Kinds Are Calling Conventions:
Intensional Static Polymorphism

Paul Downen

POPV, November 14, 2020

Theory and Practice

Of Programming Languages

Theory and Practice

Of Programming Languages

e Goal: Performance

Theory and Practice

Of Programming Languages

» Subgoal: Semantics

Theory and Practice

Of Programming Languages

o Answer: Logic

Compilation Funnel

Source — Intermediate — Target

Compilation Funnel

Source — Intermediate — Target

Compilation Funnel

Source — Intermediate — Target

Desugaring

Compilation Funnel

Source — Intermediate — Target

Desugaring

Code

(Generation

Compilation Funnel

Source — Intermediate — Target

Desugaring

Code

(Generation

Compilation Funnel

Source — Intermediate — Target

Desugaring l q >
Core
Code

Generation
x86

Compilation Funnel

Source — Intermediate — Target

Desugaring l L >
Core

Code Machine

(Generation Primitives

Compilation Funnel

Source — Intermediate — Target

| Efficient
Desugaring | |
‘ V Libraries
Core
Code Machine
Generation Primitives

System I

Workhorse of Functional Compilers

System I

Workhorse of Functional Compilers

Core

System I

Workhorse of Functional Compilers

Core = System F

System I

Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)

System I

Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)
+ Data Types

System I

Workhorse of Functional Compilers

Core = System F (first-class functions, polymorphism)
+ Data Types (Primitives, lists/trees, records)

System I

Workhorse of Functional Compilers

System E (first-class functions, polymorphism)

Core
+ Data Type S (Primitives, lists/trees, records)

+ Type Equality

System I

Workhorse of Functional Compilers

System E (first-class functions, polymorphism)

Core
+ Data Type S (Primitives, lists/trees, records)

+ Type Equality (GADTs, type families, coercions)

System I

Workhorse of Functional Compilers

Core = System E (first-class functions, polymorphism)
+ Data Types (Primitives, lists/trees, records)
+ Type Equality (GADTs, type families, coercions)

T eee

GHC Core*

*In Greek

GHC Core*

*In Greek

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

GHC Core*

*In Greek
I'ype 5 1,0 ::= ...

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

GHC Core*

*In Greek
I'ype 5 1,0 ::= ...

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application
| Aaik.e| et System F: polymorphism & instantiation

GHC Core*

*In Greek
I'ype 5 1,0 ::= ...
Kind>«x = Type
Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aa:k.e|let System F: polymorphism & instantiation

GHC Core*

I'ype 5 1,0 ::= ... “In Greek
Kind>«x = Type
Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application
| Aa:k.e|let System F: polymorphism & instantiation

| /| let xit=dine Literal primitives & let-bindings

GHC Core*

I'ype 5 1,0 ::= ... “In Greek
Kind>«x = Type

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aaik.e| et System F: polymorphism & instantiation

| [|let xit=din e Literal primitives & let-bindings

| case d of {xr = e;...} Data contructor & literal matching

GHC Core*

Type S 1,0 ::= ... Patterns>n::=x|[| K x... “In Greek
Kind>«x = Type

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aa:k.e|let System F: polymorphism & instantiation

| [|let xit=din e Literal primitives & let-bindings

| case d of {xr = e;...} Data contructor & literal matching

GHC Core*

Type S 1,0 ::= ... Patternorm::=x || K x... In Greek

Kind >k = Type
Exprod,e,f::=x|Axit.e| fe A-calculus: variables, functions, application
| Aa:k.eler System F: polymorphism & instantiation
| /| let xit=dine Literal primitives & let-bindings
| case d of {xr = e;...} Data contructor & literal matching

[xle>y Coercion evidence & casting

GHC Core*

Type S 1,0 ::= ... Patterns>n::=x|[| K x... “In Greek
Kind>«x = Type Coercion D y i=refl |y V| yey| ...

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aa:k.e|let System F: polymorphism & instantiation

| [|let xit=din e Literal primitives & let-bindings

| case d of {x—>e;...} Data contructor & literal matching

[y le>y Coercion evidence & casting

GHC Core*

Type S 1,0 ::= ... Patterns>n::=x|[| K x... “In Greek
Kind>«x = Type Coercion D y i=refl |y V| yey| ...

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aa:k.e|let System F: polymorphism & instantiation

| [|let xit=din e Literal primitives & let-bindings

| case d of {xr = e;...} Data contructor & literal matching

|y |e>y Coercion evidence & casting

| tick tk e Profiling & instrumentation

GHC Core*

Type S 1,0 ::= ... Patterns>n::=x|[| K x... “In Greek
Kind>«x = Type Coercion D y i=refl |y V| yey| ...

