
Contextual Coinduction and
Classical Logic
Or: Fearlessly Observing the Infinite

Paul Downen

BU POPV: April 21, 2023

Coinduction, eh?
So when do we start talking about categories?

1

Coinduction, eh?
So when do we start talking about categories?

1

Coinduction, eh?
So when do we start talking about categories?

1

(Structural) Induction for Classic Algorithms
The Workhorse of Computer Science Theories A & B

Many classic (theory A) algorithms follow inductive structure:

Sorting
Searching
Tree-based data structures

Language foundations (theory B): induction all the way down

Syntax
Semantics
Compiliers
Type systems

Proof assistants (the magnum opus of theory B) are effectively
big induction engines.

2

Coinduction for Modern Algorithms
Interacting With Others

Programs that need to interact with the outside world while
they run are inherently coinductive:

Operating systems & User Interfaces
Web servers & Networks
Distributed systems & IoT
Real time & Embedded systems
Control software & robotics

Coinduction is essiential to understand modern systems

So formal methods (type theory, proof assistants) have good
support for coinduction, right?

. . .

. . . right . . . ?

3

Coinduction for Modern Algorithms
Interacting With Others

Programs that need to interact with the outside world while
they run are inherently coinductive:

Operating systems & User Interfaces
Web servers & Networks
Distributed systems & IoT
Real time & Embedded systems
Control software & robotics

Coinduction is essiential to understand modern systems

So formal methods (type theory, proof assistants) have good
support for coinduction, right?

. . .

. . . right . . . ?

3

Coinduction for Modern Algorithms
Interacting With Others

Programs that need to interact with the outside world while
they run are inherently coinductive:

Operating systems & User Interfaces
Web servers & Networks
Distributed systems & IoT
Real time & Embedded systems
Control software & robotics

Coinduction is essiential to understand modern systems

So formal methods (type theory, proof assistants) have good
support for coinduction, right?

. . .

. . . right . . . ?

3

Coinduction for Modern Algorithms
Interacting With Others

Programs that need to interact with the outside world while
they run are inherently coinductive:

Operating systems & User Interfaces
Web servers & Networks
Distributed systems & IoT
Real time & Embedded systems
Control software & robotics

Coinduction is essiential to understand modern systems

So formal methods (type theory, proof assistants) have good
support for coinduction, right?

. . .

. . . right . . . ?

3

How To
Coinduction?

Coinduction With
Confidence

What is the Coinductive Hypothesis?
AndWhen Can I Use It?

Coq’s coinduction founded on begging the question

cofix : (∀x.P(x)→ P(x))→ ∀x.P(x) ???
Viciously circular logic

Assume exactly what you are trying to prove . . .
. . . but only use it sometimes?

CIH should be guarded/inside a constructor

unless you eliminate it too soon . . .

CIH should be guarded/behind a projection

unless you use another projection in the “wrong spot” . . .
. . . or pass the result to another function (???)

“Guardedness” is trying to say something about the context’s
structure and how it shrinks

4

Structural (Co)Induction
Coinduction = Induction on the Context

Principle (Induction on Natural Number Values)
Given property P : Nat→ Prop on natural numbers,
P(n) holds for all numbers n : Nat if and only if

P(0) holds, and

for all n : Nat, P(n) implies P(n+ 1).

Principle (Coinduction on Stream Observations∗)
Given property P : (StreamA→ B)→ Prop on stream observations,
P(f) holds for all observations f : StreamA→ B if and only if

for all g : A→ B, P(g ◦ Head) holds, and
for all h : StreamA→ B, P(h) implies P(h ◦ Tail).

5

Structural (Co)Induction
Coinduction = Induction on the Context

Principle (Induction on Natural Number Values)
Given property P : Nat→ Prop on natural numbers,
P(n) holds for all numbers n : Nat if and only if

P(0) holds, and

for all n : Nat, P(n) implies P(n+ 1).

Principle (Coinduction on Stream Observations∗)
Given property P : (StreamA→ B)→ Prop on stream observations,
P(f) holds for all observations f : StreamA→ B if and only if

for all g : A→ B, P(g ◦ Head) holds, and
for all h : StreamA→ B, P(h) implies P(h ◦ Tail).

