
POPV, November 14, 2020

Kinds Are Calling Conventions:

Paul Downen

Intensional Static Polymorphism

Theory and Practice
Of Programming Languages

Theory and Practice

• Goal: Performance

Of Programming Languages

Theory and Practice

• Goal: Performance
• Subgoal: Semantics

Of Programming Languages

Theory and Practice

• Goal: Performance
• Subgoal: Semantics
• Answer: Logic

Of Programming Languages

Compilation Funnel
Source → Intermediate → Target

Haskell

Compilation Funnel
Source → Intermediate → Target

HaskellDesugaring

Compilation Funnel
Source → Intermediate → Target

Haskell

Core

Desugaring

Compilation Funnel
Source → Intermediate → Target

Haskell

Core

Desugaring

Code

Generation

Compilation Funnel
Source → Intermediate → Target

Haskell

Core

STG

Desugaring

Code

Generation

Compilation Funnel
Source → Intermediate → Target

Haskell

Core

STG

x86

Desugaring

Code

Generation

Compilation Funnel
Source → Intermediate → Target

Haskell

Core

STG

x86

Desugaring

Code

Generation

Machine

Primitives

Compilation Funnel
Source → Intermediate → Target

Haskell

Core

STG

x86

Desugaring

Code

Generation

Machine

Primitives

Efficient

Libraries

System F
Workhorse of Functional Compilers

System F
Workhorse of Functional Compilers

Core

System F
Workhorse of Functional Compilers

Core = System F

System F
Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

System F
Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

 + Data Types

System F
Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

 + Data Types (Primitives, lists/trees, records)

System F
Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

 + Data Types (Primitives, lists/trees, records)

 + Type Equality

System F
Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

 + Data Types (Primitives, lists/trees, records)

 + Type Equality (GADTs, type families, coercions)

System F
Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

 + Data Types (Primitives, lists/trees, records)

 + Type Equality (GADTs, type families, coercions)

 + …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

GHC Core*
*In Greek

Expr ∋ d, e, f ::= x ∣ λx:τ . e ∣ f e λ-calculus: variables, functions, application
∣ Λa:κ . e ∣ e τ System F: polymorphism & instantiation
∣ l ∣ 𝚕𝚎𝚝 x:τ = d in e Literal primitives & let-bindings
∣ 𝚌𝚊𝚜𝚎 d 𝚘𝚏 {π → e; …} Data contructor & literal matching
∣ χ ∣ e ⊳ χ Coercion evidence & casting
∣ 𝚝𝚒𝚌𝚔 tk e Profiling & instrumentation

A real-world programming language in only 6 lines!

Type ∋ τ, σ ::= … Pattern ∋ π ::= x ∣ l ∣ K x…
Kind ∋ κ = Type Coercion ∋ χ ::= 𝚛𝚎𝚏𝚕 ∣ χ−1 ∣ χ ∘ χ′ ∣ …

Compiling Polymorphism
Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments
• Save f

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments
• Save f
• Copy x (pointer register 2) to the first argument (pointer register 1)

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments
• Save f
• Copy x (pointer register 2) to the first argument (pointer register 1)

3. Call f

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments
• Save f
• Copy x (pointer register 2) to the first argument (pointer register 1)

3. Call f
• How many arguments does f : a -> a -> a take? Is f x x : a a call? a closure?

Statically

Compiling Polymorphism
dup : forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

Compiled assembly code:

1. Accept parameters
• f : a -> a -> a is a pointer; read from pointer register 1
• Where is x : a?
• Assume x is a pointer; read from pointer register 2

2. Pass arguments
• Save f
• Copy x (pointer register 2) to the first argument (pointer register 1)

3. Call f
• How many arguments does f : a -> a -> a take? Is f x x : a a call? a closure?
• Check the arity of f; read runtime closure info, and take appropriate action

Statically

Calling Conventions
In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

• Many shapes of values

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

• Many shapes of values
• Different sizes of integers and words

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

• Many shapes of values
• Different sizes of integers and words
• Built-in floating-point numbers & registers

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

• Many shapes of values
• Different sizes of integers and words
• Built-in floating-point numbers & registers
• Contiguous arrays and compound structures

