
Controlling Copatterns
There and Back Again

Paul Downen
University of Massachusetts Lowell

OlivierFest — Wednesday, October 15, 2025

The Context

Quick Primer on Copatterns
In Scheme / Racket

Defining the 2× 2 matrix

quad =

[
1 2
3 4

]
as the nested pair ((1, 2), (3, 4)) by copattern matching:

(define*
[((quad ‘fst) ‘fst) = 1]
[((quad ‘fst) ‘snd) = 2]
[((quad ‘snd) ‘fst) = 3]
[((quad ‘snd) ‘snd) = 4])

Mixing Copatterns of Different Depths
Like a “wildcard” for bigger contexts

Overriding the diagonals (upper left, lower right):

(
diag x y

[
a b
c d

])
=

[
x b
c y

]
(define*
[(((diag x y z) ‘fst) ‘fst) = x]
[(((diag x y z) ‘snd) ‘snd) = y]
[(diag x y z) = z])

is equivalent to (using equational reasoning) expanding the remaining options

(define*
[(((diag x y z) ‘fst) ‘fst) = x]
[(((diag x y z) ‘snd) ‘snd) = y]
[(((diag x y z) ‘fst) ‘snd) = ((z ‘fst) ‘snd)]
[(((diag x y z) ‘snd) ‘fst) = ((z ‘snd) ‘fst)])

Composable Copatterns
Combining programs along different dimensions

• Programs defined by equational reasoning on their context (à la ML, Haskell)

• Composition of extensible fragments at run-time
• Vertical — either or — compose alternative options, handling failure

• Horizontal — and then — compose sequence of steps, parameters, matching, guards

• Circular — self — recursion back on the entire composition itself

• Side benefit: supports infinite objects, some OO-style designs

An Equational Arithmetic Evaluator
Is this ML, or Scheme?

; Expr = number | `(add ,Expr ,Expr) | `(mul ,Expr ,Expr)

; expr0 : Expr
(define expr0 ‘(add 1 (mul 2 3)))

; (arith `eval Expr) : number
(define-object
[(arith ‘eval n) (try-if (number? n))
= n]
[(arith ‘eval ‘(add ,l ,r))
= (+ (arith ‘eval l) (arith ‘eval r))]
[(arith ‘eval ‘(mul ,l ,r))
= (* (arith ‘eval l) (arith ‘eval r))])

(arith ‘eval expr0) = 7

Extending Evaluation with a New Operator
The wrong way

; Expr = ... | `(neg ,Expr)

; expr1 : Expr
(define expr1 ‘(add 1 (neg (mul 2 3))))

(define-object
[(arith-wrong ‘eval ‘(neg ,e))
= (- (arith-wrong ‘eval e))]
[(arith-wrong ‘eval e) = (arith ‘eval e)])

(arith-wrong ‘eval expr1)
=
(+ 1 (arith ‘eval ‘(neg (mul 2 3))))
=/=

Extending Evaluation with a New Operator
The correct way, using vertical composition

; Expr = ... | `(neg ,Expr)

; expr1 : Expr
(define expr1 ‘(add 1 (neg (mul 2 3))))

Correct vertical composition:
; (arith-ext `eval Expr) : number
(define arith-ext
(arith ‘compose
(object
[(self ‘eval ‘(neg ,e))
= (- (self ‘eval e))])))

(arith-ext ‘eval expr1)
=
(+ 1 (arith-ext ‘eval ‘(neg (mul 2 3))))
=
-5

Understanding the Result of Composition
Using equational reasoning

Expanding the vertical composition:

(define-object
[(arith-ext ‘eval n) (try-if (number? n))
= n]
[(arith-ext ‘eval ‘(add ,l ,r))
= (+ (arith-ext ‘eval l) (arith-ext ‘eval r))]
[(arith-ext ‘eval ‘(mul ,l ,r))
= (* (arith-ext ‘eval l) (arith-ext ‘eval r))]
[(arith-ext ‘eval ‘(neg ,e))
= (- (arith-ext ‘eval e))])

How DoWe Extend Arithmetic to Algebra?
A more serious extension, needs another parameter

; Expr = ... | symbol

; expr2 : Expr
(define expr2 ‘(add x (neg (mul 2 y))))

; Env = ((symbol . number) ...)

