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Coinduction for Modern Computer Science
Interacting With Others

Induction has been the workhorse of PL in theory & practice

Programs that interact with the outside world while they run are coinductive:

Operating systems & User Interfaces
Web servers & Networks
Control software & robotics
. . .

Coinduction also arises in semantics of languages

Bisimulation & (potentially) infinite processes
Interaction trees & effects
Automata & formal languages

So let’s just use coinduction like we do induction!
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What’s So Hard
About Coinduction?



An Old-Fashioned Pen-and-Paper Proof
The “Hello, World!” of coinduction

map : (a→ b)→ Stream a→ Stream b

map f xs = More (f (Head xs)) (map f (Tail xs))

Theorem
For all xs : Stream a, map id xs = xs.

Proof. By general coinduction.
Assume the CoIH: map id xs = xs. . . .

The CoIH is only used in a productive context.
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A Miraculous Discovery!
What is “productive,” anyway?

always : a→ Stream a always x = More x (always x)
Theorem
More 0 (always 1) = always 0. Corollary: 1 = 0.

Proof. By general coinduction.
Assume the CoIH: More 0 (always 1) = always 0. . . .

More 0 (always 1)

= More 0 (Tail(More 0 (always 1))) (Tail−1)

= More 0 (Tail(always 0)) (CoIH)

= More 0 (Tail(More 0 (always 0))) (always)

= More 0 (always 0) (Tail)

= always 0 (always−1)

What went wrong??

The CoIH looked productive, but it wasn’t.
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Coinduction via Productivity is Subtle
What we do to manage today

The coinductive hypothesis (CoIH) is too powerful

Status quo: avoid vicious cycles by using CoIH in good contexts

“Good” and “bad” contexts have subtle semantic content

Possible if your proof has a certain “shape”

Calculations have obvious contexts around axiom use
Good luck analyzing the “context” in a paragraph of prose

Proof assistants can help sort out good contexts from bad

. . . using (rigidly) syntactic approximations of semantics
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A Frustrating Proof in Rocq
I hope you like poring over auto-generated proof terms. . .

CoInductive Stream A : Type := More { Head : A ; Tail : Stream A }.

CoFixpoint map {A} {B} (f : A -> B) xs := More (f (Head xs)) (map f (Tail xs)).

CoInductive StreamEq {A} (xs ys : Stream A) : Prop :=
MoreEq { HeadEq : Head xs = Head ys;

TailEq : StreamEq (Tail xs) (Tail ys) }.

Theorem map_id1
: forall {A} (xs : Stream A),

StreamEq (map id xs) xs.
Proof.

intro A.
intro xs.
cofix CoIH.
apply MoreEq.
* reflexivity.
* apply CoIH.

Qed.

Theorem map_id2
: forall {A} (xs : Stream A),

StreamEq (map id xs) xs.
Proof.

intro A.
cofix CoIH.
intro xs.
apply MoreEq.
* reflexivity.
* apply CoIH.

Qed.
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Error: . . .CoIH is ill-formed. . .

Theorem map_id2
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Liberating Structural Coinduction from Syntax
Making coinduction as straightforward as induction outside a proof assistant

Want: A coinduction principle useful for informal proofs, pen-and-paper prose
style, with the same confidence as structural induction

No question when the Inductive Hypothesis applies, even in informal contexts:

assume IH : P(n) prove Goal : P(n+ 1)

The usual basis of coinduction is begging the question:

assume CoIH : P(xs) prove Goal : P(xs)

Need: A re-formulation of the CoInductive Hypothesis that

(1) Can be checked for valid applications immediately
(2) Is not dependent on a particular syntax / proof context
(3) Gives an axiom that is sound by definition without secondary syntactic checks



Coinduction With
Confidence



What is the Principle Behind Copatterns?
Restoring the structure to structural (co)induction

record Stream (A : Set) : Set where
coinductive
field Head : A

Tail : Stream A

map : ∀ {A B} → (A → B) → Stream A → Stream B
map f xs .Head = f (xs .Head)
map f xs .Tail = map f (xs .Tail)

record Stream_≈_ {A} (xs ys : Stream A) : Set where
coinductive
field Head : xs .Head ≡ ys .Head

Tail : Stream xs .Tail ≈ ys .Tail

map-id : ∀ {A} (xs : Stream A) → Stream map id xs ≈ xs
map-id xs .Head = refl
map-id xs .Tail = map-id (xs .Tail)



Structural (Co)Induction
Main idea 1: Coinduction = Induction on the Observing Context

Principle (Induction on Natural Number Values)
Property P holds on all natural number values n : Nat (i.e., P(n)) if and only if

P(0) holds, and

for all values n : Nat, P(n) implies P(n+ 1).