Expr>d,e,f:=x|Axit.e|fe A-calculus: variables, functions, application

| Aa:k.e|let System F: polymorphism & instantiation

| [|let xit=din e Literal primitives & let-bindings

| case d of {xr = e;...} Data contructor & literal matching

|y |e>y Coercion evidence & casting

| tick tk e Profiling & instrumentation

A real-world programming language in only 6 lines!

Compiling Polymorphism

Statically

Compiling Polymorphism

dup : forall a. (a -> a ->a) ->a -> a Statically
dup f x = f X X

Compiling Polymorphism

Statically

Compiled assembly code:

Compiling Polymorphism

Statically

1. Accept parameters

Compiling Polymorphism

Statically

* f : a -> a -> aisa pointer; read from pointer register 1

Compiling Polymorphism

Statically

* Whereisx : a?

Compiling Polymorphism

Statically

* Assume X is a pointer; read from pointer register 2

Compiling Polymorphism

Statically

2. Pass arguments

Compiling Polymorphism

Statically

* Save f

Compiling Polymorphism

Statically

* Copy X (pointer register 2) to the first argument (pointer register 1)

Compiling Polymorphism

Statically

3. Callf

Compiling Polymorphism

Statically

* How many argumentsdoesf : a -> a -> atake?lsf x x : aacall?a closure?

Compiling Polymorphism

Statically

* Check the arity of f; read runtime closure info, and take appropriate action

Calling Conventions

In Systems Programming Languages

Calling Conventions

In Systems Programming Languages

 (Calls have statically known parameter #s

Calling Conventions

In Systems Programming Languages

* Just store arguments, push return pointer, and jump

Calling Conventions

In Systems Programming Languages

 Call-by-value versus call-by-reference

Calling Conventions

In Systems Programming Languages

* Values may be passed directly, not just pointers

Calling Conventions

In Systems Programming Languages

* Many shapes of values

Calling Conventions

In Systems Programming Languages

* Different sizes of integers and words

Calling Conventions

In Systems Programming Languages

* Built-in floating-point numbers & registers

Calling Conventions

In Systems Programming Languages

* Contiguous arrays and compound structures

Calling Conventions

In Systems Programming Languages

* Checks for calling conventions statically at compile time

Efficient Function Calls

Parameter Passing Techniques

Efficient Function Calls

Parameter Passing Techniques

« Representation — What & Where?

Efficient Function Calls

Parameter Passing Techniques

* Shape of data values

Efficient Function Calls

Parameter Passing Techniques

* Arity — How many arguments?

Efficient Function Calls

Parameter Passing Techniques

* Shape of calling context

Efficient Function Calls

Parameter Passing Techniques

e Levity — When to compute?

Efficient Function Calls

Parameter Passing Techniques

* Aka Evaluation Strategy

Efficient Function Calls

Parameter Passing Techniques

» Goal: A type safe high-level functional IL (System F)
with fine-grained control over efficient calling conventions

The Long Road

To Intensional Static Polymorphism

The Long Road

To Intensional Static Polymorphism

* S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.

* Explicit monomorphic representations; implicit levities.

The Long Road

To Intensional Static Polymorphism

* S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.

* Explicit monomorphic representations; implicit levities.

* R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.

* Explicit polymorphic representations; implicit levities.

The Long Road

To Intensional Static Polymorphism

* S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.
* Explicit monomorphic representations; implicit levities.

* R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
* Explicit polymorphic representations; implicit levities.

* P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry
with Extensional Types.

* Explicit monomorphic arities; implicit levities.

The Long Road

To Intensional Static Polymorphism

* S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a
Non-Strict Functional Language.

* Explicit monomorphic representations; implicit levities.

* R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
* Explicit polymorphic representations; implicit levities.

* P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry
with Extensional Types.
* Explicit monomorphic arities; implicit levities.

* P. Downen, Z.M. Ariola, S. Peyton Jones, and R.A. Eisenberg. 2020. Kinds Are Calling
Conventions.

* Explicit polymorphic representations, arities, and levities.

Representation

Unboxed Types

And Their Representation

Unboxed Types

And Their Representation

* Primitive types:

Unboxed Types

And Their Representation

* Int#, Float#, Char# Wordlo#, Array#...

Unboxed Types

And Their Representation

e Unboxed (Int#, Float#...) or Boxed (Array#)

Unboxed Types

And Their Representation

* Pro: Efficient memory

Unboxed Types

And Their Representation

* Pro: Efficient passing

Unboxed Types

And Their Representation

« Con: Different sizes

Unboxed Types

And Their Representation

e Con: Different locations

S.L. Peyton Jones and J. Launchbury. 1991.

