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Chapter 1

Operational Semantics

It’s turtles all the way down. . .
The foundation of programming languages is fundamentally built on just

one idea: induction. Everything we do is induction. We define grammars and
the representation of valid syntax trees by induction. We specify the behavior
of what a program is supposed to do by induction. We define operations on
programs and their complex relationships by induction. We prove properties
about individual programs and entire languages by induction. Compilers can
be organized as a series of steps translating between lower and lower levels of
code, each translation being defined by induction on its input. Our crown jewel –
mechanized proof assistants — are effectively big, fancy induction engines.

If you really understand this one idea, and apply it to its fullest potential,
you can go far in the field of programming languages.

1.1 Syntax
A grammar for the abstract syntax of λ-calculus with booleans, written in BNF:

Variable ∋ x, y, z ::= foo | bar | baz | . . .

Constant ∋ c ::= true | false

Term ∋ M, N ::= c | x |M N | λx.M | if M then N1 else N2

A BNF grammar definition is always signaled by ::=. The left-hand side
of the ::= defines the name of the defined set(s) and/or one or more standard
meta-variables which stand for elements of that set. The right-hand side gives a
list of all the possible ways to form trees separated by a | divider.

The above BNF grammar is the same as the following, more verbose, definition
of the set named Term.

Definition 1.1 (λ Terms). Suppose that Constant = {true, false} is the set
of known constants and Variable is a set of all the (infinitely many) possible
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CHAPTER 1. OPERATIONAL SEMANTICS 4

identifier names. The set Term is inductively defined as the smallest set which
is closed under the following formations of distinct elements:

• c ∈ Term for any c ∈ Constant,

• x ∈ Term for any x ∈ Variable,

• M N ∈ Term for any M, N ∈ Term, and

• λx.M ∈ Term for any x ∈ Variable and M ∈ Term.

• if M then N1 else N2 ∈ Term for any M, N1, N2 ∈ Term,

In the following, we will implicitly let c stand for the elements of Constant,
x, y, z stand for elements of Variable, and let M, N stand for elements of Term.

The inductive definition of a set is based on three facts that work in concert
to describe all the (infinitely many) possible syntax trees:

1. The set is defined in terms of itself (i.e. the formation rules build on top
of existing elements we already know must be the set).

2. The final set is the smallest possible one that contains all the elements
defined by the formation rules.

3. Each formation rule creates an element that is always distinct from elements
made by any other formation rule.

Property (1) is a key aspect to the expressive power of self-reference in an
inductive definition to recursively identify an infinite number of things. The
other two properties give a “Goldilocks” bound on the set that is just right —
not too big and not small. Property (2) says that the rules provided give an
exhaustive description of every element, which eliminates the possibility of exotic
elements that come from something else that wasn’t mentioned explicitly in the
definition. Property (3) says that there is no redundancy in the rules, so that no
two rules can make the same element. The combination of properties (2) and (3)
means that we can reverse the formation rules, and use them to match on the
structure of an arbitrary element in the set.

In contrast, here is some syntactic sugar:

(let x = M in N) = (λx.N) M

Because let x = M in N is not its own formation rule — it is defined in terms
of the rules for M N and λx.M — the two sides are the same tree.

1.2 Static Scope
Static variables should obey the following two (for now informal) laws:

1. The names of local variables don’t matter (they can be renamed without
affecting the meaning of an term).
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2. The free variables of a term remain are still free after substitution (they
cannot be captured by local bindings).

The only form of syntax that binds a variable is λx.M , which defines a
function that takes one parameter (named x) and returns the result calculated
by M (which is allowed to refer to that x during calculation).

The bound variables of a term are any variable which is introduced by a λ
inside that term.

BV : Term → ℘(Variable)
BV (c) = {}
BV (x) = {}

BV (M N) = BV (M) ∪ BV (N)
BV (λx.M) = BV (M) ∪ {x}

BV (if M then N1 else N2) = BV (M) ∪ BV (N1) ∪ BV (N2)

The free variables of a term are any variable which that the term makes
reference to without being inside of a λ that binds variables of that name.1

FV : Term → ℘(Variable)
FV (c) = {}
FV (x) = {x}

FV (M N) = FV (M) ∪ FV (N)
FV (λx.M) = FV (M) \ {x}

FV (if M then N1 else N2) = FV (M) ∪ FV (N1) ∪ FV (N2)

Example 1.1. In λx.x y, the use of x refers to the locally-bound parameter of
the λ, whereas the use of y refers to something else that must come from the
larger context of the term. Thus, FV (λx.x y) = {y} — even though the term
refers to x, that reference stays internal to the term — and BV (λx.x y).

Note that there can be some tricky cases. A variable might be both bound
and free in the same term, such as x λx.x for which FV (x λx.x) = {x} and
BV (x λx.x) = {x}. A variable might also be bound but never used, such as
λy.x who has one bound variable BV (λy.x) = {y} that is never referenced.

1The set operation X \ Y means to take the set consisting of everything in X that does not
appear in Y , i.e. the subtraction of Y ’s elements from X’s elements. Sometimes this operation
is written as X − Y .
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1.3 Substitution
The capture-avoiding substitution operation M [N/x] means to replace every free
occurrence of x appearing inside M with the term N .

c [N/x] = c

x [N/x] = N

y [N/x] = y (x ̸= y)
(M1 M2) [N/x] = (M1 [N/x]) (M2 [N/x])

(λx.M) [N/x] = λx.M

(λy.M) [N/x] = λy.(M [N/x]) (x ̸= y) and y /∈ FV (N)if M1

then M2

else M3

 [N/x] =
if M1 [N/x]

then M2 [N/x]
else M3 [N/x]

Note that substitution is a partial function, because it might not be defined
when substituting into a λ: if the replacement term M for x happens to contain
a free variable y, then N cannot be substituted into a λ-abstraction that binds
y because that would capture the free y found in N .
Example 1.2. (x (λx.(x y))) [y/x] = y (λx.(x y)) but (x (λx.(x y))) [x/y] is
undefined.

The partiality of capture-avoiding substitution is expressed in the above
equations by the following implicit convention: the particular case is only
defined when each recursive call is also defined. This implicit convention can be
made more explicit by the use of inference rules as an alternative definition of
substitution. Focusing on the λ-calculus portion, we have:

x [N/x] = N

y ̸= x

y [N/x] = y

M1 [N/x] = M ′
1 M2 [N/x] = M ′

2
(M1 M2) [N/x] = M ′

1 M ′
2

(λx.M) [N/x] = λx.M

x ̸= y y /∈ FV (N) M [N/x] = M ′

(λy.M) [N/x] = λy.M ′

Both styles definitions should be seen as two different ways of expressing exactly
the same operation.
Exercise 1.1. Finish the above set of inference rules defining substitution for
booleans (substitution into constants as well as if -expressions).

Lemma 1.1. For all terms M and N and variables x, if BV (M)∩FV (N) = {}
then M [N/x] is defined.

Proof. By induction on the syntax of the term M .