In Systems Programming Languages

Calling Conventions

• Calls have statically known parameter #s
• Just store arguments, push return pointer, and jump

• Call-by-value versus call-by-reference
• Values may be passed directly, not just pointers

• Many shapes of values
• Different sizes of integers and words
• Built-in floating-point numbers & registers
• Contiguous arrays and compound structures

• Checks for calling conventions statically at compile time

In Systems Programming Languages

Efficient Function Calls
Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Shape of data values

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Shape of data values

• Arity — How many arguments?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Shape of data values

• Arity — How many arguments?
• Shape of calling context

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Shape of data values

• Arity — How many arguments?
• Shape of calling context

• Levity — When to compute?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Shape of data values

• Arity — How many arguments?
• Shape of calling context

• Levity — When to compute?
• Aka Evaluation Strategy

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Shape of data values

• Arity — How many arguments?
• Shape of calling context

• Levity — When to compute?
• Aka Evaluation Strategy

• Goal: A type safe high-level functional IL (System F)
with fine-grained control over effi cient calling conventions

Parameter Passing Techniques

The Long Road
To Intensional Static Polymorphism

The Long Road

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.
• Explicit monomorphic representations; implicit levities.

To Intensional Static Polymorphism

The Long Road

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.
• Explicit monomorphic representations; implicit levities.

• R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
• Explicit polymorphic representations; implicit levities.

To Intensional Static Polymorphism

The Long Road

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.
• Explicit monomorphic representations; implicit levities.

• R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
• Explicit polymorphic representations; implicit levities.

• P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry
with Extensional Types.
• Explicit monomorphic arities; implicit levities.

To Intensional Static Polymorphism

The Long Road

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.
• Explicit monomorphic representations; implicit levities.

• R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
• Explicit polymorphic representations; implicit levities.

• P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry
with Extensional Types.
• Explicit monomorphic arities; implicit levities.

• P. Downen, Z.M. Ariola, S. Peyton Jones, and R.A. Eisenberg. 2020. Kinds Are Calling
Conventions.
• Explicit polymorphic representations, arities, and levities.

To Intensional Static Polymorphism

Representation

Unboxed Types
And Their Representation

Unboxed Types

• Primitive types:

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)
• Pro: Effi cient memory

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)
• Pro: Effi cient memory
• Pro: Effi cient passing

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)
• Pro: Effi cient memory
• Pro: Effi cient passing
• Con: Different sizes

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)
• Pro: Effi cient memory
• Pro: Effi cient passing
• Con: Different sizes
• Con: Different locations

And Their Representation

Unboxed Types

• Primitive types:
• Int#, Float#, Char#, Word16#, Array#…

• Unboxed (Int#, Float#…) or Boxed (Array#)
• Pro: Effi cient memory
• Pro: Effi cient passing
• Con: Different sizes
• Con: Different locations

And Their Representation

S.L. Peyton Jones and J. Launchbury. 1991.

The Problem with Nonuniform Representation
And Compiling Static Polymorphism

The Problem with Nonuniform Representation
And Compiling Static Polymorphism

dup :: forall a. (a -> a -> a) -> a -> a  
dup f x = f x x

The Problem with Nonuniform Representation
And Compiling Static Polymorphism

dup :: forall a. (a -> a -> a) -> a -> a  
dup f x = f x x
(++) :: [a] -> [a] -> [a]  
plusFloat# :: Float# -> Float# -> Float#

The Problem with Nonuniform Representation
And Compiling Static Polymorphism

dup :: forall a. (a -> a -> a) -> a -> a  
dup f x = f x x
(++) :: [a] -> [a] -> [a]  
plusFloat# :: Float# -> Float# -> Float#
dup (++) [0..3] — read/write pointer to [0..3]
versus
dup addFloat# 1.5 — read/write float 1.5

The Problem with Nonuniform Representation
And Compiling Static Polymorphism

dup :: forall a. (a -> a -> a) -> a -> a  
dup f x = f x x
(++) :: [a] -> [a] -> [a]  
plusFloat# :: Float# -> Float# -> Float#
dup (++) [0..3] — read/write pointer to [0..3]
versus
dup addFloat# 1.5 — read/write float 1.5

Assembly code of dup depends on type a!

