CoNTROL AS PROOF

AND THE RouTE TO COMPOSITION, IN THREE PARTS

Paul Downen

Shonan 203: Effect Handlers & General Purpose Languages
Thursday, September 28, 2023 — Programmer-Facing Aspects



Curry-Howard is a double-barreled name that
ensures the existence of other double-barreled

names.
— Philip Wadler



PRELUDE:
THE CLASSICS



ATyPE FOrR call-with-current-continuation
A DRAMATIC REENACTMENT

MATTHIAS: I've been working on giving a type to call /cc. It
seems to be
call/cc: ((a— b) - a) > a

TIMOTHY: That’s impossible!
MATTHIAS: What?! How could you know? | just showed you!

TIMOTHY: Because that’s Peirce’s Law! A classical axiom!
Everyone knows that classical logic has no computational

interpretation!
MATTHIAS: Well, it looks fine to me. Try to prove it wrong.

TIMOTHY: work, work, work ...



A Formulae-as-Types Notion of Control

Timothy G. Griffin*
Department of Computer Science
Rice University
Houston, TX 77251-1892

Abstract

The programming language Scheme contains the con-
trol construct call/cc that allows access to the cur-
rent continuation (the current control context). This,
in effect, provides Scheme with first-class labels and
jumps. We show that the well-known formulae-as-
types correspondence, which relates a constructive
proof of a formula o to a program of type «, can
be extended to a typed Idealized Scheme. What is
surprising about this correspondence is that it relates
classical proofs to typed programs. The existence of
computationally interesting “classical programs” —
programs of type a, where a holds classically, but
not constructively — is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that
all evaluations of typed terms in Idealized Scheme are
finite.

in general, classical proofs lack computational con-
tent. This paper shows, however, that the formulae-
as-types correspondence can be extended to classi-
cal logic in a computationally interesting way. It is
shown that classical proofs posses computational con-
tent when the notion of computation is extended to
include explicit access to the current control context

This notion of computation is found in the pro-
gramming language Scheme [16], which contains the
control construct call/cc! that provides access to
the current continuation (the current control con-
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of /dealized
Scheme — a typed ISWIM containing an operator
C similar to call/cc — developed by Felleisen et af
[3,2,4] for reasoning about Scheme programs.



CoNTROL OPERATORS FOR CLASSICAL AXIOMS

STEPPING OUT OF THE INTUITIONISTIC COMFORT ZONE

Peirce’s Law: ((a— b) —a) = a
Double Negation Elimination: ((a—=L)—=1)—a

Ex Falso Quodibet 1L —a



CoNTROL OPERATORS FOR CLASSICAL AXIOMS

STEPPING OUT OF THE INTUITIONISTIC COMFORT ZONE

Peirce’s Law: call/cc: ((a— b) — a) = a
Double Negation Elimination: C: ((a—=1Ll)—=1)—a

Ex Falso Quodibet abort: 1 —a



Au-CALCULUS: AN ALGORITHMIC
INTERPRETATION OF CLASSICAL
NATURAL DEDUCTION

Michel Parigot
Equipe de logique — CNRS UA 753
45-55 5éme étage, Université Paris 7
2 place jussieu, 75251 PARIS Cedex 05, FRANCE
c-mail: parigot@logique.jussieu.fr

1 INTRODUCTION

This paper presents a way of extending the paradigm “proofs as programs” to classical
proofs. The system we use is derived from the general Free Deduction system presented
in [3].

Usually when considering proofs as programs, one has only in mind some kind of
intuitionistic proofs. There is an obvious reason for that restriction: only intuitionistic
proofs are contructive, in the sense that from the proof of an existential statement, one
can get a witness of this existential statement. But from the programming point of view,
constructivity is only needed for £-statements, for which classical and intuitionistic
provability coincide. This means that, classical proofs are also candidates for being
programs. In order to use them as programs, one has two tasks to achieve:

(i) to find a system in which one can extract directly a program from a classical
proof (and not by means of a translation to intuitionistic logic), and

(ii) to understand the algorithmic meaning of classical constructions.



