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Curry-Howard is a double-barreled name that

ensures the existence of other double-barreled

names.

— Philip Wadler
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Prelude:
The Classics



AType forcall-with-current-continuation
A dramatic reenactment

MATTHIAS: I’ve been working on giving a type to call/cc. It
seems to be

call/cc : ((a → b) → a) → a

TIMOTHY: That’s impossible!

MATTHIAS: What?! How could you know? I just showed you!

TIMOTHY: Because that’s Peirce’s Law! A classical axiom!
Everyone knows that classical logic has no computational
interpretation!

MATTHIAS: Well, it looks fine to me. Try to prove it wrong.

TIMOTHY: work, work, work . . .
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A Formulae-as-Types Notion of Control 

Timothy G. Griffin* 
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Houston, TX 77251-1892 

Abstract 
The programming language Scheme contains the con- 
trol construct call/cc that allows access to the cur- 
rent continuation (the current control context). This, 
in effect, provides Scheme with first-class labels and 
jumps. We show that the well-known formulae-as- 
types correspondence, which relates a constructive 
proof of a formula a to a program of type (Y, can 
be extended to a typed Idealized Scheme. What is 
surprising about this correspondence is that it relates 
classical proofs to typed programs. The existence of 
computationally interesting “classical programs” - 
programs of type (Y, where Q holds classically, but 
not constructively - is illustrated by the definition 
of conjunctive, disjunctive, and existential types us- 
ing standard classical definitions. We also prove that 
all evaluations of typed terms in Idealized Scheme are 
finite. 

1 Introduction 
The formulae-as-types correspondence [10,18,8], also 
referred to as the propositions-as-types correspon- 
dence and as the Curry/Howard isomorphism, relates 
a constructive proof of a formula Q to a program of 
type cr. This correspondence has been restricted to 
constructive logic because it is widely believed that, 
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in general, classical proofs lack computational con- 
tent. This paper shows, however, that the formulae- 
as-types correspondence can be extended to classi- 
cal logic in a computationally interesting way. It is 
shown that classical proofs posses computational con- 
tent when the notion of computation is extended t.o 
include explicit access to the current control context. 

This notion of computation is found in the pro- 
gramming language Scheme [16], which contains the 
control construct call/cc’ that provides access to 
the current continuation (the current control con- 
text). This, in effect, provides Scheme with first- 
class labels and jumps, and allows for programs that 
are more efficient than purely functional programs. 
The formulae-as-types correspondence presented in 
this paper is based on a typed version of Idealized 
Scheme - a typed ISWIM containing an operator 
C similar to call/cc - deveioped by Felleisen el at 
[3,2,4] for reasoning about Schetne programs. 

Section 2 reviews ISWIM and its extension to Ide- 
alized Scheme (IS) with the control operator C of 
Felleisen ei al. Roughly speaking, the evaluation of 
C(M) abandons the current control context and ap- 
plies M to a procedural abstraction of this context. 

A typed version of Idealized Scheme is presented 
in Section 3 together with a formulae-as-types corre- 
spondence between typed terms and natural deduc- 
tion proofs for classical implicational logic. Types 
include the type I, which corresponds to the propo- 
sition “false.” The type cx -+ I is abbreviated as ~a 
(“not 0”). An application of C is typed as follows. 
If M is of type 7-rcr, then C(M) is of type o. This 
rule corresponds to the classical inferrrence rule for 
elimination of double negation. 

Section 4 demonstrates that there are computation- 
ally interesting typed IS programs of type 0, where u 
holds classically, but not constructively. It is shown 
that if conjunctive, disjunctive, and existential types 
are defined using standard classical definitions, then 

1 call/cc abbreviates call-with-currant-continuation. 
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Control Operators for Classical Axioms
Stepping out of the intuitionistic comfort zone

Peirce’s Law:

call/cc :

((a → b) → a) → a

Double Negation Elimination:

C :

((a → ⊥) → ⊥) → a

Ex Falso Quodibet

abort :

⊥ → a
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1 INT R O D U C T I ON  

This paper presents a way of extending the paradigm "proofs as programs" to classical 
proofs. The system we use is derived from the general Free Deduction system presented 
in [31. 

