
CoScheme: Compositional Copatterns in
Scheme
Or, “Equal” Means Equal

Paul Downen and Adriano Corbelino II
University of Massachusetts Lowell

TFP — Thursday, January 16, 2025

Why Copatterns in Scheme?
Composition, Composition, Composition!

• Programs defined by equational reasoning on their context (à la ML, Haskell)

• Composition of extensible fragments at run-time
• Vertical — either or — compose alternative options, handling failure

• Horizontal — and then — compose sequence of steps, parameters, matching, guards

• Circular — self — recursion back on the entire composition itself

• Library of composable macros

• Side benefit: supports infinite objects, some OO-style designs

Copatterns in
Scheme

Encoding Functional Equations
Procedural style via manual operations

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define (zip xs ys)
(cond
[(and (pair? xs) (pair? ys))
(cons (cons (car xs) (car ys))

(zip (cdr xs) (cdr ys)))]
[else '()]))

Encoding Functional Equations
Procedural style via manual operations

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define (zip xs ys)
(cond

[(and (pair? xs) (pair? ys))
(cons (cons (car xs) (car ys))

(zip (cdr xs) (cdr ys)))]
[else '()]))

Encoding Functional Equations
Hybrid style via pattern matching

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define (zip xs ys)
(match xs

[`(,x . ,xs-rest)
(match ys
[`(,y . ,ys-rest)
`((,x . ,y) . ,(zip xs-rest ys-rest))]
[_ '()])]

[_ '()]))

Encoding Functional Equations
Equational style via copattern matching

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define*
[(zip `(,x . ,xs) `(,y . ,ys)) = `((,x . ,y) . ,(zip xs ys))]
[(zip xs ys) = `()])

Encoding Infinite Objects
Streams observed through head and tail projecections

Stuttering stream from 0:

stutter 0 = 0, 0, 1, 1, 2, 2, 3, 3, . . .

Stuttering stream from n:

stutter n = n, n, n+ 1, n+ 1, n+ 2, n+ 2, n+ 3, n+ 3, . . .

stream a = (′head→ a) & (′tail→ stream a)

(define*
[((stutter n) 'head) = n]
[(((stutter n) 'tail) 'head) = n]
[(((stutter n) 'tail) 'tail) = (stutter (+ n 1))])

Encoding Infinite Objects
Streams observed through head and tail projecections

Stuttering stream from 0:

stutter 0 = 0, 0, 1, 1, 2, 2, 3, 3, . . .

Stuttering stream from n:

stutter n = n, n, n+ 1, n+ 1, n+ 2, n+ 2, n+ 3, n+ 3, . . .

stream a = (′head→ a) & (′tail→ stream a)

(define*
[((stutter n) 'head) = n]
[(((stutter n) 'tail) 'head) = n]
[(((stutter n) 'tail) 'tail) = (stutter (+ n 1))])

Equational Reasoning Pop Quiz
Counter objects

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) =

5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)

Equational Reasoning Pop Quiz
Counter objects

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)

Equational Reasoning Pop Quiz
Counter objects

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)

Equational Reasoning Pop Quiz
Counter objects

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)

Equational Reasoning Pop Quiz
Counter objects

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)

Equational Reasoning Pop Quiz
Counter objects

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)

The
Expression Problem

A Simple Evaluator
Arithmetic expressions with just numbers and addition

;; Expr = `(num ,Number)
;; | `(add ,Expr ,Expr)

;; expr0 : Expr
(define expr0

'(add (num 1) (add (num 2) (num 3))))

;; eval : Expr -> Number
(define*
[(eval `(num ,n)) = n]
[(eval `(add ,l ,r)) = (+ (eval l) (eval r))])

The Expression Problem

Easy to add new operations:

;; expr? : Any -> Bool
(define*
[(expr? `(num ,n)) = (number? n)]
[(expr? `(add ,l ,r)) = (and (expr? l) (expr? r))]
[(expr? _) = #f])

;; list-nums : Expr -> List Number
(define*

[(list-nums `(num ,n)) = (list n)]
[(list-nums `(add ,l ,r)) = (append (list-nums l) (list-nums r))])

Hard to add new expression cases:

;; Expr = ... | `(mul ,Expr ,Expr)
???

