CoSCHEME: CoMPOSITIONAL COPATTERNS IN
SCHEME

OR, “EQUAL” MEANS EQuUAL

Paul Downen and Adriano Corbelino Il
University of Massachusetts Lowell

TFP — Thursday, January 16, 2025

WHY COPATTERNS IN SCHEME?

ComprosiTioN, CoMPOSITION, COMPOSITION!

» Programs defined by equational reasoning on their context (a la ML, Haskell)

« Composition of extensible fragments at run-time

. — either or — compose alternative options, handling failure
. — and then — compose sequence of steps, parameters, matching, guards
. — self — recursion back on the entire composition itself

« Library of composable macros

« Side benefit: supports infinite objects, some OO-style designs

COPATTERNS IN
SCHEME

ENncoDING FuNcTIONAL EQUATIONS

PROCEDURAL STYLE VIA MANUAL OPERATIONS

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys []

ENncoDING FuNcTIONAL EQUATIONS

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip Xs ys []

(define (zip xs ys)
(cond
[(and (pair? xs) (pair? ys))
(cons (cons (car xs) (car ys))
(zip (cdr xs) (cdr ys)))]
[else "O1))

PROCEDURAL STYLE VIA MANUAL OPERATIONS

ENncoDING FuNcTIONAL EQUATIONS

HYBRID STYLE VIA PATTERN MATCHING

zip (x:xs) (y:ys) (x, y) : zip xs ys
zip xs ys = []

(define (zip xs ys)
(match xs

[(,x . ,xs-rest)

(match ys
[(,y . ,ys-rest)
((,x . ,y) . ,(zip xs-rest ys-rest))]
- "OD]

- 'O

ENncoDING FuNcTIONAL EQUATIONS

EQUATIONAL STYLE VIA COPATTERN MATCHING

(x, y) : zip xs ys
[1

zip (x:xs) (y:ys)
zip Xs ys

(define*
[(zip "(x . ,xs) "Gy . ,ys)) = (Gx . ,y) . ,(zip xs ys))]
[(zip xs ys) ="0D

ENCODING INFINITE OBJECTS

STREAMS OBSERVED THROUGH HEAD AND TAIL PROJECECTIONS
Stuttering stream from 0:
stutter 0 = 0,0,1,1,2,2,3,3,...
Stuttering stream from n:

stuttern=n,n,n+1,n+1,n+2,n+2,n+3,n+3,...

ENCODING INFINITE OBJECTS

STREAMS OBSERVED THROUGH HEAD AND TAIL PROJECECTIONS

Stuttering stream from 0:
stutter 0 = 0,0,1,1,2,2,3,3,...
Stuttering stream from n:

stuttern=n,n,n+1,n+1,n+2,n+2,n+3,n+3,...

streama = (‘head — a) & ("tail — streama)

(define*
[((stutter n) 'head) = n]
[(((stutter n) 'tail) 'head) n]
[(((stutter n) 'tail) 'tail) = (stutter (+ n 1))])

EQUATIONAL REASONING PoP Quiz

COUNTER OBJECTS

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) =

EQUATIONAL REASONING PoP Quiz

COUNTER OBJECTS

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

EQUATIONAL REASONING PoP Quiz
COUNTER OBJECTS
(define*

[((counter x) 'add y)
[((counter x) 'get)

(counter (+ x y))]
x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

EQUATIONAL REASONING PoP Quiz
COUNTER OBJECTS
(define*

[((counter x) 'add y)
[((counter x) 'get)

(counter (+ x y))]
x])

((counter 5) 'get) = 5
(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

EQUATIONAL REASONING PoP Quiz

COUNTER OBJECTS

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

EQUATIONAL REASONING PoP Quiz

COUNTER OBJECTS

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) = 5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define ¢ (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= (12 14)

THE
EXPRESSION PROBLEM

A SIMPLE EVALUATOR

ARITHMETIC EXPRESSIONS WITH JUST NUMBERS AND ADDITION

;s Expr = " (num ,Number)
5y | “(add ,Expr ,EXpr)

;; exprO0 : EXpr
(define expr0
'"(add (num 1) (add (num 2) (num 3))))

;5 eval : Expr -> Number
(define*
[(eval ~(num ,n)) = n]
[(eval “(add ,1 ,r)) = (+ (eval 1) (eval r))])

THE EXPRESSION PROBLEM

Easy to add new operations:

;5 expr? : Any -> Bool

(define*
[(expr? ~(num ,n)) (number? n)]
[(expr? “(add ,1 ,r)) = (and (expr? 1) (expr? r))]
[(expr? _) #1)

;5 list-nums : Expr -> List Number
(define*
[(list-nums "~ (num ,n))
[(list-nums ~(add ,1 ,r))

(list n)]
(append (list-nums 1) (list-nums r))])

Hard to add new expression cases:

;s Expr = ... | “(mul ,Expr ,EXpr)
?227?

