7]

VIA THE SUBSTITUTION PRINCIPLE, FROM let
For functions,
(BA) (Ax.M) N = (letx = Nin M)
(nA) Ax.yx=y:A— B (if x £ y)
For case-analysis on data,

case K(M...)of

(B case) K(x...)» N = letx =M...
inN
case Mof
(ncase) K1(X1...)—>K1(X1...) _ MéKI(A’)

Kn(Xn...) = Ka(xq...)

ATTACK OF THE COMMUTING CONVERSIONS

lety = (letx = MinN)in P = letx = Min (lety = Nin P)
(letx = MinN) P = letx = Min (N P)

letx =M
case (letx = Min N) of
case N of
p1— Pr...
= . P — Py...
in
pn— Pn...
pn— Pn...
case Mof
case Mof
p1 — N
letx = p1 — (letx = N in P)
= (777)
pn — Ny
pn — (letx = Nyin P)
inP

EvALUATION CONTEXTS ON THE MOVE

WHAT DOES A Co-VARIABLE STAND FOR?

Sometimes evaluation contexts need to move around

Tell me which contexts are strict on their input

(Don’t worry, | won’t be offended)

And let’s write the code to to where they’re

EvALUATION CONTEXTS ON THE MOVE

WHAT DOES A Co-VARIABLE STAND FOR?

Sometimes evaluation contexts need to move around

Tell me which contexts are strict on their input

(Don’t worry, | won’t be offended)
And let’s write the code to to where they’re

substitution of “evaluation contexts” E performed by p

(Br) (Elpp.c]le) = ¢ {(E[N][e) /(N[5)}
() peMla) =M (if a & FV(M))

THE ONE COMMUNTING CONVERSION TO RULE THEM ALL

(ulet) (letx = Min N|a) = (M|let xin (N|a))

case Mof
(1 case) < p1— M a> = <M
Pn — Ny

Done!!!

case p1 — (N ||a>>
P — (Nal)

THE FuLL AXIOMATIZATION

FOR A GENERIC FUNCTIONAL LANGUAGE WITH ANY EFFECTS, ANY EVAL STRATEGY

Pick your own definition of V and E

(Blet) (letx = Vin M) = M{V/x}
(BN) (Ax.M) N = (letx = Nin M)
(B case) case K(M...)of K(x...) > N...=(letx =M...inN)
(Bu) (E[pB.clla) = c{(E[N]|e)/(NIB)}
(nlet) (letx = Minx) =M
(nA) Ax.yx=y:A—B
(n case) case Mof K(x...) = K(x...)... :M:EBK(A...)
(np) poe(Mloy = M
(plet) (letx = Min N|a) = (M|let x in (N|c))
(p case) (case Mof p — N...|a) = (M|casep — (N|a)...)

Sound (for any effects) and Complete' (up to effect-specific laws)

'With respect to classical/intuitionistic sequent calculus and CPS for CBV, CBN

But! But!! WHAT ABOUT... !

DERIVING OTHER EQUATIONS

n, < Blet,nA,nlet

ANF, naming, <= nu, plet Su, nu, n let

Ba <= BA,nu, plet Bu,nu,nlet

commuting conversions <= nu, S, i let /p case
inversion <= [let, commuting conversion, 7 case , 3 let

Ap-style bubbling capture <= nu, Bu

PARTICULARLY PoOLITE EFFECTS

AND EXTRA PRIVILEGES FOR UPSTANDING CITIZENS

letx = Min lety = Nin
(commute) =
lety =NinP letx=MinP

(delete) (let_=MinN)=N

letx = Min

(copy) lety — Minp (letx = Min P{x/y})

PARTICULARLY PoOLITE EFFECTS

AND EXTRA PRIVILEGES FOR UPSTANDING CITIZENS

letx = Min lety = Nin
(commute) =
lety =NinP letx=MinP

(delete) (let_=MinN)=N

letx = Min

(copy) lety — Minp (letx = Min P{x/y})