• y: By definition y[N/x] is always defined by one of two possible sub-cases,
depending on the comparison between x and y:
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– If x = y, then y [N/x] = x [N/x] = N .
– If x ̸= y, then y [N/x] = y.

• λy.M : The inductive hypothesis we get for M is

Inductive Hypothesis. If BV (M) ∩ FV (N) = {} then M [N/x] is
defined.

Note that BV (λy.M) = {y} ∪ BV (M) by definition, so

BV (λy.M) ∩ FV (N)
= ({y} ∪ BV (M)) ∩ FV (N)
= ({y} ∩ FV (N)) ∪ (BV (M) ∩ FV (N))

It follows that BV (λy.M)∩FV (N) = {} exactly when {y}∩FV (N) = {}
(i.e. y /∈ FV (N))and BV (M) ∩ FV (N) = {} for both i = 1 and i = 2.
Since we assumed BV (λy.M) ∩ FV (N) = {}, it must be that y /∈ FV (N)
and BV (M) ∩ FV (N) = {}.
There are now two cases to consider, depending on whether or not x and
y are equal.

– y = x: The substitution (λy.M) [N/x] = (λx.M) [N/x] = λx.M is
defined.

– y ̸= x: The substitution (λy.M) [N/x] = λy.(M [N/x]) is defined
only when both M [N/x] is defined and when the side condition
y /∈ FV (N) is met. We already derived the fact that y /∈ FV (N)
from the assumption BV (λy.M) ∩ FV (N) = {} above, and applying
the inductive hypothesis to the other derived fact that BV (M) ∩
FV (N) = {} ensures that M [N/x] is defined. Thus, (λy.M) [N/x] =
λy.(M [N/x]) is also defined.

• M1 M2: The two inductive hypotheses we get for the sub-terms M1 and
M2 are

Inductive Hypothesis.

a) If BV (M1) ∩ FV (N) = {} then M1 [N/x] is defined.
b) If BV (M2) ∩ FV (N) = {} then M2 [N/x] is defined.

Now, note that BV (M1 M2) = BV (M1) ∪ BV (M2) by definition, so

BV (M1 M2) ∩ FV (N) = (BV (M1) ∪ BV (M2)) ∩ FV (N)
= (BV (M1) ∩ FV (N)) ∪ (BV (M2) ∩ FV (N))

So the assumption that BV (M1 M2)∩FV (N) = {} implies that BV (Mi)∩
FV (N) = {} for both i = 1 and i = 2.
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The substitution

(M1 M2)[N/x] = M1[N/x] M2[N/x])

is defined exactly when Mi[N/x] is defined for both i = 1 and i = 2. By
applying the inductive hypothesis to the fact BV (Mi)∩FV () = {} derived
above, we learn that (M1 M2)[N/x] is defined.

• The remaining cases for constants and if M1 then M2 else M3 are left as
an exercise to the reader. ■

Lemma 1.2. For all terms M and N and all variables x, if x /∈ FV (M) then
M [N/x] = M when M [N/x] is defined.

Proof. By induction on the syntax of M . The proof is left as an exercise to the
reader. ■

1.4 Renaming: α equivalence
The renaming operation—replacing all occurrences of a free variable with an-
other variable—can be derived from capture-avoiding substitution. That is, the
renaming operation M [y/x] is just a special case of the more general substitution
operation M [N/x] since the variable y is an instance of a term.

In general, the particular choice of variable (i.e. name) of a bound variable
should not matter: two terms where the bound variables have been renamed
should be the same. This idea is captured for the only binder in our little
language (λ) with the following α equivalence law

(α→) λx.M =α λy.(M [y/x]) (if y /∈ FV (M))

The caveat of this rule makes sure that you don’t accidentally capture a free
variable of M , causing a formerly free variable to be bound by this λ.
Example 1.3. The function λx.x y takes one parameter (x) and applies it to y.
The reference to y in the term is free (it is not bound locally in this term).

However, trying to α-rename this function to λy.y y is wrong, because this is
a totally different function: it takes one parameter (now named y) and applies
it to itself. The reason why (λx.x y) ̸=α (λy.y y) is because the choice of y for
the parameter clashes with the existing free variables of the function’s body
(y ∈ FV (x y)).

If two terms M and N can be related by any number of applications of this α
equivalence rule to any sub-term, then those terms are considered α-equivalent,
which is written as M =α N . This can be formalized with inference rules. The
main rule is

M [z/x] =α N [z/y] z /∈ FV (M) ∪ FV (N)
λx.M =α λy.N

α→
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And the other rules just apply α-equivalence within sub-terms

x =α x c =α c

M =α M ′ N =α N ′

M N =α M ′ N ′

M =α M ′ N1 =α N ′
1 N2 =α N ′

2
if M then N1 else N2 =α if M ′ then N ′

1 else N ′
2

The importance of α equivalence is not just so that we can ignore the
superfluous choice of bound variable names. It means that capture-avoiding
substitution — which is technically a partial operation from a surface-level
reading — can always be done without restrictions so long as some convenient
renaming is done first.

Lemma 1.3. For any term M and variables x and y, BV (M [y/x]) = BV (M)
if M [y/x] is defined.

Proof. By induction on the syntax of the term M . The proof is left as an exercise
to the reader. ■

Lemma 1.4. For any term M and set of variables X, there is an α-equivalent
term M ′ such that M =α M ′ and X ∩ BV (M ′) = {}.

Proof. By induction on the syntax of M . The proof is left as an exercise to the
reader. ■

Theorem 1.5. For any terms M and N and any variable x, there is an α-
equivalent M ′ such that M =α M ′ and M ′[N/x] is defined.

Proof. We can find such an α-equivalent M ′ by renaming M via Lemma 1.4
so that BV (M ′) ∩ FV (N) = {}, which implies that M ′ [N/x] is defined by
Lemma 1.1.

Theorem 1.6. For any terms M , M ′, and N and any variable x, if M =α M ′

then M [N/x] =α M ′ [N/x] whenever both M [N/x] and M ′ [N/x] are defined.

Proof. By induction on the derivation of derivation M =α M ′. The proof is left
as an exercise to the reader. ■

Because substitution is well-defined only up to α-equivalence, from now on,
we will never distinguish between two α-equivalent terms. In other words, we
will implicitly consider α-equivalent syntax trees as the same terms as needed.

When you need to be persnikety about the choice of local variable names
(for example, when implementing a programming language or mechanizing its
properties in a proof assistant), then it can help to keep λ-terms in a special
form that avoids issues of variable shadowing and free versus bound variable
confusion.

Theorem 1.7. Every term M is α-equivalent to another term M ′ with the
properties that:
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a) the free variables and bound variables of M ′ are distinct from one another
(FV (M ′) ∩ BV (M ′) = {}), and

b) no two bound variables can have the same name in M ′ (i.e. a variable
name can be introduced by only one binder in M ′).

This is called the Barendregt [1985] convention.