A DE/RE-cOMPOSED EVALUATOR

AS EXTENSIBLE OBJECTS

(define-object
[(eval-num "~ (num ,n)) = n])

(define-object
[(eval-add “(add ,1 ,r)) = (+ (eval-add 1) (eval-add r))])

;; same as before, but now defined via composition
(define eval-obj (eval-num 'compose eval-add))

A DE/RE-cOMPOSED EVALUATOR

AS EXTENSIBLE OBJECTS

(define-object
[(eval-num "~ (num ,n)) = n])

(define-object
[(eval-add “(add ,1 ,r)) = (+ (eval-add 1) (eval-add r))])

;; same as before, but now defined via composition
(define eval-obj (eval-num 'compose eval-add))

eval-obj expr = eval expr

eval-obj = (object
[(eval-num ~(num ,n))
[(eval-add “(add ,1 ,r))

n]
(+ (eval-add 1) (eval-add r))])

SIMPLE EXTENSIONS OF THE EXPRESSION LANGUAGE

VERTICAL COMPOSITION

;s Expr = ... | “(mul ,Expr ,EXpr)

(define-object
[(eval-mul “(mul ,1 ,r)) = (* (eval-mul 1) (eval-mul r))])

(define eval-arith
(eval-obj 'compose eval-mul))

SIMPLE EXTENSIONS OF THE EXPRESSION LANGUAGE

VERTICAL COMPOSITION

;s Expr = ... | “(mul ,Expr ,EXpr)

(define-object
[(eval-mul “(mul ,1 ,r)) = (* (eval-mul 1) (eval-mul r))])

(define eval-arith
(eval-obj 'compose eval-mul))

eval-arith

(object
[(eval-num ~(num ,n))
[(eval-add “(add ,1 ,r))
[(eval-mul “~(mul ,1 ,r))

nj
(+ (eval-add 1) (eval-add r))]
(* (eval-mul 1) (eval-mul r))])

CHALLENGE: ADDING VARIABLES @ ENVIRONMENTS

Evaluating variable expressions requires an environment

;; Expr = ... | “(var ,Symbol)

(define-object
[(eval-var env “(var ,x)) = (dict-ref env x)])

(eval-var '"((x . 10) (y . 20)) '(var y)) = 20

How to compose (binary) eval-var with (unary) eval-arith?

SoLuUTION 1: FIXING THE ENVIRONMENT

RUN-TIME VERTICAL COMPOSITION

(define (fix-environment alg-evaluator env)
(object
[(= expr)
(try-apply-forget alg-evaluator env expr)]))
;; try-apply-forget attemps an application,
;; 1f it fails to match, continue with next option

(define-object
[(eval-alg env expr)
= (((fix-environment (eval-var 'unplug) env)
'compose eval-arith)
expr)])
;5 'unplug is an inherited-by-default method of objects
;; that converts it to a composable extension

SOLUTION 2: THREADING THE ENVIRONMENT

HORIZONTAL COMPOSITION & FIRST-CLASS FAILURE CONTINUATION

eval expr = ...eval subexpr. ..

4

eval env expr = . .. eval env subexpr . ..

SOLUTION 2: THREADING THE ENVIRONMENT

HORIZONTAL COMPOSITION & FIRST-CLASS FAILURE CONTINUATION

eval expr = ...eval subexpr. ..

=

eval env expr = . .. eval env subexpr . ..