; env-xy : Env
(define env-xy ‘((x . 10) (y . 20)))

(define-object alg ...?)

Extending the Evaluator with an Environment!
Is this functional, or object-oriented?

; ((with-env Env) `env) : Env
(define (with-env dict)
(object [(_ ‘env) = dict]))

; ((alg Env) `env) : Env
; ((alg Env) `eval Expr) : number
(define (alg dict)
(arith-ext ‘compose
(with-env dict)
(object
[(self ‘eval x) (try-if (symbol? x))
= (dict-ref (self ‘env) x)])))

((alg env-xy) ‘eval expr0) = 7
((alg env-xy) ‘eval expr1) = -5
((alg env-xy) ‘eval expr2) = -30

The Problem

Understanding Compositional Copatterns
The story so far

• Compositional copatterns implemented as Scheme / Racket macros

• For free: semantics as (selective) CPS

• This gives some rules for equational reasoning. . .

• . . . but not enough to calculate every answer

• Really need a standard operational semantics
• Reason about copattern-matching programs directly (no translation)

• State and prove type safety problems

Understanding Compositional Copatterns
The story so far

• Compositional copatterns implemented as Scheme / Racket macros

• For free: semantics as (selective) CPS

• This gives some rules for equational reasoning. . .
• . . . but not enough to calculate every answer

• Really need a standard operational semantics
• Reason about copattern-matching programs directly (no translation)

• State and prove type safety problems

Operational Semantics of Compositional Copatterns
What to do, what to do. . . ?

How the heck to deal with all the recursive
generality and edge cases?!

Oh wait! I remember! Olivier taught me
exactly how to deal with this kind of thing!

Operational Semantics of Compositional Copatterns
What to do, what to do. . . ?

How the heck to deal with all the recursive
generality and edge cases?!

Oh wait! I remember! Olivier taught me
exactly how to deal with this kind of thing!

The Unity of Semantic Artifacts

• Technique for mechanically deriving one style of semantics from another

• Using only off-the-shelf, semantics-preserving program transformations

• Correspondence between semantic artifacts for free!

• Many good intros: “A Walk in the Semantic Park”1 is quite refreshing

• This was a key part of my second academic paper:

Classical Call-by-Need Sequent Calculi:
The Unity of Semantic Artifacts

Zena M. Ariola1, Paul Downen1, Hugo Herbelin2, Keiko Nakata3,
and Alexis Saurin2

1 University of Oregon
{ariola,pdownen}@cs.uoregon.edu

2 CNRS, PPS UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, PiR2, INRIA
Paris Rocquencourt, F-75205 Paris, France

{herbelin,saurin}@pps.jussieu.fr
3 Institute of Cybernetics, Tallinn University

keiko@cs.ioc.ee

Abstract. We systematically derive a classical call-by-need sequent cal-
culus, which does not require an unbounded search for the standard re-
dex, by using the unity of semantic artifacts proposed by Danvy et al.
The calculus serves as an intermediate step toward the generation of an
environment-based abstract machine. The resulting abstract machine is
context-free, so that each step is parametric in all but one component.
The context-free machine elegantly leads to an environment-based CPS
transformation. This transformation is observationally different from a
natural classical extension of the transformation of Okasaki et al., due
to duplication of un-evaluated bindings.

Keywords: call-by-need, lazy evaluation, duality of computation,
sequent calculus, λµ-calculus, classical logic, control.

1 Introduction

Lazy languages such as Haskell use the call-by-need evaluation model. It has been
formalized by Ariola et al. [1] and Maraist et al. [7], and while their equational
theory differs, the calculi are observationally equivalent. Both Garcia et al. [6]
and Danvy et al. [5] present abstract machines that implement the standard call-
by-need reduction. The two machines are observationally the same — however,
they differ substantially in their construction. Danvy et al. derive an abstract
machine systematically from the standard reduction using correctness-preserving
program transformations, and thus the resulting abstract machine is correct by
construction.

Classical call-by-need, an extension of call-by-need with control operators,
was introduced by Ariola et al. [3]. Unlike minimal call-by-need (without control
operators), the classical extension does not preserve observational equivalence
with call-by-name. Consider the evaluation of Example 1 below.