Principle (Coinduction on Stream Observations∗)
Property P holds on all stream observations f : StreamA⇝ B (i.e., P(f )) if and only if

for all observations g : A⇝ B, P(g ◦ Head) holds, and
for all observations h : StreamA⇝ B, P(h) implies P(h ◦ Tail).
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Coinductive Contextual Equivalence
Main idea 2: Sound Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)
Given values x : A and y : A, x = y

if and only if
for all observations f , f (x) = f (y).

Corollary (Contextual Stream Equality)
Given stream values xs : StreamA and ys : StreamA,

xs = ys
if and only if

for all observations g, g(Head(xs)) = g(Head(ys))
and

for all obs. h, h(xs) = h(ys) implies h(Tail(xs)) = h(Tail(ys))

Proof. By Contextual Equivalence + Coinduction on Stream Observations,
where P(f ) = (f (xs) = f (ys)).
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An Informal Proof By Contextual Stream Equality
Now with more confidence!

Head(map f x) = f (Head x) Tail(map f x) = map f (Tail x)
Theorem
map id xs = map id xs

Proof. By contextual stream equality:

(Head) Show Head(map id xs) = Head(xs)

Head(map id xs) = id(Head(xs)) = Head(xs) (Head ◦map, id)

(Tail) Assume CoIH: h(map id xs) = h(xs).
Show h(Tail(map id xs)) = h(Tail(xs)).

h(Tail(map id xs)) = h(map id (Tail(xs)))) (Tail ◦map)

= h(Tail(xs)) (CoIH)

The “guard” is now explicitly part of CoIH! It can’t be misapplied!
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Stopping Incorrect Steps As Soon As They Happen
Can’t use the CoIH in the wrong context!

Head(always x) = x Tail(always x) = always x
Theorem
More 0 (always 1) = always 0

Proof (attempt). By contextual stream equality:

(Head) Show Head(More 0 (always 1)) = Head(always 0).

Head(More 0 (always 1)) = 0 (Head ◦More)
= Head(always 0) (Head ◦always−1)

(Tail) Assume CoIH: h(More 0 (always 1)) = h(always 0).
Show h(Tail(More 0 (always 1))) = h(Tail(always 0)).

h(Tail(always 0)) = h(always 0) (Tail ◦always)
= h(More 0 (always 1)) (CoIH−1)

̸= h(Tail(More 0 (always 1))) (???) ⊠
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Coinductive Rules
in Classical Logic



Dualities of Computation
Embodying the Context

⟨x||α⟩

Answers

Questions

A producer x : A gives an answer of type A

A consumer α ÷ A asks a question of type A

A command ⟨x||α⟩ is an interaction at a type

Γ ⊢ x : A Γ ⊢ α ÷ A
Γ ⊢ ⟨x||α⟩ Cut



An Formal Induction Principle
Summarizing infinite cases of values

Consider property P : Nat→ Prop
Is P(x) true for any value x : Nat?
All the cases of x :

x = 0
x = y + 1 for some other y : Nat

Γ ⊢ P(0) Γ, y : Nat, P(y) ⊢ P(y + 1)
Γ, x : Nat ⊢ P(x) Nat Ind

The sound axiom of primitive induction on Nat:

P(0) =⇒ (∀y : Nat . P(y) =⇒ P(y + 1)) =⇒ ∀x : Nat . P(x)



A Classical Coinduction Principle
Summarizing infinite cases of observers

Consider property P : − StreamA→ Prop
Is P(α) true for any observation α ÷ StreamA
All the cases of α:

α = β ◦ Head for some observation β ÷ A
α = δ ◦ Tail for some other δ ÷ StreamA

Γ, β÷A ⊢ P(β◦Head) Γ, δ÷ StreamA, P(δ) ⊢ P(δ◦ Tail)
Γ, α ÷ StreamA ⊢ P(α)

