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Coinduction, eh?
So when do we start talking about categories?
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(Structural) Induction for Classic Algorithms
The Workhorse of Computer Science Theories A & B

Many classic (theory A) algorithms follow inductive structure:

Sorting
Searching
Tree-based data structures

Language foundations (theory B): induction all the way down

Syntax
Semantics
Compiliers
Type systems

Proof assistants (the magnum opus of theory B) are effectively
big induction engines.
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Coinduction for Modern Algorithms
Interacting With Others

Programs that need to interact with the outside world while
they run are inherently coinductive:

Operating systems & User Interfaces
Web servers & Networks
Distributed systems & IoT
Real time & Embedded systems
Control software & robotics

Coinduction is essiential to understand modern systems

So formal methods (type theory, proof assistants) have good
support for coinduction, right?

. . .

. . . right . . . ?
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How To
Coinduction?



Coinduction With
Confidence



What is the Coinductive Hypothesis?
AndWhen Can I Use It?

Coq’s coinduction founded on begging the question

cofix : (∀x.P(x)→ P(x))→ ∀x.P(x) ???
Viciously circular logic

Assume exactly what you are trying to prove . . .
. . . but only use it sometimes?

CIH should be guarded/inside a constructor

unless you eliminate it too soon . . .

CIH should be guarded/behind a projection

unless you use another projection in the “wrong spot” . . .
. . . or pass the result to another function (???)

“Guardedness” is trying to say something about the context’s
structure and how it shrinks
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Structural (Co)Induction
Coinduction = Induction on the Context

Principle (Induction on Natural Number Values)
Given property P : Nat→ Prop on natural numbers,
P(n) holds for all numbers n : Nat if and only if

P(0) holds, and

for all n : Nat, P(n) implies P(n+ 1).

Principle (Coinduction on Stream Observations∗)
Given property P : (StreamA→ B)→ Prop on stream observations,
P(f ) holds for all observations f : StreamA→ B if and only if

for all g : A→ B, P(g ◦ Head) holds, and
for all h : StreamA→ B, P(h) implies P(h ◦ Tail).
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Coinductive Contextual Equivalence
Coinductive Hypothesis = Labeling the Observer

Principle (Contextual Equivalence)
Given x : A and y : A, x = y

IF AND ONLY IF

for all f , f (x) = f (y).

Corollary (Contextual Stream Equality)
Given xs : StreamA and ys : StreamA,

xs = ys

IF AND ONLY IF

for all g, g(Head(xs)) = g(Head(ys))

AND

for all h, h(xs) = h(ys) IMPLIES h(Tail(xs)) = h(Tail(ys))
Proof.
Contextual Equivalence + Coinduction on Stream Observations,
where P(f ) = (f (xs) = f (ys)).
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repeat id = always
By Begging the Question (Boo. . . )

always x = Cons x (always x)

repeat f x = Cons x (repeat f (f x))

Theorem
repeat (λy.y) x = always x

Proof.
Assume coinductive hypothesis (CoIH): repeat (λy.y) x = always x .
Now prove repeat (λy.y) x = always x :

repeat (λy.y) x = always x (CoIH?)

7



repeat id = always
By Begging the Question (Boo. . . )

always x = Cons x (always x)

repeat f x = Cons x (repeat f (f x))

Theorem
repeat (λy.y) x = always x

Proof.
Assume coinductive hypothesis (CoIH): repeat (λy.y) x = always x .
Now prove repeat (λy.y) x = always x :

repeat (λy.y) x = Cons x (repeat (λy.y) ((λy.y) x)) (def . repeat)

= Cons x (repeat (λy.y) x) (β)

= Cons x (always x) (CoIH)

= always x (def . always)

7



repeat id = always
By Begging the Question (Boo. . . )

always x = Cons x (always x)

repeat f x = Cons x (repeat f (f x))

Theorem
repeat (λy.y) x = always x

Proof.
Assume coinductive hypothesis (CoIH): repeat (λy.y) x = always x .
Now prove repeat (λy.y) x = always x :

repeat (λy.y) x = Cons x (repeat (λy.y) ((λy.y) x)) (def . repeat)

= Cons x (repeat (λy.y) x) (β)

= Cons x (always x) (CoIH)

= always x (def . always)

7



repeat id = always
By Contextual Stream Equality (No Guesswork!)