5

Structural (Co)Induction
Coinduction = Induction on the Context

Principle (Induction on Natural Number Values)
Given property P : Nat→ Prop on natural numbers,
P(n) holds for all numbers n : Nat if and only if

P(0) holds, and

for all n : Nat, P(n) implies P(n+ 1).

Principle (Coinduction on Stream Observations∗)
Given property P : (StreamA→ B)→ Prop on stream observations,
P(f) holds for all observations f : StreamA→ B if and only if

for all g : A→ B, P(g ◦ Head) holds, and
for all h : StreamA→ B, P(h) implies P(h ◦ Tail).

5

Coinductive Contextual Equivalence
Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)
Given x : A and y : A, x = y

IF AND ONLY IF

for all f , f (x) = f (y).

Corollary (Contextual Stream Equality)
Given xs : StreamA and ys : StreamA,

xs = ys

IF AND ONLY IF

for all g, g(Head(xs)) = g(Head(ys))

AND

for all h, h(xs) = h(ys) IMPLIES h(Tail(xs)) = h(Tail(ys))
Proof.
Contextual Equivalence + Coinduction on Stream Observations,
where P(f) = (f (xs) = f (ys)).

6

Coinductive Contextual Equivalence
Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)
Given x : A and y : A, x = y

IF AND ONLY IF

for all f , f (x) = f (y).

Corollary (Contextual Stream Equality)
Given xs : StreamA and ys : StreamA,

xs = ys

IF AND ONLY IF

for all g, g(Head(xs)) = g(Head(ys))

AND

for all h, h(xs) = h(ys) IMPLIES h(Tail(xs)) = h(Tail(ys))

Proof.
Contextual Equivalence + Coinduction on Stream Observations,
where P(f) = (f (xs) = f (ys)).

6

Coinductive Contextual Equivalence
Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)
Given x : A and y : A, x = y

IF AND ONLY IF

for all f , f (x) = f (y).

Corollary (Contextual Stream Equality)
Given xs : StreamA and ys : StreamA,

xs = ys

IF AND ONLY IF

for all g, g(Head(xs)) = g(Head(ys))

AND

for all h, h(xs) = h(ys) IMPLIES h(Tail(xs)) = h(Tail(ys))
Proof.
Contextual Equivalence + Coinduction on Stream Observations,
where P(f) = (f (xs) = f (ys)). 6

Coinductive Contextual Equivalence
Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)
Given x : A and y : A, x = y

IF AND ONLY IF

for all f , f (x) = f (y).

Corollary (Contextual Stream Equality)
Given xs : StreamA and ys : StreamA,

xs = ys

IF AND ONLY IF

Head(xs) = Head(ys)

AND

for all h, h(xs) = h(ys) IMPLIES h(Tail(xs)) = h(Tail(ys))
Proof.
Contextual Equivalence + Coinduction on Stream Observations,
where P(f) = (f (xs) = f (ys)). 6

repeat id = always
By Begging the Question (Boo. . .)

always x = Cons x (always x)

repeat f x = Cons x (repeat f (f x))

Theorem
repeat (λy.y) x = always x

Proof.
Assume coinductive hypothesis (CoIH): repeat (λy.y) x = always x .
Now prove repeat (λy.y) x = always x :

repeat (λy.y) x = always x (CoIH?)

7

repeat id = always
By Begging the Question (Boo. . .)

always x = Cons x (always x)

repeat f x = Cons x (repeat f (f x))

Theorem
repeat (λy.y) x = always x

Proof.
Assume coinductive hypothesis (CoIH): repeat (λy.y) x = always x .
Now prove repeat (λy.y) x = always x :

repeat (λy.y) x = Cons x (repeat (λy.y) ((λy.y) x)) (def . repeat)

= Cons x (repeat (λy.y) x) (β)

= Cons x (always x) (CoIH)

= always x (def . always)

7

repeat id = always
By Begging the Question (Boo. . .)

always x = Cons x (always x)

repeat f x = Cons x (repeat f (f x))

Theorem
repeat (λy.y) x = always x

Proof.
Assume coinductive hypothesis (CoIH): repeat (λy.y) x = always x .
Now prove repeat (λy.y) x = always x :

repeat (λy.y) x = Cons x (repeat (λy.y) ((λy.y) x)) (def . repeat)

= Cons x (repeat (λy.y) x) (β)

= Cons x (always x) (CoIH)

= always x (def . always)

7

repeat id = always
By Contextual Stream Equality (No Guesswork!)