T. Schrijvers and P. Thiemann (Eds.): FLOPS 2012, LNCS 7294, pp. 32–46, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Classical Call-by-Need Sequent Calculi:
The Unity of Semantic Artifacts

Zena M. Ariola1, Paul Downen1, Hugo Herbelin2, Keiko Nakata3,
and Alexis Saurin2

1 University of Oregon
{ariola,pdownen}@cs.uoregon.edu

2 CNRS, PPS UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, PiR2, INRIA
Paris Rocquencourt, F-75205 Paris, France

{herbelin,saurin}@pps.jussieu.fr
3 Institute of Cybernetics, Tallinn University

keiko@cs.ioc.ee

Abstract. We systematically derive a classical call-by-need sequent cal-
culus, which does not require an unbounded search for the standard re-
dex, by using the unity of semantic artifacts proposed by Danvy et al.
The calculus serves as an intermediate step toward the generation of an
environment-based abstract machine. The resulting abstract machine is
context-free, so that each step is parametric in all but one component.
The context-free machine elegantly leads to an environment-based CPS
transformation. This transformation is observationally different from a
natural classical extension of the transformation of Okasaki et al., due
to duplication of un-evaluated bindings.

Keywords: call-by-need, lazy evaluation, duality of computation,
sequent calculus, λµ-calculus, classical logic, control.

1 Introduction

Lazy languages such as Haskell use the call-by-need evaluation model. It has been
formalized by Ariola et al. [1] and Maraist et al. [7], and while their equational
theory differs, the calculi are observationally equivalent. Both Garcia et al. [6]
and Danvy et al. [5] present abstract machines that implement the standard call-
by-need reduction. The two machines are observationally the same — however,
they differ substantially in their construction. Danvy et al. derive an abstract
machine systematically from the standard reduction using correctness-preserving
program transformations, and thus the resulting abstract machine is correct by
construction.

Classical call-by-need, an extension of call-by-need with control operators,
was introduced by Ariola et al. [3]. Unlike minimal call-by-need (without control
operators), the classical extension does not preserve observational equivalence
with call-by-name. Consider the evaluation of Example 1 below.

T. Schrijvers and P. Thiemann (Eds.): FLOPS 2012, LNCS 7294, pp. 32–46, 2012.
© Springer-Verlag Berlin Heidelberg 2012

1Olivier Danvy, Jacob Johannsen, and Ian Zerny, PEPM 2011.

The Unity of Semantic Artifacts

• Technique for mechanically deriving one style of semantics from another

• Using only off-the-shelf, semantics-preserving program transformations

• Correspondence between semantic artifacts for free!

• Many good intros: “A Walk in the Semantic Park”1 is quite refreshing

• This was a key part of my second academic paper:

Classical Call-by-Need Sequent Calculi:
The Unity of Semantic Artifacts

Zena M. Ariola1, Paul Downen1, Hugo Herbelin2, Keiko Nakata3,
and Alexis Saurin2

1 University of Oregon
{ariola,pdownen}@cs.uoregon.edu

2 CNRS, PPS UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, PiR2, INRIA
Paris Rocquencourt, F-75205 Paris, France

{herbelin,saurin}@pps.jussieu.fr
3 Institute of Cybernetics, Tallinn University

keiko@cs.ioc.ee

Abstract. We systematically derive a classical call-by-need sequent cal-
culus, which does not require an unbounded search for the standard re-
dex, by using the unity of semantic artifacts proposed by Danvy et al.
The calculus serves as an intermediate step toward the generation of an
environment-based abstract machine. The resulting abstract machine is
context-free, so that each step is parametric in all but one component.
The context-free machine elegantly leads to an environment-based CPS
transformation. This transformation is observationally different from a
natural classical extension of the transformation of Okasaki et al., due
to duplication of un-evaluated bindings.

Keywords: call-by-need, lazy evaluation, duality of computation,
sequent calculus, λµ-calculus, classical logic, control.

1 Introduction

Lazy languages such as Haskell use the call-by-need evaluation model. It has been
formalized by Ariola et al. [1] and Maraist et al. [7], and while their equational
theory differs, the calculi are observationally equivalent. Both Garcia et al. [6]
and Danvy et al. [5] present abstract machines that implement the standard call-
by-need reduction. The two machines are observationally the same — however,
they differ substantially in their construction. Danvy et al. derive an abstract
machine systematically from the standard reduction using correctness-preserving
program transformations, and thus the resulting abstract machine is correct by
construction.