A Stop-Gap Solution
Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. …

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed types (#)

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed types (#)

• k may be ★ or ★->★ but never #

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed types (#)

• k may be ★ or ★->★ but never #

• Draconian restriction is unsatisfactory

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed types (#)

• k may be ★ or ★->★ but never #

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types

(like error :: String -> a)

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always represented as a pointer

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed types (#)

• k may be ★ or ★->★ but never #

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types

(like error :: String -> a)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???

Uniform Polymorphism in a Nonuniform Language

Representation Polymorphism
Kinds As Representations

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
Kinds As Representations

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a

Kinds As Representations

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

Kinds As Representations

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

Kinds As Representations

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

error :: forall (a :: ★). String -> a

Kinds As Representations

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

error :: forall (a :: ★). String -> a
errorInt# :: String -> Int#

Kinds As Representations

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

error :: forall (a :: ★). String -> a
errorInt# :: String -> Int#
errorFloat# :: String -> Float#

Kinds As Representations

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

error :: forall (a :: ★). String -> a
errorInt# :: String -> Int#
errorFloat# :: String -> Float#
...

Kinds As Representations

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism

• Generalize a :: ★ to a :: TYPE r
• r :: Rep is the representation of a
• ★ = TYPE Ptr

error :: forall (a :: ★). String -> a
errorInt# :: String -> Int#
errorFloat# :: String -> Float#
...
error :: forall (r::Rep) (a :: TYPE r). String -> a

Kinds As Representations

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism
In Function Definitions

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x

In Function Definitions

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b

In Function Definitions

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b

In Function Definitions

a

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b

In Function Definitions

a
a :: TYPE r1

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b

In Function Definitions

a
a :: TYPE r1

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b
revapp :: forall (r :: Rep)  
 (a :: TYPE Ptr) (b :: TYPE r).  
 a -> (a -> b) -> b

In Function Definitions

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b
revapp :: forall (r :: Rep)  
 (a :: TYPE Ptr) (b :: TYPE r).  
 a -> (a -> b) -> b

In Function Definitions

a :: TYPE Ptr

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b
revapp :: forall (r :: Rep)  
 (a :: TYPE Ptr) (b :: TYPE r).  
 a -> (a -> b) -> b

In Function Definitions

b
b :: TYPE ra :: TYPE Ptr

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b
revapp :: forall (r :: Rep)  
 (a :: TYPE Ptr) (b :: TYPE r).  
 a -> (a -> b) -> b

In Function Definitions

b
b :: TYPE ra :: TYPE Ptr

Assume tail-call elimination

Representation Polymorphism

revapp :: a -> (a -> b) -> b  
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)  
 (a :: TYPE r1) (b::TYPE r2).  
 a -> (a -> b) -> b
revapp :: forall (r :: Rep)  
 (a :: TYPE Ptr) (b :: TYPE r).  
 a -> (a -> b) -> b

In Function Definitions

b
b :: TYPE ra :: TYPE Ptr

Assume tail-call elimination

Restricting Representation Polymorphism
To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation
• When this happens in assembly depends on the compiler

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation
• When this happens in assembly depends on the compiler
• Examples:

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation
• When this happens in assembly depends on the compiler
• Examples:

• (\x. … x …) reads x

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation
• When this happens in assembly depends on the compiler
• Examples:

• (\x. … x …) reads x
• (let x = … in …) stores and writes x

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

• Moving, storing, reading, writing depends on representation
• When this happens in assembly depends on the compiler
• Examples:

• (\x. … x …) reads x
• (let x = … in …) stores and writes x
• (f x) moves (reads and writes) x

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Efficient Code Abstraction
For Numeric Operations

Efficient Code Abstraction
For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

Efficient Code Abstraction
For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