A-CALcuLus: A LANGUAGE For CLAssicAL Logic

LABELS AND JUMPS FROM A LOGICIAN’S PERSPECTIVE

Fr=M: A c: Tta:A

Mlay : THa:A Passivate M- joc: A Activate




A-CALcuLus: A LANGUAGE For CLAssicAL Logic

LABELS AND JUMPS FROM A LOGICIAN’S PERSPECTIVE

FrEM:AlA c:TFa:AA
assivate ctivate
<M||a):l_|—a:A7AP : rl—ua.c:A|AA -

(B) (Ax.M) N — M{N/x}

(relabel) (na.c|B) — c{p/a}
(capture,) (poe.c) M — pa.c {(N M|/} /(N|a)}



A-CALcuLus: A LANGUAGE For CLAssicAL Logic

LABELS AND JUMPS FROM A LOGICIAN’S PERSPECTIVE

FrEM:AlA c:TFa:AA
assivate ctivate
<M||a):l_|—a:A7AP : rl—ua.c:A|AA -

(B) (Ax.M) N — M{N/x}

(relabel) (na.c|B) — c{p/a}
(capture,) (poe.c) M — pa.c {(N M|/} /(N|a)}

((uo.c) My My .. .My B) — c{(N My My...M,|B)/(N|a)}



MODELING CONTROL WITH (S

A SHORTHAND FOR CLASSICAL PROOFS

call/cc (h: (A — B) = A) = pacA. (h (Ax:A.uB:B. (x|a))|c)
Ch:(A—=1)—= 1)=paA (h(Ax:Aus:L. (x|a))| )

abort (x : 1) = pa:A. (x| )



MODELING CONTROL WITH (S

A SHORTHAND FOR CLASSICAL PROOFS

call/cc (h: (A — B) = A) = pacA. (h (Ax:A.uB:B. (x|a))|c)
C(h:(A— 1) — 1) =paA (h(Ax:A.pp:L. (x|a))|tp)
abort (x : L) = pa:A. (x|tp)

Fr’=mM:L|A
(M|tp) : TFHA

ExFalso



CORRESPONDENCE BETWEEN CONTROL AND CLASSICAL
Logic

MN = x [ MM MN | pae ci= (Mla) | (Mtp)
[per.c] = call/cc(Aa.[c])
[(Mla)] = o M
[{M|tp)] = abortM

Equational correspondence between

Classical (M) proofs = A-calculus + call/cc

Classical (M) proofs + Ex Falso (tp) = A + call/cc + abort

= A-calculus + C



Act I:
As OUTSIDE, INSIDE



THE PROMPT

WHERE DOES CONTROL END?

Practically, all control operators (like call/cc) have to end at the
scheme # ...JIcall/cc

Control & Prompt: What if the programmer could insert their
own prompt inside the program? Nicer rewriting semantics:

#V =V #E[control f] — # f (Ax.E[x])

Shift & Reset: Inspired by a compositional CPS semantics

#YV 5V #E[shift f] — # f (Ox.#E[x])



DELIMITED CONTROL IN A\l

REBINDING tp

The prompt # is an internal top-level
What if we just re-bind the top-level label tp as utp.c? So
#M = utp.(Mtp)  shift £ = e (f (\x.utp.(x]))tp)
Simplest example: identity continuation
#shift f — # f (M. # x) = # f (Axx)

Rewriting into ps and tps...

pep- (o (f (Ax.ptp-(x[ )| tp) [tp)
= ptp.(f Ax.ptp(x|)) {ip/a}|tp)  (relabel{tp/a})



THE ScoPE OF THE ToP LEVEL
STATIC OR DYNAMIC?

How to substitute under re-bindings: (utp.(x|a)) {tp/a} =7
Static, capture-avoiding substitution:

(1tp-(x]a)) {tp/a} = utp'.(x|tp)

a-renaming = Abort!

Dynamic, substitution:

(ntp.(x|e)) {tp/a} = ptp.(x|tp)

Capture = Compose!



THE DYNAMICALLY-REBINDABLE ToP LEVEL

A CALCULUS FOR SHIFT AND RESET

Put a hat on tp to advertise its dynamic scope

Shift and reset boil down to dynamically-rebinding tp

#V >V #E[shift V] — #V (Ax.#E[x])
ptp.(V|tp) — V already done by pa.c

Reducing to the identity continuation:

ptp- (e (f (Axepatp-{x[ o)) [Ep) ] tp)
— utp.(f (Axepuip.{x]ip))|tp) (relabel {tp/a})
— utp-{f (Ax.x)|tp) (lookup tp)



CONTINUING THE DYNAMIC ToP LEVEL

WHAT IS IT GOOD FOR?

Dynamic binding metaphor: obvious generalization to many

different dynamic continuations, &, ﬁA, A,y ...

Previously on: Multiple Prompts
Most direct analogue to effect handlers (by name)

Expressiveness:
Control + Read-only dynamic environment
~ Control + Read/write mutable State
= Shift + Reset (Representing Monads, Filinski)



Act II:
THE COLLAPSE



Ap-CALcuLus: COLLAPSING \/i’S ARTIFICIAL BARRIERS

BEING SLOPPY WITH SYNTAX, WITH STYLE
Parigot’s original Ap syntax:
M,N = x| Ax.M | MN | pacc ¢ = (M|a)
De Groot’s style: it’s easier to have one syntactic category
Ap separates jumps/commands by type, not by syntax
M,N = x| AxM | MN | pa.M | (M|c)

Fr’EM:A|A Passi FI—M:JL]a:A,AA.
M M) : I | A A assivate [ oM A|A ctivate

For well typed terms, Ay and Ay are the same



Ap-CALcuLus: COLLAPSING \/i’S ARTIFICIAL BARRIERS

BEING SLOPPY WITH SYNTAX, WITH STYLE
Parigot’s original Ap syntax:
M,N = x| Ax.M | MN | pacc ¢ = (M|a)
De Groot’s style: it’s easier to have one syntactic category
Ap separates jumps/commands by type, not by syntax
M,N = x| AxM | MN | pa.M | (M|c)

Fr’EM:A|A Passi FI—M:JL]a:A,AA.
M M) : I | A A assivate [ oM A|A ctivate

For well typed terms, Ay and Ay are the same

...but what if we ignore types?



