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“Copatterns?”



What’s in a Copattern?
“Why not just patterns?”

• Copatterns give a more general method for programs to interact with their context

• They are
• Declarative (based on equalities, not operations)
• Structural (describe the shapes of their context)

• Famous use case: Modeling infinite objects

• Also just a clean way to describe many coding patterns!

• Pattern-matching functions are a special case
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And some more advanced flow
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Where Do Copatterns Come From?

• A deep study of duality of classical logic and polarity in proof theory
• Noam Zeilberger. On the Unity of Duality. Annals of Pure and Applied Logic 153:1 (2008).

• A fix to problems with coinduction in proof assistants
• Abel, Pientka, Thibodeau, and Setzer. Copatterns: programming infinite structures by
observations. POPL ’13.

• Lurking in Agda for a while. . .
• And other proof assistants, like Beluga



Why Copatterns in Scheme/Racket?
I’m a Programmer, too, not just a Proof Monkey!

• I want to write real programs
• . . . and actually run them.

• Lets me pretend I’m writing declarative, equational Haskell/SML code

• Still get to use advanced control flow effects (e.g., control operators)

• An easy way to handle complex infinite objects in a strict language

• Dynamic types: Interesting ways to compose programs!

• Side benefit: sneak in purely functional OOP



Don’t miss the “What”
by obsessing over “How”



Let’s Play!



Intermezzo:
Infinite Pigeons‼!



The Pigeonhole Principle
Too many pigeons, not enough holes
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Encoding The Infinite Pigeonhole Principle

• 2 holes = Boolean choice (true or false, 1 or 0)

• ∞ pigeons = infinite stream

Corollary (Infinite bits)
Any infinite binary stream (of #t or #f) must have infinite #ts or infinite #fs.

Concretely, there exists an infinite stream of ascending indexes which always point to all #ts or
always point to all #fs in the given binary stream.

Lemma (Infinite filter)
For any infinite stream and any predicate on elements of the stream, there must be infinite
elements of that stream for which the predicate returns #t or for which the predicate returns #f.

Concretely, there exists a substream — consisting of some of the original elements in the same
order — for which every element passes the predicate, or every element fails the predicate.
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Generating the Infinite Filter
Choosing the answer based on the question

Calculating (infinite-filter square? nats)

Original stream: 0, 1, 2, 3, 4, 5, 6, 7, . . .

Answer:

Square? @ 0?

@ 2? @ 3? @ 4? @ 5? . . .

YES 0

1 4 . . .

no

2 3 5 6 7 . . .
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Generating the Infinite Filter
Choosing the answer based on the question

Calculating (infinite-filter square? nats)
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How?!?!



The Tower of Extensibility
Objects, Templates, Extensions

Object = some type of usable function

Template = Object → Object ′

Extension = Template → Template′

= Template → Object → Object ′
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The Tower of Extensibility
Objects, Templates, Extensions

Object = some type of usable function

Template = (self : Object) → Object ′

Extension = (next : Template) → Template′

= (next : Template) → (self : Object) → Object ′



Expanding Definition Macros

(define* name clause ...) = (define name (λ* clause ...))

(define-object name clause ...) = (define name (object clause ...))

(λ* clause ...) = (introspect (template clause ...))

(object (<: mod) clause ...) = (plug (mod (extension clause ...)))

(object clause ...) = (object (<: (default-object-modifier)) clause ...)
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Expanding “Big” Macros

(template clause ...)
= (closed-cases (extension clause ...))

(extension [copat step ...] ...)
= (compose [chain (comatch copat) step ...] ...)

(chain (op ...) step ... ext) = (op ... (chain step ... ext))

(chain = expr) = (always-is expr)
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Some “Small” Macros

(try next self expr) = (λ(next) (λ(self) expr))

(always-is expr) = (try _ _ expr)

(try-if check ext)
= (try next self

(if check
((ext next) self)
(next self)))

(try-λ x ext)
= (try next self

(λ x
((ext (λ(s) (apply (next s) x)))
self)))
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(always-is expr) = (try _ _ expr)
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Rewriting Macros in Copatterns
Eliminating administrative reductions at expansion time

• The expanded macros are too hard to understand!
• Bad for macro development
• Bad for debugging
• Questionable for performance

• Use a technique for rewriting nested macro calls to inline & skip administrative steps

• “Rewritten” macros expand to copattern-matching code with
• Quantitatively, 39% less nesting and 45% fewer tokens
• Qualitatively, more direct with less indirection and higher-order arguments
• Much easier to debug and develop new macros!