Unboxed Types

And Their Representation

e Con: Different locations

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

dup :: forall a. (a ->a ->a) ->a -> a
dup f Xx = f X X

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

dup :: forall a. (a ->a ->a) ->a -> a
dup f Xx = f X X
(++) | a] -> [a] -> [a]

plusFloat# :: Float# -> Float# -> Float#

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

dup :: forall a. (a ->a ->a) ->a -> a
dup f Xx = f X X
(++) | a] -> [a] -> [a]

plusFloat# :: Float# -> Float# -> Float#
dup (++) [@ . o 3] — read/write pointer to [@ . o 3]

VCISUS

dup addFloat# 1.5 — read/writefloat 1.5

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

dup :: forall a. (a ->a ->a) ->a -> a
dup f Xx = f X X
(++) | a] -> [a] -> [a]

plusFloat# :: Float# -> Float# -> Float#
dup (++) [@ . o 3] — read/write pointer to [@ . o 3]

VCISUS

dup addFloat# 1.5 — read/writefloat 1.5

Assembly code of dup depends on type d!

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

 All polymorphism is uniform

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Generic ‘a’ is always represented as a pointer

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

« Restriction on quantifiers forall a::k. ..

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Special kinds for unboxed types (#)

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* k may be x or x->x but never #

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

« Draconian restriction is unsatisfactory

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Too restrictive: Identical definitions/code repeated for different types
(like error :: String -> a)

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Incompatible with kind polymorphism: forall k::Kind. forall a::k. 777

Representation Polymorphism

Kinds As Representations

Representation Polymorphism

Kinds As Representations

e Generalize a :: « to a :: TYPE r

Representation Polymorphism

Kinds As Representations

* r :: Rep is the representation of a

Representation Polymorphism

Kinds As Representations

* x= [YPE Ptr

Representati()n P()lym Orphism R.A. Eisenberg and S. Peyton Jones. 2017.

Kinds As Representations

* x= [YPE Ptr

Representati()n P()lym Orphism R.A. Eisenberg and S. Peyton Jones. 2017.

Kinds As Representations

error :: forall (a :: x). String -> a

Representati()n P()lym Orphism R.A. Eisenberg and S. Peyton Jones. 2017.

Kinds As Representations

errorInt# :: String -> Int#

Representati()n P()lym Orphism R.A. Eisenberg and S. Peyton Jones. 2017.

Kinds As Representations

errorFloat# :: String -> Float#

Representati()n P()lym Orphism R.A. Eisenberg and S. Peyton Jones. 2017.

Kinds As Representations

Representati()n P()lym Orphism R.A. Eisenberg and S. Peyton Jones. 2017.

Kinds As Representations

error :: forall (r::Rep) (a :: TYPE r). String -> a

Representation Polymorphism

In Function Definitions

Representation Polymorphism

In Function Definitions

revapp :: a -> (a -> b) -> b
revapp X f = f X

Representation Polymorphism

In Function Definitions

revapp :: forall (rl, rZ2 :: Rep)
(a :: TYPE rl) (b::TYPE r2).
a->(a->b) ->b

Representation Polymorphism

In Function Definitions

revapp :: forall (rl, rZ2 :: Rep)
(a :: TYPE rl) (b::TYPE r2).
a->(Ca->b) ->b

Representation Polymorphism

In Function Definitions

revapp :: forall (rl, rZ2 :: Rep)
(a :: TYPE rl) (b::TYPE r2).
a->(Ca->b) ->b

Representation Polymorphism

In Function Definitions

revapp :: forall (rl, rZ2 :: Rep)
(a :: TYPE r1) (b::TYPE r2). X
a->(Ca->b) ->b

Representation Polymorphism

In Function Definitions

revapp :: forall (r :: Rep)
(a :: TYPE Ptr) (b :: TYPE r).
a -> (a->b) ->0b

Representation Polymorphism

In Function Definitions

revapp :: forall (r :: Rep)
(a :: TYPE Ptr) (b :: TYPE r).
a -> (a->b) ->b

Representation Polymorphism

In Function Definitions

X

revapp :: forall (r :: Rep)
(a :: TYPE Ptr) (b :: TYPE r).
a -> (a->b) ->b

Representation Polymorphism

In Function Definitions

X

revapp :: forall (r :: Rep)
(a :: TYPE Ptr) (b :: TYPE r).
a -> (a -> b) -> b Assume tail-call elimination

Representation Polymorphism

In Function Definitions

revapp ::. forall (r :: Rep)
(a :: TYPE Ptr) (b :: TYPE r). ,
a

-> (a -> b) -> b Assume tail-call elimination

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store
representation-polymorphic values

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move oOr store
representation-polymorphic values

* Moving, storing, reading, writing depends on representation

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move oOr store
representation-polymorphic values

* When this happens in assembly depends on the compiler

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store
representation-polymorphic values

* Examples:

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store
representation-polymorphic values

* (\X. .. X ..) reads X

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move oOr store
representation-polymorphic values

* (let x = .. 1n ..) stores and writes X

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move oOr store
representation-polymorphic values

* (f x) moves (reads and writes) X

Efficient Code Abstraction

For Numeric Operations

Efficient Code Abstraction

For Numeric Operations

class Num (a) where
(+) ::a ->a ->a

Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where
(+) ::a ->a ->a

Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

data NumDict (a :: TYPE r) = NumD (a -> a -> a) ..

Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

NumFloat# = NumD addFloat# ..

Efficient Code Abstraction

For Numeric Operations

class Num (a :: TYPE r) where 1nstance Num Float# where
(+) ::a->a->a X + y = addFloat# x vy

v

(+) :: forall (r :: Rep) (a :: TYPE r).
NumDict a -> (a -> a -> a)
(+) (NumD plus ..) = plus

Determining Function Arity Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

Determining Function Arity Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

fl1=\x ->1\y >
let z = expensive Xx

1INy + Z

Determining Function Arity Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

f1=\x ->1\y > Arity 2
let z = expensive Xx

1INy + Z

Determining Function Arity Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

f1=\x ->1\y —> Arity 2 f2 = \x -> f1 X
let z = expensive Xx

1INy + Z

Determining Function Arity
, T4 :: Int -> Int

fl1=\x ->1\y >

f1, f2, f3

let z =

1INy + Z

expensive X

Arity 2

f2

Type suggests arity 2
-> Int

\X -> fl1 X

\X > \y > fl X vy

Determining Function Arity
, T4 :: Int -> Int

fl1=\x ->1\y >

f1, f2, f3

let z =

1INy + Z

expensive X

Arity 2

f2

Type suggests arity 2
-> Int

\Xx -> fl x Arity 2

\X > \y > fl X vy

Determining Function Arity

f1, 2, 3, f4 Int -> Int

f1 =\x ->\y -> Arity 2 f2 =
let z = expensive Xx _
1INy + Z

f3 = \x ->

let z = expensive Xx
1N \y ->VY + Z

Type suggests arity 2
-> Int

\Xx -> fl x Arity 2

\X > \y > fl X vy

Determining Function Arity

f1,

fl =

f3 =

f2, f3, t4 Int -> Int
\X -> \y -> Arity 2 f2 =
let z = expensive Xx _
1INy + Z

\X ->

let z = expensive Xx
1N \y ->VY + Z

Type suggests arity 2
-> Int

\Xx -> fl x Arity 2

\X > \y > fl X vy

Hint: ‘expensive X’ may be costly, or even cause side effects

Determining Function Arity

f1,

fl =

f3 =

f2, f3, t4 Int -> Int
\X -> \y -> Arity 2 f2 =
let z = expensive Xx _
1INy + Z

\X -> Arity 1

let z = expensive Xx
1N \y ->VY + Z

Type suggests arity 2
-> Int

\Xx -> fl x Arity 2

\X > \y > fl X vy

Hint: ‘expensive X’ may be costly, or even cause side effects

Determining Function Arity

f1,

fl =

f3 =

f2, f3, t4 Int -> Int
\X -> \y -> Arity 2 f2 =
let z = expensive Xx _
1INy + Z

\X -> Arity 1 f4 =

let z = expensive Xx
1N \y ->VY + Z

->
\ X
\ X

\ X

Type suggests arity 2

Int
-> f1 x Arity 2

-> \y > fl x vy

-> 3 X

Hint: ‘expensive X’ may be costly, or even cause side effects

Determining Function Arity

f1,

fl =

f3 =

f2, f3, t4 Int -> Int
\X -> \y -> Arity 2 f2 =
let z = expensive x B
1INy + Z)
\X -> Arity 1 f4 =
let z = expensive Xx ”

1N \y ->VY + Z

->
\ X
\ X

\ X
\ X

Type suggests arity 2
Int

-> f1 x Arity 2

-> \y > fl x vy

-> f3 X
-> \y > f3 Xy

Hint: ‘expensive X’ may be costly, or even cause side effects

Determining Function Arity Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

f1=\x ->1\y —> Arity 2 f2 = \x -> f1 X Arity 2
let z = expensive Xx

\X > \y > fl X vy

1INy + Z
f3 = \x -> Arity 1 f4 = \x -> f3 X Arity 1
let z = expensive X = \X -> \y -> f3 x vy

1N \y ->VY + Z

Hint: ‘expensive X’ may be costly, or even cause side effects

What Is Arity?

For Curried Functions

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing
“serious work.”

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing
“serious work.”

» If'f 1 2 3" does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

 If‘f'isequivalentto\x y z -> f x y Z, then ‘f’ has arity 3

What Is Arity?