Head(always x) = x Tail(always x) = always x

Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
repeat (λy.y) x = always x

Proof. By contextual stream equality:

(Head) Show Head(repeat (λy.y) x) = Head(always x)

Head(repeat (λy.y) x) = x = Head(always x)

(Tail) Assume CoIH: h(repeat (λy.y) x) = h(always x).
Show h(Tail(repeat (λy.y) x)) = h(Tail(always x)).

h(Tail(repeat (λy.y) x)) = h(repeat (λy.y) ((λy.y) x)) (def . repeat)

= h(repeat (λy.y) x) (β)

= h(always x) (CoIH)

= h(Tail(always x)) (def . always)

8

repeat id = always
By Contextual Stream Equality (No Guesswork!)

Head(always x) = x Tail(always x) = always x

Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
repeat (λy.y) x = always x

Proof. By contextual stream equality:

(Head) Show Head(repeat (λy.y) x) = Head(always x)

Head(repeat (λy.y) x) = x = Head(always x)

(Tail) Assume CoIH: h(repeat (λy.y) x) = h(always x).
Show h(Tail(repeat (λy.y) x)) = h(Tail(always x)).

h(Tail(repeat (λy.y) x)) = h(repeat (λy.y) ((λy.y) x)) (def . repeat)

= h(repeat (λy.y) x) (β)

= h(always x) (CoIH)

= h(Tail(always x)) (def . always)
8

repeat id = always
By Contextual Stream Equality (No Guesswork!)

Head(always x) = x Tail(always x) = always x

Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
repeat (λy.y) x = always x

Proof. By contextual stream equality:

(Head) Show Head(repeat (λy.y) x) = Head(always x)

Head(repeat (λy.y) x) = x = Head(always x)

(Tail) Assume CoIH: h(repeat (λy.y) x) = h(always x).
Show h(Tail(repeat (λy.y) x)) = h(Tail(always x)).

h(Tail(repeat (λy.y) x)) = h(repeat (λy.y) ((λy.y) x)) (def . repeat)

= h(repeat (λy.y) x) (β)

= h(always x) (CoIH)

= h(Tail(always x)) (def . always)
8

map f (repeat f x) = repeat f (f x)

Head(map f xs) = f (Head xs) Tail(map f xs) = map f (Tail xs)
Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
for all x, map f (repeat f x) = repeat f (f x)

Proof. By contextual stream equality:

(Head) Show ∀x , Head(map f (repeat f x)) = Head(repeat f (f x)).

Head(map f (repeat f x)) = f (Head(repeat f x)) = f (x)

= Head(repeat f (f x))

(Tail) Assume CoIH: ∀x , h(map f (repeat f x)) = h(repeat f (f x)).
Show ∀x , h(Tail(map f (repeat f x))) = h(Tail(repeat f (f x))).

h(Tail(map f (repeat f x))) = h(map f (Tail(repeat f x)))

= h(map f (repeat f (f x))) (CoIH[(f x)/x])

= h(repeat f (f (f x)))

= h(Tail(repeat f (f x)))

9

map f (repeat f x) = repeat f (f x)

Head(map f xs) = f (Head xs) Tail(map f xs) = map f (Tail xs)
Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
for all x, map f (repeat f x) = repeat f (f x)

Proof. By contextual stream equality:

(Head) Show ∀x , Head(map f (repeat f x)) = Head(repeat f (f x)).

Head(map f (repeat f x)) = f (Head(repeat f x)) = f (x)

= Head(repeat f (f x))

(Tail) Assume CoIH: ∀x , h(map f (repeat f x)) = h(repeat f (f x)).
Show ∀x , h(Tail(map f (repeat f x))) = h(Tail(repeat f (f x))).

h(Tail(map f (repeat f x))) = h(map f (Tail(repeat f x)))

= h(map f (repeat f (f x))) (CoIH[(f x)/x])

= h(repeat f (f (f x)))

= h(Tail(repeat f (f x))) 9

Mutual Coinduction
Evens and Odds

evens (x0, x1, x2, x3, x4, x5, . . .) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, x4, x5, . . .) = x1, x3, x5, . . .

merge (x0, x1, x2, . . .) (y0, y1, y2, . . .) = x0, y0, x1, y1, x2, y2, . . .

