CONTROLLING COPATTERNS

THERE AND BACK AGAIN

Paul Downen

University of Massachusetts Lowell

OlivierFest — Wednesday, October 15, 2025

THE CONTEXT

Quick PRIMER ON COPATTERNS

Defining the 2 x 2 matrix

1 2
d=

as the nested pair ((1,2),(3,4)) by copattern matching:

(define*
[((quad ‘fst) ‘fst) = 1]
[((quad ‘fst) ‘snd) = 2]
[((quad ‘snd) ‘fst) = 3]
[((quad ‘snd) ‘snd) = 4])

IN SCHEME / RACKET

MIXING COPATTERNS OF DIFFERENT DEPTHS

LIKE A “WILDCARD” FOR BIGGER CONTEXTS

b b
Overriding the diagonals (upper left, lower right): <diag [a] > = []
c

c d
(define*
[(((diag x y z) ‘fst) ‘fst) = x]
[(((diag x vy z) ‘snd) ‘snd) = y]
[(diag x y 2z) =z])

is equivalent to (using equational reasoning) expanding the remaining options

(define*
[(((diag x y z) ‘fst) ‘fst) = x]
[(((diag x y z) ‘snd) ‘snd) = y]
[(((diag x y z) ‘fst) ‘snd) = ((z ‘fst) ‘snd)]
[(((diag x y z) ‘snd) ‘fst) = ((z ‘snd) ‘fst)])

CompPOSABLE COPATTERNS

COMBINING PROGRAMS ALONG DIFFERENT DIMENSIONS

» Programs defined by equational reasoning on their context (a la ML, Haskell)

» Composition of extensible fragments at run-time

. — either or — compose alternative options, handling failure
. — and then — compose sequence of steps, parameters, matching, guards
. — self — recursion back on the entire composition itself

- Side benefit: supports infinite objects, some OO-style designs

AN EQUATIONAL ARITHMETIC EVALUATOR

Is THIS ML, OR SCHEME?

; Expr = number | "~(add ,Expr ,Expr) | “(mul ,Expr ,EXpr)

; expr0 : EXpr
(define expr0 ‘(add 1 (mul 2 3)))

; (arith “eval Expr) : number
(define-object
[(arith ‘eval n) (try-if (number? n))
:n]
[(arith ‘eval ‘(add ,1 ,r))
= (+ (arith ‘eval 1) (arith ‘eval r))]
[(arith ‘eval ‘(mul ,1 ,r))
= (* (arith ‘eval 1) (arith ‘eval r))])

(arith ‘eval expr0) = 7

EXTENDING EVALUATION WITH A NEW OPERATOR

THE WRONG WAY

; Expr = ... | “(neg ,Expr)
; exprl : EXpr
(define expr1l ‘(add 1 (neg (mul 2 3))))

(define-object
[(arith-wrong ‘eval ‘(neg ,e))
= (- (arith-wrong ‘eval e))]
[(arith-wrong ‘eval e) = (arith ‘eval e)])

(arith-wrong ‘eval exprl)

E+ 1 (arith ‘eval ‘(neg (mul 2 3))))
=/=

EXTENDING EVALUATION WITH A NEW OPERATOR

THE CORRECT WAY, USING VERTICAL COMPOSITION

; Expr = ... | “(neg ,Expr)

; exprl : EXpr
(define exprl ‘(add 1 (neg (mul 2 3))))

Correct vertical composition:

; (arith-ext ‘eval Expr) : number
(define arith-ext
(arith ‘compose
(object
[(self ‘eval ‘(neg ,e))
= (- (self ‘eval e))])))

(arith-ext ‘eval exprl)
(+ 1 (arith-ext ‘eval ‘(neg (mul 2 3))))
-5

UNDERSTANDING THE RESULT OF COMPOSITION

USING EQUATIONAL REASONING

Expanding the vertical composition:

(define-object
[(arith-ext ‘eval n) (try-if (number? n))
= nj
[(arith-ext ‘eval ‘(add ,1 ,r))
= (+ (arith-ext ‘eval 1) (arith-ext ‘eval r))]
[(arith-ext ‘eval ‘(mul ,1 ,r))
= (* (arith-ext ‘eval 1) (arith-ext ‘eval r))]
[(arith-ext ‘eval ‘(neg ,e))
= (- (arith-ext ‘eval e))])

How Do WE EXTEND ARITHMETIC TO ALGEBRA?

A MORE SERIOUS EXTENSION, NEEDS ANOTHER PARAMETER

; Expr = ... | symbol

; expr2 : EXpr
(define expr2 ‘(add x (neg (mul 2 y))))

; Env = ((symbol . number) ...)

; env-xy : Env
(define env-xy ‘((x . 10) (y . 20)))

(define-object alg ...?)