For Curried Functions

Definition 3. The number of arguments passed simultaneously to a function
during one call.

What Is Arity?

For Curried Functions

Definition 3. The number of arguments passed simultaneously to a function
during one call.

 If ‘f" hasarity 3, then ‘f 1 2 3’ can be implemented as a single call

What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

Definition 3. The number of arguments passed simultaneously to a function
during one call.

Goal: A core language with
unrestricted np for functions

Static Arity

In an Intermediate Language

Static Arity

In an Intermediate Language

* New a ~ b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

Static Arity

In an Intermediate Language

* New a ~ b type of primitive functions (ASCII ‘a ~> b’)
* To distinguish from the source-level a — b with different semantics

 Primitive functions are fully extensional,
unlike source functions

* Ax.f x =, f:a~ b unconditionally

* error “not a function” /= \x -> (error “not a function”) xin Haskell

Static Arity

In an Intermediate Language

* New a ~ b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

 Primitive functions are fully extensional,
unlike source functions

* Ax.f x =, f:a~ b unconditionally

* error “not a function” /= \x -> (error “not a function”) xin Haskell

« With full n, types express arity — just count the arrows

» f: Int » Bool ~ String has arity 2, no matter f’s definition

Static Arity P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019.

In an Intermediate Language

* New a ~ b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

 Primitive functions are fully extensional,
unlike source functions

* Ax.f x =, f:a~ b unconditionally

* error “not a function” /= \x -> (error “not a function”) xin Haskell

« With full n, types express arity — just count the arrows

» f:Int » Bool ~ String has arity 2, no matter f’s definition

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

« What are the arities of f and g? Counting arrows...

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

* f :: Int ~> Int ~> ahasarity2

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

* g :: Int ~> ahasarity1

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

 But whatif a Bool ~> Bool?

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

* f :: Int ~> Int ~> Bool ~> Bool has arity 3...

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

* g :: Int ~> Bool ~> Bool has arity 2... oops...

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

poly :: (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>>a=f 3 1n (g 4, g 5)

« How to statically compile? Is ‘g 4" a call? A partial application?

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

 All polymorphism is uniform

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Generic ‘a’ is always has arity o

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

e Restriction on quantifiers forall a::k. ..

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Special kinds for non-o arity types (~)

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* k may be x or x->% but never ~

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

e Draconian restriction is unsatisfactory

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Too restrictive: Identical definitions/code repeated for different types
(like repeat :: a -> [a]and[] :: * -> %)

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

* Incompatible with kind polymorphism: forall k::Kind. forall a::k. 7?7?77

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

« Wait... this sounds awfully familiar...

Arity Polymorphism

Kinds As Calling Conventions

Arity Polymorphism

. Kinds As Calling Conventions
* Generalizea: :TYPE rtoa::TYPE r v

Arity Polymorphism

Kinds As Calling Conventions

* v::Conv is the calling convention of a

Arity Polymorphism

Kinds As Calling Conventions

* a::TYPE r Call[n] says a has arity n (simplified)

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o0.

Kinds As Calling Conventions

* a::TYPE r Call[n] says a has arity n (simplified)

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o0.

Kinds As Calling Conventions

revapp X f = f x

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

revapp :: forall (vl, vZ2 :: Conv) (r :: Rep)
(a :: TYPE Ptr vl1) (c :: Type r v2).
a~>((a~>Db)~>Db

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

revapp :: forall (vl, vZ2 :: Conv) (r :: Rep)
(a :: TYPE Ptr vl1) (c :: Type r v2).
a~>(a~>Db)~>Db

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

revapp :: forall (vl, vZ2 :: Conv) (r :: Rep)
(a :: TYPE Ptr vl1) (c :: Type r v2).
a~>((a~>Db)~>Db

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

revapp :: forall (vl, vZ2 :: Conv) (r :: Rep)
(a :: TYPE Ptr vl1) (c :: Type r v2).
a~>((a~>Db)~>Db

X

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

X

revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c) (c :: Type r Call[1l]).
a~>((a~>Db)~>Db

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o0.

Kinds As Calling Conventions

X

revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c) (c :: Type r Call[1l]).
a~>(a~>b)~>Db

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o0.