What. . . ?



Soundness of Equational Reasoning

• Model macros as a (selective) CPS-like translation

• Target: λ-calculus + recursion + symbols + lists + patterns

• Source: Target + copatterns + templates + extensions + λ∗

• Translations from Source to Target:

J_K : Term → Target (only translates new forms)
T J_K : Template → Target (always a unary function)
EJ_K : Extension → Target (always a binary function)

Theorem (Conservative Extension)
If M = N in the target theory, then M = N in the source theory.

Theorem (Soundness)
If M = N in the source theory, then JMK = JNK in the target theory.
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(Co)Pattern Matching Equalities

• Patterns P against values V :
• Matching iff P[W .../x...] = V
• Apart iff P # V (inductively defined over structure of P)

• Copatterns Q against contexts C
• Matching iff Q[W .../x...] = C
• Apart iff Q # C (inductively defined over structure of Q)

(try-match P V ext) = ext[W.../x...] ; if P[W.../x...] = V
(try-match P V ext) = empty-extension ; if P # V

C[(λ* [Q[y] = expr] clause ...)] = expr[W.../x...] ; if Q[W.../x...] = C
C[(λ* [Q[y] = expr] [else deflt])] = C[deflt] ; if Q # C
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A Naïve Semantics for Monolithic Copatterns
Copatterns = equational reasoning on the context

Term ∋ M,N ::= x | M N | M X | λ{L → M...}
Copat ∋ L ::= ε | x L | X L

(β) C[λ{Li → Mi
1≤i≤n... }] = Mj

#         »

[N/x](
if C = Lj

#         »

[N/x]

and ∀i < j, ̸ ∃ #»
N , C = Li

#         »

[N/x]

)
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A Calculus for Compositional Copatterns with Control

Response ∋ R ::= q | ε | M ! R
Term ∋ M,N ::= x | M N | M X | raise | O ?M | !q → R
Option ∋ O ::= x → O | X → O | ?x → M

Old monolithic syntax now just sugar (proved correct by CPS!) on smaller primitives:

λ{O1 | · · · | On} := O1 ? (· · · ? (On ? raise))
ε → M := ?_ → M

(x L) → O := x → (L → O)
(X L) → O := X → (L → O)

But smaller primitives now give more functionality, such as vertical composition

object O := λ{O | self Open → λ{x → O ? x}}
compose := λo o′ → object {?x → o.Open(o′.Open x)}

compose object{O} object{O′} = object{O | O′}
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An Operational Semantics
Copatterns as a structural interface for contextual reasoning and control

DelimCxt ∋ D ::= □ | M ! D EvalCxt ∋ E ::= □ | E N | E X

M 7→ M′

E[M] 7→ E[M′]
M 7→ M′

M ! ε 7→ M′ ! ε
R 7→ R′

D[R] 7→ D[R′]

(?x → N) ?M 7→ N [M/x]
((x → O) ?M) N 7→ O[N/x] ? (M N)
((X → O) ?M) X 7→ O ? (M X)

(P ?M) X 7→ M X (otherwise)
(P ?M) N 7→ M N (otherwise)

E[!k → R] ! ε 7→ R[(E[raise] ! ε)/k]
M ! (E[raise] ! ε) 7→ E[M] ! ε

(P ?M) ! ε 7→ M ! ε



Future Work
TODO

• Better error messages‼!
• Point to correct place in user code, not library
• Show enough context in stack trace to explain copattern-match failure
• Give a way to produce more meaningful errors based on expectations

• Better display of anonymous objects
• Point to definition site of user code, not library

• Memoization



CoScheme: Composable, Equational, Copatterns!
Try It Yourself!

• https://github.com/pdownen/CoScheme

• Racket

• R6RS

https://github.com/pdownen/CoScheme


“Copatterns?”

Let’s Play!

Intermezzo:
Infinite Pigeons‼!

How?!?!

What. . . ?



Copatterns in Scheme

The
Expression Problem

Factoring Copatterns



Copatterns in
Scheme



Encoding Functional Equations

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define (zip xs ys)
(cond
[(and (pair? xs) (pair? ys))
(cons (cons (car xs) (car ys))

(zip (cdr xs) (cdr ys)))]
[else '()]))
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Encoding Functional Equations

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define (zip xs ys)
(match xs
[`(,x . ,xs-rest)
(match ys

[`(,y . ,ys-rest)
`((,x . ,y) . ,(zip xs-rest ys-rest))]
[_ '()])]

[_ '()]))



Encoding Functional Equations

zip (x:xs) (y:ys) = (x, y) : zip xs ys
zip xs ys = []

(define*
[(zip `(,x . ,xs) `(,y . ,ys)) = `((,x . ,y) . ,(zip xs ys))]
[(zip xs ys) = `()])



Encoding Infinite Objects

Stuttering stream from 0:

stutter 0 = 0, 0, 1, 1, 2, 2, 3, 3, . . .