StreamCoInd

The sound axiom of primitive corecursion on StreamA:

(∀β ÷ A. P(β ◦ Head)) =⇒
(∀δ ÷ StreamA. P(δ) =⇒ P(δ ◦ Tail)) =⇒
∀α ÷ StreamA. P(α)
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Coinductive Principles for Other Types

record River (A : Set) : Set where
coinductive
field Curr : A

Fork : River A × River A

P(α) true for any observation α ÷ StreamA

All the cases of α:

α = β ◦ Curr for some observation β ÷ A
α = δ ◦ π1 ◦ Fork for some other δ ÷ StreamA
α = δ ◦ π2 ◦ Fork for some other δ ÷ StreamA

The sound axiom of primitive corecursion on RiverA:

(∀β ÷ A. P(β ◦ Head)) =⇒ (∀δ ÷ RiverA. P(δ) =⇒ P(δ ◦ π1 ◦ Tail))
=⇒ (∀δ ÷ RiverA. P(δ) =⇒ P(δ ◦ π2 ◦ Tail))
=⇒ ∀α ÷ RiverA. P(α)



Computing With
Contextual
Coinduction



Consistency of Equality
Do the Syntactic Rules Mean Anything?

Theorem
If Γ ⊢ ⟨v||e⟩ = ⟨v ′||e′⟩, then ⟨v||e⟩ and ⟨v ′||e′⟩ are contextually equivalent.

Proof.
By a logical relation based on orthogonal fixed points in a subtyping lattice.
Key idea: Knaster-Tarski and Kleene fixed points defining types coincide.

Corollary
If α ÷ Bool ⊢ ⟨v||e⟩ = ⟨v ′||e′⟩, then either

⟨v||e⟩ 7→→ ⟨tt||α⟩ ←←[ ⟨v ′||e′⟩ or
⟨v||e⟩ 7→→ ⟨ff||α⟩ ←←[ ⟨v ′||e′⟩.

Corollary
• ⊢ tt = ff : Bool is not derivable.
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What about effects?

Programs can do some funny things

Conventional side effects

Mutable state / references
Input / Output
Exceptions and Jumps
Infinite loops

Surprising wrinkle: Information effects

Dual to control effects (manipulating control flow)
Erasing answers
Duplicating answers

Both can cause (co)inductive reasoning principles to go awry

For example, they can cause inconsistency



(Co)Induction and Evaluation Strategy
Adjusting Strength to Save Consistency

Induction principles (like Nat Ind) + Effects are

Fully consistent under call-by-value evaluation
Safe for strict properties in call-by-name evaluation

Strict on x ∋ Ψ(x) ::= ⟨x||E⟩ =
〈
x
∣∣∣∣E ′〉 (E, E ′ ∈ Eval.Cxt.)

| . . .

Coinduction principles (like StreamCoInd) + Effects are

Fully consistent under call-by-name evaluation
Safe for productive properties in call-by-value evaluation

Productive on α ∋ Ψ(α) ::= ⟨V ||α⟩ =
〈
V ′∣∣∣∣α〉 (V ,V ′ ∈ Value)

| . . .
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Other Reasoning Principles
But what about. . . ?

Other reasoning principles like. . .

Mutual (co)induction: Multiple (Co)IHs over multiple goals

Strong (co)induction: Assume (Co)IH over all smaller structures

Bisimulation: Proof by relationship preservation

. . . are all derivable from structural (co)induction.

Caveat: Bisimulation & strong coinduction requires unrestricted CBN rule

Dual caveat: strong induction requires unrestricted CBV rule



Other Reasoning Principles
But what about. . . ?

Other reasoning principles like. . .

Mutual (co)induction: Multiple (Co)IHs over multiple goals

Strong (co)induction: Assume (Co)IH over all smaller structures

Bisimulation: Proof by relationship preservation

. . . are all derivable from structural (co)induction.

Caveat: Bisimulation & strong coinduction requires unrestricted CBN rule

Dual caveat: strong induction requires unrestricted CBV rule
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What’s So Hard About Coinduction?