Usually when considering proofs as programs, one has only in mind some kind of 
intuitionistic proofs. There is an obvious reason for that restriction: only intuitionistic 
proofs are contructive, in the sense that from the proof of an existential statement, one 
can get a witness of this existential statement. But from the programming point of view, 
constructivity is only needed for E~-statements, for which classical and intuitionistic 
provability coincide. This means that, classical proofs are also candidates for being 
programs. In order to use them as programs, one has two tasks to achieve: 

(i) to find a system in which one can extract directly a program from a classical 
proof (and not by means of a translation to intuitionistic logic), and 

(ii) to understand the algorithmic meaning of classical constructions. 
The system we will consider is a natural deduction system with multiple conclusions, 

we will call it Classical Natural Deduction (the one with the absurdity rule being called 
Usual Natural Deduction). It is a particular subsystem of Free Deduction (FD) with 
inputs fixed to the left, chosen for its simplicity: it can be seen as a simple extension of 
intuitionistic natural deduction, whose algorithmic interpretation is very well known. In 
this context, the contribution of classical constructs to programming appears clearly: 
they correspond to control operators added to functional languages, like call/ce in 
Scheme. In both contexts, the role of the classical constructs is the same: they allow 
to take shorter routes in the construction of a proof~program. 

The link between control operators and classical constructs has first been made 
by T. Griffin in [1], where he proposes to type the C operator of Felleisen, with the 
type -~'-,A --* A. The system he obtains is not satisfactory from the logical point of 
view: the reduction is in fact a reduction strategy and the type assigned to C doesn't 
fit in general the reduction rule for C. C. Murthy further analysed the connections 
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λµ-Calculus: A Language For Classical Logic
Labels and jumps from a logician’s perspective

Γ ⊢ M : A

| ∆

⟨M||α⟩ : Γ ⊢ α : A

,∆

Passivate
c : Γ ⊢ α : A

,∆

Γ ⊢ µα.c : A

| ∆

Activate

(β) (λx.M) N → M {N/x}
(relabel) ⟨µα.c||β⟩ → c {β/α}

(capture1) (µα.c) M → µα′.c
{
⟨N M||α′⟩/⟨N ||α⟩

}

⟨(µα.c) M1 M2 . . .Mn||β⟩ ↠ c {⟨N M1 M2 . . .Mn||β⟩/⟨N ||α⟩}
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Modeling Control With µs
A shorthand for classical proofs

call/cc (h : (A → B) → A) = µα:A. ⟨h (λx:A.µβ:B. ⟨x||α⟩)||α⟩

C (h : (A → ⊥) → ⊥) = µα:A. ⟨h (λx:A.µβ:⊥. ⟨x||α⟩)||

tp

⟩

abort (x : ⊥) = µα:A. ⟨x||

tp

⟩

Γ ⊢ M : ⊥ | ∆
⟨M||tp⟩ : Γ ⊢ ∆

ExFalso
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Correspondence Between Control and Classical
Logic

M,N ::= x | λx.M | M N | µα.c c ::= ⟨M||α⟩ | ⟨M||tp⟩

Jµα.cK = call/cc(λα.JcK)

J⟨M||α⟩K = α M

J⟨M||tp⟩K = abortM

Equational correspondence between

Classical (λµ) proofs ≡ λ-calculus + call/cc

Classical (λµ) proofs + Ex Falso (tp) ≡ λ + call/cc + abort
≡ λ-calculus + C
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Act I:
As Outside, Inside



The Prompt
Where does control end?

Practically, all control operators (like call/cc) have to end at the
interpreter prompt scheme # ...�call/cc

Control & Prompt: What if the programmer could insert their
own prompt inside the program? Nicer rewriting semantics:

#V → V #E[control f ] → # f (λx.E[x])

Shift & Reset: Inspired by a compositional CPS semantics

#V → V #E[shift f ] → # f (λx.#E[x])
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Delimited control in λµ
Rebinding tp

The prompt # is an internal top-level

What if we just re-bind the top-level label tp as µtp.c? So

#M = µtp.⟨M||tp⟩ shift f = µα.⟨f (λx.µtp.⟨x||α⟩)||tp⟩

Simplest example: identity continuation

# shift f → # f (λx.# x) → # f (λx.x)

Rewriting into µs and tps. . .

µtp.⟨µα.⟨f (λx.µtp.⟨x||α⟩)||tp⟩||tp⟩
→ µtp.⟨f (λx.µtp.⟨x||α⟩) {tp/α}||tp⟩ (relabel {tp/α})
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The Scope of the Top Level
Static or dynamic?

How to substitute under re-bindings: (µtp.⟨x||α⟩) {tp/α} =?

Static, capture-avoiding substitution:

(µtp.⟨x||α⟩) {tp/α} = µtp′.⟨x||tp⟩

α-renaming = Abort!