A De/Re-composed Evaluator
As extensible objects

(define-object
[(eval-num `(num ,n)) = n])

(define-object
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])

;; same as before, but now defined via composition
(define eval-obj (eval-num 'compose eval-add))

eval-obj expr = eval expr

eval-obj = (object
[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])

A De/Re-composed Evaluator
As extensible objects

(define-object
[(eval-num `(num ,n)) = n])

(define-object
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])

;; same as before, but now defined via composition
(define eval-obj (eval-num 'compose eval-add))

eval-obj expr = eval expr

eval-obj = (object
[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])

Simple Extensions of the Expression Language
Vertical composition

;; Expr = ... | `(mul ,Expr ,Expr)

(define-object
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])

(define eval-arith
(eval-obj 'compose eval-mul))

eval-arith
=
(object

[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))]
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])

Simple Extensions of the Expression Language
Vertical composition

;; Expr = ... | `(mul ,Expr ,Expr)

(define-object
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])

(define eval-arith
(eval-obj 'compose eval-mul))

eval-arith
=
(object

[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))]
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])

Challenge: Adding Variables & Environments

Evaluating variable expressions requires an environment

;; Expr = ... | `(var ,Symbol)

(define-object
[(eval-var env `(var ,x)) = (dict-ref env x)])

(eval-var '((x . 10) (y . 20)) '(var y)) = 20

How to compose (binary) eval-var with (unary) eval-arith?

Solution 1: Fixing the Environment
Run-time vertical composition

(define (fix-environment alg-evaluator env)
(object

[(_ expr)
(try-apply-forget alg-evaluator env expr)]))

;; try-apply-forget attemps an application,
;; if it fails to match, continue with next option

(define-object
[(eval-alg env expr)
= (((fix-environment (eval-var 'unplug) env)

'compose eval-arith)
expr)])

;; 'unplug is an inherited-by-default method of objects
;; that converts it to a composable extension

Solution 2: Threading the Environment
Horizontal composition & first-class failure continuation

eval expr = . . . eval subexpr . . .
⇓

eval env expr = . . . eval env subexpr . . .

(define (with-environment arith-evaluator)
(object
[(self env expr)
(with-self

(override-λ* self
[(_ sub-expr) = (self env sub-expr)])

(try-apply-forget arith-evaluator expr))]))
;; Implement environment extension by hiding environment
;; and overriding its concept of "self" to bring it back

(define eval-alg
((with-environment (eval-arith 'unplug))
'compose eval-var))

Solution 2: Threading the Environment
Horizontal composition & first-class failure continuation

eval expr = . . . eval subexpr . . .
⇓

eval env expr = . . . eval env subexpr . . .

(define (with-environment arith-evaluator)
(object
[(self env expr)
(with-self

(override-λ* self
[(_ sub-expr) = (self env sub-expr)])

(try-apply-forget arith-evaluator expr))]))
;; Implement environment extension by hiding environment
;; and overriding its concept of "self" to bring it back

(define eval-alg
((with-environment (eval-arith 'unplug))
'compose eval-var))

Challenge: Constant Folding
Doing what you can

Instead of using an environment to evaluate variables, just leave them alone:

(constant-fold '(mul (add (num 1) (num 2))
(add (var x) (num 4))))

=
'(mul (num 3)

(add (var x) (num 4)))

Intermezzo: More Cautious Error Handling
Safer arithmetic

(define-object eval-add-safe
[(self `(add ,l ,r))
= (self 'add (self l) (self r))]
[(self 'add x y) (try-if (and (number? x) (number? y)))
= (+ x y)])

(define-object eval-mul-safe
[(self `(mul ,l ,r))
= (self 'mul (self l) (self r))]
[(self 'mul x y) (try-if (and (number? x) (number? y)))
= (* x y)])

(define eval-arith-safe
(eval-num 'compose eval-add-safe eval-mul-safe))

Leave Variables Alone
And reform blocked expressions

(define-object
[(leave-variables `(var ,x)) = `(var ,x)])

(define (operation? s)
(or (equal? s 'add) (equal? s 'mul)))

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])

Leave Variables Alone
And reform blocked expressions

(define-object
[(leave-variables `(var ,x)) = `(var ,x)])

