REWRITING MACROS ON THE FLY

A MODULAR APPROACH TO ADMINISTRATIVE REDUCTION DURING EXPANSION

Paul Downen
University of Massachusetts Lowell

Scheme — Thursday, October 16, 2025

CPS AND
ADMINISTRATIVE
REDEXES

CPS IN THEORY

AS AN ABSTRACT CODE TRANSFORMATION

C[Ax.M] = Xk. k Ax.C[M]
C[M N] = Xk. C[M] Af. C[N] Ax. f x k
Clx] = Ak. k x

CPS IN PRACTICE

1
AsS AN EXECUTABLE SCHEME / RACKET MACRO!

(define-syntax cps

(syntax-rules ()
;; Make sure to handle lambdas first
[(cps (A(x) body))
(A(k) (k (A(x) (cps body))))]
; Other binary lists are applications
[(cps (fun arg))
(A(k) ((cps fun)

(A(f) ((cps arg)
(A(x) ((F x) k))))))]

;; Otherwise, assume it is an identifier
[(cps x)
(A(k) (k x)) 1))

’For this talk, everything applies equally well to both Racket and R°RS

THE UGgLY REALITY OF EXPANSION

A simple program

(define ex

(cps (A(f) (A(x) (f (f x))))))

expands to ...

THE UGgLY REALITY OF EXPANSION

A simple program

(define ex

(cps (A(f) (A(x) (f (f x))))))
expands to

(define ex
(A(k)
(k (A(f)
(Ak) (k (A(x)
(A(k) ((A(k) (k f))
(ACf1) ((A(k)
((A(k) (k f))
(A(f2)
((A(k) (k x))
(Ay)
((f2 y) k))))))
(A(z) ((f1 2) k)))))))))))))

Who can read this???

THE PROBLEM WITH ADMINISTRATIVE REDEXES

SPEED IS NOT THE ONLY METRIC

- Slower, sure

» More steps in expanded code = more to do at run-time

« Really relying on host to optimize code

THE PROBLEM WITH ADMINISTRATIVE REDEXES

SPEED IS NOT THE ONLY METRIC

- Slower, sure

» More steps in expanded code = more to do at run-time
« Really relying on host to optimize code

« Also inscrutable to mere mortals

+ Large examples quickly become impenetrable to human understanding
« For very higher-order code (like CPS), printing is less useful for debugging

« Instead, looking at the expanded code may be best option for macro-developers

AN ADMINISTRATIVE-REDUCING CPS TRANSFORM

C, = TRANSLATE VALUE; C. = TRANSLATE COMPUTATION

Cx] =x
C[Ax.M] = Ax.C[M]
C[VIk =k C.[V]
Cc[[v W]][k] = Cv[[v]] Cv[[W]] k
C [V N][k] = C[N][Ax. C[V x][K]] (N ¢ Value)
CIMNIK = CIMID. C.IF MK (M,N ¢ Value)

Ce[M] = k. C[M][K]

DuTiFuLLY TRANSCRIBING INTO REAL CODE

(define-for-syntax (syntactic-value? stx)
(syntax-case stx ()
[(A(x) body) #t]
[x (identifier? #'x)]))

(define-syntax (cps-value stx)
(syntax-case stx ()
[(cps-value (A(x) body))
#'(A(x) (cps-comp body))]
[(cps-value x)
(identifier? #'x)

#'x]))

(define-syntax (cps-comp stx)
(syntax-case stx () ...))

AN ADMINISTRATIVE-NORMAL OUTPUT

(define ex1-ad
(cps-comp (A(f) (A(x) (f (f x))))))

expands to ...

AN ADMINISTRATIVE-NORMAL OUTPUT

(define ex1-ad
(cps-comp (A(f) (A(x) (f (f x))))))

expands to

(define ex1-ad
(A(k) (k (A(f)
(A(k) (k (A(x)
(A(k) ((f x)
(Aly) ((fy) k)))))))))))

Not great, but reasonable! In fully S-normal form.