Of course, these hold for any effect with CBN let

EQUATIONAL REASONING ABOUT ABSTRACT MACHINES

AND DERIVING DEFINITIONAL “COMPILATION”

Already have
(ulet) (letx = Min N|a) = (M|let xin (N|«))

case Mof
(1 case) < p1— M a> = <M

Pn— N

case p; — (N ||a>>
P —+ (Nal)

Just need to push other evaluation frames on the stack
(LX) M N]e) = (MIN -)

Property
Given any source term N, there is a machine command c, such that

(N|c) = cvia B,n, 1

INDuUCTIVE AND COINDUCTIVE PRINCIPLES

RESTORING DUALITY OF EQUATIONAL REASONING

Induction is reasoning on the
An enhancement of plain case -based inversion

Add an inductive hypothesis for every recursive sub-tree

Coinduction is reasoning on the
An enhancement of plain n-expansion of objects

Add a co-inductive hypothesis for every recursive sub-tree

Beware! Undisciplined (co)induction leads to unsafe 1 “laws”
Induction is always OK in CBV
Otherwise, only induct over an x in contexts strict on x
Co-induction is always OK in CBN
Otherwise, only co-induct on a context & when given a

value (i.e., productivity)

MAXIMIZING 7): THE BEST STRATEGY

There’s a conflict, balancing substitution (3 let, Su)
nA is strongest when V is biggest (CBN)
7 case is strongest when E is biggest (CBV)

Why not both? Polarity
Use the type of M to decide if it is a substitutable V
Use context’s type to decide if it’s a substitutable E

If lets make you squeamish, use an unambiguous case

case Mof returnx — N (ordinary data Id A = return A)

dox < M;N (monadic)

Mto x.N (CBPV)

WARMUP: MODELING THE STATE MONAD

PL THeORISTS HATE HiIM! ONE WEIRD TRICK To CONTROL YOUR STATE

Equations for state with (dynamic) allocation

alloc Vin E[get()] = alloc Vin E[V]
alloc Vin E[put(V’)] = alloc V' in E[()]
alloc Vin return V/ = (V, V')

WARMUP: MODELING THE STATE MONAD

PL THeORISTS HATE HiIM! ONE WEIRD TRICK To CONTROL YOUR STATE

Equations for state with (dynamic) allocation

alloc Vin E[get()] = alloc Vin E[V]
alloc Vin E[put(V’)] = alloc V' in E[()]
alloc Vin return V/ = (V, V')

Representing the state monad using Ap (thanks Filinski)

alloc Min N = (N|case return xin As.(x, s)) M
get() = pa.As.(s|a) s
put(s) = peA_(()]) s

WARMUP 2: MODELING THE STATE HANDLER
MOVE THE INTERPRETATION OUT OF THE OPERATION
Monadic state represented via reflection/reification
allocMin N = (N|case return xin As.(x, s)) M
get() = paAs.(s|a) s
put(s) = pa (0o s
Representing the state handler using Ap
handleState (get() - o) s = handleState (s|a) s
handleState (put(s') -) s = handleState {()]c) s’
handleState return(x) s = (x, s)

alloc Min N = handleState (N|case return(x) — return(x)) M
do get() = pa.(get() - @)
do put(s) = pa.(put(s) -)

MODELING A THEORY FOR EFFECT HANDLERS

JUST A SKETCH, USE AT YOUR OWN RISK
Shallow
handle Mwith H = H (M| case return x — return x)
do Op x = pa.(Op x - @)
Deep
handle Mwith H = ((M|case return x — return x)|H)
do Op x = pa.puf.(Op x - letyin ((y|)| 5)|5)
Limited resumption
handle Mwith H = ((M|case return x — return x)|H)
do Op x = pa.pup. case (Op x| 3) of
resume y = ((ylla))

returnz — z

HANDLING MANY THINGS

THERE’S A BIG DESIGN SPACE

Lexical handlers

Stacks of commands, indexed by

Multi-handlers

One handler with multiple sub-commands

Dynamic handlers

Multiple promtps, of course
But what about my 7, though "\ _(¥)_/~

