
Effective Equality
Overcoming Obstacles with Beta and Eta
Or: How I Learned to Stop Worrying and Love Control

Paul Downen

Shonan 203: Effect Handlers & General Purpose Languages
Thursday, September 28, 2023 — Programmer-Facing Aspects

What’s So Hard About Equality and Effects
Now the order matters. . .

(α) Want λx.M = λy.M {y/x}. Ok.

(β) Want (λx.M) N = M {N/x}, but
(λx.M) (print 5) ̸= M {print 5/x}, drat
(λx.M) (loop_forever) ̸= M {loop_forever/x}
in CBV, anyway

(η) Want λx. M x = M (when x /∈ FV (M)), but

λx.(raise ”oops”) x ̸= raise ”oops”, oops
λx.loop_forever x ̸= loop_forever,
in CBV, anwyay

1

What’s So Hard About Equality and Effects
Now the order matters. . .

(α) Want λx.M = λy.M {y/x}. Ok.

(β) Want (λx.M) N = M {N/x}, but
(λx.M) (print 5) ̸= M {print 5/x}, drat
(λx.M) (loop_forever) ̸= M {loop_forever/x}
in CBV, anyway

(η) Want λx. M x = M (when x /∈ FV (M)), but

λx.(raise ”oops”) x ̸= raise ”oops”, oops
λx.loop_forever x ̸= loop_forever,
in CBV, anwyay

1

What’s So Hard About Equality and Effects
Now the order matters. . .

(α) Want λx.M = λy.M {y/x}. Ok.

(β) Want (λx.M) N = M {N/x}, but
(λx.M) (print 5) ̸= M {print 5/x}, drat
(λx.M) (loop_forever) ̸= M {loop_forever/x}
in CBV, anyway

(η) Want λx. M x = M (when x /∈ FV (M)), but

λx.(raise ”oops”) x ̸= raise ”oops”, oops
λx.loop_forever x ̸= loop_forever,
in CBV, anwyay

1

What’s So Hard About Equality and Effects
Now the order matters. . .

(α) Want λx.M = λy.M {y/x}. Ok.

(β) Want (λx.M) N = M {N/x}, but
(λx.M) (print 5) ̸= M {print 5/x}, drat
(λx.M) (loop_forever) ̸= M {loop_forever/x}
in CBV, anyway

(η) Want λx. M x = M (when x /∈ FV (M)), but

λx.(raise ”oops”) x ̸= raise ”oops”, oops
λx.loop_forever x ̸= loop_forever,
in CBV, anwyay

1

What Does a Variable Stand For?
Choose your own adventure!

Pick what expressions might replace a variable (V)

“Values” (V) are safe to copy/delete freely (i.e., by substitution)

I don’t care how you pick these

. . . but be consistent

Substitution {V/x} is only defined for these “values”

Substitution of “values” V performed by let s

(β let) (let x = V inM) = M {V/x}
(η let) (let x = M in x) = M if x /∈ FV (M)

let s not associated with specific type, but might decide using types

2

What Does a Variable Stand For?
Choose your own adventure!

Pick what expressions might replace a variable (V)

“Values” (V) are safe to copy/delete freely (i.e., by substitution)

I don’t care how you pick these

. . . but be consistent

Substitution {V/x} is only defined for these “values”

Substitution of “values” V performed by let s

(β let) (let x = V inM) = M {V/x}
(η let) (let x = M in x) = M if x /∈ FV (M)

let s not associated with specific type, but might decide using types

2

Universally safe β and η
Via the substitution principle, from let

For functions,

(βλ) (λx.M) N = (let x = N inM)

(ηλ) λx. y x = y : A→ B (if x ̸= y)

For case-analysis on data,

(β case)

case K(M . . .)of

K(x . . .)→ N

. . .

=
let x = M . . .

inN

(η case)

caseMof

K1(x1 . . .)→ K1(x1 . . .)

. . .

Kn(xn . . .)→ Kn(xn . . .)

= M :
n⊕

i=1

Ki(Ai . . .)

3

Universally safe β and η
Via the substitution principle, from let

For functions,

(βλ) (λx.M) N = (let x = N inM)

(ηλ) λx. y x = y : A→ B (if x ̸= y)

For case-analysis on data,

(β case)

case K(M . . .)of

K(x . . .)→ N

. . .

=
let x = M . . .

inN

(η case)

caseMof

K1(x1 . . .)→ K1(x1 . . .)

. . .