Kinds As Calling Conventions

X

revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c¢) (c :: Type r Call[1]).
a~>(a~>b)~>Db

Arity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c¢) (c :: Type r Call[1]).
a~>(a~>b)~>Db

v

Arity Polymorphism

And Higher-Order Functions

Arity Polymorphism
And Higher-Order Functions

poly :: forall (Ca :: TYPE Ptr Call|Z]).
(Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>~a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

* f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4

Arity Polymorphism

And Higher-Order Functions

* g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

Arity Polymorphism

And Higher-Order Functions

v

* g :: Int ~> a :: TYPE Ptr Call[3] has arity 3

Arity Polymorphism

And Higher-Order Functions

poly :: forall (v :: Conv) (a :: TYPE Ptr v).
(Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

poly :: forall (v :: Conv) (a :: TYPE Ptr v).
(Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

poly :: forall (v :: Conv) (a :: TYPE Ptr v).
(Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

poly :: forall (v :: Conv) (a :: TYPE Ptr v).
(Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

poly :: forall (v :: Conv) (a :: TYPE Ptr v).
(Int ~> Int ~> a) ~> (a,a)
poly f =let g :: Int ~>a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

poly :: forall (v :: Conv) (a :: TYPE Ptr v).
(Int ~> Int ~> a) ~> (a,a)
poly f =let g :: Int ~>a=f 3 1n (g 4, g 5)

Arity Polymorphism

And Higher-Order Functions

v

v :: Conv V
a
g :: Int ~>a =13 g 4, g >

* f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity =2

Arity Polymorphism

And Higher-Order Functions

v

v :: Conv V
a
g :: Int ~>a =13 g 4, g >

* g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity >1

Arity Polymorphism

And Higher-Order Functions

v :: Conv V
a
g :: Int ~>a =13 g 4, g >

X

* g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity >1

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

 Calling and defining function code depends on arity

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

* When this happens in assembly depends on the compiler

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

* Examples:

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

* (let f = \xy z -> .. 1n ..) defines code for f

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

* (\x y -> f y x)callscode at f

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define
arity-polymorphic code

* (f (\x -> ..)) creates code for function pointer passed to f

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a)
= N1l | Cons a (List a)

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a)
= N1l | Cons a (List a)

N1l ::
List a

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a)
= N1l | Cons a (List a)

N1l ::
List a

Cons ::
a~> List a ~> List a

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

N1l ::
List a

Cons ::
a~> List a ~> List a

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

N1l :: forall (v :: Conv) (a :: TYPE Ptr v).
L1st a

Cons ::
a~> List a ~> List a

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

Nil :: forall (v :: Conv) (a ::

List a

Cons :: forall (v :: Conv) (a ::

a~> List a ~> List a

Arity-Polymorphic Data Types

TYPE Ptr v).

TYPE Ptr v).

Primitive Functions are First-Class Values

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

Nil :: forall (v :: Conv) (a ::

List a

Cons :: forall (v :: Conv) (a ::

a~> List a ~> List a

repeat x = Cons x (repeat x)

Arity-Polymorphic Data Types

TYPE Ptr v).

TYPE Ptr v).

Primitive Functions are First-Class Values
Arity-Polymorphic Data Types

data List (a :: TYPE Ptr v)
= N1l | Cons a (List a)

N1l :: forall (v :: Conv) (a :: TYPE Ptr v).
L1st a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v).
a ~> List a ~> List a

repeat x = Cons x (repeat x)

repeat :: forall (v :: Conv) (a :: TYPE Ptr v).
a ~> List a

Efficient and Correct Abstractions
For Higher-Order Type Classes

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f) where
fmap :: (a ->b) > f a->fb

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)
= Read (e ~> a)

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)
= Read (e ~> a)

Lnstance Functor (Reader e) where

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)
= Read (e ~> a)

Lnstance Functor (Reader e) where
fmap f (Read g) = Read (\x ~> f (g x))

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)
= Read (e ~> a)

Lnstance Functor (Reader e) where
fmap f (Read g) = Read (\x ~> f (g x))

* Butnow fmap 1d (Read g) =Read g! (hint: requires n)

Efficient and Correct Abstractions
For Higher-Order Type Classes

class Functor (f :: TYPE r v -> TYPE r’ v’) where
fmap :: (a ->b) > f a->fb

newtype Reader (e :: TYPE r v) (a :: TYPE r’ v’)
= Read (e ~> a)

Lnstance Functor (Reader e) where
fmap f (Read g) = Read (\x ~> f (g x))
* Butnow fmap 1d (Read g) =Read g! (hint: requires n)

* Better for performance and correctness

Levity

Unrestricted n Is Inconsistent With Restricted

In the A-calculus

/lx.Mx=,7M

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1

%

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1

%

S

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1

Unrestricted n Is Inconsistent With Restricted f3

In the A-calculus

/lx.Mx=,7M

/lx.J_xsz_

(Az.5) (Ax. L x) =, (4z.5) 1

Goal: A core language with
unrestricted n for functions and
restricted for other types

Unboxed Data s Eager

Not Lazy

Unboxed Data s Eager

Not Lazy

addFloat# :: Float# ~> Float# ~> Float#

Unboxed Data s Eager

Not Lazy

» Compiles to machine primop for float addition in specialized registers

Unboxed Data s Eager

Not Lazy

let x :: Float# = addFloat# 1.5 3.5 1in ..