Head(always x) = x Tail(always x) = always x

Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
repeat (λy.y) x = always x

Proof. By contextual stream equality:

(Head) Show Head(repeat (λy.y) x) = Head(always x)

Head(repeat (λy.y) x) = x = Head(always x)

(Tail) Assume CoIH: h(repeat (λy.y) x) = h(always x).
Show h(Tail(repeat (λy.y) x)) = h(Tail(always x)).

h(Tail(repeat (λy.y) x)) = h(repeat (λy.y) ((λy.y) x)) (def . repeat)

= h(repeat (λy.y) x) (β)

= h(always x) (CoIH)

= h(Tail(always x)) (def . always)
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map f (repeat f x) = repeat f (f x)

Head(map f xs) = f (Head xs) Tail(map f xs) = map f (Tail xs)
Head(repeat f x) = x Tail(repeat f x) = repeat f (f x)

Theorem
for all x, map f (repeat f x) = repeat f (f x)

Proof. By contextual stream equality:

(Head) Show ∀x , Head(map f (repeat f x)) = Head(repeat f (f x)).

Head(map f (repeat f x)) = f (Head(repeat f x)) = f (x)

= Head(repeat f (f x))

(Tail) Assume CoIH: ∀x , h(map f (repeat f x)) = h(repeat f (f x)).
Show ∀x , h(Tail(map f (repeat f x))) = h(Tail(repeat f (f x))).

h(Tail(map f (repeat f x))) = h(map f (Tail(repeat f x)))

= h(map f (repeat f (f x))) (CoIH[(f x)/x])

= h(repeat f (f (f x)))

= h(Tail(repeat f (f x)))
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Mutual Coinduction
Evens and Odds

evens (x0, x1, x2, x3, x4, x5, . . . ) = x0, x2, x4, . . .

odds (x0, x1, x2, x3, x4, x5, . . . ) = x1, x3, x5, . . .

merge (x0, x1, x2, . . . ) (y0, y1, y2, . . . ) = x0, y0, x1, y1, x2, y2, . . .

Head(evens xs) = Head xs

Tail(evens xs) = odds (Tail xs)

odds xs = evens (Tail xs)

Head(merge xs ys) = Head xs

Head(Tail(merge xs ys)) = Head ys

Tail(Tail(merge xs ys)) = merge (Tail xs) (Tail ys)
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Proof By Mutual Coinduction

Theorem
for all xs and ys, evens (merge xs ys) = xs AND odds (merge xs ys) = ys

Proof. By mutual contextual stream equality:
(Head) Head(evens (merge xs ys)) = Head(merge xs ys) = Head xs

Head(odds (merge xs ys)) = Head(evens (Tail(merge xs ys)))

= Head(Tail(merge xs ys)) = Head ys

(Tail) ∀xs, ys, CoIH1 : h(evens(merge xs ys)) = h(xs),AND
CoIH2 : h(odds(merge xs ys)) = h(ys).

h(Tail(evens (merge xs ys))) = h(evens (Tail(Tail(merge xs ys))))

= h(evens (merge (Tail xs) (Tail ys)))
= h(Tail xs) (CoIH1[(Tail xs)/xs, (Tail ys)/ys])

h(Tail(odds (merge xs ys))) = h(odds (Tail(Tail(merge xs ys))))

= h(odds (merge (Tail xs) (Tail ys)))
= h(Tail ys) (CoIH2[(Tail xs)/xs, (Tail ys)/ys])
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Proof By Strong Coinduction
base cases . . .

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Head) Head(merge (evens xs) (odds xs)) = Head xs

Head(merge (evens xs) (odds xs)) = Head(evens xs)

= Head xs

(Head ◦ Tail) Head(Tail(merge (evens xs) (odds xs))) = Head(Tail xs)

Head(Tail(merge (evens xs) (odds xs))) = Head(odds xs)

= Head(evens (Tail xs))

= Head(Tail xs)
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Proof By Strong Coinduction
. . . continued

Theorem
for all xs, merge (evens xs) (odds xs) = xs.

Proof. By strong contextual stream equality:

(Tail ◦ Tail) Assume CoIH : ∀xs, h(merge (evens xs) (odds xs)) = h(xs).
Show ∀xs, h(Tail(Tail(merge (evens xs) (odds xs)))) = h(Tail(Tail xs)).

h(Tail(Tail(merge (evens xs) (odds xs))))

= h(merge (Tail(evens xs)) (Tail(odds xs)))

= h(merge (evens (Tail(Tail xs))) (odds (Tail(Tail xs))))

= h(Tail(Tail xs)) (CoIH[(Tail(Tail xs))/xs])
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Coinductive Rules
in Classical Logic



Finite Induction

Consider property P : Bool→ Prop

Is P(x) true for any value x : Bool?