Efficient Code Abstraction
For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

instance Num Float# where  
 x + y = addFloat# x y  
 …

Efficient Code Abstraction
For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

instance Num Float# where  
 x + y = addFloat# x y  
 …

Efficient Code Abstraction

data NumDict (a :: TYPE r) = NumD (a -> a -> a) …

For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

instance Num Float# where  
 x + y = addFloat# x y  
 …

Efficient Code Abstraction

data NumDict (a :: TYPE r) = NumD (a -> a -> a) …
NumFloat# = NumD addFloat# …

For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

instance Num Float# where  
 x + y = addFloat# x y  
 …

Efficient Code Abstraction

data NumDict (a :: TYPE r) = NumD (a -> a -> a) …
NumFloat# = NumD addFloat# …
(+) :: forall (r :: Rep) (a :: TYPE r).  
 NumDict a -> (a -> a -> a)  
(+) (NumD plus …) = plus

For Numeric Operations

class Num (a :: TYPE r) where  
 (+) :: a -> a -> a
 …

instance Num Float# where  
 x + y = addFloat# x y  
 …

Arity

Determining Function Arity
f1, f2, f3, f4 :: Int -> Int -> Int

Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

≠ \x -> \y -> f3 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x Arity 1

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

= \x -> \y -> f1 x y

≠ \x -> \y -> f3 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

What Is Arity?
For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

• If ‘f’ has arity 3, then ‘f 1 2 3’ can be implemented as a single call

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

• If ‘f’ has arity 3, then ‘f 1 2 3’ can be implemented as a single call

For Curried Functions

Goal: A core language with
unrestricted η for functions

Static Arity
In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional,
unlike source functions

• unconditionally

• error “not a function” /= \x -> (error “not a function”) x in Haskell

λx . f x =η f : a ⇝ b

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional,
unlike source functions

• unconditionally

• error “not a function” /= \x -> (error “not a function”) x in Haskell

λx . f x =η f : a ⇝ b

• With full η, types express arity — just count the arrows
• has arity 2, no matter ’s definitionf : Int ⇝ Bool ⇝ String f

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional,
unlike source functions

• unconditionally

• error “not a function” /= \x -> (error “not a function”) x in Haskell

λx . f x =η f : a ⇝ b

• With full η, types express arity — just count the arrows
• has arity 2, no matter ’s definitionf : Int ⇝ Bool ⇝ String f

In an Intermediate Language

P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019.

The Problem With Nonuniform Arity
And Compiling Static Polymorphism

The Problem With Nonuniform Arity
And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2
• g :: Int ~> a has arity 1

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2
• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2
• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2
• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…
• g :: Int ~> Bool ~> Bool has arity 2… oops…

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

The Problem With Nonuniform Arity

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2
• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…
• g :: Int ~> Bool ~> Bool has arity 2… oops…

• How to statically compile? Is ‘g 4’ a call? A partial application?

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

Another Stop-Gap Solution
Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for non-0 arity types (~)

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for non-0 arity types (~)

• k may be ★ or ★->★ but never ~

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for non-0 arity types (~)

• k may be ★ or ★->★ but never ~

• Draconian restriction is unsatisfactory

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for non-0 arity types (~)

• k may be ★ or ★->★ but never ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types

(like repeat :: a -> [a] and [] :: ★ -> ★)

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for non-0 arity types (~)

• k may be ★ or ★->★ but never ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types

(like repeat :: a -> [a] and [] :: ★ -> ★)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

• All polymorphism is uniform
• Generic ‘a’ is always has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for non-0 arity types (~)

• k may be ★ or ★->★ but never ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types

(like repeat :: a -> [a] and [] :: ★ -> ★)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???

• Wait… this sounds awfully familiar…

Uniform Polymorphism in a Nonuniform Language

Arity Polymorphism
Kinds As Calling Conventions

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

Kinds As Calling Conventions

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a

Kinds As Calling Conventions

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

Kinds As Calling Conventions

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

Kinds As Calling Conventions

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x

Kinds As Calling Conventions

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a
v1

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a b
v1

b
v2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a b
v1

b
v2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b
revapp :: forall (v :: Conv) (r :: Rep)  
 (a :: TYPE Ptr c) (c :: Type r Call[1]).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a b
v1

b
v2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b
revapp :: forall (v :: Conv) (r :: Rep)  
 (a :: TYPE Ptr c) (c :: Type r Call[1]).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a b
v1

b
v2

bb

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b
revapp :: forall (v :: Conv) (r :: Rep)  
 (a :: TYPE Ptr c) (c :: Type r Call[1]).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a b
v1

b
v2

bb
Call[1]