WHAT’s DIFFERENT IN Ap?

NOTHING NEW, AND YET NEW CAPABILITIES

All the same syntactic constructs as before, and yet...

Ap satisfies Bohm Separability like A-calculus, Ay does not
Property (Bohm Separability)
Given any two normalizing terms M and N, if M # N (by 8,1, ...)
then there is a separating context C where C[M] = x and C[N] = y.
Ap lets you continuations, Ay does not

{8} )

A lets you dig through continuation stacks, Ay does not

poe. By M



THE SURPRISING POWER OF Ay

AND THE NATURAL EMERGENCE OF DELIMITED CONTROL FROM CLASSICAL LOGIC

Every command (M|«) acts as a natural delimiter
Ape > X+ shift +#

Ap expresses an unlimited hierarchy of shifts



THE SURPRISING POWER OF Ay

AND THE NATURAL EMERGENCE OF DELIMITED CONTROL FROM CLASSICAL LOGIC

Every command (M|«) acts as a natural delimiter
Ape > X+ shift +#
Ap expresses an unlimited hierarchy of shifts
A= Npfi
(N|fix-M) = (N|let xin M) = (letx = Nin p_.M|J)
Apfi = X + shifty +#

shifto h = pa. h (Ax.(x|a))
#M = (M|letx in x)



CONTINUING Al

WHAT IS IT GOOD FOR?

An account of delimited control using only canonical tools

All you need is the familiar capture-avoiding substitution
Expresses delimiters any notion of dynamic scope

No dynamic handlers or top-level continuation bindings

Continuation composition stacked like function arguments

Multiple “prompts” passed/accessed by position, not name
Simple & fast implementation via de Bruijn indexes

Yet, same expressive power as shifty

Possible analogue to static effect handlers?



Act Il
ADDITION By
SUBTRACTION



Tue RuB

THERE’S STILL MORE WORK TO BE DONE

Despite all this, we don’t have a canonical for

delimited control

So far, there are a collection of systems
Non-canonical, because type checking changes depending
on evaluation order

Let alone a logic that logicians would care about

(In contrast, same type system works for CBV and CBN
A-calculus, even with call/cc, state, ...)

Can we do better?



DUALITY OF FUNCTIONS

Atrue - Btrue
A — Btrue

— R

FLIPPING THE USUAL IMPLICATION AROUND

Atrue Bfalse
A — Bfalse

— L



DUALITY OF FUNCTIONS

FLIPPING THE USUAL IMPLICATION AROUND

Atrue - Btrue R Atrue Bfalse 1
A — Btrue A — Bfalse
Atrue - Btrue _, Atrue Bfalse _ .

A — Bfalse A — Btrue



DUALITY OF FUNCTIONS

FLIPPING THE USUAL IMPLICATION AROUND

X : Atrue - M : Btrue V : Atrue E : Bfalse

Ax.M: A — Btrue — R V.-E:A— Bfalse -1l
X :Atruel- M: Btrue V : Atrue E : Bfalse _R
Ax.M: A — Bfalse V-E:A— Btrue

M : Atrue means “M returns a value of type A”

E : Afalse means “E takes a value of type A”



SUBTRACTION As yield + resume

AS SEEN IN SCRIPTING LANGUAGES

yield x = uavpuf.(x - let y in ((y|a)|8)|5)
Mresume x — N = ((M|letyin u_.y)|Ax.N)

20



SUBTRACTION As yield + resume

AS SEEN IN SCRIPTING LANGUAGES

yield x = uavpuf.(x - let y in ((y|a)|8)|5)
Mresume x — N = ((M|letyin u_.y)|Ax.N)

Challenge: Can we assign type to these sorts of restricted
control operators, maybe using exotic types (A — B, A% B, ...) that
is safe for CBN and CBYV evaluation?

20



b.. 1A 15 Facse
BecAuse A 1s TruE.
HERE’S PROOE

ACTUALLY, | HEANT
A®A 15 TRUE BECAUSE
A 15 TRUE... SEE?

WELL, THAT
MEANs A
CANT BE

Fause, Too.
HAA....

21



	Prelude:   The Classics
	Act I:   As Outside, Inside
	Act II:   The Collapse
	Act III:   Addition By Subtraction