(define (with-environment arith-evaluator)
(object
[(self env expr)
(with-self
(override-* self
[(_ sub-expr) = (self env sub-expr)])
(try-apply-forget arith-evaluator expr))]))

;; Implement environment extension by hiding environment
;; and overriding its concept of "self" to bring it back

(define eval-alg
((with-environment (eval-arith 'unplug))
'compose eval-var))

CHALLENGE: CONSTANT FoLDING

DOING WHAT YOU CAN

Instead of using an environment to evaluate variables, just leave them alone:

(constant-fold '(mul (add (num 1) (num 2))
(add (var x) (num 4))))

"(mul (num 3)
(add (var x) (num 4)))

INTERMEZZO: MORE CAuTIOUS ERROR HANDLING

(define-object eval-add-safe
[(self “(add ,1 ,r))
= (self 'add (self 1) (self r))]
[(self 'add x y) (try-if (and (number? x) (number? y)))

= (+x ¥

(define-object eval-mul-safe
[(self “(mul ,1 ,r))
= (self 'mul (self 1) (self r))]
[(self 'mul x y) (try-if (and (number? x) (number? y)))

= xyD

(define eval-arith-safe
(eval-num 'compose eval-add-safe eval-mul-safe))

SAFER ARITHMETIC

LEAVE VARIABLES ALONE

AND REFORM BLOCKED EXPRESSIONS

(define-object
[(leave-variables ~(var ,x)) = “(var ,x)])

LEAVE VARIABLES ALONE

AND REFORM BLOCKED EXPRESSIONS

(define-object
[(leave-variables ~(var ,x)) = “(var ,x)])

(define (operation? s)
(or (equal? s 'add) (equal? s 'mul)))

(define-object reform-operations
[(reform op 1 r) (try-if (operation? op)) (try-if number? 1)
= (reform op “(num ,1) r)]
[(reform op 1 r) (try-if (operation? op)) (try-if number? r)
= (reform op 1 “(num ,r))]
[(reform op 1 r) (try-if (operation? op))
= (list op 1 r)])

SoLuTION: CONSTANT FOLDING MADE EASY

SIMPLE VERTICAL COMPOSITION

(define constant-fold
(eval-arith-safe 'compose
leave-variables
reform-operations))

SoLuTION: CONSTANT FOLDING MADE EASY

SIMPLE VERTICAL COMPOSITION

(define constant-fold
(eval-arith-safe 'compose
leave-variables
reform-operations))

(define expr3
'(add (add (num 1) (num 1))
(mul (var x)
(mul (num 2) (add (num 2) (num 3))))))

(constant-fold expr3)
= '(add (num 2) (mul (var x) (num 10)))

(How)
DoEs IT WoORK?

THE TOWER OF EXTENSIBILITY

OBJECTS, TEMPLATES, EXTENSIONS

Object = some type of usable function
Template = Object — Object’

Extension = Template — Template'
= Template — Object — Object’

THE TOWER OF EXTENSIBILITY

OBJECTS, TEMPLATES, EXTENSIONS

Object = some type of usable function
Template = (self : Object) — Object’

Extension = Template — Template'
= Template — Object — Object’

THE TOWER OF EXTENSIBILITY

OBJECTS, TEMPLATES, EXTENSIONS

Object = some type of usable function
Template = (self : Object) — Object’

Extension = (next : Template) — Template'
= (next : Template) — (self : Object) — Object’
P

ExPANDING DEFINITION MACROS

(define* name clause ...) = (define name (A* clause ...))

(define-object name clause ...) = (define name (object clause ...))

ExPANDING DEFINITION MACROS

(define* name clause ...) = (define name (A* clause ...))
(define-object name clause ...) = (define name (object clause ...))
(A* clause ...) = (introspect (template clause ...))

(object (<: mod) clause ...) = (plug (mod (extension clause ...)))

(object clause ...) = (object (<: (default-object-modifier)) clause ...

ExPANDING “BiG” MACROS

(template clause ...)
= (closed-cases (extension clause ...))

(extension [copat step ...] ...)

= (compose [chain (comatch copat) step ..

-]

ExPANDING “BiG” MACROS

(template clause ...)

= (closed-cases (extension clause ...))

(extension [copat step ...] ...)

= (compose [chain (comatch copat) step ...] ...)
(chain (op ...) step ... ext) = (op ... (chain step ...

(chain = expr) = (always-is expr)

ext))

SoME “SMALL” MACROS

(try next self expr) = (A(next) (A(self) expr))
(always-is expr) = (try _ _ expr)

(try-if check ext)
= (try next self
(if check
((ext next) self)
(next self)))

SoME “SMALL” MACROS

(try next self expr) = (A(next) (A(self) expr))
(always-is expr) = (try _ _ expr)

(try-if check ext)
= (try next self
(if check
((ext next) self)
(next self)))

(try-) x ext)
= (try next self
(M x
((ext (A(s) (apply (next s) x)))
self)))

SOUNDNESS OF EQUATIONAL REASONING

« Model macros as a (selective) CPS-like translation
» Target: A-calculus + recursion + symbols + lists + patterns
+ Source: Target + copatterns + templates + extensions + X*