Proof. By induction on the syntax of M . Left as an exercise to the reader. ■

Working with λ-terms following Barendregt’s convention can have some
benefits. For example, substituting a closed term for a variable inside such
a term can be correctly implemented as a naïve search-and-replace without
worrying about any side conditions, renaming, or checking the names introduced
by λs. (Why?) The same also works if both the substitutee and substituter are
sub-terms of some larger term: given (λx.M) N follows Barendregt’s convention,
then M [N/x] is always defined and is the same as merely replacing all occurrences
of x in M with N without checking side-conditions. (Why?)

1.5 Small-Step Operational Semantics: β reduc-
tion

The small-step operational semantics is defined in terms of a reduction relation
written M 7→ M ′, and pronounced as “M steps to M ′.”

The basic steps for reducing a term:2

(β→) (λx.M) N 7→β M [N/x]
(βbool1) if true then N1 else N2 7→β N1

(βbool2) if false then N1 else N2 7→β N2

These are axioms; they apply exactly as-is to a term. But they are not enough
to reduce most terms down to an answer (a boolean literal or λ)!
Example 1.4. Using only the rules above,

not = λx. if x then false else true

if not false then yay else boo ̸7→β

You cannot yet reduce the outer if -expression because not false is not one of
the two canonical boolean cases (true or false). Instead, we must reduce the
call not false first, and only after can the if decide what to return based on
the eventual result true.

2Note that, due to the use of substitution, renaming to an α-equivalent term may be needed
to apply β→ in certain cases.



CHAPTER 1. OPERATIONAL SEMANTICS 11

Hence, we often need to reduce sub-terms. Which sub-term to reduce in
these cases is formalized by the following inference rules for applying reductions
inside certain contexts:

M 7→β M ′

if M then N1 else N2 7→β if M ′ then N1 else N2

M 7→β M ′

M N 7→β M ′ N

Combined with the above axioms, these rules are now enough to reduce terms.
Example 1.5. Using the extra inference rules above, we can now take a step in

not false 7→β if false then false else true

if not false

then yay
else boo

7→β

if (if false then false else true)
then yay
else boo

Theorem 1.8 (Determinism). If M 7→β M1 and M 7→β M2 then M1 =α M2.

As the name suggests, each step only does a little bit of work. The vast
majority of terms will take many steps to fully reduce to their final answer.

The multi-step operational semantics chains together multiple (zero or more)
small reduction steps, and is defined as the smallest binary relation M 7→→ M ′

between terms closed under the following:

• Inclusion: M 7→→ M ′ if M 7→ M ′,

• Reflexivity: M 7→→ M , and

• Transitivity: M 7→→ M ′′ if M 7→→ M ′ and M ′ 7→→ M ′′ for some M ′.

Rephrased in terms of inference rules, these closure properties of multi-step
reduction are:

M 7→ M ′

M 7→→ M ′ Incl.
M 7→→ M

Refl.
M 7→→ M ′ M ′ 7→→ M ′′

M 7→→ M ′′ Trans.

1.6 Evaluation Contexts
But these inference rules are awfully repetitive and writing the whole derivation
tree for a single step quickly becomes unwieldy. And their cumbersome nature
is compounded as we extend the language with more features.

A more concise presentation of exactly the same thing is to define a grammar
of evaluation contexts (a subset of all contexts around a term) like so:

EvalCxt ∋ E ::= □ | E N | if E then N1 else N2

Now, all of the above inference rules for evaluating certain sub-terms are ex-
pressed by the one inference rule:

M 7→ M ′

E[M ] 7→ E[M ′]
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Where E[M ] is the notation for plugging M in for the □ inside the evaluation
context E, defined as:

□[M ] = M

(E N)[M ] = E[M ] N

(if E then N1 else N2)[M ] = if E[M ] then N1 else N2

Note that, unlike with substitution, there is no issues involving capture when
plugging a term into a context.3

Example 1.6. The term if not false then yay else boo can be fully reduced using
evaluation contexts like so:

if not false then yay else boo
7→ if if false then false else true then yay else boo

7→ if true then yay else boo

7→ yay

Going the other way, we can always describe every reduction step as a
decomposition into a single evaluation context surrounding a reducible expression
(called a “redex” for short).

Redex ∋ R ::= (λx.M) N | if c then N1 else N2

Lemma 1.9. If M 7→β M ′, then there is an evaluation context E, a redex R,
and a term N such that

a) M = E[R],

b) R 7→β N , and

c) M ′ = E[N ]

Proof. By induction on the derivation of M 7→β M ′. The proof is left as an
exercise to the reader. ■

In general, is usually many ways to decompose a term M into an evaluation
context surrounding some sub-term E[N ]. For example, decomposing M into
□[M ] is always valid. However, at most one of these decompositions will identify
a redex as the sub-term inside the evaluation context, giving a unique way to
point out the next step of reduction.

Lemma 1.10 (Unique Decomposition). If M = E1[R1] and M = E2[R2], then
E1 = E2 and R1 = R2.

3In fact, the convention is that plugging a term into a more general kind of context (which
might place the hole □ under a binder like λx.□) will intentionally capture free variables of
the expression that’s replacing □.
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Proof. By induction on the syntax of M . The proof is left as an exercise to the
reader. ■

Theorem 1.11 (Determinism). If M 7→β M1 and M 7→β M2 then M1 =α M2.

Proof. Applying Lemma 1.9 to the reduction steps M 7→β M1 and M 7→β M2,
we have the decomposition.

R1 7→β N1

M = E1[R1] 7→β E1[N1] = M1

R2 7→β N2

M = E2[R2] 7→β E2[N2] = M2

And since the decomposition into an evaluation context and redex is unique
(Lemma 1.10), it must be that

M1 = E1[R1] = E2[R2] = M2

1.7 Call-by-Value & Call-By-Name
The operational semantics we have seen so far specified call-by-name evaluation,
where the unevaluated code describing the argument to a function call is passed
directly to the function.
Example 1.7.

not = λx. if x then false else true

and = λx.λy. if x then y else false

and (not true) (not(not true))
7→ (λy. if not true then y else false) (not(not true))
7→ if not true then not(not true) else false

7→ if (if true then false else true) then not(not true) else false

7→ if false then not(not true) else false

7→ false

Functions arguments are evaluated only when the body of the function uses
a parameter (and re-evaluated every time). This is caused by the substitution
of unevaluated terms during β-reduction. If the parameter is used more than
one, then the term is duplicated on each use, (λx. . . . x . . . x . . . ) (f y) 7→β

. . . f y . . . f y . . . . In certain cases, this can cause unwanted duplication of the
same steps.
Exercise 1.2. Use the call-by-name small-step operational semantics given in
Sections 1.5 and 1.6 to reduce the following term to a boolean constant:

let x = not false in

let y = and x x in

and y y
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This is very different from the vast majority of practical programming lan-
guages, which evaluate arguments first and pass their value during a function call.
This commonly-used evaluation order is referred to as call-by-value evaluation.