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
• Generalize a::TYPE r to a::TYPE r v

• v::Conv is the calling convention of a
• a::TYPE r Call[n] says a has arity n (simplified)

revapp x f = f x
revapp :: forall (v1, v2 :: Conv) (r :: Rep)  
 (a :: TYPE Ptr v1) (c :: Type r v2).  
 a ~> (a ~> b) ~> b
revapp :: forall (v :: Conv) (r :: Rep)  
 (a :: TYPE Ptr c) (c :: Type r Call[1]).  
 a ~> (a ~> b) ~> b

Kinds As Calling Conventions

a a b
v1

b
v2

bb
Call[1]

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Arity Polymorphism
And Higher-Order Functions

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4

And Higher-Order Functions

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

And Higher-Order Functions

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

And Higher-Order Functions

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

a
f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

v :: Conv v
a

f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

g :: Int ~> a

v :: Conv v
a

f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Higher-Order Functions

g :: Int ~> a g 4 g 5

v :: Conv v
a

f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity ≥ 2

And Higher-Order Functions

g :: Int ~> a g 4 g 5

v :: Conv v
a

f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity ≥ 2
• g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity ≥ 1

And Higher-Order Functions

g :: Int ~> a g 4 g 5

v :: Conv v
a

f 3

Arity Polymorphism

poly :: forall (a :: TYPE Ptr Call[2]).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

poly :: forall (v :: Conv) (a :: TYPE Ptr v).  
 (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity ≥ 2
• g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity ≥ 1

And Higher-Order Functions

g :: Int ~> a g 4 g 5

v :: Conv v
a

f 3

Restricting Arity Polymorphism
To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

• Calling and defining function code depends on arity

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

• Calling and defining function code depends on arity
• When this happens in assembly depends on the compiler

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

• Calling and defining function code depends on arity
• When this happens in assembly depends on the compiler
• Examples:

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

• Calling and defining function code depends on arity
• When this happens in assembly depends on the compiler
• Examples:

• (let f = \x y z -> … in …) defines code for f

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

• Calling and defining function code depends on arity
• When this happens in assembly depends on the compiler
• Examples:

• (let f = \x y z -> … in …) defines code for f
• (\x y -> f y x) calls code at f

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

• Calling and defining function code depends on arity
• When this happens in assembly depends on the compiler
• Examples:

• (let f = \x y z -> … in …) defines code for f
• (\x y -> f y x) calls code at f
• (f (\x -> …)) creates code for function pointer passed to f

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a ~> List a

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a ~> List a

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a ~> List a

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a ~> List a

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a ~> List a

repeat x = Cons x (repeat x)

Arity-Polymorphic Data Types

z

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)  
 = Nil | Cons a (List a)

Nil :: forall (v :: Conv) (a :: TYPE Ptr v).  
 List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a ~> List a

repeat x = Cons x (repeat x)

repeat :: forall (v :: Conv) (a :: TYPE Ptr v).  
 a ~> List a

Arity-Polymorphic Data Types

z

Efficient and Correct Abstractions
For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b

For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b

For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b
newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)  
 = Read (e ~> a)

For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b
newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)  
 = Read (e ~> a)
instance Functor (Reader e) where

For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b
newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)  
 = Read (e ~> a)
instance Functor (Reader e) where
 fmap f (Read g) = Read (\x ~> f (g x))

For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b
newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)  
 = Read (e ~> a)
instance Functor (Reader e) where
 fmap f (Read g) = Read (\x ~> f (g x))

• But now fmap id (Read g) = Read g ! (hint: requires η)

For Higher-Order Type Classes

Efficient and Correct Abstractions

class Functor (f :: TYPE r v -> TYPE r’ v’) where  
 fmap :: (a -> b) -> f a -> f b
newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)  
 = Read (e ~> a)
instance Functor (Reader e) where
 fmap f (Read g) = Read (\x ~> f (g x))

• But now fmap id (Read g) = Read g ! (hint: requires η)