Unboxed Data s Eager

Not Lazy

* Compiles to code that stores (1.5 + 3.5) in float register x

Unboxed Data s Eager

Not Lazy

e Can X be lazy?

Unboxed Data s Eager

Not Lazy

addFloat# :: Float# ~> Float# ~> Float#
* Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 1in ..

* Compiles to code that stores (1.5 + 3.5) in float register x

e Can X be lazy?
* No!

Unboxed Data s Eager

Not Lazy

* X stores a floating-point number

Unboxed Data s Eager

Not Lazy

* Lazy thunks must be represented as pointers

Primitive Functions are Called

Not Evaluated

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

 When is expensive 100 evaluated?

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-value: first, before binding f

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-need: later, but only once, when f is first demanded

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’” = let f :: Int ~> Int = \y ~> expensive 100 y 1n ..f..f..

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’” = let f :: Int ~> Int = \y ~> expensive 100 y 1n ..f..f..

* X = X’ byn, sothey must be the same

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’” = let f :: Int ~> Int = \y ~> expensive 100 y 1n ..f..f..

* X’ always follows call-by-name order! So x does, too

Primitive Functions are Called

Not Evaluated
X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’” = let f :: Int ~> Int = \y ~> expensive 100 y 1n ..f..f..

* Primitive functions are never just evaluated; they are always called

When Partial Application Matters

Currying

When Partial Application Matters

f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive X 1n \y ~> y + Z

Currying

When Partial Application Matters

* Because of 1, {3 now has arity 2, not 1!

When Partial Application Matters

* map (f3100) [1..1076] recomputes ‘expensive 100’ a million times ®

When Partial Application Matters

f3° :: Int ~> { Int ~> Int }
f3° = \Xx ~> let z = expensive x 1n Clos (\y ~> vy + z)

Clos :: (Int ~> Int) ~> {Int ~> Intt}

When Partial Application Matters

* f3’is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

Clos :: (Int ~> Int) ~> {Int ~> Intt}

When Partial Application Matters

* map (App (f3’ 100)) [1..1076] computes ‘expensive 100’ only once ©

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int

Levity and Evaluation Strategy

Denotationally and Logically

Levity and Evaluation Strategy

+ A, is the lifted version of A Denotationally and Logically

Levity and Evaluation Strategy

Denotationally and Logically

* A, adds a special, unique value L to A denoting divergent computation

Levity and Evaluation Strategy

Denotationally and Logically

* Eg,N, ={L1,0,1,2,3,...} sothat1/0=1 ,and(A - B), ={ L Ju{ix.f(x) | f€ A - B}

Levity and Evaluation Strategy

Denotationally and Logically

* Unboxed types and primitive functions are unlifted

Levity and Evaluation Strategy

Denotationally and Logically

* Int#=1{0,1,—-1,2,—2,...} andA » B={Ax.f(x) | f € A — B} denotes only real functions

Levity and Evaluation Strategy

Denotationally and Logically

* Lifting implies worse performance (for data, functions)

Levity and Evaluation Strategy

Denotationally and Logically

* Indirection, dynamic checks, multiple function calls/jumps

Levity and Evaluation Strategy

Denotationally and Logically

e Denotation of computations of type Int — Int — Intis:

Levity and Evaluation Strategy

Denotationally and Logically

* Call-by-name: Int;, — Int, — Int,

Levity and Evaluation Strategy

Denotationally and Logically

* Call-by-value: (Int — (Int — Int,),),

Levity and Evaluation Strategy

+ A, is the lifted version of A Denotationally and Logically

* A, adds a special, unique value L to A denoting divergent computation

* Eg,N, ={L1,0,1,23,...} sothat 1/0 =1 ,and(A - B), ={ L }U{ix.f(x) | f€ A - B}

* Unboxed types and primitive functions are unlifted
* Int#={0,1,—1,2,—2,...} andA -» B = {Ax.f(x) | f € A - B} denotes only real functions

* Lifting implies (for data, functions)

* Indirection, dynamic checks, multiple function calls/jumps

« Denotation of computations of type Int — Int — Intis:
* Call-by-name: Int, — Int, — Int,
* Call-by-value: (Int — (Int — Int,),),

* Call-by-push-value: Int — Int — Int,

Levity and Evaluation Strategy

Denotationally and Logically

» Logical polarity reveals the semantics for best performance

Levity Polymorphism

Call vs Eval, Revisited

Levity Polymorphism

Call vs Eval, Revisited

e Code thatisn’t called is evaluated

Levity Polymorphism

Call vs Eval, Revisited

* Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Levity Polymorphism

Call vs Eval, Revisited

* Eval L :: Conv —lazy (call-by-need) evaluation, Lifted values

Levity Polymorphism

Call vs Eval, Revisited

* Eval g :: Conv — polymorphic evaluation, with levity variable g

LeVity P()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

* Eval g :: Conv — polymorphic evaluation, with levity variable g

LeVity p()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g 1ints

LeVity p()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

XS

LeVity p()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

XS

LeVity p()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

XS

LeVity p()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

XS

LeVity p()lym Orphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

XS

Levity Polymorphism

sum ::
sum ||

sum (X :

forall (gl g2 ::

XS)

0
X + sum

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o0.