We can give an alternate semantics to our λ-calculus with booleans that
describes call-by-value evaluation by changing some of the definitions. First, we
need to restrict the reduction rule for function calls so that only values can be
substituted for the function’s parameter:

Value ∋ V, W ::= c | λx.M | x

(β→V ) (λx.M) V 7→β M [V/x]
(βbool1) if true then N1 else N2 7→β N1

(βbool2) if else then N1 else N2 7→β N2

Now, we need to point the evaluator in the direction of the argument when
encountering a function call like (λx.x) (f y). To do so, we must expand
the evaluation contexts to work on both the function and argument side of an
application. The following expansion of evaluation contexts is enough to evaluate
all sensible terms, but still keeps determinism:

EvalCxt ∋ E ::= □ | E N | V E | if E then N1 else N2

To keep determinism, we need to pick which side goes first. The above definition
specifies that functions should be evaluated before arguments, since M N can
always be decomposed into the sub-term M surrounded by the evaluation context
□ N . Only when the function has been reduced to a value, M 7→→ V , we have
M N 7→→ V N , which can now be decomposed into the sub-term N surrounded
by the evaluation context V □.

Our notion of reducible expression has now also changed, since function
calls can only be resolved with values as arguments. The new definition of
call-by-value redexes is refined to:

Redex ∋ R ::= (λx.M) V | if c then N1 else N2

Exercise 1.3. Use the call-by-value small-step operational semantics given above
to reduce the same term as Exercise 1.2 to a boolean constant:

let x = not false in

let y = and x x in

and y y



Chapter 2

Type Systems & Safety

The syntax trees have some structure — especially up to α-equivalence — com-
pared to raw strings. However, real programs still have more structure to them
not expressed in the grammar of syntax.

Nonsense terms, like λx.(true x) or if λx.x then true else false, are syn-
tactically correct, but don’t mean anything. When run, they will go wrong —
crash with an error, cause unpredictable behavior, or otherwise get stuck.

Type systems are tools for predicting some properties of programs before
they are run, so that we may fix them or throw them out ASAP. The type safety
motto is: well-typed programs don’t go wrong.

2.1 “Simple” Types

Type ∋ A, B ::= bool | A→ B

Environment ∋ Γ ::= x1 : A1, . . . , xn : An

Judgement ::= Γ ⊢M : A

Specific forms of types are booleans (bool) or functions (A→ B). Typing
judgements are hypothetical — to check that a term M has a type A (written
M : A), we need to assign an assumed type for each free variable that might
appear in M . This assumed list of type assignments for free variables is stored in
an environment Γ which is separated from the main conclusion by a “turn-style”
(⊢). We won’t worry about the order of Γ (you can rearrange the variable
assignments as you wish), but we will stipulate that Γ can only contain at most
one type assignment for any particular variable. So x : A, y : B is considered
the same as y : B, x : A, and both are different from x : A, y : A. But the
environment x : A, x : B is illegal.

15
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Γ, x : A ⊢ x : A
Var

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A→ B
→I Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢M N : B
→E

Γ ⊢ true : bool
boolI1 Γ ⊢ false : bool

boolI2

Γ ⊢M : bool Γ ⊢ N1 : A Γ ⊢ N2 : A

Γ ⊢ if M then N1 else N2 : A
boolE

2.2 Type Safety
Definition 2.1 (Stuck). A term M is stuck if it is not a value (i.e. M /∈ Value)
and cannot take a step (i.e. there is no M ′ such that M 7→β M ′).

Definition 2.2 (Closed vs Open). A term M is closed if it has no free variables
(i.e. FV (M) = {}), and open otherwise.

The “big-step” type safety theorem.

Theorem 2.1 (Type Safety). No well-typed, closed term M ever gets stuck (i.e.
for any M 7→→β M ′, either M ′ is a value or M ′ 7→β).

Proof. Type safety can be proved in terms of two small-step properties by Wright
and Felleisen [1994]:

• Progress: No well-typed, closed term • ⊢M : A is stuck.

• Preservation: The reduct (M 7→β M ′) of every well-typed term (Γ ⊢M : A)
has the same type (Γ ⊢M ′ : A).

A multiple-step reduction M 7→→β M ′ is a finite sequence of individual reduction
steps M 7→β M1 7→β M2 7→β . . . 7→β M ′. Given that the starting point is well-
typed as • ⊢M : A, we can proceed by induction on the reduction sequence from
left-to-right to apply preservation to each individual step to conclude • ⊢M ′ : A
because each intermediate step is also well-typed (• ⊢Mi : A for each i). Then,
progress applied to • ⊢M ′ : A ensures M ′ is not stuck.

2.2.1 Progress
Lemma 2.2 (Canonical Forms). • If • ⊢ V : bool then V = true or V =

false.

• If • ⊢ V : A→ B then V = λx.M for some x : A ⊢M : B.

Proof. By induction on the possible derivations concluding • ⊢ V : bool and
• ⊢ V : A→ B. Left as an exercise to the reader. ■
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Lemma 2.3 (Progress). If • ⊢M : A then M is not stuck: either M is a value
(M ∈ Value) or takes a step (M 7→β M ′ for some M ′).

Proof. By induction on the given derivation D of • ⊢M : A,
.... D

• ⊢M : A

• (Var) The bottom inference cannot possibly be the axiom for variables

Γ, x : A ⊢ x : A
Var

since there is no Γ which makes Γ, x : A = •.

• (boolI) If the bottom inference is a boolean introduction rule

• ⊢ true : bool
boolI1 • ⊢ false : bool

boolI1

then the term is a value since true, false ∈ Value.

• (boolE) If the bottom inference is the boolean elimination rule
.... D

• ⊢M : bool • ⊢ N1 : A
E1 • ⊢ N2 : A

E2

• ⊢ if M then N1 else N2 : A
boolE

then we have these three inductive hypotheses from sub-derivations D, E1,
and E2:

Inductive Hypothesis. a) M is not stuck,
b) N1 is not stuck, and
c) N2 is not stuck.

We can then proceed by the reason why M is not stuck:

– If M 7→β M ′ for some M ′, then

if M then N1 else N2 7→β if M ′ then N1 else N2

because if□ then N1 else N2 is an evaluation context.
– If M ∈ Value, then it must be one of the two known canonical forms

M = true or M = false of type bool (Lemma 2.2). In either case,
one of the two possible β bool reductions apply:

if M then N1 else N2 7→β bool1 N1 (if M = true)
if M then N1 else N2 7→β bool2 N2 (if M = false)
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So no matter the reason why M is not stuck, if M then N1 else N2 always
takes a step.

• (→I) If the bottom inference is the function introduction rule
.... D

x : A ⊢M : B
• ⊢ λx.M : A→ B

→I

then we have no inductive hypothesis (because the premise x : A ⊢M : B
has a non-empty environment), but the term is always a value since
λx.M ∈ Value for any sub-term M .

• (→E) If the bottom inference is the function elimination rule
.... D

• ⊢M : A→ B

.... E
• ⊢ N : A

• ⊢M N : B
→E

then we have these two inductive hypotheses from sub-derivations D and
E :

Inductive Hypothesis. a) M is not stuck, and
b) N is not stuck.

We can then proceed by the reason why M is not stuck:

– If M 7→β M ′ for some M ′, then M N 7→β M ′ N because □ N is an
evaluation context.