Classical call-by-need, an extension of call-by-need with control operators,
was introduced by Ariola et al. [3]. Unlike minimal call-by-need (without control
operators), the classical extension does not preserve observational equivalence
with call-by-name. Consider the evaluation of Example 1 below.

T. Schrijvers and P. Thiemann (Eds.): FLOPS 2012, LNCS 7294, pp. 32–46, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Classical Call-by-Need Sequent Calculi:
The Unity of Semantic Artifacts

Zena M. Ariola1, Paul Downen1, Hugo Herbelin2, Keiko Nakata3,
and Alexis Saurin2

1 University of Oregon
{ariola,pdownen}@cs.uoregon.edu

2 CNRS, PPS UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, PiR2, INRIA
Paris Rocquencourt, F-75205 Paris, France

{herbelin,saurin}@pps.jussieu.fr
3 Institute of Cybernetics, Tallinn University

keiko@cs.ioc.ee

Abstract. We systematically derive a classical call-by-need sequent cal-
culus, which does not require an unbounded search for the standard re-
dex, by using the unity of semantic artifacts proposed by Danvy et al.
The calculus serves as an intermediate step toward the generation of an
environment-based abstract machine. The resulting abstract machine is
context-free, so that each step is parametric in all but one component.
The context-free machine elegantly leads to an environment-based CPS
transformation. This transformation is observationally different from a
natural classical extension of the transformation of Okasaki et al., due
to duplication of un-evaluated bindings.

Keywords: call-by-need, lazy evaluation, duality of computation,
sequent calculus, λµ-calculus, classical logic, control.

1 Introduction

Lazy languages such as Haskell use the call-by-need evaluation model. It has been
formalized by Ariola et al. [1] and Maraist et al. [7], and while their equational
theory differs, the calculi are observationally equivalent. Both Garcia et al. [6]
and Danvy et al. [5] present abstract machines that implement the standard call-
by-need reduction. The two machines are observationally the same — however,
they differ substantially in their construction. Danvy et al. derive an abstract
machine systematically from the standard reduction using correctness-preserving
program transformations, and thus the resulting abstract machine is correct by
construction.

Classical call-by-need, an extension of call-by-need with control operators,
was introduced by Ariola et al. [3]. Unlike minimal call-by-need (without control
operators), the classical extension does not preserve observational equivalence
with call-by-name. Consider the evaluation of Example 1 below.

T. Schrijvers and P. Thiemann (Eds.): FLOPS 2012, LNCS 7294, pp. 32–46, 2012.
© Springer-Verlag Berlin Heidelberg 2012

1Olivier Danvy, Jacob Johannsen, and Ian Zerny, PEPM 2011.

Two Roads Through the Semantic Woods

And I had to take the one less traveled by

Search & Reduce

Operational Semantics

Abstract Machine

CPS Transformation

CPS
Defunctionalize
Simplify

Loop Fusion
Simplify
Deforest

Shallow patterns
Denotational style
Refunctionalize

Loop fission
Expand
Reforest

Inline & fusion
Syntactic style
Defunctionalize

Two Roads Through the Semantic Woods
And I had to take the one less traveled by

Search & Reduce

Operational Semantics

Abstract Machine

CPS Transformation

CPS
Defunctionalize
Simplify

Loop Fusion
Simplify
Deforest

Shallow patterns
Denotational style
Refunctionalize

Loop fission
Expand
Reforest

Inline & fusion
Syntactic style
Defunctionalize

Two Roads Through the Semantic Woods
And I had to take the one less traveled by

Search & Reduce

Operational Semantics

Abstract Machine

CPS Transformation

CPS
Defunctionalize
Simplify

Loop Fusion
Simplify
Deforest

Shallow patterns
Denotational style
Refunctionalize

Loop fission
Expand
Reforest

Inline & fusion
Syntactic style
Defunctionalize

The Solution

A Round-Trip in the Semantic Park
Taking the easy path to retrace our steps

• “Reforestation” and loop “fission” are hard

• Why? They undo lossy transformations
• Loop fusion destroys the inner loops

• Deforestation destroys intermediate data structures

• It helps to see what was lost to restore it

• Trick: First take the easy “forward” path from a similar starting point to light the way
for the trip back