Kn(xn . . .)→ Kn(xn . . .)

= M :
n⊕

i=1

Ki(Ai . . .)

3

Attack of the Commuting Conversions

let y = (let x = M inN) in P = let x = M in (let y = N in P)

(let x = M inN) P = let x = M in (N P)

case (let x = M inN) of

p1 → P1 . . .

. . .

pn → Pn . . .

=

let x = M

in


caseN of

p1 → P1 . . .

. . .

pn → Pn . . .



let x =


caseM of

p1 → N

. . .

pn → Nn


in P

=

caseM of

p1 → (let x = N1 in P)

. . .

pn → (let x = Nn in P)

(???)

. . .

Big oof.....
4

Evaluation Contexts on the Move
What Does a Co-Variable Stand For?

Sometimes evaluation contexts need to move around

Even if you don’t have control effects

Tell me which contexts are strict on their input

(Don’t worry, I won’t be offended)

And let’s write the code to move them to where they’re needed

Strucural substitution of “evaluation contexts” E performed by µ

(βµ) ⟨E[µβ.c]||α⟩ = c {⟨E[N]||α⟩/⟨N ||β⟩}
(ηµ) µα.⟨M||α⟩ = M (if α /∈ FV (M))

5

Evaluation Contexts on the Move
What Does a Co-Variable Stand For?

Sometimes evaluation contexts need to move around

Even if you don’t have control effects

Tell me which contexts are strict on their input

(Don’t worry, I won’t be offended)

And let’s write the code to move them to where they’re needed

Strucural substitution of “evaluation contexts” E performed by µ

(βµ) ⟨E[µβ.c]||α⟩ = c {⟨E[N]||α⟩/⟨N ||β⟩}
(ηµ) µα.⟨M||α⟩ = M (if α /∈ FV (M))

5

The One communting conversion to Rule Them All

(µ let) ⟨let x = M inN ||α⟩ = ⟨M||let x in ⟨N ||α⟩⟩

(µ case)

〈 caseMof
p1 → N1
. . .
pn → Nn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣α
〉

=

〈
M

∣∣∣∣∣
∣∣∣∣∣case p1 → ⟨N1||α⟩

. . .
pn → ⟨Nn||α⟩

〉

Done‼!

6

The Full Axiomatization
For a generic functional language with any effects, any eval strategy

Pick your own definition of V and E

(β let) (let x = V inM) = M {V/x}
(βλ) (λx.M) N = (let x = N inM)

(β case) case K(M . . .) of K(x . . .) → N . . . = (let x = M . . . inN)
(βµ) ⟨E[µβ.c]||α⟩ = c {⟨E[N]||α⟩/⟨N||β⟩}

(η let) (let x = M in x) = M
(ηλ) λx.y x = y : A → B

(η case) caseM of K(x . . .) → K(x . . .) . . . = M :
⊕

K(A . . .)

(ηµ) µα.⟨M||α⟩ = M

(µ let) ⟨let x = M inN||α⟩ = ⟨M||let x in ⟨N||α⟩⟩
(µ case) ⟨caseM of p → N . . .||α⟩ = ⟨M||case p → ⟨N||α⟩ . . .⟩

Sound (for any effects) and Complete1 (up to effect-specific laws)
1With respect to classical/intuitionistic sequent calculus and CPS for CBV, CBN

7

But! But‼! What about. . .?!
Deriving other equations

ηv ⇐= β let , ηλ, η let

ANF, naming,⇐= ηµ, µ letβµ, ηµ, η let

βΩ ⇐= βλ, ηµ, µ letβµ, ηµ, η let

commuting conversions⇐= ηµ, βµ, µ let /µ case

inversion⇐= β let , commuting conversion, η case , β let

λµ-style bubbling capture⇐= ηµ, βµ

8

Particularly Polite Effects
And extra privileges for upstanding citizens

(commute)
let x = M in

let y = N in P
=

let y = N in

let x = M in P

(delete) (let _ = M inN) = N

(copy)
let x = M in

let y = M in P
= (let x = M in P {x/y})

Of course, these hold for any effect with CBN let

9

Particularly Polite Effects
And extra privileges for upstanding citizens

(commute)
let x = M in

let y = N in P
=

let y = N in

let x = M in P

(delete) (let _ = M inN) = N

(copy)
let x = M in

let y = M in P
= (let x = M in P {x/y})

Of course, these hold for any effect with CBN let

9

Equational Reasoning about Abstract Machines
And deriving definitional “compilation”