Coinduction With Confidence

Coinductive Rules in Classical Logic

Computing With Contextual Coinduction
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Bonus



Mutual Coinduction

evens (x0, x1, x2, x3, x4, x5, . . . ) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, x4, x5, . . . ) = x1, x3, x5, . . .

merge (x0, x1, x2, . . . ) (y0, y1, y2, . . . ) = x0, y0, x1, y1, x2, y2, . . .

Head(evens xs) = Head xs

Tail(evens xs) = odds (Tail xs)

odds xs = evens (Tail xs)

Head(merge xs ys) = Head xs

Head(Tail(merge xs ys)) = Head ys

Tail(Tail(merge xs ys)) = merge (Tail xs) (Tail ys)



Mutual Coinduction

evens (x0, x1, x2, x3, x4, x5, . . . ) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, x4, x5, . . . ) = x1, x3, x5, . . .

merge (x0, x1, x2, . . . ) (y0, y1, y2, . . . ) = x0, y0, x1, y1, x2, y2, . . .

Head(evens xs) = Head xs

Tail(evens xs) = odds (Tail xs)

odds xs = evens (Tail xs)

Head(merge xs ys) = Head xs

Head(Tail(merge xs ys)) = Head ys

Tail(Tail(merge xs ys)) = merge (Tail xs) (Tail ys)



Proof By Mutual Coinduction

Theorem
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys

Proof. By mutual contextual stream equality:
(Head) Head(evens (merge xs ys)) = Head(merge xs ys) = Head xs

Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))

= Head(Tail(merge xs ys)) = Head ys

(Tail) ∀xs, ys, CoIH1 : h(evens(merge xs ys)) = h(xs), AND CoIH2 : h(odds(merge xs ys)) = h(ys).

h(Tail(evens (merge xs ys))) = h(evens (Tail(Tail(merge xs ys))))

= h(evens (merge (Tail xs) (Tail ys)))
= h(Tail xs) (CoIH1[(Tail xs)/xs, (Tail ys)/ys])

h(Tail(odds (merge xs ys))) = h(odds (Tail(Tail(merge xs ys))))

= h(odds (merge (Tail xs) (Tail ys)))
= h(Tail ys) (CoIH2[(Tail xs)/xs, (Tail ys)/ys])



Proof By Mutual Coinduction

Theorem
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys

Proof. By mutual contextual stream equality:
(Head) Head(evens (merge xs ys)) = Head(merge xs ys) = Head xs

Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))

= Head(Tail(merge xs ys)) = Head ys

(Tail) ∀xs, ys, CoIH1 : h(evens(merge xs ys)) = h(xs), AND CoIH2 : h(odds(merge xs ys)) = h(ys).

h(Tail(evens (merge xs ys))) = h(evens (Tail(Tail(merge xs ys))))

= h(evens (merge (Tail xs) (Tail ys)))
= h(Tail xs) (CoIH1[(Tail xs)/xs, (Tail ys)/ys])

h(Tail(odds (merge xs ys))) = h(odds (Tail(Tail(merge xs ys))))

= h(odds (merge (Tail xs) (Tail ys)))
= h(Tail ys) (CoIH2[(Tail xs)/xs, (Tail ys)/ys])



Proof By Strong Coinduction

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Head) Head(merge (evens xs) (odds xs)) = Head xs

Head(merge (evens xs) (odds xs)) = Head(evens xs)

= Head xs

(Head ◦ Tail) Head(Tail(merge (evens xs) (odds xs))) = Head(Tail xs)

Head(Tail(merge (evens xs) (odds xs))) = Head(odds xs)

= Head(evens (Tail xs))

= Head(Tail xs)



Proof By Strong Coinduction

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Head) Head(merge (evens xs) (odds xs)) = Head xs

Head(merge (evens xs) (odds xs)) = Head(evens xs)

= Head xs

(Head ◦ Tail) Head(Tail(merge (evens xs) (odds xs))) = Head(Tail xs)

Head(Tail(merge (evens xs) (odds xs))) = Head(odds xs)

= Head(evens (Tail xs))

= Head(Tail xs)



Proof By Strong Coinduction

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])



Proof By Strong Coinduction

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])



Proof By Strong Coinduction

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])
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