EXTENDING THE EVALUATOR WITH AN ENVIRONMENT!

; ((with-env Env) ‘env) : Env
(define (with-env dict)
(object [(_ ‘env) = dict]))

; ((alg Env) ‘“env) : Env
; ((alg Env) ‘eval Expr) : number
(define (alg dict)

(arith-ext ‘compose

(with-env dict)

(object

[(self ‘eval x) (try-if (symbol? x))
= (dict-ref (self ‘env) x)])))

((alg env-xy) ‘eval expr0) = 7
((alg env-xy) ‘eval exprl) = -5
((alg env-xy) ‘eval expr2) = -30

IS THIS FUNCTIONAL, OR OBJECT-ORIENTED?

THE PROBLEM

UNDERSTANDING COMPOSITIONAL COPATTERNS

THE STORY SO FAR

» Compositional copatterns implemented as Scheme / Racket macros

o For free: semantics as (selective) CPS

» This gives some rules for equational reasoning...

UNDERSTANDING COMPOSITIONAL COPATTERNS

THE STORY SO FAR

» Compositional copatterns implemented as Scheme / Racket macros

o For free: semantics as (selective) CPS

» This gives some rules for equational reasoning...

« ...but not enough to calculate every answer

. a standard operational semantics

» Reason about copattern-matching programs directly (no translation)

« State and prove type safety problems

OPERATIONAL SEMANTICS OF COMPOSITIONAL COPATTERNS

WHAT TO DO, WHAT TO DO...?

How the heck to deal with all the recursive

generality and edge cases?!

OPERATIONAL SEMANTICS OF COMPOSITIONAL COPATTERNS

WHAT TO DO, WHAT TO DO...?

o

=

How the heck to deal with all the recursive Oh wait! | remember! Olivier taught me
generality and edge cases?! exactly how to deal with this kind of thing!

THE UNITY OF SEMANTIC ARTIFACTS

Technique for mechanically deriving one style of semantics from another
« Using only off-the-shelf, semantics-preserving program transformations
» Correspondence between semantic artifacts for free!

» Many good intros: 'is quite refreshing

'Olivier Danvy, Jacob Johannsen, and lan Zerny, PEPM 2011.

THE UNITY OF SEMANTIC ARTIFACTS

Technique for mechanically deriving one style of semantics from another
« Using only off-the-shelf, semantics-preserving program transformations
» Correspondence between semantic artifacts for free!

» Many good intros: 'is quite refreshing

This was a key part of my second academic paper:

Classical Call-by-Need Sequent Calculi:
The Unity of Semantic Artifacts

Zena M. Ariolal, Paul Downen!, Hugo Herbelin?, Keiko Nakata?,
. . o
and Alexis Saurin®
Abstract. We systematically derive a classical call-by-need sequent cal-
culus, which does not require an unbounded search for the standard re-
dex, by using the unity of semantic artifacts proposed by Danvy et al.
The calculus serves as an intermediate step toward the generation of an
environment-based abstract machine. The resulting abstract machine is
context-free, so that each step is parametric in all but one component.
The context-free machine elegantly leads to an environment-based CPS

'Olivier Danvy, Jacob Johannsen, and lan Zerny, PEPM 2011.

Two RoADS THROUGH THE SEMANTIC WOODS

Search & Reduce
CPS

Defunctionalize
Simplify

Operational Semantics
Loop Fusion
Simplify
Deforest

Abstract Machine

Shallow patterns
Denotational style
Refunctionalize

CPS Transformation

Two RoADS THROUGH THE SEMANTIC WOODS

AND | HAD TO TAKE THE ONE LESS TRAVELED BY

Search & Reduce
CPS

Defunctionalize

Simplify
Operational Semantics

Loop Fusion

Simplify
Deforest

Abstract Machine
Shallow patterns Inline & fusion
Denotational style Syntactic style
Refunctionalize Defunctionalize

CPS Transformation

Two RoADS THROUGH THE SEMANTIC WOODS

AND | HAD TO TAKE THE ONE LESS TRAVELED BY

Search & Reduce
CPS

Defunctionalize

Simplify
Operational Semantics

Loop Fusion

Simplify
Deforest

Abstract Machine
Shallow patterns Inline & fusion
Denotational style Syntactic style
Refunctionalize Defunctionalize

CPS Transformation

THE SOLUTION

A ROUND-TRIP IN THE SEMANTIC PARK

TAKING THE EASY PATH TO RETRACE OUR STEPS

« “Reforestation” and loop “fission” are

+ Why? They undo lossy transformations

« Loop fusion destroys the inner loops

 Deforestation destroys intermediate data structures

It helps to see what was lost to restore it

o Trick: from a similar starting point to

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term > M,N = x | MN | M X | \M{L — M...}
Copat> Lu=¢e|xL|XL

