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Type S 1,0 ::= ... Patterns>n::=x|[| K x... “In Greek
Kind>«x = Type Coercion D y i=refl |y V| yey| ...

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aa:k.e|let System F: polymorphism & instantiation

| [|let xit=din e Literal primitives & let-bindings

| case d of {xr = e;...} Data contructor & literal matching

|y |e>y Coercion evidence & casting

| tick tk e Profiling & instrumentation

A real-world programming language in only 6 lines!
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* Check the arity of f; read runtime closure info, and take appropriate action
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In Systems Programming Languages

* Checks for calling conventions statically at compile time
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Efficient Function Calls

Parameter Passing Techniques

» Goal: A type safe high-level functional IL (System F)
with fine-grained control over efficient calling conventions
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* P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry
with Extensional Types.
* Explicit monomorphic arities; implicit levities.

* P. Downen, Z.M. Ariola, S. Peyton Jones, and R.A. Eisenberg. 2020. Kinds Are Calling
Conventions.

* Explicit polymorphic representations, arities, and levities.
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S.L. Peyton Jones and J. Launchbury. 1991.

Unboxed Types

And Their Representation

e Con: Different locations
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The Problem with Nonuniform Representation

And Compiling Static Polymorphism

dup :: forall a. (a ->a ->a) ->a -> a
dup f Xx = f X X
(++) | a] -> [a] -> [a]

plusFloat# :: Float# -> Float# -> Float#
dup (++) [@ . o 3] — read/write pointer to [@ . o 3]

VCISUS

dup addFloat# 1.5 — read/writefloat 1.5

Assembly code of dup depends on type d!
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Uniform Polymorphism in a Nonuniform Language

* Too restrictive: Identical definitions/code repeated for different types
(like error :: String -> a)



A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Incompatible with kind polymorphism: forall k::Kind. forall a::k. 777
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Restricting Representation Polymorphism

To Ensure Static Compilability

Never move oOr store
representation-polymorphic values

* (f x) moves (reads and writes) X



Efficient Code Abstraction

For Numeric Operations



Efficient Code Abstraction

For Numeric Operations

class Num (a ) where
(+) ::a ->a ->a



Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where
(+) ::a ->a ->a



Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy



Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v



Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

data NumDict (a :: TYPE r) = NumD (a -> a -> a) ..



Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

NumFloat# = NumD addFloat# ..



Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

(+) :: forall (r :: Rep) (a :: TYPE r).
NumDict a -> (a -> a -> a)
(+) (NumD plus ..) = plus
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Determining Function Arity Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

f1=\x ->1\y —> Arity 2 f2 = \x -> f1 X Arity 2
let z = expensive Xx

\X > \y > fl X vy

1INy + Z
f3 = \x -> Arity 1 f4 = \x -> f3 X Arity 1
let z = expensive X = \X -> \y -> f3 x vy

1N \y ->VY + Z

Hint: ‘expensive X’ may be costly, or even cause side effects
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What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

Definition 3. The number of arguments passed simultaneously to a function
during one call.
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unrestricted np for functions
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* error “not a function” /= \x -> (error “not a function”) xin Haskell

« With full n, types express arity — just count the arrows
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And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

* g :: Int ~> Bool ~> Bool has arity 2... oops...



The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

« How to statically compile? Is ‘g 4" a call? A partial application?
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e Restriction on quantifiers forall a::k. ..
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Uniform Polymorphism in a Nonuniform Language

* k may be x or x->% but never ~
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Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Too restrictive: Identical definitions/code repeated for different types
(like repeat :: a -> [a]and[] :: * -> %)



Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Incompatible with kind polymorphism: forall k::Kind. forall a::k. 7?7?77



Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

« Wait... this sounds awfully familiar...
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Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c¢) (c :: Type r Call[1]).
a~>(a~>b)~>Db

v
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And Higher-Order Functions

v :: Conv V
a
g :: Int ~>a =13 g 4, g >

X

* g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity >1
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Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

* (f (\x -> ..)) creates code for function pointer passed to f
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data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

Nil :: forall (v :: Conv) (a ::

List a

Cons :: forall (v :: Conv) (a ::

a~> List a ~> List a

Arity-Polymorphic Data Types
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Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

Nil :: forall (v :: Conv) (a ::

List a

Cons :: forall (v :: Conv) (a ::

a~> List a ~> List a

repeat x = Cons x (repeat x)

Arity-Polymorphic Data Types

TYPE Ptr v).

TYPE Ptr v).



Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

N1l :: forall (v :: Conv) (a :: TYPE Ptr v).
L1st a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).
a ~> List a ~> List a

repeat x = Cons x (repeat x)

repeat :: forall (v :: Conv) (a :: TYPE Ptr v).
a ~> List a
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Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)
= Read (e ~> a)

Lnstance Functor (Reader e) where
fmap f (Read g) = Read (\x ~> f (g x))
* Butnow fmap 1d (Read g) =Read g! (hint: requires n)

* Better for performance and correctness
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Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1



Goal: A core language with
unrestricted n for functions and
restricted  for other types
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Unboxed Data s Eager

Not Lazy

addFloat# :: Float# ~> Float# ~> Float#
* Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 1in ..

* Compiles to code that stores (1.5 + 3.5) in float register x

e Can X be lazy?
* No!



Unboxed Data s Eager

Not Lazy

* X stores a floating-point number



Unboxed Data s Eager

Not Lazy

* Lazy thunks must be represented as pointers
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Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’” = let f :: Int ~> Int = \y ~> expensive 100 y 1n ..f..f..