Stuttering stream from n:

stutter n = n, n, n+ 1, n+ 1, n+ 2, n+ 2, n+ 3, n+ 3, . . .

stream a = (′head→ a) & (′tail→ stream a)

(define*
[ ((stutter n) 'head) = n]
[(((stutter n) 'tail) 'head) = n]
[(((stutter n) 'tail) 'tail) = (stutter (+ n 1))])
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Equational Reasoning Pop Quiz

(define*
[((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

((counter 5) 'get) =

5

(((counter 5) 'add 6) 'get)

= ((counter 11) 'get) = 11

(define c (counter 10))

(list ((c 'add 2) 'get) ((c 'add 4) 'get))

= (list ((counter 12) 'get) ((counter 14) 'get))

= '(12 14)
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The
Expression Problem



A Simple Evaluator

;; Expr = `(num ,Number)
;; | `(add ,Expr ,Expr)

;; expr0 : Expr
(define expr0
'(add (num 1) (add (num 2) (num 3))))

;; eval : Expr -> Number
(define*
[(eval `(num ,n)) = n]
[(eval `(add ,l ,r)) = (+ (eval l) (eval r))])



The Expression Problem

Easy to add new operations:

;; expr? : Any -> Bool
(define*
[(expr? `(num ,n)) = (number? n)]
[(expr? `(add ,l ,r)) = (and (expr? l) (expr? r))]
[(expr? _) = #f])

;; list-nums : Expr -> List Number
(define*
[(list-nums `(num ,n)) = (list n)]
[(list-nums `(add ,l ,r)) = (append (list-nums l) (list-nums r))])

Hard to add new expression cases:

;; Expr = ... | `(mul ,Expr ,Expr)
???



A De/Re-composed Evaluator

(define-object
[(eval-num `(num ,n)) = n])

(define-object
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])

;; same as before, but now defined via composition
(define eval-obj (eval-num 'compose eval-add))

eval-obj expr = eval expr

eval-obj = (object
[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))])
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Simple Extensions of the Expression Language

;; Expr = ... | `(mul ,Expr ,Expr)

(define-object
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])

(define eval-arith
(eval-obj 'compose eval-mul))

eval-arith
=
(object

[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))]
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])
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;; Expr = ... | `(mul ,Expr ,Expr)

(define-object
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eval-arith
=
(object

[(eval-num `(num ,n)) = n]
[(eval-add `(add ,l ,r)) = (+ (eval-add l) (eval-add r))]
[(eval-mul `(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])



Challenge: Adding Variables & Environments

Evaluating variable expressions requires an environment

;; Expr = ... | `(var ,Symbol)

(define-object
[(eval-var env `(var ,x)) = (dict-ref env x)])

(eval-var '((x . 10) (y . 20)) '(var y)) = 20

How to compose (binary) eval-var with (unary) eval-arith?



Solution 1: Fixing the Environment

(define (fix-environment alg-evaluator env)
(object
[(_ expr)
(try-apply-forget alg-evaluator env expr)]))

;; try-apply-forget attemps an application,
;; if it fails to match, continue with next option

(define-object
[(eval-alg env expr)
= (((fix-environment (eval-var 'unplug) env)

'compose eval-arith)
expr)])

;; 'unplug is an inherited-by-default method of objects
;; that converts it to a composable extension



Solution 2: Threading the Environment

eval expr = . . . eval subexpr . . .
⇓

eval env expr = . . . eval env subexpr . . .

(define (with-environment arith-evaluator)
(object
[(self env expr)
(with-self

(override-λ* self
[(_ sub-expr) = (self env sub-expr)])

(try-apply-forget arith-evaluator expr))]))
;; Implement environment extension by hiding environment
;; and overriding its concept of "self" to bring it back

(define eval-alg
((with-environment (eval-arith 'unplug))
'compose eval-var))



Solution 2: Threading the Environment

eval expr = . . . eval subexpr . . .
⇓

eval env expr = . . . eval env subexpr . . .

