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Core  =  System F (first-class functions, polymorphism)

 +  Data Types (Primitives, lists/trees, records)

 +  Type Equality (GADTs, type families, coercions)

 +  …
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Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments
• Save f
• Copy x (pointer register 2) to the first argument (pointer register 1)

3. Call f
• How many arguments does f : a -> a -> a take? Is f x x : a a call? a closure?
• Check the arity of f; read runtime closure info, and take appropriate action

Statically
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Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

• Many shapes of values
• Different sizes of integers and words
• Built-in floating-point numbers & registers
• Contiguous arrays and compound structures

• Checks for calling conventions statically at compile time

In Systems Programming Languages
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Efficient Function Calls

• Representation — What & Where?
• Shape of data values

• Arity — How many arguments?
• Shape of calling context

• Levity — When to compute?
• Aka Evaluation Strategy

• Goal: A type safe high-level functional IL (System F) 
with fine-grained control over effi cient calling conventions

Parameter Passing Techniques
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The Long Road

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a 
Non-Strict Functional Language. 
• Explicit monomorphic representations; implicit levities.

• R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism. 
• Explicit polymorphic representations; implicit levities.

• P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry 
with Extensional Types. 
• Explicit monomorphic arities; implicit levities.

• P. Downen, Z.M. Ariola, S. Peyton Jones, and R.A. Eisenberg. 2020. Kinds Are Calling 
Conventions. 
• Explicit polymorphic representations, arities, and levities. 

To Intensional Static Polymorphism
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Unboxed Types

• Primitive types:
•  Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)
• Pro: Effi cient memory
• Pro: Effi cient passing
• Con: Different sizes
• Con: Different locations

And Their Representation

S.L. Peyton Jones and J. Launchbury. 1991.
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The Problem with Nonuniform Representation
And Compiling Static Polymorphism

dup :: forall a. (a -> a -> a) -> a -> a  
dup f x = f x x
(++)       :: [a]    -> [a]    -> [a]  
plusFloat# :: Float# -> Float# -> Float#
dup (++) [0..3]  —  read/write pointer to [0..3] 
versus 
dup addFloat# 1.5  —  read/write float 1.5

Assembly code of dup depends on type a!
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A Stop-Gap Solution
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• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. … 
• Special kinds for unboxed types (#)

• k may be ★ or ★->★ but never #

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types 

(like error :: String -> a)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k.  ???
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• ★ = TYPE Ptr
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Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation
• When this happens in assembly depends on the compiler
• Examples: 

• (\x. … x …)  reads x
• (let x = … in …)  stores and writes x
• (f x)  moves (reads and writes) x

To Ensure Static Compilability

Never move or store 
representation-polymorphic values
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Efficient Code Abstraction

data NumDict (a :: TYPE r) = NumD (a -> a -> a) …
NumFloat# = NumD addFloat# …
(+) :: forall (r :: Rep) (a :: TYPE r).  
       NumDict a -> (a -> a -> a)  
(+) (NumD plus …) = plus

For Numeric Operations

class Num (a :: TYPE r) where  
  (+) :: a -> a -> a
  …

instance Num Float# where  
  x + y = addFloat# x y  
  …
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• New  type of primitive functions (ASCII ‘a ~> b’) 
• To distinguish from the source-level  with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, 
unlike source functions 

•   unconditionally 

• error “not a function” /= \x -> (error “not a function”) x in Haskell

λx . f x =η f : a ⇝ b

• With full η, types express arity — just count the arrows 
•  has arity 2, no matter  ’s definitionf : Int ⇝ Bool ⇝ String f

In an Intermediate Language

P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019.
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The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2
• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…
• g :: Int ~> Bool ~> Bool has arity 2… oops…

• How to statically compile? Is ‘g 4’ a call? A partial application?

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
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Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. … 
• Special kinds for non-0 arity types (~)

• k may be ★ or ★->★ but never ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types 

(like repeat :: a -> [a] and [] :: ★ -> ★)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k.  ???