* X’ always follows call-by-name order! So x does, too



Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’” = let f :: Int ~> Int = \y ~> expensive 100 y 1n ..f..f..

* Primitive functions are never just evaluated; they are always called
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When Partial Application Matters

f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive X 1n \y ~> y + Z



Currying

When Partial Application Matters

* Because of 1, {3 now has arity 2, not 1!



When Partial Application Matters

* map (f3100) [1..1076] recomputes ‘expensive 100’ a million times ®



When Partial Application Matters

f3° :: Int ~> { Int ~> Int }
f3° = \Xx ~> let z = expensive x 1n Clos (\y ~> vy + z)

Clos :: (Int ~> Int) ~> {Int ~> Intt}



When Partial Application Matters

* f3’is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

Clos :: (Int ~> Int) ~> {Int ~> Intt}



When Partial Application Matters

* map (App (f3’ 100)) [1..1076] computes ‘expensive 100’ only once ©

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int
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Denotationally and Logically

* Call-by-value: (Int — (Int — Int,),),



Levity and Evaluation Strategy

+ A, is the lifted version of A Denotationally and Logically

* A, adds a special, unique value L to A denoting divergent computation

* Eg,N, ={L1,0,1,23,...} sothat 1/0 =1 ,and(A - B), ={ L }U{ix.f(x) | f€ A - B}

* Unboxed types and primitive functions are unlifted
* Int#={0,1,—1,2,—2,...} andA -» B = {Ax.f(x) | f € A - B} denotes only real functions

* Lifting implies (for data, functions)

* Indirection, dynamic checks, multiple function calls/jumps

« Denotation of computations of type Int — Int — Intis:
* Call-by-name: Int, — Int, — Int,
* Call-by-value: (Int — (Int — Int,),),

* Call-by-push-value: Int — Int — Int,



Levity and Evaluation Strategy

Denotationally and Logically

» Logical polarity reveals the semantics for best performance
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Levity Polymorphism

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o0.

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

9

XS




LeVity P()lymorphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o.

Call vs Eval, Revisited

e Code thatisn’t called is evaluated

* Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
* Eval L :: Conv —lazy (call-by-need) evaluation, Lifted values
* Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g 1ints

sum :: forall (gl g2 :: Levity). [Int gl] ~> Int gZ
sum | | = 0
sum (X : XS) = X + sum XS 0

sum (I# z : xs) = case sum xs of I# vy > I# (z +# y)
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Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

* (lLet x = expensive 100 1in ..) binds x to expensive 100



Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

* (f (expensive 100)) passes expensive 100to f
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Between Eager and Lazy Programs

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)
= N1l | Cons a (List g a)
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foldl f z N1l = z
foldl f z (Cons x xs) = foldl f (f z x) xs
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Between Eager and Lazy Programs

foldl :: forall (v :: Conv) (g :: Levity)
(a :: TYPE Ptr v) (b :: x).
(b ~>a~>b) ~>b ~ List ga~>Db



Code Reuse

Between Eager and Lazy Programs

foldl’ f z N1l = z
foldl’ f z (Cons x xs) = let 22 = f z x 1n foldl’ f z’ xs



Code Reuse

Between Eager and Lazy Programs

foldl’ :: forall (v :: Conv) (g, g’ :: Levity)
(a :: TYPE Ptr v) (b :: TYPE Ptr (Eval g’)).
(b ~>a~>b) ~b~ Listga-~>Db



Compilation



If it type checks,
it can be compiled.

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. ICFP 2020.



Static Compilation

To the Machine



Static Compilation

To the Machine

* Only basic types (pointer, integer, float); no polymorphism



Static Compilation

To the Machine

* Only fully saturated functions and calls



Static Compilation

To the Machine

poly :: forall a::TYPE Ptr Call[Z2]. (Int~>Int~>a) ~> (a,a)
poly f = let g :: Int ~>a=f 3
in (g 4, g 5)



Static Compilation

To the Machine

poly :: forall a::TYPE Ptr Call[Z2]. (Int~>Int~>a) ~> (a,a)
poly f = let g :: Int ~>a=f 3

in (g 4, g 3)



Static Compilation

To the Machine

2

poly = \(f::Ptr) ~>



Static Compilation

To the Machine

2

let g::Ptr = \(X::Ptr, y::7, z::7) ~> f(3, X, y, Z)



Static Compilation
With Polymorphic n-Expansion



Static Compilation
With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,FLt].
(Int ~> Int ~> a) ~> (a, a)

poly f = let g :: Int ~>a =1 3
in (g 4, g )



Static Compilation
With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,FLt].
(Int ~> Int ~> a) ~> (a, a)

poly f = let g :: Int ~>a =1 3
in (g 4, g )

2



Static Compilation
With Polymorphic n-Expansion

2

poly = \(f::Ptr) ~>



Static Compilation
With Polymorphic n-Expansion

2

let g::Ptr = \(x::Ptr, y::Ptr, z::FLt) ~> f(3,x,y,2)



Static Compilation
With Polymorphic n-Expansion

2

in (\Cy::Ptr, z::FLt) -> g4, vy, z),
\(Cy::Ptr, z::F1Lt) -> g(5, vy, 2))



l.essons Learned

o Efficient performance requires good semantics
e Good semantics comes from logic

o Kinds capture efficient calling conventions



New Goal: a foundation for
functional systems
programming/