MoODULAR, MONADIC
CPS MAcRros

THE STORY SO FAR

« Fine in this small example

« Style is monolithic, doesn’t extend well

« New language features case a blow-up in specialized cases
« Can’t combine with user-defined code to eliminate those administrative redexes, too

» A more modular presentation would be better

» Easier to maintain for macro-writer

- Easier to use for client programmer

A MORE MODULAR MACRO LIBRARY

(define (run m) (after m identity))

(define-syntax-rule
(after comp cont)
(comp cont))

(define-syntax-rule
(resume cont val ...)

(cont val ...))

MONADS TO THE RESCUE!

A MORE MODULAR MACRO LIBRARY

MONADS TO THE RESCUE!

(define (run m) (after m identity))

(define-syntax-rule
(after comp cont)
(comp cont))

(define-syntax-rule
(resume cont val ...)

(cont val ...))

(define (return val) (A(k) (resume k val)))

(define (bind m f)
(A(k) (after m (A(x) (after (f x) k)))))

SEPARATING CONCERNS

SEPARATE FEATURES —> SEPARATE MACROS

« Easy to extend with more features

« For example,

» Multi-argument functions
« Multiple return values

+ Chaining commands like “do”-notation

COMBINING MACROS

(define-syntax chain
(syntax-rules ()
[(chain (op arg ...) cmdl cmd
(op arg ... (chain cmdl cmd
[(chain end)
end]))

(define-syntax-rule
(let-val [name comp] body)
(bind comp (A(name) body)))

MAKES IT EASIER TO WRITE CODE

COMBINING MACROS

MAKES IT EASIER TO WRITE CODE
(define-syntax chain
(syntax-rules ()
[(chain (op arg ...) cmdl cmd ...)
(op arg ... (chain cmdl ecmd ...))]
[(chain end)
end]))

(define-syntax-rule
(let-val [name comp] body)
(bind comp (A(name) body)))

(define (run-example ex-comp)
(run (chain
(let-val [h ex-comp])
(let ([double-inc
(A(x) (return («» 2 (+ 1 x))))]))

(let-val [g (h double-inc)])
(let-val [y (g 9]
(return y))))

RECOVERING B1G-STEP CPS TRANSFORM

(define-syntax cps
(syntax-rules (A return)

[(cps (X params body))
(ret-X params (cps body))]
[(cps (fun arg ...))
(call (cps fun) (cps arg) ...)]
[(cps (return expr))
(return expr)]
[(cps other)
(return other)]))

RECOVERING B1G-STEP CPS TRANSFORM

(define-syntax cps
(syntax-rules (A return)

[(cps (X params body))
(ret-X params (cps body))]
[(cps (fun arg ...))
(call (cps fun) (cps arg) ...)]
[(cps (return expr))
(return expr)]
[(cps other)
(return other)]))

(define-syntax-rule

y
(ret-X params body)
(return (A params body)))

(define-syntax-rule
(call fun . args)
(A(k) (after fun (call-cont () args k))))

ADMINISTRATIVE REDEXES RETURN

Same example

(define ex

(eps (A(f) (A(x) (f (f x))))))

Same problem ...

BACK WHERE WE STARTED

ADMINISTRATIVE REDEXES RETURN
BACK WHERE WE STARTED

Same example

(define ex

(cps (A(F) (A(x) (f (f x))))))

Same problem ...

(define ex
(return
(A(F)
(return
(A(x)
(A(k) ((return f)
(A(f1) ((A(k) ((return f)
(A(f2)
((return x)
(A(x1) ((f2 x1) k))))))
(Aly) ((f1y) k)))))))))))

Oof...

REWRITING STEPS
ACROSS
MACRO BOUNDARIES

THE PROBLEM WITH COMPOSITIONALITY

SEPARATE CONCERTS ARE BLIND TO EACH OTHER

Separate macros/functions expand and run separately

(after (return val) cont)

= ((return val) cont)

= ((A(k) (k val)) cont)

Instead, it would be more direct to shortcut directly past the S-reduction

(after (return val) cont)

(resume cont val)

(cont val)

But how can after “look ahead” to anticipate the next step?