(8) CIML — Misir}] = MiIN/x]

if C = L[N/x]
and Vi < J, /Hﬁ, C= L,[/VT])

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term > M, N ::= x | IMX | ML— M.}
Copat> Lu=¢e|xL|XL

(8) CIML — Misir}] = MiIN/x]

if C = L[N/x]
and Vi < J, /Hﬁ, C= L,[/VT])

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term> M,N == x | M N | | ML — M.}
Copat> Lu=¢e|xL|XL

(8) CIML — Misir}] = MiIN/x]

if C = L[N/x]
and Vi < J, /Hﬁ, C= L,[/VT])

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term> M,N = x | MN | M X |
Copat> Lu=¢e|xL|XL

(8) CIML — Misir}] = MiIN/x]

if C = L[N/x]
and Vi < J, /Hﬁ, C= L,[/VT])

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term > M,N = x | MN | M X | \M{L — M...}
Copat> Lu=¢e|xL|XL

(8) CIML — MP<En}] = MiN/x]

if C = L[N/x]
and Vi < J, /Hﬁ, C= L,[/VT])

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term > M,N = x | MN | M X | \M{L — M...}
Copat> Lu=¢e|xL|XL

(B) CIMLi = Mi'==nt] = Mi[N/ x|

if C = L[N/x]
and Vi < J, /Hﬁ, C= L,m

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term > M,N = x | MN | M X | \M{L — M...}
Copat> Lu=¢e|xL|XL

(B) CIMLi = Mi'==nt] = Mi[N/ x|

if C = L[N/x]
and =

A NAIVE SEMANTICS FOR MONOLITHIC COPATTERNS

COPATTERNS = EQUATIONAL REASONING ON THE CONTEXT

Term > M,N = x | MN | M X | \M{L — M...}
Copat> Lu=¢e|xL|XL

(8) CIML; — M=7Y] = AN/

if C = L[N/x]
and =

WRITING AN ALGORITHM FOR SMALL STEPS

-- Syntax
data Term i a -- "1’ represents literal index,

data Copattern i a
type Question i a = Copattern i (Term i a) -- copattern-shaped contexts

‘a’ represents variable

WRITING AN ALGORITHM FOR SMALL STEPS

-- Syntax

data Term ia --
data Copattern i a
type Question i a = Copattern i (Term i a)

'i' represents literal index, ‘a’ represents variable

-- copattern-shaped contexts

-- Reduction
data Redex i a = Respond [Option i a] | FreevVar a
data Reduct i a = Reduced (Term i a) Unhandled
data Followup i a = Next (Reduct i a) (Question i a)
| More (Copattern i a) (Term i a)
[Option i a] (Question i a)

Unknown a

reduce (Eq i, Eq a) => Redex i1 a -> Question i a -> Followup i a

WRITING AN ALGORITHM FOR SMALL STEPS

-- Syntax
data Term i a -- i’ represents literal index, "a’ represents variable
data Copattern i a
type Question i a = Copattern i (Term i a) -- copattern-shaped contexts
-- Reduction
data Redex i a = Respond [Option i a] | FreevVar a
data Reduct i a = Reduced (Term i a) Unhandled Unknown a
data Followup i a = Next (Reduct i a) (Question i a)
| More (Copattern i a) (Term i a)

[Option i a] (Question i a)

reduce :: (Eq i, Eq a) => Redex i a -> Question i a -> Followup i a

-- Search
data Found i a = Asked (Redex i a) (Question i a)

search :: Term i a -> Found i a

A few moments later ...

THE DERIVED CPS TRANSFORMATION

A JOURNEY OF SMALL STEPS TO THE LAND OF CONTINUATIONS

Applicative forms look like normal CBN CPS:

[x] = x
[MN] = Mk. [M] ([N], &)
[MX] = Mk. [M] (X k)

As begin copattern-matching various options against the continuation:

[Me}] = Mk k
ML= M| L =M.} =Xk [L—= M kML =M.}k

THE DERIVED CPS TRANSFORMATION

A JOURNEY OF SMALL STEPS TO THE LAND OF CONTINUATIONS

Copatterns match on the given continuation:

[e = N] = Aq.M\f. [N]
[x L = N] =recr = Aq.\f.\k.
case k of ng K)Y—[L— N] qf K
—rqf

k
[X L — N] =recr = A\q.\f.\k.
casekofEX K)Y—[L— N] qf K
) —rqf
k —fq

THE DERIVED CPS TRANSFORMATION

A JOURNEY OF SMALL STEPS TO THE LAND OF CONTINUATIONS

Copatterns match on the given continuation:

[e = N] = Ag.Af. [N]