– If M ∈ Value, then it must be a canonical form M = λx.M ′ of type
A→ B (Lemma 2.2). Thus, the β → reduction applies:

M N 7→β→ M ′ [N/x] (if M = λx.M ′)

So no matter the reason why M is not stuck, M N always takes a step.

Exercise 2.1. Rephrase and redo the proof of the progress lemma for the alternate
call-by-value semantics in Section 1.7.

2.2.2 Preservation
Lemma 2.4 (Typed Substitution). If Γ, x : A ⊢ M : B and Γ ⊢ N : A then
Γ ⊢M [N/x] : B.

Proof. By induction on the given derivation of Γ, x : A ⊢ M : B. Left as an
exercise to the reader. ■

Lemma 2.5 (Preservation). If Γ ⊢M : A and M 7→β M ′ then Γ ⊢M ′ : A.
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Proof. Applying Lemma 1.9 to M 7→β M ′, we have M = E[R] 7→β E[N ] = M ′

because R 7→β N . We can then proceed by induction on the typing derivation of
Γ ⊢ E[R] : A. For the base cases where E = □, we have a reduction step applied
directly in the conclusion of the typing derivation:

• (β bool) where R = if c then N1 else N2. The typing derivation of Γ ⊢
if c then N1 else N2 : A must conclude with

.... D
Γ ⊢ c : bool

.... E1
Γ ⊢ N1 : A

.... E2
Γ ⊢ N2 : A

Γ ⊢ if c then N1 else N2 : A
boolE

where the derivation D of the boolean constant must be either

D = Γ ⊢ true : bool
boolI1 (where c = true)

or

D = Γ ⊢ false : bool
boolI2 (where c = false)

There are two possible reduction steps depending the typing derivation D
of Γ ⊢ c : bool:

– If c = true then if c then N1 else N2 7→β bool1 N1, and E1 is the
derivation proving Γ ⊢ N1 : A.

– If c = false then if c then N1 else N2 7→β bool2 N2, and E2 is the
derivation proving Γ ⊢ N2 : A.

• (β →) where R = (λx.M) N . The derivation of Γ ⊢ M N : A must
conclude with

.... D
Γ, x : B ⊢M : A

Γ ⊢ λx.M : B → A
→I

.... E
Γ ⊢ N : B

Γ ⊢ (λx.M) N : A
→E

The only possible reduction step is (λx.M) N 7→β→ M [N/x]. Typed
substitution (Lemma 2.4) applied to D and E gives a new derivation
proving Γ ⊢M [N/x] : A.

The remaining cases apply a reduction step inside a non-empty evaluation
context:

• (boolE) Given a derivation concluding
.... D

Γ ⊢ E[R] : bool

.... E1
Γ ⊢ N1 : A

.... E2
Γ ⊢ N2 : A

Γ ⊢ if E[R] then N1 else N2 : A
boolE
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for the left-hand side of the step

if E[R] then N1

else N2
7→β

if E[M ′] then N1

else N2
(where R 7→β M ′)

Inductive Hypothesis. There is a derivation D′ of Γ ⊢ E[M ′] : bool.

The right-hand side than has the same type by the derivation
.... D

′

Γ ⊢ E[M ′] : bool

.... E1
Γ ⊢ N1 : A

.... E2
Γ ⊢ N2 : A

Γ ⊢ if E[M ′] then N1 else N2 : A
boolE

• (→E) Given a derivation concluding
.... D

Γ ⊢ E[R] : B → A

.... E
Γ ⊢ N : B

Γ ⊢M N : A
→E

for the left-hand side of the step

E[R] N 7→β if E[M ′] N (where R 7→β M ′)

Inductive Hypothesis. There is a derivation D′ of Γ ⊢ E[M ′] : B → A.

The right-hand side than has the same type by the derivation
.... D

′

Γ ⊢ E[M ′] : B → A

.... E
Γ ⊢ N : A

Γ ⊢ E[M ′] N : A
→E

Corollary 2.6 (Preservation∗). If Γ ⊢M : A and M 7→→β M ′ then Γ ⊢M ′ : A.
Proof. Follows from Lemma 2.5 by induction on the multi-step reduction se-
quence. Left as an exercise to the reader. ■

2.3 Sums
Sum types are like booleans, but where the two different values are not just
constants, but carry along some other data with them.

Extended syntax:

Term ∋M, N ::= . . . | inl M | inr M | case M of { inl x⇒ N1 | inr y ⇒ N2 }

Extended operational semantics:

EvalCxt ∋ E ::= . . . | case E of { inl x⇒ N1 | inr y ⇒ N2 }

(β+1) case inl M of { inl x⇒ N1 | inr y ⇒ N2 } 7→β N1 [M/x]
(β+2) case inr M of { inl x⇒ N1 | inr y ⇒ N2 } 7→β N2 [M/y]
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Exercise 2.2. Give an alternate call-by-value operational semantics for sum types.
Typing rules:

Type ∋ A, B ::= . . . | A + B

Γ ⊢M : A
Γ ⊢ inl M : A + B

+I1
Γ ⊢M : B

Γ ⊢ inr M : A + B
+I2

Γ ⊢M : A + B Γ, x : A ⊢ N1 : B′ Γ, y : B ⊢ N2 : B′

Γ ⊢ case M of { inl x⇒ N1 | inr y ⇒ N2 } : B′ +E

Exercise 2.3. Extend the proofs of progress and preservation for sum types, using
a call-by-name and/or call-by-value operational semantics.

2.4 Products
Product types combine together two things into one.

Extended syntax:

Term ∋M, N ::= . . . | (M, N) | fst M | snd M

Extended operational semantics:

EvalCxt ∋ E ::= . . . | fst E | snd E

(β×1) fst(M, N) 7→β M

(β×2) snd(M, N) 7→β N

Exercise 2.4. Give an alternate call-by-value operational semantics for product
types.

Typing rules:

Type ∋ A, B ::= . . . | A×B

Γ ⊢M : A Γ ⊢ N : B
Γ ⊢ (M, N) : A×B

+I

Γ ⊢M : A×B
Γ ⊢ fst M : A

×E1
Γ ⊢M : A×B
Γ ⊢ snd M : B

×E1

Exercise 2.5. Instead of fst and snd projections, products can be taken apart
by pattern-matching similar to sum types:

case M of {(x, y)⇒ N}

Specify the semantics of this case expression for products by extending the
operational semantics and type system.
Exercise 2.6. Extend the proofs of progress and preservation for product types,
using a call-by-name and/or call-by-value operational semantics.
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2.5 Recursive Types
Many types are defined recursively in terms of themselves. For example, natural
numbers, lists, and binary trees are defined in the ML and Haskell family of
languages as:

data nat = zero | succ nat

data list α = nil | cons α (list α)
data tree α = leaf α | branch (tree α) (tree α)

Because the definitions are recursive, we can’t treat them as merely shorthand
(they would expand forever!). To break the recursive loop, we can use recursive
types µα.B which represent the repetitive infinite cycle with a finite description.
First, encode the types to just one option using product and sum types (replace
the alternative | bar with the sum +, and combine multiple arguments of a
constructor with a product ×):

nat = 1 + nat

list α = 1 + (α× list α)
tree α = α + (tree α× tree α)

Then, we can abstract over the recursive self-reference with the recursive µ type:

nat = µα.1 + α

list α = µβ.1 + (α× β)
tree α = µβ.α + (β × β)

Extended syntax:

Term ∋M, N ::= . . . | fold M | unfold M

Typing rules:

TypeVar ∋ α, β ::= . . .