Head(evens xs) = Head xs

Tail(evens xs) = odds (Tail xs)

odds xs = evens (Tail xs)

Head(merge xs ys) = Head xs

Head(Tail(merge xs ys)) = Head ys

Tail(Tail(merge xs ys)) = merge (Tail xs) (Tail ys)

10

Mutual Coinduction
Evens and Odds

evens (x0, x1, x2, x3, x4, x5, . . .) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, x4, x5, . . .) = x1, x3, x5, . . .

merge (x0, x1, x2, . . .) (y0, y1, y2, . . .) = x0, y0, x1, y1, x2, y2, . . .

Head(evens xs) = Head xs

Tail(evens xs) = odds (Tail xs)

odds xs = evens (Tail xs)

Head(merge xs ys) = Head xs

Head(Tail(merge xs ys)) = Head ys

Tail(Tail(merge xs ys)) = merge (Tail xs) (Tail ys)
10

Proof By Mutual Coinduction

Theorem
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys

Proof. By mutual contextual stream equality:
(Head) Head(evens (merge xs ys)) = Head(merge xs ys) = Head xs

Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))

= Head(Tail(merge xs ys)) = Head ys

(Tail) ∀xs, ys, CoIH1 : h(evens(merge xs ys)) = h(xs),AND
CoIH2 : h(odds(merge xs ys)) = h(ys).

h(Tail(evens (merge xs ys))) = h(evens (Tail(Tail(merge xs ys))))

= h(evens (merge (Tail xs) (Tail ys)))
= h(Tail xs) (CoIH1[(Tail xs)/xs, (Tail ys)/ys])

h(Tail(odds (merge xs ys))) = h(odds (Tail(Tail(merge xs ys))))

= h(odds (merge (Tail xs) (Tail ys)))
= h(Tail ys) (CoIH2[(Tail xs)/xs, (Tail ys)/ys])

11

Proof By Mutual Coinduction

Theorem
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys

Proof. By mutual contextual stream equality:
(Head) Head(evens (merge xs ys)) = Head(merge xs ys) = Head xs

Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))

= Head(Tail(merge xs ys)) = Head ys

(Tail) ∀xs, ys, CoIH1 : h(evens(merge xs ys)) = h(xs),AND
CoIH2 : h(odds(merge xs ys)) = h(ys).

h(Tail(evens (merge xs ys))) = h(evens (Tail(Tail(merge xs ys))))

= h(evens (merge (Tail xs) (Tail ys)))
= h(Tail xs) (CoIH1[(Tail xs)/xs, (Tail ys)/ys])

h(Tail(odds (merge xs ys))) = h(odds (Tail(Tail(merge xs ys))))

= h(odds (merge (Tail xs) (Tail ys)))
= h(Tail ys) (CoIH2[(Tail xs)/xs, (Tail ys)/ys]) 11

Proof By Strong Coinduction
base cases . . .

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Head) Head(merge (evens xs) (odds xs)) = Head xs

Head(merge (evens xs) (odds xs)) = Head(evens xs)

= Head xs

(Head ◦ Tail) Head(Tail(merge (evens xs) (odds xs))) = Head(Tail xs)

Head(Tail(merge (evens xs) (odds xs))) = Head(odds xs)

= Head(evens (Tail xs))

= Head(Tail xs)

12

Proof By Strong Coinduction
base cases . . .

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Head) Head(merge (evens xs) (odds xs)) = Head xs

Head(merge (evens xs) (odds xs)) = Head(evens xs)

= Head xs

(Head ◦ Tail) Head(Tail(merge (evens xs) (odds xs))) = Head(Tail xs)

Head(Tail(merge (evens xs) (odds xs))) = Head(odds xs)

= Head(evens (Tail xs))

= Head(Tail xs)

12

Proof By Strong Coinduction
. . . continued

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])

13

Proof By Strong Coinduction
. . . continued

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])

13

Proof By Strong Coinduction
. . . continued

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])

13

Coinductive Rules
in Classical Logic

Finite Induction

Consider property P : Bool→ Prop

Is P(x) true for any value x : Bool?

All the cases of x :

x = tt
x = ff

Γ ⊢ P(tt) • ⊢ P(ff)
Γ, x : Bool ⊢ P(x) Bool Ind

≈
P(tt) =⇒ P(ff) =⇒ ∀x : Bool .P(x)

14

Finite Induction

Consider property P : Bool→ Prop

Is P(x) true for any value x : Bool?