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

»

[N/x](
if C = Lj

»

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

»

[N/x]

)

Writing an Algorithm for Small Steps

-- Syntax
data Term i a -- `i` represents literal index, `a` represents variable
data Copattern i a
type Question i a = Copattern i (Term i a) -- copattern-shaped contexts

-- Reduction
data Redex i a = Respond [Option i a] | FreeVar a
data Reduct i a = Reduced (Term i a) | Unhandled | Unknown a
data Followup i a = Next (Reduct i a) (Question i a)

| More (Copattern i a) (Term i a)
[Option i a] (Question i a)

reduce :: (Eq i, Eq a) => Redex i a -> Question i a -> Followup i a

-- Search
data Found i a = Asked (Redex i a) (Question i a)

search :: Term i a -> Found i a

Writing an Algorithm for Small Steps

-- Syntax
data Term i a -- `i` represents literal index, `a` represents variable
data Copattern i a
type Question i a = Copattern i (Term i a) -- copattern-shaped contexts

-- Reduction
data Redex i a = Respond [Option i a] | FreeVar a
data Reduct i a = Reduced (Term i a) | Unhandled | Unknown a
data Followup i a = Next (Reduct i a) (Question i a)

| More (Copattern i a) (Term i a)
[Option i a] (Question i a)

reduce :: (Eq i, Eq a) => Redex i a -> Question i a -> Followup i a

-- Search
data Found i a = Asked (Redex i a) (Question i a)

search :: Term i a -> Found i a

Writing an Algorithm for Small Steps

-- Syntax
data Term i a -- `i` represents literal index, `a` represents variable
data Copattern i a
type Question i a = Copattern i (Term i a) -- copattern-shaped contexts

-- Reduction
data Redex i a = Respond [Option i a] | FreeVar a
data Reduct i a = Reduced (Term i a) | Unhandled | Unknown a
data Followup i a = Next (Reduct i a) (Question i a)

| More (Copattern i a) (Term i a)
[Option i a] (Question i a)

reduce :: (Eq i, Eq a) => Redex i a -> Question i a -> Followup i a

-- Search
data Found i a = Asked (Redex i a) (Question i a)

search :: Term i a -> Found i a

A few moments later . . .

The Derived CPS Transformation
A Journey of Small Steps to the Land of Continuations

Applicative forms look like normal CBN CPS:

JxK = x
JM NK = λk. JMK (JNK, k)
JM XK = λk. JMK (X k)

λs begin copattern-matching various options against the continuation:

Jλ{ε}K = λk. k
Jλ{L → M | L′ → M′...}K = λk. JL → MK k Jλ{L′ → M′...}K k

The Derived CPS Transformation
A Journey of Small Steps to the Land of Continuations

Copatterns match on the given continuation:

Jε → NK = λq.λf . JNK
Jx L → NK = rec r = λq.λf .λk.

case k of (x, k′) → JL → NK q f k′
() → r q f
k → f q

JX L → NK = rec r = λq.λf .λk.
case k of (X k′) → JL → NK q f k′

() → r q f
k → f q

• If the question is too short, check again when given more continuation

• On successful match, keep checking the rest of the continuation

• On a mismatch failure, reset to original question and try next option

The Derived CPS Transformation
A Journey of Small Steps to the Land of Continuations

Copatterns match on the given continuation:

Jε → NK = λq.λf . JNK
Jx L → NK = rec r = λq.λf .λk.

case k of (x, k′) → JL → NK q f k′
() → r q f
k → f q

JX L → NK = rec r = λq.λf .λk.
case k of (X k′) → JL → NK q f k′

() → r q f
k → f q

• If the question is too short, check again when given more continuation

• On successful match, keep checking the rest of the continuation

• On a mismatch failure, reset to original question and try next option

The Derived CPS Transformation
A Journey of Small Steps to the Land of Continuations

Copatterns match on the given continuation:

Jε → NK = λq.λf . λk.JNK k
Jx L → NK = rec r = λq.λf .λk.

case k of (x, k′) → JL → NK q f k′
() → r q f
k → f q

JX L → NK = rec r = λq.λf .λk.
case k of (X k′) → JL → NK q f k′

() → r q f
k → f q

• If the question is too short, check again when given more continuation

• On successful match, keep checking the rest of the continuation

• On a mismatch failure, reset to original question and try next option

Bridging the Gap between Monolithic & Compositional
A Short Rest Among the Lambdas