Type ∋ A, B ::= . . . | µα.B | α

Γ ⊢M : B [µα.B/α]
Γ ⊢ fold M : µα.B

µI
Γ ⊢M : µα.B

Γ ⊢ unfold M : B [µα.B/α] µE

Extended operational semantics:

EvalCxt ∋ E ::= . . . | unfold E

(βµ) unfold(fold M) 7→β M

Exercise 2.7. Give an alternate call-by-value operational semantics for recursive
types.
Exercise 2.8. Extend the proofs of progress and preservation for recursive types,
using a call-by-name and/or call-by-value operational semantics.
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Equational & Rewriting
Theories

When do we know that two programs are interchangeable?

true ?= false

not true ?= false

λx.and false x
?= λx. false

λx.not(not x) ?= λx.x

The “gold star” definition of (untyped) program equivalence is observational
equivalence (also known as contextual equivalence), which only checks that
programs give “similar” results when run in any closing context. These contexts
let you put the hole □ anywhere in a term, without restriction.

Context ∋ C ::= □ | C N |M C | λx.C

| if C then N1 else N2

| if M then C else N2

| if M then N1 else C

Definition 3.1 (Observational Equivalence (a.k.a. Contextual Equivalence)).
Untyped Observational (a.k.a. contextual) approximation, written M ≼ N ,
means that N always evaluates to a similar value as M when they are both
plugged into any closing context C:

M ≼ N ⇐⇒ ∀C ∈ Context. FV (C[M ]) = FV (C[N ]) = {} =⇒
∀V ∈ Value. C[M ] 7→→β V =⇒
∃V ∼W. C[N ] 7→→β W

23
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Untyped Observational (a.k.a. contextual) equivalence, written M ≈ N , means
that both terms approximate each other:

M ≈ N ⇐⇒ M ≼ N and N ≼ M

Similarity of values, written V ∼ W is inductively defined as the smallest
relation admitting these rules:

true ∼ true

false ∼ false

λx.M ∼ λy.N (for arbitrary M, N ∈ Term)

3.1 Intensional Equality
3.1.1 Reduction theory as rewriting
The operational semantics only lets you step in certain contexts:

M 7→β M ′

E[M ] 7→β E[M ′]

In contrast, the reduction theory allows you to reduce in any context. In
other words, the general reduction of a term, written as M →β N , is compatible
with all contexts of the language:

M →β M ′

C[M ]→β C[M ′] Compatibility

This is also known as congruence. In the base case, all of the specific steps of
the operational semantics can be used in the reduction theory:

M 7→β M ′

M →β M ′

The multi-step reduction relation, M →→β N , is the reflexive, transitive
closure of M → N :

M →β M ′

M →→β M ′ M →→β M
Refl.

M →→β M ′ M ′ →→β M ′′

M →→β M ′′ Trans.

Example 3.1. Using the ordinary (call-by-name or call-by-value) operational
semantics, we can show that

and false x 7→→β false

Since →β is compatible with arbitrary contexts, that means we get:
.... Left as exercise

and false x 7→→β false
and false x→→β false

λx.and false x→→β λx. false
Compatibility
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3.1.2 Equational theory as rewriting
Reduction can be generalized to equality by letting you apply the rules forward
(left-to-right) and backward (right-to-left).

The β-equality relation, M =β N , is the reflexive, transitive, and symmetric
closure of M → N :

M →β M ′

M =β M ′ M =β M
Refl.

M =β M ′ M ′ →→β M ′′

M =β M ′′ Trans.
M =β M ′

M ′ =β M
Symm.

Example 3.2. Another function that always returns false is λx.not true. We can
prove this by reducing under the λ:

.... Left as exercise
not true 7→→β false
not true→→β false

λx.not true→→β λx. false

So how are λx.not true and λx.and false x related? They both reduce to a
common function, λx. false, but neither one reduces directly to the other.
That’s where β-equality can help: the two can be rewritten into one another by
applying a chain of β-reduction steps forward and backward. Using what we
already know:

....
λx.not true→→β λx. false
λx.not true =β λx. false

....
λx.and false x→→β λx. false
λx.and false x =β λx. false
λx. false =β λx.and false x

Symm.

λx.not true =β λx.and false x
Trans.

3.2 Soundness of Intensional Equality
Goal: to show soundness of equational theory with respect to observational
equivalence — M =β N implies M ≈ N .

3.2.1 Confluence: Relating equations & reductions
Because M → M ′ can apply a reduction in any context, there are often many
choices of steps that can be done depending on where we choose to put the □.
In other words, M → M ′ non-deterministic, in contrast to M 7→ M ′ which is
deterministic. Given a starting M , it may reduce in multiple different ways
M1 ← M → M2 such that M1 ̸=α M2.
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But does this difference really matter, or do we have an illusion of choice that
always leads to the same final conclusion. That is, if M splits in two paths as
M1 ← M → M2, does it always join back together at M ′ as M1 → M ← M2?

Sort of. In λ-calculus (and many of its extensions), you can always join back
together, but it can take multiple steps. Why? Substitution can duplicates a
term, so it can duplicate reduction steps.

Lemma 3.1. If N →β N ′, then M [N/x]→→β M [N ′/x].

Proof. By induction on the syntax of M . Left as an exercise to the reader. ■

Example 3.3. This split from (λx.M) N

(λx.M) N ′ ←β (λx.M) N →β M [N/x]

can be joined to M [N ′/x] in multiple steps by Lemma 3.1:

(λx.M) N ′ →β M [N ′/x]←←β M [N/x]

Weak confluence

Definition 3.2 (Diamond Property). A reduction relation has the diamond
property if every one-step split M1 ← M → M2 can always be joined by multiple
steps M1 → M ′ ← M2.

Definition 3.3 (Weak Confluence). A reduction relation is weakly confluent
if every one-step split M1 ← M → M2 can always be joined by multiple steps
M1 →→ M ′ ←← M2.

Definition 3.4 (Strong Confluence). A reduction relation is strongly confluent
if every multi-step split M1 ←← M →→ M2 can always be joined by multiple steps
M1 →→ M ′ ←← M2.

Lemma 3.2. β-reduction of the λ-calculus is weakly confluent.

Proof. Left as an exercise to the reader. ■

In certain circumstances, weak confluence can imply strong confluence (e.g.
for strongly normalizing systems), but not always.
Example 3.4. Consider this little artificial rewriting system for coin flips:

flip head→ flip tail

flip tail→ flip head

flip M → M

This system is weakly confluent (try to prove it), but not strongly confluent.
Consider this multi-step split:

head← flip head→ flip tail→ tail

There is no way to join head→ M̸ ′ ← tail.
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Critical pairs

The easiest method to prove strong confluence is to check for certain properties
of the rewriting axioms themselves.