All the cases of x :

x = tt
x = ff

Γ ⊢ P(tt) • ⊢ P(ff)
Γ, x : Bool ⊢ P(x) Bool Ind

≈
P(tt) =⇒ P(ff) =⇒ ∀x : Bool .P(x)
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Infinite Induction?
Too Many Cases

Consider property P : Nat→ Prop

Is P(x) true for any value x : Nat?

All the cases of x :

x = 0
x = 1
x = 2
. . .

Γ ⊢ P(0) Γ ⊢ P(1) Γ ⊢ P(2) . . .

Γ, x : Nat ⊢ P(x)
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An Induction Principle

Consider property P : Nat→ Prop
Is P(x) true for any value x : Nat?
All the cases of x :

x = 0
x = y + 1 for some other y : Nat

Γ ⊢ P(0) Γ, y : Nat, P(y) ⊢ P(y + 1)
Γ, x : Nat ⊢ P(x) Nat Ind

P(0) =⇒ (∀y : Nat . P(y) =⇒ P(y + 1)) =⇒
∀x : Nat . P(x)
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Making Coinduction Less Vicious

Γ, xs : StreamA, P(xs) ⊢ P(xs)
Γ, xs : StreamA ⊢ P(xs) vicious!

xs : StreamA ⊢ P
(

Head xs,Head(Tail xs),

Head(Tail(Tail xs)), . . .

)
xs : StreamA ⊢ P(xs)

Key Idea: Move focus away from stream values
xs : StreamA, and consider the cases for any
observation α ÷ StreamA that might look at xs
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The Structure of Observations

And observation α ÷ StreamA of streams might be:

α = Head (observe element 0)
α = Head ◦ Tail (observe element 1)
α = Head ◦ Tail ◦ Tail (observe element 2)
α = Head ◦ Tail ◦ Tail ◦ Tail (observe element 3)
. . .

α = Head ◦ Taili (observe element i)
. . .

ALL stream observations α ÷ StreamA are one of:

α = β ◦ Head for some observation β ÷ A, or
α = δ ◦ Tail for some other δ ÷ StreamA

18



The Structure of Observations

And observation α ÷ StreamA of streams might be:

α = Head (observe element 0)
α = Head ◦ Tail (observe element 1)
α = Head ◦ Tail ◦ Tail (observe element 2)
α = Head ◦ Tail ◦ Tail ◦ Tail (observe element 3)
. . .

α = Head ◦ Taili (observe element i)
. . .

ALL stream observations α ÷ StreamA are one of:

α = β ◦ Head for some observation β ÷ A, or
α = δ ◦ Tail for some other δ ÷ StreamA

18



A Coinduction Principle

Consider property P : − StreamA→ Prop

Is P(α) true for any observation α ÷ StreamA

All the cases of α:

α = β ◦ Head for some observation β ÷ A
α = δ ◦ Tail for some other δ ÷ StreamA

Γ, β÷A ⊢ P(β◦Head) Γ, δ÷ StreamA, P(δ) ⊢ P(δ◦ Tail)
Γ, α ÷ StreamA ⊢ P(α)

StreamCoInd

(∀β ÷ A. P(β ◦ Head)) =⇒
(∀δ ÷ StreamA. P(δ) =⇒ P(δ ◦ Tail)) =⇒
∀α ÷ StreamA. P(α)
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But What About Bisimulation?

Given any binary relation R : StreamA× StreamA→ Prop,

(∀xs, ys : StreamA. R(xs, ys) =⇒ Head xs = Head ys) =⇒
(∀xs, ys : StreamA. R(xs, ys) =⇒ R(Tail xs, Tail ys)) =⇒
∀xs, ys. R(xs, ys) =⇒ xs = ys

Bisimulation is derivable from StreamCoInd with help from
observational equivalence:

Γ, α ÷ A ⊢ ⟨v||α⟩ = ⟨w||α⟩
Γ ⊢ v = w : A

Obs.Equiv.

⟨v||α⟩ is a computation where α observes v :

Γ ⊢ v : A Γ ⊢ α ÷ A
Γ ⊢ ⟨v||α⟩ Cut
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(∀xs, ys : StreamA. R(xs, ys) =⇒ Head xs = Head ys) =⇒
(∀xs, ys : StreamA. R(xs, ys) =⇒ R(Tail xs, Tail ys)) =⇒
∀xs, ys. R(xs, ys) =⇒ xs = ys

Bisimulation is derivable from StreamCoInd with help from
observational equivalence:

Γ, α ÷ A ⊢ ⟨v||α⟩ = ⟨w||α⟩
Γ ⊢ v = w : A

Obs.Equiv.