All the cases of x :

x = tt
x = ff

Γ ⊢ P(tt) • ⊢ P(ff)
Γ, x : Bool ⊢ P(x) Bool Ind

≈
P(tt) =⇒ P(ff) =⇒ ∀x : Bool .P(x)

14

Infinite Induction?
Too Many Cases

Consider property P : Nat→ Prop

Is P(x) true for any value x : Nat?

All the cases of x :

x = 0
x = 1
x = 2
. . .

Γ ⊢ P(0) Γ ⊢ P(1) Γ ⊢ P(2) . . .

Γ, x : Nat ⊢ P(x)

15

Infinite Induction?
Too Many Cases

Consider property P : Nat→ Prop

Is P(x) true for any value x : Nat?

All the cases of x :

x = 0
x = 1
x = 2
. . .

Γ ⊢ P(0) Γ ⊢ P(1) Γ ⊢ P(2) . . .

Γ, x : Nat ⊢ P(x)

15

An Induction Principle

Consider property P : Nat→ Prop
Is P(x) true for any value x : Nat?
All the cases of x :

x = 0
x = y + 1 for some other y : Nat

Γ ⊢ P(0) Γ, y : Nat, P(y) ⊢ P(y + 1)
Γ, x : Nat ⊢ P(x) Nat Ind

P(0) =⇒ (∀y : Nat . P(y) =⇒ P(y + 1)) =⇒
∀x : Nat . P(x)

16

Making Coinduction Less Vicious

Γ, xs : StreamA, P(xs) ⊢ P(xs)
Γ, xs : StreamA ⊢ P(xs) vicious!

xs : StreamA ⊢ P
(

Head xs,Head(Tail xs),

Head(Tail(Tail xs)), . . .

)
xs : StreamA ⊢ P(xs)

Key Idea: Move focus away from stream values
xs : StreamA, and consider the cases for any
observation α ÷ StreamA that might look at xs

17

Making Coinduction Less Vicious

Γ, xs : StreamA, P(xs) ⊢ P(xs)
Γ, xs : StreamA ⊢ P(xs) vicious!

xs : StreamA ⊢ P
(

Head xs,Head(Tail xs),

Head(Tail(Tail xs)), . . .

)
xs : StreamA ⊢ P(xs)

Key Idea: Move focus away from stream values
xs : StreamA, and consider the cases for any
observation α ÷ StreamA that might look at xs

17

Making Coinduction Less Vicious

Γ, xs : StreamA, P(xs) ⊢ P(xs)
Γ, xs : StreamA ⊢ P(xs) vicious!

xs : StreamA ⊢ P
(

Head xs,Head(Tail xs),

Head(Tail(Tail xs)), . . .

)
xs : StreamA ⊢ P(xs)

Key Idea: Move focus away from stream values
xs : StreamA, and consider the cases for any
observation α ÷ StreamA that might look at xs

17

The Structure of Observations

And observation α ÷ StreamA of streams might be:

α = Head (observe element 0)
α = Head ◦ Tail (observe element 1)
α = Head ◦ Tail ◦ Tail (observe element 2)
α = Head ◦ Tail ◦ Tail ◦ Tail (observe element 3)
. . .

α = Head ◦ Taili (observe element i)
. . .

ALL stream observations α ÷ StreamA are one of:

α = β ◦ Head for some observation β ÷ A, or
α = δ ◦ Tail for some other δ ÷ StreamA

18

The Structure of Observations

And observation α ÷ StreamA of streams might be:

α = Head (observe element 0)
α = Head ◦ Tail (observe element 1)
α = Head ◦ Tail ◦ Tail (observe element 2)
α = Head ◦ Tail ◦ Tail ◦ Tail (observe element 3)
. . .

α = Head ◦ Taili (observe element i)
. . .

ALL stream observations α ÷ StreamA are one of:

α = β ◦ Head for some observation β ÷ A, or
α = δ ◦ Tail for some other δ ÷ StreamA

18

A Coinduction Principle

Consider property P : − StreamA→ Prop

Is P(α) true for any observation α ÷ StreamA

All the cases of α:

α = β ◦ Head for some observation β ÷ A
α = δ ◦ Tail for some other δ ÷ StreamA

Γ, β÷A ⊢ P(β◦Head) Γ, δ÷ StreamA, P(δ) ⊢ P(δ◦ Tail)
Γ, α ÷ StreamA ⊢ P(α)

StreamCoInd

(∀β ÷ A. P(β ◦ Head)) =⇒
(∀δ ÷ StreamA. P(δ) =⇒ P(δ ◦ Tail)) =⇒
∀α ÷ StreamA. P(α)

19

But What About Bisimulation?