Call vs Eval, Revisited

Levity). [Int gl] ~> Int gZ

9

XS

LeVity P()lymorphism P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 202o.

Call vs Eval, Revisited

e Code thatisn’t called is evaluated

* Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
* Eval L :: Conv —lazy (call-by-need) evaluation, Lifted values
* Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g 1ints

sum :: forall (gl g2 :: Levity). [Int gl] ~> Int gZ
sum | | = 0
sum (X : XS) = X + sum XS 0

sum (I# z : xs) = case sum xs of I# vy > I# (z +# y)

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

« Evaluation order of serious arguments and Lets depends on levity

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

« What counts as “serious computation” depends on the compiler

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

e Examples:

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

* (lLet x = expensive 100 1in ..) binds x to expensive 100

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass
levity-polymorphic computations

* (f (expensive 100)) passes expensive 100to f

Code Reuse

Between Eager and Lazy Programs

Code Reuse
Between Eager and Lazy Programs

data List (.. TYPE Ptr v) ::
= N1l | Cons a (List g

Code Reuse
Between Eager and Lazy Programs

data List (g :: Levity) (a :: TYPE Ptr v) ::
= N1l | Cons a (List g a)

Code Reuse
Between Eager and Lazy Programs

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)
= N1l | Cons a (List g a)

Code Reuse

Between Eager and Lazy Programs

foldl :: (b ~> a ~>b) ~> b ~> List 7 a ~> b
foldl f z N1l = z
foldl f z (Cons x xs) = foldl f (f z x) xs

Code Reuse

Between Eager and Lazy Programs

foldl :: forall (v :: Conv) (g :: Levity)
(a :: TYPE Ptr v) (b :: x).
(b ~>a~>b) ~>b ~ List ga~>Db

Code Reuse

Between Eager and Lazy Programs

foldl’ f z N1l = z
foldl’ f z (Cons x xs) = let 22 = f z x 1n foldl’ f z’ xs

Code Reuse

Between Eager and Lazy Programs

foldl’ :: forall (v :: Conv) (g, g’ :: Levity)
(a :: TYPE Ptr v) (b :: TYPE Ptr (Eval g’)).
(b ~>a~>b) ~b~ Listga-~>Db

Compilation

If it type checks,
it can be compiled.

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. ICFP 2020.

Static Compilation

To the Machine

Static Compilation

To the Machine

* Only basic types (pointer, integer, float); no polymorphism

Static Compilation

To the Machine

* Only fully saturated functions and calls

Static Compilation

To the Machine

poly :: forall a::TYPE Ptr Call[Z2]. (Int~>Int~>a) ~> (a,a)
poly f = let g :: Int ~>a=f 3
in (g 4, g 5)

Static Compilation

To the Machine

poly :: forall a::TYPE Ptr Call[Z2]. (Int~>Int~>a) ~> (a,a)
poly f = let g :: Int ~>a=f 3

in (g 4, g 3)

Static Compilation

To the Machine

2

poly = \(f::Ptr) ~>

Static Compilation

To the Machine

2

let g::Ptr = \(X::Ptr, y::7, z::7) ~> f(3, X, y, Z)

Static Compilation
With Polymorphic n-Expansion

Static Compilation
With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,FLt].
(Int ~> Int ~> a) ~> (a, a)

poly f = let g :: Int ~>a =1 3
in (g 4, g)

Static Compilation
With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,FLt].
(Int ~> Int ~> a) ~> (a, a)

poly f = let g :: Int ~>a =1 3
in (g 4, g)

2

Static Compilation
With Polymorphic n-Expansion

2

poly = \(f::Ptr) ~>

Static Compilation
With Polymorphic n-Expansion

2

let g::Ptr = \(x::Ptr, y::Ptr, z::FLt) ~> f(3,x,y,2)

Static Compilation
With Polymorphic n-Expansion

2

in (\Cy::Ptr, z::FLt) -> g4, vy, z),
\(Cy::Ptr, z::F1Lt) -> g(5, vy, 2))

l.essons Learned

o Efficient performance requires good semantics
e Good semantics comes from logic

o Kinds capture efficient calling conventions

New Goal: a foundation for
functional systems
programming/