FusiING MACRO PAIRS INTO SHORTCUTS: AFTER A RETURN

GET CLOSE TO YOUR NEIGHBORS

One combination we want to look out for:

(after (return x) k) = (after-return (x) k)

FusiING MACRO PAIRS INTO SHORTCUTS: AFTER A RETURN
GET CLOSE TO YOUR NEIGHBORS
One combination we want to look out for:

(after (return x) k) = (after-return (x) k)

The shortcut for skipping the administrative step:

(define-syntax-rule
(after-return (val) k)

(resume k val))

FusiING MACRO PAIRS INTO SHORTCUTS: AFTER A RETURN

GET CLOSE TO YOUR NEIGHBORS

One combination we want to look out for:

(after (return x) k) = (after-return (x) k)

The shortcut for skipping the administrative step:

(define-syntax-rule
(after-return (val) k)

(resume k val))

Easy to derive the general case when return is used in any other context as:

(define (return val)

(A(k) (after-return (val) k)))

FusiNG MACRO PAIRS INTO SHORTCUTS: AFTER A BIND

GETTING A LITTLE MORE FANCY, LOOKING AN EXTRA STEP AHEAD
Another combination we want to look out for:

(after (bind m f) k) = (after-bind (m f) k)

FusiNG MACRO PAIRS INTO SHORTCUTS: AFTER A BIND

GETTING A LITTLE MORE FANCY, LOOKING AN EXTRA STEP AHEAD

Another combination we want to look out for:

(after (bind m f) k) = (after-bind (m f) k)

The shortcut for skipping the administrative step (even skipping the common S-step for A!):
(define-syntax after-bind
(syntax-rules (A)
[(after-bind (m (A(x) body)) k)
(after (let-val [x m] body) k)]
[(after-bind (m f) k)
(after m (A(x) (after (f x) k)))]))

FusiNG MACRO PAIRS INTO SHORTCUTS: AFTER A BIND

GETTING A LITTLE MORE FANCY, LOOKING AN EXTRA STEP AHEAD
Another combination we want to look out for:

(after (bind m f) k) = (after-bind (m f) k)

The shortcut for skipping the administrative step (even skipping the common S-step for A!):

(define-syntax after-bind
(syntax-rules (A)
[(after-bind (m (A(x) body)) k)
(after (let-val [x m] body) k)]
[(after-bind (m f) k)
(after m (A(x) (after (f x) k)))]))

Easy to derive the general case when bind is used in any other context as:

(define (bind m f) (A(k) (after-bind (m f) k)))

ComPOSABLE FUSION FOR A LIBRARY OF MACROS

For a new macro (op . args) look out for shortcuts with

(after (op . args) cont)

if it expects a continuation. Or if it is a continuation,

(resume (op . args) val ...)

Then define the appropriate fused shortcut

(after-op args cont)

(resume-op args val ...)

and derive the general case from the fusion via n-expansion.

RINSE AND REPEAT

REWRITING MACROS ON THE FLY

THE WHOLE TRICK THAT MAKES THIS POSSIBLE

+ Every rewrite we want starts with an elimination form after or resume around an

introduction form (e.g., return, bind, let-val, etc.)

» While after or resume is expanding, it can arbitrarily deep into
sub-expressions before deciding what code to write (e.g., see after-bind)

« That is, macro expansion itself is done lazily
« Inner macro calls don’t expand until the outer one is completely finished

« Even though macros are written separately, the macro-expansion process can

and rewrite chains of macro calls into simpler forms
« All of the rewrite logic can be isolated into the elimination forms after and resume

» Only need to explain how they fuse with various intro forms

AUTOMATIC OPTIMIZATION VIA MACRO REWRITES

Same example of the “unoptimized” monadic cps macro

(define ex

(eps (A(f) (A(x) (f (f x))))))

using rewriting after and resume expands to $-normal

(define ex
(ACk) (k (A(f)
(ACk) (k (A (x)
(ACk) ((f x)
(Aly) ((fy) k)))))))))))

just like the specialized cps—comp macro before!