• Better for performance and correctness

For Higher-Order Type Classes

Levity

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

λx . M x =η M

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

λx . M x =η M

λx . ⊥ x =η ⊥

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

λx . M x =η M

λx . ⊥ x =η ⊥

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

βv

λx . M x =η M

λx . ⊥ x =η ⊥

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

5

βv

λx . M x =η M

λx . ⊥ x =η ⊥

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

5

βv βv

λx . M x =η M

λx . ⊥ x =η ⊥

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

5 ⊥

βv βv

λx . M x =η M

λx . ⊥ x =η ⊥

Unrestricted η Is Inconsistent With Restricted β
In the λ-calculus

(λz . 5) (λx . ⊥ x) =η (λz . 5) ⊥

5 ⊥

βv βv

λx . M x =η M

λx . ⊥ x =η ⊥

≠

Goal: A core language with
unrestricted η for functions and

restricted β for other types

Unboxed Data Is Eager
Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …
• Compiles to code that stores (1.5 + 3.5) in float register x

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …
• Compiles to code that stores (1.5 + 3.5) in float register x

• Can x be lazy?

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …
• Compiles to code that stores (1.5 + 3.5) in float register x

• Can x be lazy?
• No!

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …
• Compiles to code that stores (1.5 + 3.5) in float register x

• Can x be lazy?
• No!

• x stores a floating-point number

Not Lazy

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#
• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in …
• Compiles to code that stores (1.5 + 3.5) in float register x

• Can x be lazy?
• No!

• x stores a floating-point number

• Lazy thunks must be represented as pointers

Not Lazy

Primitive Functions are Called
Not Evaluated

Primitive Functions are Called
Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Primitive Functions are Called

• When is expensive 100 evaluated?

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y ~> expensive 100 y in …f…f…

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y ~> expensive 100 y in …f…f…

• x = x’ by η, so they must be the same

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y ~> expensive 100 y in …f…f…

• x = x’ by η, so they must be the same

• x’ always follows call-by-name order! So x does, too

Primitive Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated
x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y ~> expensive 100 y in …f…f…

• x = x’ by η, so they must be the same

• x’ always follows call-by-name order! So x does, too

• Primitive functions are never just evaluated; they are always called

Currying
When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z
• Because of η, f3 now has arity 2, not 1!

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z
• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z
• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x ~> let z = expensive x in Clos (\y ~> y + z)

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int}

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z
• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x ~> let z = expensive x in Clos (\y ~> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int}

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x ~> let z = expensive x in \y ~> y + z
• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x ~> let z = expensive x in Clos (\y ~> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

• map (App (f3’ 100)) [1..10^6] computes ‘expensive 100’ only once ☺

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int

Levity and Evaluation Strategy
Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks, multiple function calls/jumps

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks, multiple function calls/jumps

• Denotation of computations of type is:Int → Int → Int

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks, multiple function calls/jumps

• Denotation of computations of type is:Int → Int → Int
• Call-by-name: Int⊥ → Int⊥ → Int⊥

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks, multiple function calls/jumps

• Denotation of computations of type is:Int → Int → Int
• Call-by-name: Int⊥ → Int⊥ → Int⊥
• Call-by-value: (Int → (Int → Int⊥)⊥)⊥

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks, multiple function calls/jumps

• Denotation of computations of type is:Int → Int → Int
• Call-by-name: Int⊥ → Int⊥ → Int⊥
• Call-by-value: (Int → (Int → Int⊥)⊥)⊥

• Call-by-push-value: Int → Int → Int⊥

Denotationally and Logically

Levity and Evaluation Strategy
• is the lifted version of A⊥ A

• adds a special, unique value to denoting divergent computationA⊥ ⊥ A

• E.g., so that , and ℕ⊥ = {⊥,0,1,2,3,…} 1/0 = ⊥ (A → B)⊥ = { ⊥ } ∪ {λx . f(x) ∣ f ∈ A → B}

• Unboxed types and primitive functions are unlifted
• and denotes only real functions𝙸𝚗𝚝# = {0,1, − 1,2, − 2,…} A ⇝ B = {λx . f(x) ∣ f ∈ A → B}
• Lifting implies worse performance (for data, functions)
• Indirection, dynamic checks, multiple function calls/jumps