Definition 3.5 (Orthogonal Term Rewriting System). A term rewriting system
is orthogonal if:

1. The rules are all left-linear, i.e. the left-hand sides never mention the
same meta-variable more than once. For example, eq M M → true is not
left-linear because M appears twice on the left-hand side.

2. There are no critical pairs, i.e. the left-hand sides of any two rules never
overlap.

Theorem 3.3. All orthogonal term rewriting systems are strongly confluent.

Proof. By Klop [1993]. Term Rewriting Systems.

Corollary 3.4 (Strong Confluence). β-reduction of the λ-calculus is strongly
confluent.

Proof. Follows from Theorem 3.3 since all β-reduction rules are left-linear and
have no critical pairs.

Parallel reduction

Instead, we can bridge the gap between one-step and multi-step via parallel
reduction, which allows you to reduce multiple different independent, parallel
sub-terms “at once,” but cannot chain together a sequence of steps that depend
on one another. This notion of parallel reduction is nicely behaved in a certain
way:

Property 3.6 (Parallel Reduction). Given a single-step reduction relation
M → N , parallel reduction, written M ⇒ N , has the following properties:

a) M ⇒ M ,

b) if M → M ′ then M ⇒ M ′,

c) if M ⇒ M ′ then M →→ M ′, and

d) if M ⇒ M ′ and N ⇒ N ′ then M [N/x]⇒ M ′ [N ′/x].

Theorem 3.5 (Strong Confluence). If a parallel reduction relation has the
diamond property, then the underlying reduction relation is strongly confluent.

Proof. By induction on both reduction sequences of the split, using the properties
of parallel reduction in Property 3.6. Left as an exercise to the reader. ■

Challenge 3.1. Try defining a β-parallel reduction relation with these properties.
Giving an inductive definition directly on the syntax of terms can be more
challenging, but also more rewarding in the following.
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Theorem 3.6 (Diamond Property). Parallel β-reduction of the λ-calculus has
the diamond property.

Proof. Left as a challenge to the reader. ■

Convertibility of equality

Confluence is useful, because it says that every equality can be decided by just
reducing both sides to some common reduct.

Theorem 3.7. If a reduction relation →R is strongly confluent, then M =R N
implies M →→R M ′ ←←R N for some M ′.

Proof. Every rewriting equality M =R N can be expressed as a sequence of
alternating reductions M ←←R M1 →→R M2 ←←R . . .→→R N . The proof proceeds
by induction on the number of alternations, using confluence to join together
every split.

Corollary 3.8 (Convertibility). M1 =β M2 if and only if M1 →→β M ′ ←←β M2
for some M ′.

3.2.2 Standardization: Relating reductions & operational
semantics

Property 3.7 (Internal reduction). Given a standard reduction relation 7→
and its compatible closure →, an internal reduction, written M ↣ M ′, has the
properties:

a) if M ↣ M ′ then M → M ′,

b) both M ↣ M ′ and M 7→ M ′ is impossible, and

c) if M → M ′ then either M 7→ M ′ or M ↣ M ′.

We write ↣↠ to denote the reflexive, transitive closure of ↣.

Lemma 3.9 (Postponement). If M ↣↠β M1 7→→β M ′ then M 7→→β M2 ↣↠β M ′

for some M2.

Proof. Left as a challenge to the reader. ■

Hint. Try proving this simpler property first: If M ↣↠β M1 7→β M ′ then
M 7→→β M2 ↣↠β M ′ for some M2.

How can you generalize this weaker property — that starts with only one
7→β step after any number of ↣↠β steps — to the full form in Lemma 3.9?

Lemma 3.10 (Standard Order). If M →→β N then M 7→→β M ′ ↣↠β N for some
M ′.
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Proof. Every reduction sequence can be written as an alternation of internal and
standard reduction steps, M 7→→β M1 ↣↠β M2 7→→β . . . ↣↠i N . Swapping each
alternation to postpone internal reduction after standard reduction reduces the
number of alternations by 1. Thus, we get M 7→→β M ′ ↣↠β N from Lemma 3.9
by induction on the number of alternations.

Lemma 3.11. If M ↣β V , then M is a value.

Proof. By induction on the possible internal reductions. Left as an exercise to
the reader. ■

Theorem 3.12 (Standardization). If M →→β V then M 7→→β W →→β V for some
W .

Proof. From Lemma 3.10, we get M 7→→β M ′ ↣↠β V , and we know M ′ must be
a value from Lemma 3.11.

3.2.3 Confluence & Standardization =⇒ Soundness
Lemma 3.13. Values are closed under reduction: if V →→β M then M is a
value.

Proof. By induction on the possible reductions from V . Left as an exercise to
the reader. ■

Lemma 3.14. If V1 →→β V ′ ←←β V2, then V1 ∼ V2.

Proof. By induction on the possible reductions from V1 and V2. Left as an
exercise to the reader. ■

Theorem 3.15 (Soundness). If M =β N then M ≈ N .

Proof. We first show M =β N implies M ≼ N , so we need to demonstrate that
C[M ] 7→→β V implies V ∼ W ←←[β C[N ] for every possible closing context C
around M and N .

Let C be any context such that both C[M ] and C[N ] are closed. Because
β-equality is compatible with arbitrary contexts by definition, M =β N implies
C[M ] =β C[N ].

First, suppose that C[M ] 7→→β V . We know that C[N ] =β V by symmetry and
transitivity of equality. Applying Corollary 3.8 to C[N ] =β V gives C[N ]→→β

W ←←β V and we know W must be a value because values are closed under
reduction (Lemma 3.13). Applying Theorem 3.12 to C[N ]→→β W gives

C[N ] 7→→β W ′ →→β W ←←β V

Applying Lemma 3.14 to W ′ →→β W ←←β V gives W ′ ∼ V . Thus, M ≼ N .
Since equality is symmetric, M =β N implies N =β M which implies N ≼ M

as above. Thus M =β N implies M ≈ N .
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Example 3.5. Before, we used the syntactic β rule from the ordinary (call-by-
value or call-by-name) operational semantics to relate two functions by rewriting
them into a common form of a function λx. false that always returns false:

λx.and false x =β λx. false =β λx.not true

Soundness of intensional equality (Theorem 3.15) then tells us that these purely
syntactic rewritings actually prove a property about how the functions will
behave in arbitrary programs:

λx.and false x ≈ λx. false ≈ λx.not true

which means that all three functions can be exchanged in any context without
changing the result of the program.

3.3 Extensional Equational Theory: η equality
Despite being able to prove many programs are observationally equivalent, still
some obvious equalities elude us. For example, λx.not(not x) should be the
same as the identity function λx.x on booleans, but trying to reduce inside the
body of the function as it stands quickly gets stuck.