EXTENSIBLE MACRO
REWRITING RULES

THE REWRITING AFTER MACRO

HAVE TO PAY THE PIPER AT SOME POINT ...

(define-syntax after
(syntax-rules

(return bind let-val ...)
;; Special cases for rewrites
[(after (return val) cont)
(after-return (val) cont)]
[(after (bind comp fun) cont)
(after-bind (comp fun) cont)]
[(after (let-val binding body) cont)
(after-let-val (binding body) cont)]

;; Final general case when there's no rewrite to do
[(after comp cont)
(comp cont)]))

THE REWRITING AFTER MACRO

HAVE TO PAY THE PIPER AT SOME POINT ...
(define-syntax after
(syntax-rules

(return bind let-val ...)
;; Special cases for rewrites
[(after (return val) cont)
(after-return (val) cont)]
[(after (bind comp fun) cont)
(after-bind (comp fun) cont)]
[(after (let-val binding body) cont)
(after-let-val (binding body) cont)]

;; Final general case when there's no rewrite to do

[(after comp cont)
(comp cont)]))

+ Gets the job done...but is highly redundant

+ Even worse, scales poorly! (a new clause for every new feature)

WRITING DowN THE TABLE OF REWRITES

METADATA ABOUT MACRO EXPANSION BEHAVIOR

» Because all of after’s rewrites have a similar form

(after

(op

args) cont) = (after-op args cont)

» The only interesting information is the pair of op and after-op names

(define-for-syntax after-operation-rewrite

(list

[cons

[
[
[
[

cons
cons
cons

cons

#'return
#'bind
#'let-val
#'ret-\
#'call

#'after-return]
#'after-bind]
#'after-let-val]
#'after-ret-\]
#'after-call]))

THE MACRO REWRITING ENGINE

CAPTURING ALL REWRITES WITH THE SAME LOGIC

« Can now summarize all the rewriting steps as one case (worst macro-magic of the talk)

(define-syntax (after stx)
(syntax-case stx ()
[(after (op . args) cont)
(and (identifier? #'op)
(assoc #'op after-operation-rewrite free-identifier=2?))
(with-syntax
([after-op
(cdr (assoc #'op after-operation-rewrite free-identifier=2?))])
#'(after-op args cont))]
[(after comp cont)
#'(comp cont)]))

« First case looks for operations to rewrite in the table, and does the replacement

» Second case doesn’t do anything special

EXTENSIBLE MACRO REWRITING RULES

A BETTER WAY ALL AROUND

Using a table of syntax-time metadata is shorter, sure

« It is also more maintainable and extensible!

If the library-writer adds a new operation, just update the table

« If a client wants to make a custom operation, they can update the table, too

A CASE STUuDY:
REWRITING
COPATTERNS

REWRITING MACROS IN COPATTERNS

EXERCISING THE TRICK AT SCALE

« CPS is a single, well-studied use-case
« Examples here are small, so impact is debatable

« Same technique applied to a macro library for copattern-matching?

» Using rewriting macros to eliminate administrative steps expands to
copattern-matching code with

« Quantitatively, less nesting and fewer tokens
+ Qualitatively, with less indirection and higher-order arguments
+ Much and develop new macros!

’CoScheme: Compositional Copatterns in Scheme. Downen & Corbelino I, TFP *25.

TAKE AWAY

« Ease the tension between compositional and optimization!
» Scheme/Racket supports custom rewrite rules across macro boundaries

« Shortcut elimination-introduction pairs during expansion

If you want to play with these toys for yourself

CPS transformation macros Copatterns for Racket & R°RS
B
OkS :
https://github.com/ https://github.com/

pdownen/rewrite-macros pdownen/CoScheme

https://github.com/pdownen/rewrite-macros
https://github.com/pdownen/rewrite-macros
https://github.com/pdownen/CoScheme
https://github.com/pdownen/CoScheme

	CPS and Administrative Redexes
	Modular, Monadic CPS Macros
	Rewriting Steps Across Macro Boundaries
	Extensible Macro Rewriting Rules
	A Case Study: Rewriting Copatterns