Dynamic, capture-allowing substitution:

(µtp.⟨x||α⟩) {tp/α} = µtp.⟨x||tp⟩

Capture = Compose!
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The Dynamically-Rebindable Top Level
A calculus for shift and reset

Put a hat on t̂p to advertise its dynamic scope

Shift and reset boil down to dynamically-rebinding t̂p

#V → V #E[shiftV ] → #V (λx.#E[x])

µt̂p.⟨V ||t̂p⟩ → V already done by µα.c

Reducing to the identity continuation:

µt̂p.⟨µα.⟨f (λx.µt̂p.⟨x||α⟩)||t̂p⟩||t̂p⟩
→ µt̂p.⟨f (λx.µt̂p.⟨x||t̂p⟩)||t̂p⟩ (relabel

{
t̂p/α

}
)

→ µt̂p.⟨f (λx.x)||t̂p⟩ (lookup t̂p)
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Continuing the Dynamic Top Level
What is it good for?

Dynamic binding metaphor: obvious generalization to many
different dynamic continuations, α̂, β̂, γ̂, . . .

Previously on: Multiple Prompts

Most direct analogue to effect handlers (by name)

Expressiveness:

Control + Read-only dynamic environment
≈ Control + Read/write mutable State
⇒ Shift + Reset (Representing Monads, Filinski)
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Act II:
The Collapse



Λµ-Calculus: Collapsing λµ’s Artificial Barriers
Being sloppy with syntax, with style

Parigot’s original λµ syntax:

M,N ::= x | λx.M | M N | µα.c c ::= ⟨M||α⟩

De Groot’s style: it’s easier to have one syntactic category

Λµ separates jumps/commands by type, not by syntax

M,N ::= x | λx.M | M N | µα.M | ⟨M||α⟩

Γ ⊢ M : A | ∆
Γ ⊢ ⟨M||α⟩ : ‚ | α : A,∆

Passivate
Γ ⊢ M : ‚ | α : A,∆
Γ ⊢ µα.M : A | ∆ Activate

For well typed terms, λµ and Λµ are the same

. . . but what if we ignore types?
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What’s Different In Λµ?
Nothing new, and yet new capabilities

All the same syntactic constructs as before, and yet. . .

Λµ satisfies Böhm Separability like λ-calculus, λµ does not

Property (Böhm Separability)
Given any two normalizing terms M and N , if M ̸= N (by β, η, . . . )
then there is a separating context C where C[M] = x and C[N ] = y .

Λµ lets you compose continuations, λµ does not

⟨⟨⟨x||α⟩||β⟩||γ⟩

Λµ lets you dig through continuation stacks, λµ does not

µα.µβ.µγ.M
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The Surprising Power of Λµ
And the natural emergence of delimited control from classical logic

Every command ⟨M||α⟩ acts as a natural delimiter

Λµ > λ+ shift+#

Λµ expresses an unlimited hierarchy of shifts

Λµ = Λµµ̃

⟨N ||µ̃x.M⟩ = ⟨N ||let x inM⟩ = ⟨let x = N inµ_.M||δ⟩

Λµµ̃ ≡ λ+ shift0+#

shift0 h = µα. h (λx.⟨x||α⟩)
#M = ⟨M||let x in x⟩
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Continuing Λµ
What is it good for?

An account of delimited control using only canonical tools

All you need is the familiar capture-avoiding substitution
Expresses delimiters without any notion of dynamic scope
No dynamic handlers or top-level continuation bindings

Continuation composition stacked like function arguments

Multiple “prompts” passed/accessed by position, not name
Simple & fast implementation via de Bruijn indexes

Yet, same expressive power as shift0

Possible analogue to static effect handlers?
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Act III:
Addition By
Subtraction



The Rub
There’s still more work to be done

Despite all this, we don’t have a canonical type system for
delimited control

So far, there are a collection of type-and-effect systems
Non-canonical, because type checking changes depending
on evaluation order
Let alone a logic that logicians would care about
(In contrast, same type system works for CBV and CBN
λ-calculus, even with call/cc, state, . . . )
Can we do better?
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Duality of functions
Flipping the usual implication around

x :

A true ⊢

M :

B true

λx.M :

A → B true → R

V :

A true

E :

B false

V · E :

A → B false → L

x :

A true ⊢

M :

B true

λx.M :

A− B false −L

V :

A true

E :

B false

V · E :

A− B true −R

M : A true means “M returns a value of type A”

E : A false means “E takes a value of type A”
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Subtraction as yield + resume
As seen in scripting languages

yield x = µα.µβ.⟨x · let y in ⟨⟨y||α⟩||β⟩||β⟩
M resume x → N = ⟨⟨M||let y inµ_.y⟩||λx.N⟩

Challenge: Can we assign one type to these sorts of restricted
control operators, maybe using exotic types (A− B, A` B, . . . ) that
is safe for both CBN and CBV evaluation?
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