« Translations from Source to Target:

[_] : Term — Target (only translates new forms)
T[_] : Template — Target (always a unary function)
E[_] : Extension — Target (always a binary function)

SOUNDNESS OF EQUATIONAL REASONING

« Model macros as a (selective) CPS-like translation
» Target: A-calculus + recursion + symbols + lists + patterns
+ Source: Target + copatterns + templates + extensions + X*

« Translations from Source to Target:

[_] : Term — Target (only translates new forms)
T[_] : Template — Target (always a unary function)
E[_] : Extension — Target (always a binary function)

Theorem (Conservative Extension)
If M= N in the theory, then M = N in the theory.

Theorem (Soundness)
If M= N in the theory, then [M] = [N] in the theory.

(Co)PATTERN MATCHING EQUALITIES

« Patterns P against values V:
« Matching iff P[W.../x..] =V
« Apart iff P # V (inductively defined over structure of P)

(Co)PATTERN MATCHING EQUALITIES

« Patterns P against values V:
« Matching iff P[W.../x..] =V
« Apart iff P # V (inductively defined over structure of P)

« Copatterns Q against contexts C
« Matching iff Q[W.../x..] = C
« Apart iff Q # C (inductively defined over structure of Q)

(Co)PATTERN MATCHING EQUALITIES

« Patterns P against values V:
« Matching iff P[W.../x..] =V
« Apart iff P # V (inductively defined over structure of P)

« Copatterns Q against contexts C
« Matching iff Q[W.../x..] = C
« Apart iff Q # C (inductively defined over structure of Q)

(try-match P V ext) = ext[W.../x...] ; if P[W.../x...] =V
(try-match P V ext) = empty-extension ; iIf P HV
C[(A* [Qly] = expr] clause ...)] = expr{w.../x...] ; if Q[w.../x...] =¢C

CL(A* [9ly] expr] [else deflt])] = C[deflt] ; if Q # C

CoSCcHEME: CoMPOSABLE, EQUATIONAL, COPATTERNS!

TRY IT YOURSELF!

- https://github.com/pdownen/CoScheme

« Racket
. R°RS

https://github.com/pdownen/CoScheme

FACTORING
COPATTERNS

NESTED DEFINITIONS

SHARING CONSTANT PARAMETERS OF A LOOP

|
—
—

map £ []
map f (x:xs) = f x : map f xs

map f xs = go xs -- map £ = go
vhere go [] =[]
go (x:xs)

]
Hh

X : gO XS

NESTED DEFINITIONS

SHARING CONSTANT PARAMETERS OF A LOOP

|
—
—

map £ []
map f (x:xs) = f x : map f xs

map f xs = go xs -- map £ = go
vhere go [] =[]
go (x:xs)

]
Hh

X : gO XS

(define*
[(map f xs) = ((map f) xs)] ; (un)curried forms equal
[(map f) (nest) ; map £ = go
(extension
[(go ~O)) = 0]
[(go "(x . ,xs)) = "((f x) . ,(go xs))1)])

REFACTORING A COMMON PREFIX

SHARING COPATTERNS AND COMPUTATIONS

(define-object reform-operations
[(reform op 1 r) (try-if (operation? op)) (try-if number? 1)
= (reform op “(num ,1) 1r)]
[(reform op 1 r) (try-if (operation? op)) (try-if number? r)
= (reform op 1 “(num ,r))]
[(reform op 1 r) (try-if (operation? op))
= (list op 1 r)])

common prefix: (reform op 1 r) (try-if (operation? op))

REFACTORING A COMMON PREFIX

SHARING COPATTERNS AND COMPUTATIONS

(define-object reform-operations
[(reform op 1 r) (try-if (operation? op)) (try-if number? 1)
= (reform op “(num ,1) 1r)]
[(reform op 1 r) (try-if (operation? op)) (try-if number? r)
= (reform op 1 “(num ,r))]
[(reform op 1 r) (try-if (operation? op))
= (list op 1 r)])

common prefix: (reform op 1 r) (try-if (operation? op))

(define-object reform-operations
[(reform op 1 r) (try-if (operation? op))
(extension
[_ (try-if (number? 1)) = (reform op “(num ,1) r)]
[_ (try-if (number? r)) = (reform op 1 “~(num ,r))]
(- (list op 1 ©)]) 1)

	Copatterns in Scheme
	The Expression Problem
	(How) Does It Work?
	Factoring Copatterns