Given any binary relation R : StreamA× StreamA→ Prop,

(∀xs, ys : StreamA. R(xs, ys) =⇒ Head xs = Head ys) =⇒
(∀xs, ys : StreamA. R(xs, ys) =⇒ R(Tail xs, Tail ys)) =⇒
∀xs, ys. R(xs, ys) =⇒ xs = ys

Bisimulation is derivable from StreamCoInd with help from
observational equivalence:

Γ, α ÷ A ⊢ ⟨v||α⟩ = ⟨w||α⟩
Γ ⊢ v = w : A

Obs.Equiv.

⟨v||α⟩ is a computation where α observes v :

Γ ⊢ v : A Γ ⊢ α ÷ A
Γ ⊢ ⟨v||α⟩ Cut

20

But What About Bisimulation?

Given any binary relation R : StreamA× StreamA→ Prop,

(∀xs, ys : StreamA. R(xs, ys) =⇒ Head xs = Head ys) =⇒
(∀xs, ys : StreamA. R(xs, ys) =⇒ R(Tail xs, Tail ys)) =⇒
∀xs, ys. R(xs, ys) =⇒ xs = ys

Bisimulation is derivable from StreamCoInd with help from
observational equivalence:

Γ, α ÷ A ⊢ ⟨v||α⟩ = ⟨w||α⟩
Γ ⊢ v = w : A

Obs.Equiv.

⟨v||α⟩ is a computation where α observes v :

Γ ⊢ v : A Γ ⊢ α ÷ A
Γ ⊢ ⟨v||α⟩ Cut

20

Computing With
Contextual
Coinduction

Dualities of Computation
Embodying the Context

⟨v||e⟩

Answers

Questions

A producer v gives an answer
A consumer e asks a question
A command ⟨v||e⟩ is an interaction

One side moves first in a predictable pattern
The other side responds to first move

Data = patterns of answers
Codata = patterns of questions

21

(Co)Induction as Structural (Co)Recursion

A call stack x · α contains an:

argument x

return pointer α

map is well-founded because its argument shrinks:

⟨map||f · Nil · α⟩ = ⟨Nil||α⟩
⟨map||f · Cons x xs · α⟩ = ⟨map||f · xs · α ◦ Cons(f x)⟩

repeat is well-founded because its return pointer shrinks:

⟨repeat||f · x · α ◦ Head⟩ = ⟨x||α⟩
⟨repeat||f · x · α ◦ Tail ⟩ = ⟨repeat||f · f x · α ⟩

22

More Adventurous Structural (Co)Recursion

evens and odds are mutually well-founded because even’s return
pointer always shrinks and odds return pointer stays the same:

⟨evens||xs · α ◦ Head⟩ = ⟨xs||α ◦ Head⟩〈
evens

∣∣∣∣∣∣xs · α ◦ Tail 〉 =
〈
odds

∣∣∣∣Tail xs · α 〉
〈
odds

∣∣∣∣xs · α 〉
=

〈
evens

∣∣∣∣Tail xs · α 〉
merge is well-founded by strong corecursion because its return
pointer shrinks by 2, and the first 2 base cases are covered:

⟨merge||xs · ys · α ◦ Head⟩ = ⟨xs||α ◦ Head⟩
⟨merge||xs · ys · α ◦ Head ◦ Tail⟩ = ⟨ys||α ◦ Head⟩〈
merge

∣∣∣∣∣∣xs · ys · α ◦ Tail ◦ Tail 〉 =
〈
merge

∣∣∣∣Tail xs · Tail ys · α 〉
23

Consistency of Equality
Do the Syntactic Rules Mean Anything?

Theorem
If Γ ⊢ ⟨v1||e1⟩ = ⟨v2||e2⟩, then ⟨v1||e1⟩ and ⟨v2||e2⟩ are contextually
equivalent (as usual, per the operational semantics).

Proof.
By a logical relation based on orthogonal fixed points in a subtyping
lattice. Key: Knaster-Tarski and Kleene fixed points coincide.