Equational reasoning to “clean up” the CPS to resemble compositional copattern macros:

• Delimiting the context
• Add an explicit “end of message” marker (M ! R) at the end of the question
• Avoids confusion between “not enough context” versus “question too short”

• Nesting copatterns
• Regroup copatterns (L → M) to single steps that lean to the right (O)
• Add an explicit “alternative” (O ?M) for when matching fails

• Eliminate redundancy
• Instead of passing failure+alternative+success continuations, fold failure into alternative
• Jλ{L → M | L′ → M′...}K = λk. JL → MK k Jλ{L′ → M′...}K k

• Regain proper CPS through double-barrel continuations (like Shift+Reset)

Bridging the Gap between Monolithic & Compositional
A Short Rest Among the Lambdas

Equational reasoning to “clean up” the CPS to resemble compositional copattern macros:

• Delimiting the context
• Add an explicit “end of message” marker (M ! R) at the end of the question
• Avoids confusion between “not enough context” versus “question too short”

• Nesting copatterns
• Regroup copatterns (L → M) to single steps that lean to the right (O)
• Add an explicit “alternative” (O ?M) for when matching fails

• Eliminate redundancy
• Instead of passing failure+alternative+success continuations, fold failure into alternative
• Jλ{L → M | L′ → M′...}K = λk. JL → MK

k

Jλ{L′ → M′...}K k

• Regain proper CPS through double-barrel continuations (like Shift+Reset)

A Calculus for Compositional Copatterns with Control

Response ∋ R ::= q | ε | M ! R
Term ∋ M,N ::= x | M N | M X | M. | raise | O ?M | !q → R
Option ∋ O ::= x → O | X → O | ?x → M

Old monolithic syntax now just sugar (proved correct by CPS!) on smaller primitives:

λ{O1 | · · · | On} := O1 ? (· · · ? (On ? raise))
ε → M := ?_ → M

(x L) → O := x → (L → O)
(X L) → O := X → (L → O)

But smaller primitives now give more functionality, such as vertical composition

object O := λ{O | self Open → λ{x → O ? x}}
compose := λo o′ → object {?x → o.Open(o′.Open x)}

compose object{O} object{O′} = object{O | O′}

A Calculus for Compositional Copatterns with Control

Response ∋ R ::= q | ε | M ! R
Term ∋ M,N ::= x | M N | M X | M. | raise | O ?M | !q → R
Option ∋ O ::= x → O | X → O | ?x → M

Old monolithic syntax now just sugar (proved correct by CPS!) on smaller primitives:

λ{O1 | · · · | On} := O1 ? (· · · ? (On ? raise))
ε → M := ?_ → M

(x L) → O := x → (L → O)
(X L) → O := X → (L → O)

But smaller primitives now give more functionality, such as vertical composition

object O := λ{O | self Open → λ{x → O ? x}}
compose := λo o′ → object {?x → o.Open(o′.Open x)}

compose object{O} object{O′} = object{O | O′}

A few moments later . . .

The Derived Operational Semantics
The Return Voyage Back to Direct Style

(?x → N) ?M 7→ N [M/x]
((x → O) ?M) N 7→ O[N/x] ? (M N)
((X → O) ?M) X 7→ O ? (M X)

(P ?M) X 7→ M X (otherwise)
(P ?M) N 7→ M N (otherwise)

E[!k → R] ! ε 7→ R[(E[raise] ! ε)/k]
M ! (E[raise] ! ε) 7→ E[M] ! ε

(P ?M) ! ε 7→ M ! ε

The Denouement

Thank You, Olivier!

• We met when I was but a green Ph.D. student

• Your generosity has taught me much

• I’m happy the influence is still alive today!

If you want to play with these toys for yourself
Semantic derivations & examples

https://github.com/
pdownen/derive-copat

Copatterns for Racket & R6RS

https://github.com/
pdownen/CoScheme

https://github.com/pdownen/derive-copat
https://github.com/pdownen/derive-copat
https://github.com/pdownen/CoScheme
https://github.com/pdownen/CoScheme

	The Context
	The Problem
	The Solution
	The Denouement