• Denotation of computations of type is:Int → Int → Int
• Call-by-name: Int⊥ → Int⊥ → Int⊥
• Call-by-value: (Int → (Int → Int⊥)⊥)⊥

• Call-by-push-value: Int → Int → Int⊥

• Logical polarity reveals the semantics for best performance

Denotationally and Logically

Levity Polymorphism
Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Call vs Eval, Revisited

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

Call vs Eval, Revisited

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

g1 g2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

+

g1 g2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

+xx

g1g1 g2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

sum xs+

g1 g2g2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

g1 g2

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs
sum (I# z : xs) = case sum xs of I# y -> I# (z +# y)

Call vs Eval, Revisited

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Restricting Levity Polymorphism
To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Restricting Levity Polymorphism

• Evaluation order of serious arguments and lets depends on levity

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Restricting Levity Polymorphism

• Evaluation order of serious arguments and lets depends on levity
• What counts as “serious computation" depends on the compiler

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Restricting Levity Polymorphism

• Evaluation order of serious arguments and lets depends on levity
• What counts as “serious computation" depends on the compiler
• Examples:

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Restricting Levity Polymorphism

• Evaluation order of serious arguments and lets depends on levity
• What counts as “serious computation" depends on the compiler
• Examples:

• (let x = expensive 100 in …) binds x to expensive 100

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Restricting Levity Polymorphism

• Evaluation order of serious arguments and lets depends on levity
• What counts as “serious computation" depends on the compiler
• Examples:

• (let x = expensive 100 in …) binds x to expensive 100

• (f (expensive 100)) passes expensive 100 to f

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Code Reuse
Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b  
foldl f z Nil = z  
foldl f z (Cons x xs) = foldl f (f z x) xs

Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b  
foldl f z Nil = z  
foldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity)  
 (a :: TYPE Ptr v) (b :: ★).  
 (b ~> a ~> b) ~> b ~> List g a ~> b

Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b  
foldl f z Nil = z  
foldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity)  
 (a :: TYPE Ptr v) (b :: ★).  
 (b ~> a ~> b) ~> b ~> List g a ~> b

foldl’ f z Nil = z  
foldl’ f z (Cons x xs) = let !z’ = f z x in foldl’ f z’ xs

Between Eager and Lazy Programs

Code Reuse
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)  
 = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b  
foldl f z Nil = z  
foldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity)  
 (a :: TYPE Ptr v) (b :: ★).  
 (b ~> a ~> b) ~> b ~> List g a ~> b

foldl’ f z Nil = z  
foldl’ f z (Cons x xs) = let !z’ = f z x in foldl’ f z’ xs

foldl’ :: forall (v :: Conv) (g, g’ :: Levity)  
 (a :: TYPE Ptr v) (b :: TYPE Ptr (Eval g’)).  
 (b ~> a ~> b) ~> b ~> List g a ~> b

Between Eager and Lazy Programs

Compilation

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. ICFP 2020.

If it type checks,
it can be compiled.

Static Compilation
To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism
• Only fully saturated functions and calls

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism
• Only fully saturated functions and calls

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism
• Only fully saturated functions and calls

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism
• Only fully saturated functions and calls

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ~>

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism
• Only fully saturated functions and calls

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ~>
 let g::Ptr = \(x::Ptr, y::?, z::?) ~> f(3, x, y, z)

To the Machine

Static Compilation
With Polymorphic η-Expansion

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
 (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

With Polymorphic η-Expansion

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
 (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

With Polymorphic η-Expansion

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
 (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ~>

With Polymorphic η-Expansion

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
 (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ~>
 let g::Ptr = \(x::Ptr, y::Ptr, z::Flt) ~> f(3,x,y,z)

With Polymorphic η-Expansion

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr,Flt].  
 (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ~>
 let g::Ptr = \(x::Ptr, y::Ptr, z::Flt) ~> f(3,x,y,z)
 in (\(y::Ptr, z::Flt) -> g(4, y, z),  
 \(y::Ptr, z::Flt) -> g(5, y, z))

With Polymorphic η-Expansion

Lessons Learned

• Efficient performance requires good semantics
• Good semantics comes from logic
• Kinds capture efficient calling conventions

New Goal: a foundation for
functional systems

programming?