[xL— N] = AGAf k.
casekof(x k’)—> IL— N] qf K

k —>fq
[XL— N] AGAf k.
casekof (X k') = [L— N] qf K
N
k —fq

« If the question is too short,

THE DERIVED CPS TRANSFORMATION

A JOURNEY OF SMALL STEPS TO THE LAND OF CONTINUATIONS

Copatterns match on the given continuation:

[e = N = Ag.Af. ALIN] &
[x L= N] =recr = Aqg\.\k.
case kof (x, k') = [L— N] g f K
—rqf
k —fq

[X L — N] =recr = Ag.\ Ak
case kof (X k') = [L— N] qf K
—rqf

k —fq

« If the question is too short, check again when given more continuation

« On successful match, keep checking the rest of the continuation

» On a mismatch failure, reset to original question and try next option

BRIDGING THE GAP BETWEEN MONOLITHIC @ COMPOSITIONAL

A SHORT REST AMONG THE LAMBDAS
Equational reasoning to “clean up” the CPS to resemble compositional copattern macros:

» Delimiting the context

+ Add an explicit ” marker (M ! R) at the end of the question
« Avoids confusion between “ ” versus

»

» Nesting copatterns

« Regroup copatterns (L — M) to single steps that lean to the right (O)
« Add an explicit “ ” (0?7 M) for when matching fails

Eliminate redundancy

« Instead of passing failure+alternative+success continuations, fold failure into alternative
s MLoM| LU =M.} =Xk [L—= M) kML — M.}k

» Regain proper CPS through double-barrel continuations (like Shift+Reset)

BRIDGING THE GAP BETWEEN MONOLITHIC @ COMPOSITIONAL

A SHORT REST AMONG THE LAMBDAS
Equational reasoning to “clean up” the CPS to resemble compositional copattern macros:

» Delimiting the context

+ Add an explicit ” marker (M ! R) at the end of the question
« Avoids confusion between “ ” versus

»

» Nesting copatterns

« Regroup copatterns (L — M) to single steps that lean to the right (O)
« Add an explicit “ ” (0?7 M) for when matching fails

Eliminate redundancy

« Instead of passing failure+alternative+success continuations, fold failure into alternative
s MLoM| L= M..}] =Xk [L— M] k

» Regain proper CPS through double-barrel continuations (like Shift+Reset)

A CALcuLUS FOR ComMPOSITIONAL COPATTERNS WITH CONTROL

Response > R::=q|e | M!R
Term > M,N :=x | MN | M X | M. | raise | O? M| lg — R
Option> 0:=x—> 0| X—=0|?x—>M

Old monolithic syntax now just sugar (proved correct by CPS!) on smaller primitives:

MOy |- 0} :=0,7(---7 (0, ? raise))
eE->M=7 M
(xL) > 0:=x—(L— 0)
(XL)—=0:=X—(L—0)

A CALcuLUS FOR ComMPOSITIONAL COPATTERNS WITH CONTROL

Response > R::=q|e | M!R
Term > M,N :=x | MN | M X | M. | raise | O? M| lg — R
Option> 0:=x—> 0| X—=0|?x—>M

Old monolithic syntax now just sugar (proved correct by CPS!) on smaller primitives:
MOy |-+ 10,}:=0:7(---7(0, 7 raise))
eE->M=7 M

(xL) > 0:=x—(L— 0)

(XL)—=0:=X—(L—0)
But smaller primitives now give more functionality, such as

object O:= MO self Open — X\M{x — O 7 x}}
compose := Mo o — object {?x — 0.0pen(d .Open x)}
compose object{0} object{0'} = object{0| 0}

A few moments later ...

THE DERIVED OPERATIONAL SEMANTICS

THE RETURN VOYAGE BACK TO DIRECT STYLE

(?x = N)? M — N[M/x]
((x = 0)? M) N+— O[N/x] ? (MN)
(X = 0)?M) X 07 (MX)
(P?M) X —»MX (otherwise)
(P?M)N— MN (otherwise)

E['k — R] ! e — R[(E[raise] ! €)/k]
M (E[raise] ! €) — E[M] !¢
(P?M)le—»Mle

THE DENOUEMENT

THANK You, OLIVIER!

» We met when | was but a green Ph.D. student
« Your generosity has taught me much

« I’'m happy the influence is still alive today!

If you want to play with these toys for yourself
Semantic derivations & examples Copatterns for Racket & R°RS

https://github.com/ https://github.com/
pdownen/derive-copat pdownen/CoScheme

https://github.com/pdownen/derive-copat
https://github.com/pdownen/derive-copat
https://github.com/pdownen/CoScheme
https://github.com/pdownen/CoScheme

	The Context
	The Problem
	The Solution
	The Denouement