• Wait… this sounds awfully familiar…

Uniform Polymorphism in a Nonuniform Language
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Restricting Arity Polymorphism

• Calling and defining function code depends on arity
• When this happens in assembly depends on the compiler
• Examples: 

• (let f = \x y z -> … in …)  defines code for f
• (\x y -> f y x) calls code at f
• (f (\x -> …)) creates code for function pointer passed to f

To Ensure Static Compilability

Never invoke or define 
arity-polymorphic code
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Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
  = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
       List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
        a ~> List a ~> List a

repeat x = Cons x (repeat x)

repeat :: forall (v :: Conv) (a :: TYPE Ptr v).  
          a ~> List a

Arity-Polymorphic Data Types

z
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Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
  fmap :: (a -> b) -> f a -> f b
newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)  
  = Read (e ~> a)
instance Functor (Reader e) where
  fmap f (Read g) = Read (\x ~> f (g x))

• But now fmap id (Read g) = Read g !  (hint: requires η)

• Better for performance and correctness

For Higher-Order Type Classes
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Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

5 ⊥

βv βv

λx . M x =η M

λx . ⊥ x =η ⊥

≠



Goal: A core language with 
unrestricted η for functions and 

restricted β for other types
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Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …
• Compiles to code that stores (1.5 + 3.5) in float register x

• Can x be lazy? 
• No!

• x stores a floating-point number

• Lazy thunks must be represented as pointers

Not Lazy
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Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y ~> expensive 100 y in …f…f…

• x = x’ by η, so they must be the same

• x’ always follows call-by-name order! So x does, too

• Primitive functions are never just evaluated; they are always called
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Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z
• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x ~> let z = expensive x in Clos (\y ~> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

• map (App (f3’ 100)) [1..10^6] computes ‘expensive 100’ only once ☺

When Partial Application Matters 

Clos :: (Int ~> Int) ~> {Int ~> Int}  App  :: {Int ~> Int} ~> Int ~> Int
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Levity and Evaluation Strategy
•  is the lifted version of A⊥ A

•  adds a special, unique value  to  denoting divergent computationA⊥ ⊥ A

• E.g.,  so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
•  and  denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks,  multiple function calls/jumps

• Denotation of computations of type  is:Int → Int → Int
• Call-by-name: Int⊥ → Int⊥ → Int⊥
• Call-by-value: (Int → (Int → Int⊥)⊥)⊥

• Call-by-push-value: Int → Int → Int⊥

• Logical polarity reveals the semantics for best performance

Denotationally and Logically
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Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum []       = 0  
sum (x : xs) = x + sum xs
sum (I# z : xs) = case sum xs of I# y -> I# (z +# y)

Call vs Eval, Revisited

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.
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Restricting Levity Polymorphism

• Evaluation order of serious arguments and lets depends on levity
• What counts as “serious computation" depends on the compiler
• Examples: 

• (let x = expensive 100 in …)  binds x to expensive 100

• (f (expensive 100)) passes expensive 100 to f

To Ensure Static Compilability

Never bind or pass 
levity-polymorphic computations
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Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
  = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b  
foldl f z Nil = z  
foldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity)  
  (a :: TYPE Ptr v) (b :: ★).  
  (b ~> a ~> b) ~> b ~> List g a ~> b

foldl’ f z Nil = z  
foldl’ f z (Cons x xs) = let !z’ = f z x in foldl’ f z’ xs

foldl’ :: forall (v :: Conv) (g, g’ :: Levity)  
  (a :: TYPE Ptr v) (b :: TYPE Ptr (Eval g’)).  
  (b ~> a ~> b) ~> b ~> List g a ~> b

Between Eager and Lazy Programs
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P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. ICFP 2020.

If it type checks, 
it can be compiled.
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• Only fully saturated functions and calls

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3  
         in (g 4, g 5)  
 

poly = \(f::Ptr) ~>
       let g::Ptr = \(x::Ptr, y::?, z::?) ~> f(3, x, y, z)

To the Machine



Static Compilation
With Polymorphic η-Expansion



Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
        (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
         in (g 4, g 5)  
 

With Polymorphic η-Expansion



Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
        (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
         in (g 4, g 5)  
 

With Polymorphic η-Expansion



Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
        (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
         in (g 4, g 5)  
 

poly = \(f::Ptr) ~>

With Polymorphic η-Expansion



Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
        (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
         in (g 4, g 5)  
 

poly = \(f::Ptr) ~>
       let g::Ptr = \(x::Ptr, y::Ptr, z::Flt) ~> f(3,x,y,z)

With Polymorphic η-Expansion



Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
        (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
         in (g 4, g 5)  
 

poly = \(f::Ptr) ~>
       let g::Ptr = \(x::Ptr, y::Ptr, z::Flt) ~> f(3,x,y,z)
       in (\(y::Ptr, z::Flt) -> g(4, y, z),  
           \(y::Ptr, z::Flt) -> g(5, y, z))

With Polymorphic η-Expansion



Lessons Learned

• Efficient performance requires good semantics 
• Good semantics comes from logic 
• Kinds capture efficient calling conventions



New Goal: a foundation for 
functional systems 

programming? 