(define (operation? s)
(or (equal? s 'add) (equal? s 'mul)))

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])

Solution: Constant Folding Made Easy
Simple vertical composition

(define constant-fold
(eval-arith-safe 'compose

leave-variables
reform-operations))

(define expr3
'(add (add (num 1) (num 1))

(mul (var x)
(mul (num 2) (add (num 2) (num 3))))))

(constant-fold expr3)
= '(add (num 2) (mul (var x) (num 10)))

Solution: Constant Folding Made Easy
Simple vertical composition

(define constant-fold
(eval-arith-safe 'compose

leave-variables
reform-operations))

(define expr3
'(add (add (num 1) (num 1))

(mul (var x)
(mul (num 2) (add (num 2) (num 3))))))

(constant-fold expr3)
= '(add (num 2) (mul (var x) (num 10)))

(How)
Does It Work?

The Tower of Extensibility
Objects, Templates, Extensions

Object = some type of usable function

Template = Object → Object ′

Extension = Template → Template′

= Template → Object → Object ′

The Tower of Extensibility
Objects, Templates, Extensions

Object = some type of usable function

Template = (self : Object) → Object ′

Extension = Template → Template′

= Template → Object → Object ′

The Tower of Extensibility
Objects, Templates, Extensions

Object = some type of usable function

Template = (self : Object) → Object ′

Extension = (next : Template) → Template′

= (next : Template) → (self : Object) → Object ′

Expanding Definition Macros

(define* name clause ...) = (define name (λ* clause ...))

(define-object name clause ...) = (define name (object clause ...))

(λ* clause ...) = (introspect (template clause ...))

(object (<: mod) clause ...) = (plug (mod (extension clause ...)))

(object clause ...) = (object (<: (default-object-modifier)) clause ...)

Expanding Definition Macros

(define* name clause ...) = (define name (λ* clause ...))

(define-object name clause ...) = (define name (object clause ...))

(λ* clause ...) = (introspect (template clause ...))

(object (<: mod) clause ...) = (plug (mod (extension clause ...)))

(object clause ...) = (object (<: (default-object-modifier)) clause ...)

Expanding “Big” Macros

(template clause ...)
= (closed-cases (extension clause ...))

(extension [copat step ...] ...)
= (compose [chain (comatch copat) step ...] ...)

(chain (op ...) step ... ext) = (op ... (chain step ... ext))

(chain = expr) = (always-is expr)

Expanding “Big” Macros

(template clause ...)
= (closed-cases (extension clause ...))

(extension [copat step ...] ...)
= (compose [chain (comatch copat) step ...] ...)

(chain (op ...) step ... ext) = (op ... (chain step ... ext))

(chain = expr) = (always-is expr)

Some “Small” Macros

(try next self expr) = (λ(next) (λ(self) expr))

(always-is expr) = (try _ _ expr)

(try-if check ext)
= (try next self

(if check
((ext next) self)
(next self)))

(try-λ x ext)
= (try next self

(λ x
((ext (λ(s) (apply (next s) x)))
self)))

Some “Small” Macros

(try next self expr) = (λ(next) (λ(self) expr))

(always-is expr) = (try _ _ expr)

(try-if check ext)
= (try next self

(if check
((ext next) self)
(next self)))

(try-λ x ext)
= (try next self

(λ x
((ext (λ(s) (apply (next s) x)))
self)))

Soundness of Equational Reasoning

• Model macros as a (selective) CPS-like translation

• Target: λ-calculus + recursion + symbols + lists + patterns

• Source: Target + copatterns + templates + extensions + λ∗

• Translations from Source to Target:

J_K : Term → Target (only translates new forms)
T J_K : Template → Target (always a unary function)
EJ_K : Extension → Target (always a binary function)

Theorem (Conservative Extension)
If M = N in the target theory, then M = N in the source theory.

Theorem (Soundness)
If M = N in the source theory, then JMK = JNK in the target theory.

Soundness of Equational Reasoning

• Model macros as a (selective) CPS-like translation

• Target: λ-calculus + recursion + symbols + lists + patterns

• Source: Target + copatterns + templates + extensions + λ∗

• Translations from Source to Target:

J_K : Term → Target (only translates new forms)
T J_K : Template → Target (always a unary function)
EJ_K : Extension → Target (always a binary function)

Theorem (Conservative Extension)
If M = N in the target theory, then M = N in the source theory.