Already have

(µ let) ⟨let x = M inN ||α⟩ = ⟨M||let x in ⟨N ||α⟩⟩

(µ case)

〈 caseMof
p1 → N1
. . .
pn → Nn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣α
〉

=

〈
M

∣∣∣∣∣
∣∣∣∣∣case p1 → ⟨N1||α⟩

. . .
pn → ⟨Nn||α⟩

〉

Just need to push other evaluation frames on the stack

(µλ)⟨M N ||α⟩ = ⟨M||N · α⟩

Property
Given any source term N , there is a machine command c, such that
⟨N ||α⟩ = c via β, η, µ

10

Inductive and Coinductive Principles
Restoring duality of equational reasoning

Induction is reasoning on the structure of values
An enhancement of plain case -based inversion
Add an inductive hypothesis for every recursive sub-tree

Coinduction is reasoning on the structure of contexts
An enhancement of plain η-expansion of objects
Add a co-inductive hypothesis for every recursive sub-tree

Beware! Undisciplined (co)induction leads to unsafe η “laws”
Induction is always OK in CBV
Otherwise, only induct over an x in contexts strict on x
Co-induction is always OK in CBN
Otherwise, only co-induct on a context α when given a
value (i.e., productivity)

11

Maximizing η: The Best Strategy

There’s a conflict, balancing substitution (β let , βµ)
ηλ is strongest when V is biggest (CBN)
η case is strongest when E is biggest (CBV)

Why not both? Polarity
Use the type of M to decide if it is a substitutable V
Use context’s type to decide if it’s a substitutable E

If let s make you squeamish, use an unambiguous case

caseMof return x → N

=

do x ← M;N

=

M to x.N

(ordinary data IdA = returnA)

(monadic)

(CBPV)
12

Warmup: Modeling The State Monad
PL Theorists Hate Him! One Weird Trick To Control Your State

Equations for state with (dynamic) allocation

allocV in E[get()] = allocV in E[V]

allocV in E[put(V ′)] = allocV ′ in E[()]

allocV in returnV ′ = (V ,V ′)

Representing the state monad using Λµ (thanks Filinski)

allocM inN = ⟨N ||case return x inλs.(x, s)⟩ M
get() = µα.λs.⟨s||α⟩ s

put(s) = µα.λ_.⟨()||α⟩ s

13

Warmup: Modeling The State Monad
PL Theorists Hate Him! One Weird Trick To Control Your State

Equations for state with (dynamic) allocation

allocV in E[get()] = allocV in E[V]

allocV in E[put(V ′)] = allocV ′ in E[()]

allocV in returnV ′ = (V ,V ′)

Representing the state monad using Λµ (thanks Filinski)

allocM inN = ⟨N ||case return x inλs.(x, s)⟩ M
get() = µα.λs.⟨s||α⟩ s

put(s) = µα.λ_.⟨()||α⟩ s

13

Warmup 2: Modeling The State Handler
Move the interpretation out of the operation

Monadic state represented via reflection/reification

allocM inN = ⟨N ||case return x inλs.(x, s)⟩ M
get() = µα.λs.⟨s||α⟩ s

put(s) = µα.λ_.⟨()||α⟩ s

Representing the state handler using Λµ

handleState (get() · α) s = handleState ⟨s||α⟩ s
handleState (put(s′) · α) s = handleState ⟨()||α⟩ s′

handleState return(x) s = (x, s)

allocM inN = handleState ⟨N ||case return(x)→ return(x)⟩ M
do get() = µα.(get() · α)

do put(s) = µα.(put(s) · α)
14

Modeling a Theory For Effect Handlers
Just a sketch, use at your own risk

Shallow

handleMwithH = H ⟨M||case return x → return x⟩
do Op x = µα.(Op x · α)

Deep

handleMwithH = ⟨⟨M||case return x → return x⟩||H⟩
do Op x = µα.µβ.⟨Op x · let y in ⟨⟨y||α⟩||β⟩||β⟩

Limited resumption

handleMwithH = ⟨⟨M||case return x → return x⟩||H⟩
do Op x = µα.µβ. case ⟨Op x||β⟩of

resume y → ⟨⟨y||α⟩||β⟩
return z → z

15

Handling Many Things
There’s a big design space

Lexical handlers

Stacks of commands, indexed by µ

Multi-handlers

One handler with multiple sub-commands

Dynamic handlers

Multiple promtps, of course
But what about my η, though

_
("))/

_

16