(define (with-environment arith-evaluator)
(object
[(self env expr)
(with-self

(override-λ* self
[(_ sub-expr) = (self env sub-expr)])

(try-apply-forget arith-evaluator expr))]))
;; Implement environment extension by hiding environment
;; and overriding its concept of "self" to bring it back

(define eval-alg
((with-environment (eval-arith 'unplug))
'compose eval-var))



Solution 2: Holding the Environment

; ((alg Env) `env) : Env
; ((alg Env) `eval Expr) : number
(define (alg dict)
(arith-ext `compose
(object
[(self `env) = dict]
[(self `eval x)
(try-if (symbol? x)) = (dict-ref (self `env) x)])))

((alg env-xy) `eval expr0) = 7
((alg env-xy) `eval expr1) = -5
((alg env-xy) `eval expr2) = -30



Challenge: Constant Folding

Instead of using an environment to evaluate variables, just leave them alone:

(constant-fold '(mul (add (num 1) (num 2))
(add (var x) (num 4))))

=
'(mul (num 3)

(add (var x) (num 4)))



Intermezzo: More Cautious Error Handling

(define-object eval-add-safe
[(self `(add ,l ,r))
= (self 'add (self l) (self r))]
[(self 'add x y) (try-if (and (number? x) (number? y)))
= (+ x y)])

(define-object eval-mul-safe
[(self `(mul ,l ,r))
= (self 'mul (self l) (self r))]
[(self 'mul x y) (try-if (and (number? x) (number? y)))
= (* x y)])

(define eval-arith-safe
(eval-num 'compose eval-add-safe eval-mul-safe))



Leave Variables Alone

(define-object
[(leave-variables `(var ,x)) = `(var ,x)])

(define (operation? s)
(or (equal? s 'add) (equal? s 'mul)))

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])



Leave Variables Alone

(define-object
[(leave-variables `(var ,x)) = `(var ,x)])

(define (operation? s)
(or (equal? s 'add) (equal? s 'mul)))

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])



Solution: Constant Folding Made Easy

(define constant-fold
(eval-arith-safe 'compose

leave-variables
reform-operations))

(define expr3
'(add (add (num 1) (num 1))

(mul (var x)
(mul (num 2) (add (num 2) (num 3))))))

(constant-fold expr3)
= '(add (num 2) (mul (var x) (num 10)))



Solution: Constant Folding Made Easy

(define constant-fold
(eval-arith-safe 'compose

leave-variables
reform-operations))

(define expr3
'(add (add (num 1) (num 1))

(mul (var x)
(mul (num 2) (add (num 2) (num 3))))))

(constant-fold expr3)
= '(add (num 2) (mul (var x) (num 10)))



Factoring
Copatterns



Nested definitions

map f [] = []
map f (x:xs) = f x : map f xs

map f xs = go xs -- map f = go
where go [] = []

go (x:xs) = f x : go xs

(define*
[(map f xs) = ((map f) xs)] ; (un)curried forms equal
[(map f) (nest) ; map f = go
(extension
[(go `()) = `()]
[(go `(,x . ,xs)) = `(,(f x) . ,(go xs))])])



Nested definitions

map f [] = []
map f (x:xs) = f x : map f xs

map f xs = go xs -- map f = go
where go [] = []

go (x:xs) = f x : go xs

(define*
[(map f xs) = ((map f) xs)] ; (un)curried forms equal
[(map f) (nest) ; map f = go
(extension
[(go `()) = `()]
[(go `(,x . ,xs)) = `(,(f x) . ,(go xs))])])



Refactoring a Common Prefix

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])

common prefix: (reform op l r) (try-if (operation? op))

(define-object reform-operations
[(reform op l r) (try-if (operation? op))
(extension
[_ (try-if (number? l)) = (reform op `(num ,l) r)]
[_ (try-if (number? r)) = (reform op l `(num ,r))]
[_ = (list op l r)])])



Refactoring a Common Prefix

(define-object reform-operations
[(reform op l r) (try-if (operation? op)) (try-if number? l)
= (reform op `(num ,l) r)]
[(reform op l r) (try-if (operation? op)) (try-if number? r)
= (reform op l `(num ,r))]
[(reform op l r) (try-if (operation? op))
= (list op l r)])

common prefix: (reform op l r) (try-if (operation? op))

(define-object reform-operations
[(reform op l r) (try-if (operation? op))
(extension
[_ (try-if (number? l)) = (reform op `(num ,l) r)]
[_ (try-if (number? r)) = (reform op l `(num ,r))]
[_ = (list op l r)])])
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