Theorem (Soundness)
If M = N in the source theory, then JMK = JNK in the target theory.

(Co)Pattern Matching Equalities

• Patterns P against values V :
• Matching iff P[W .../x...] = V
• Apart iff P # V (inductively defined over structure of P)

• Copatterns Q against contexts C
• Matching iff Q[W .../x...] = C
• Apart iff Q # C (inductively defined over structure of Q)

(try-match P V ext) = ext[W.../x...] ; if P[W.../x...] = V
(try-match P V ext) = empty-extension ; if P # V

C[(λ* [Q[y] = expr] clause ...)] = expr[W.../x...] ; if Q[W.../x...] = C
C[(λ* [Q[y] = expr] [else deflt])] = C[deflt] ; if Q # C

(Co)Pattern Matching Equalities

• Patterns P against values V :
• Matching iff P[W .../x...] = V
• Apart iff P # V (inductively defined over structure of P)

• Copatterns Q against contexts C
• Matching iff Q[W .../x...] = C
• Apart iff Q # C (inductively defined over structure of Q)

(try-match P V ext) = ext[W.../x...] ; if P[W.../x...] = V
(try-match P V ext) = empty-extension ; if P # V

C[(λ* [Q[y] = expr] clause ...)] = expr[W.../x...] ; if Q[W.../x...] = C
C[(λ* [Q[y] = expr] [else deflt])] = C[deflt] ; if Q # C

(Co)Pattern Matching Equalities

• Patterns P against values V :
• Matching iff P[W .../x...] = V
• Apart iff P # V (inductively defined over structure of P)

• Copatterns Q against contexts C
• Matching iff Q[W .../x...] = C
• Apart iff Q # C (inductively defined over structure of Q)

(try-match P V ext) = ext[W.../x...] ; if P[W.../x...] = V
(try-match P V ext) = empty-extension ; if P # V

C[(λ* [Q[y] = expr] clause ...)] = expr[W.../x...] ; if Q[W.../x...] = C
C[(λ* [Q[y] = expr] [else deflt])] = C[deflt] ; if Q # C

CoScheme: Composable, Equational, Copatterns!
Try It Yourself!

• https://github.com/pdownen/CoScheme

• Racket

• R6RS

https://github.com/pdownen/CoScheme

Factoring
Copatterns

Nested definitions
Sharing constant parameters of a loop

map f [] = []
map f (x:xs) = f x : map f xs

map f xs = go xs -- map f = go
where go [] = []

go (x:xs) = f x : go xs

(define*
[(map f xs) = ((map f) xs)] ; (un)curried forms equal
[(map f) (nest) ; map f = go
(extension
[(go `()) = `()]
[(go `(,x . ,xs)) = `(,(f x) . ,(go xs))])])

Nested definitions
Sharing constant parameters of a loop

map f [] = []
map f (x:xs) = f x : map f xs

map f xs = go xs -- map f = go
where go [] = []

go (x:xs) = f x : go xs

(define*
[(map f xs) = ((map f) xs)] ; (un)curried forms equal
[(map f) (nest) ; map f = go

(extension
[(go `()) = `()]
[(go `(,x . ,xs)) = `(,(f x) . ,(go xs))])])

Refactoring a Common Prefix
Sharing copatterns and computations

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])

common prefix: (reform op l r) (try-if (operation? op))

(define-object reform-operations
[(reform op l r) (try-if (operation? op))
(extension
[_ (try-if (number? l)) = (reform op `(num ,l) r)]
[_ (try-if (number? r)) = (reform op l `(num ,r))]
[_ = (list op l r)])])

Refactoring a Common Prefix
Sharing copatterns and computations

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])

common prefix: (reform op l r) (try-if (operation? op))

(define-object reform-operations
[(reform op l r) (try-if (operation? op))
(extension
[_ (try-if (number? l)) = (reform op `(num ,l) r)]
[_ (try-if (number? r)) = (reform op l `(num ,r))]
[_ = (list op l r)])])

	Copatterns in Scheme
	The Expression Problem
	(How) Does It Work?
	Factoring Copatterns