Corollary
If α ÷ Bool ⊢ ⟨v1||e2⟩ = ⟨v2||e2⟩, then either

⟨v1||e2⟩ 7→→ ⟨tt||α⟩ ←←[⟨v2||e2⟩ or

⟨v1||e2⟩ 7→→ ⟨ff||α⟩ ←←[⟨v2||e2⟩.

Corollary
• ⊢ tt = ff : Bool is not derivable.

24

Consistency of Equality
Do the Syntactic Rules Mean Anything?

Theorem
If Γ ⊢ ⟨v1||e1⟩ = ⟨v2||e2⟩, then ⟨v1||e1⟩ and ⟨v2||e2⟩ are contextually
equivalent (as usual, per the operational semantics).

Proof.
By a logical relation based on orthogonal fixed points in a subtyping
lattice. Key: Knaster-Tarski and Kleene fixed points coincide.

Corollary
If α ÷ Bool ⊢ ⟨v1||e2⟩ = ⟨v2||e2⟩, then either

⟨v1||e2⟩ 7→→ ⟨tt||α⟩ ←←[⟨v2||e2⟩ or

⟨v1||e2⟩ 7→→ ⟨ff||α⟩ ←←[⟨v2||e2⟩.

Corollary
• ⊢ tt = ff : Bool is not derivable.

24

What about effects?

Programs can do some funny things

Conventional side effects
Mutable state / references
Input / Output
Exceptions and Jumps
Infinite loops

Suprising wringle: Information effects
Dual to control effects (manipulating control flow)
Erasing answers
Duplicating answers

Both can cause (co)inductive reasoning principles to go awry
For example, they can cause inconsistency

25

(Co)Induction and Evaluation Strategy
Adjusting Strength to Save Consistency

Induction principles (like Nat Ind) + Effects are
Fully consistent under call-by-value evaluation
Safe for strict properties in call-by-name evaluation

Strict on x ∋ Ψ(x) ::= ⟨x||E⟩ =
〈
x
∣∣∣∣E ′〉 (E, E ′ ∈ Eval.Cxt.)

| ∀y : A. Ψ(x) (x ̸= y)
| P =⇒ Ψ(x) (x /∈ FV (P))
| . . .

Coinduction principles (like StreamCoInd) + Effects are
Fully consistent under call-by-name evaluation
Safe for productive properties in call-by-value evaluation

Productive on α ∋ Ψ(α) ::= ⟨V ||α⟩ =
〈
V ′∣∣∣∣α〉 (V ,V ′ ∈ Value)

| ∀β ÷ A. Ψ(α) (α ̸= β)
| P =⇒ Ψ(α) (α /∈ FV (P))
| . . .

26

(Co)Induction and Evaluation Strategy
Adjusting Strength to Save Consistency

Induction principles (like Nat Ind) + Effects are
Fully consistent under call-by-value evaluation
Safe for strict properties in call-by-name evaluation

Strict on x ∋ Ψ(x) ::= ⟨x||E⟩ =
〈
x
∣∣∣∣E ′〉 (E, E ′ ∈ Eval.Cxt.)

| ∀y : A. Ψ(x) (x ̸= y)
| P =⇒ Ψ(x) (x /∈ FV (P))
| . . .

Coinduction principles (like StreamCoInd) + Effects are
Fully consistent under call-by-name evaluation
Safe for productive properties in call-by-value evaluation

Productive on α ∋ Ψ(α) ::= ⟨V ||α⟩ =
〈
V ′∣∣∣∣α〉 (V ,V ′ ∈ Value)

| ∀β ÷ A. Ψ(α) (α ̸= β)
| P =⇒ Ψ(α) (α /∈ FV (P))
| . . . 26

⟨Me||You⟩

Answers

Questions
Downen & Ariola, Structures for Structural Recursion, ICFP ’16.

Downen & Ariola, A Computational Understanding of Classical (Co)Recursion,
PPDP ’20.

Downen & Ariola, Classical (Co)Recursion: Programming, ArXiv ’21.

Downen & Ariola, Classical (Co)Recursion: Mechanics, Journal of Func. Prog. ’23.

27

Table of Contents

How To Coinduction?

Coinduction With Confidence

Coinductive Rules in Classical Logic

Computing With Contextual Coinduction

28

	How To Coinduction?
	Coinduction With Confidence
	Coinductive Rules in Classical Logic
	Computing With Contextual Coinduction