⟨v||α⟩ is a computation where α observes v :

Γ ⊢ v : A Γ ⊢ α ÷ A
Γ ⊢ ⟨v||α⟩ Cut
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Computing With
Contextual
Coinduction



Dualities of Computation
Embodying the Context

⟨v||e⟩

Answers

Questions

A producer v gives an answer
A consumer e asks a question
A command ⟨v||e⟩ is an interaction

One side moves first in a predictable pattern
The other side responds to first move

Data = patterns of answers
Codata = patterns of questions
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(Co)Induction as Structural (Co)Recursion

A call stack x · α contains an:

argument x

return pointer α

map is well-founded because its argument shrinks:

⟨map||f · Nil · α⟩ = ⟨Nil||α⟩
⟨map||f · Cons x xs · α⟩ = ⟨map||f · xs · α ◦ Cons(f x)⟩

repeat is well-founded because its return pointer shrinks:

⟨repeat||f · x · α ◦ Head⟩ = ⟨x||α⟩
⟨repeat||f · x · α ◦ Tail ⟩ = ⟨repeat||f · f x · α ⟩
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More Adventurous Structural (Co)Recursion

evens and odds are mutually well-founded because even’s return
pointer always shrinks and odds return pointer stays the same:

⟨evens||xs · α ◦ Head⟩ = ⟨xs||α ◦ Head⟩〈
evens

∣∣∣∣∣∣xs · α ◦ Tail 〉 =
〈
odds

∣∣∣∣Tail xs · α 〉
〈
odds

∣∣∣∣xs · α 〉
=

〈
evens

∣∣∣∣Tail xs · α 〉
merge is well-founded by strong corecursion because its return
pointer shrinks by 2, and the first 2 base cases are covered:

⟨merge||xs · ys · α ◦ Head⟩ = ⟨xs||α ◦ Head⟩
⟨merge||xs · ys · α ◦ Head ◦ Tail⟩ = ⟨ys||α ◦ Head⟩〈
merge

∣∣∣∣∣∣xs · ys · α ◦ Tail ◦ Tail 〉 =
〈
merge

∣∣∣∣Tail xs · Tail ys · α 〉
23



Consistency of Equality
Do the Syntactic Rules Mean Anything?

Theorem
If Γ ⊢ ⟨v1||e1⟩ = ⟨v2||e2⟩, then ⟨v1||e1⟩ and ⟨v2||e2⟩ are contextually
equivalent (as usual, per the operational semantics).

Proof.
By a logical relation based on orthogonal fixed points in a subtyping
lattice. Key: Knaster-Tarski and Kleene fixed points coincide.

Corollary
If α ÷ Bool ⊢ ⟨v1||e2⟩ = ⟨v2||e2⟩, then either

⟨v1||e2⟩ 7→→ ⟨tt||α⟩ ←←[ ⟨v2||e2⟩ or

⟨v1||e2⟩ 7→→ ⟨ff||α⟩ ←←[ ⟨v2||e2⟩.

Corollary
• ⊢ tt = ff : Bool is not derivable.
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What about effects?

Programs can do some funny things

Conventional side effects
Mutable state / references
Input / Output
Exceptions and Jumps
Infinite loops

Suprising wringle: Information effects
Dual to control effects (manipulating control flow)
Erasing answers
Duplicating answers

Both can cause (co)inductive reasoning principles to go awry
For example, they can cause inconsistency
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(Co)Induction and Evaluation Strategy
Adjusting Strength to Save Consistency

Induction principles (like Nat Ind) + Effects are
Fully consistent under call-by-value evaluation
Safe for strict properties in call-by-name evaluation

Strict on x ∋ Ψ(x) ::= ⟨x||E⟩ =
〈
x
∣∣∣∣E ′〉 (E, E ′ ∈ Eval.Cxt.)

| ∀y : A. Ψ(x) (x ̸= y)
| P =⇒ Ψ(x) (x /∈ FV (P))
| . . .

Coinduction principles (like StreamCoInd) + Effects are
Fully consistent under call-by-name evaluation
Safe for productive properties in call-by-value evaluation

Productive on α ∋ Ψ(α) ::= ⟨V ||α⟩ =
〈
V ′∣∣∣∣α〉 (V ,V ′ ∈ Value)

| ∀β ÷ A. Ψ(α) (α ̸= β)
| P =⇒ Ψ(α) (α /∈ FV (P))
| . . .
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⟨Me||You⟩

Answers

Questions
Downen & Ariola, Structures for Structural Recursion, ICFP ’16.

Downen & Ariola, A Computational Understanding of Classical (Co)Recursion,
PPDP ’20.

Downen & Ariola, Classical (Co)Recursion: Programming, ArXiv ’21.

Downen & Ariola, Classical (Co)Recursion: Mechanics, Journal of Func. Prog. ’23.
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