Intuitively, we know that x should only stand for true or false, and in both
cases simplify to themselves: not(not true) 7→→β true and not(not false) 7→→β

false. However, this doesn’t always work in arbitrary contexts, because we
might plug in something else, like a λ, and not(not(λx.M)) gets stuck instead
of simplifying down to λx.M .

So λx.not(not x) ̸≈ λx.x in the sense of Definition 3.1 that lets the closing
context do anything. However, if we restrict the scope of contexts to only those
that make sense — in the sense of type checking — then maybe there is still
hope?

Definition 3.8 (Observational Equivalence (a.k.a. Contextual Equivalence)).
Typed observational (a.k.a. contextual) equivalence, written Γ ⊢ M ≈ N : A,
means that M and N always evaluate to similar values when they are both
plugged into any closing context C that takes an input of type A to an output
of the “ground” type bool:

Γ ⊢M ≈ N : A ⇐⇒ Γ ⊢M : A and Γ ⊢ N : A and
∀C ∈ Context. • ⊢ C[M ] : bool and • ⊢ C[N ] : bool =⇒
∃V ∼W : bool . C[M ] 7→→β V ∼W ←←[β C[N ]

Similarity of typed ground values, written V ∼W : A is inductively defined
as the smallest relation admitting these rules:

true ∼ true : bool false ∼ false : bool
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Now, we will define a typed equality relation Γ ⊢M = N : A which asserts
that two terms M and N of type A are equal. Similar to before, this equality
relation extends the operational semantics (every β step is an equality), and is
reflexive, transitive, and symmetric.

Γ ⊢M : A M 7→β M ′ Γ ⊢M ′ = N : A

Γ ⊢M = N : A
Step Γ ⊢M : A

Γ ⊢M = M : A
Refl.

Γ ⊢M = N : A Γ ⊢ N = M ′ : A
Γ ⊢M = M ′ : A

Trans.
Γ ⊢M = N : A
Γ ⊢ N = M : A

Symm.

3.3.1 Extensionality rules & η axioms
To give some extra oomph to typed equality, we will add some extra equations that
use typing information to rule out nonsensical possibilities and push computation
forward. This gives us a notion of extensional that is only concerned with external
input-output behavior, and isn’t as sensitive to internal details of how programs
are exactly written.

Extensionality of functions — two functions are equal when they give equal
answers to all possible equal inputs:

Γ, x : A ⊢M x = N x : B x /∈ FV (M) ∪ FV (N)
Γ ⊢M = N : A→ B

→X

Extensionality of booleans — every use-case of equivalent booleans can
assume it is either true or false:
Γ ⊢ M = N : bool Γ ⊢ E[true] = E′[true] : A Γ ⊢ E[false] = E′[false] : A

Γ ⊢ E[M ] = E′[N ] : A
boolX

Alternatively, we can capture this notion of extensionality in the form of
rewriting axioms that operate over typed terms:

Γ ⊢M : A→ B
Γ ⊢ (λx.M x) = M : A→ B

η→

Γ ⊢M : bool Γ, x : bool ⊢ E[x] : A x /∈ FV (E)
Γ ⊢ if M then E[true] else E[false] = E[M ] : A

ηbool

The above axioms can be written in a more familiar way by presenting the
typing premises as side conditions:

(η→) (λx.M x) = M : A→ B (if x /∈ FV (M))
(ηbool) if M then E[true] else E[false] = E[M ] : A (if M : bool)

Exercise 3.2. Prove that the η axioms can be derived from the extensionality
inference rules

1. Use the extensionality rule→X and the call-by-name operational semantics
to conclude the equality of the η→ axiom applied to a typed term M :
A→ B.
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2. Use the extensionality rule boolX and the call-by-name operational se-
mantics to conclude the equality of the ηbool axiom applied to a typed
term M : Bool and evaluation context E[x] : A (assuming x : bool).

3.3.2 Typed congruence
Typed equality should be congruent, i.e. compatible with all (type-preserving)
contexts. We could do this in one rule:

Γ ⊢M = N : A Γ′ ⊢ C[M ] : B Γ′ ⊢ C[N ] : B

Γ′ ⊢ C[M ] = C[N ] : B
Compat.

But this rule can be a little unwieldy to reason about and formalize.
Instead, we can simplify the specification of congruence by just “doubling

up” all the ordinary typing rules. Each rule building single well-typed term out
of well-typed sub-terms can be generalized to stating that two typed terms are
equal if they are made of equal sub-terms. This looks like:

Γ, x : A ⊢ x = x : A Var2

Γ, x : A ⊢M = M ′ : B

Γ ⊢ λx.M = λx.M ′ : A→B
→I2 Γ ⊢M = M ′ : A→B Γ ⊢ N = N ′ : A

Γ ⊢M N = M ′ N ′ : B
→E2

Γ ⊢ true = true : bool boolI2
1 Γ ⊢ false = false : bool boolI2

2

Γ ⊢M = M ′ : bool Γ ⊢ N1 = N ′
1 : A Γ ⊢ N2 = N ′

2 : A

Γ ⊢ if M then N1 else N2 = if M ′ then N ′
1 else N ′

2 : A
boolE2

Exercise 3.3. Show that the doubled-up congruence rules (Var2, →I2, →E2, . . . )
make both reflexivity and compatibility redundant:

1. Given an arbitrary typing derivation of Γ ⊢ M : A, prove that Γ ⊢ M =
M : A is derivable without using Refl.

2. Given a derivation that two terms are equal Γ ⊢M = M ′ : A as well as a
proof that a context is well typed Γ, x : A ⊢ C[x] : B for a fresh variable x
(i.e. x /∈ FV (C)) prove that Γ ⊢ C[M ] = C[M ′] : B is derivable without
using Compat.

Exercise 3.4. Prove that the extensionality inference rules can be derived from
the η axioms:

1. Use the η→ axiom to derive the →X rule.

2. Use the ηbool axiom to derive the boolX rule.

Hint. You may need to use compatibility.
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3.3.3 Logical relation of typed equivalence
Now, how do we show that the syntactic, rewriting-based notion of extensional
equality (Γ ⊢ M = N : A) is a sound approximation of the more behavioral
notion of typed observational equivalence (Γ ⊢M ≈ N : A)? Logical relations!

First, specify how programs of each type are expected to interact with
equivalence as a binary relation between terms.1

J_K : Type → Rel(Term, Term)
M JboolK M ′ ⇐⇒ M 7→→β true←←[β M ′ or M 7→→β false←←[β M ′

M JA→ BK M ′ ⇐⇒ ∀N JAK N ′. (M N) JBK (M ′ N ′)

Notice that reflexivity of 7→→β means the boolean equivalence relationship in-
cludes both true JboolK true and false JboolK false, as expected. You might
think that these two facts are enough, but we also want to be able to relate
boolean programs that return similar results. For example, we should be able to
say (not true) JboolK false, too, because not true returns false. The use of
reduction in the definition of JboolK expands the relationship to include these
other programs which will eventually return a true or false after some work.
Exercise 3.5. Show that the relationship (not true) JboolK (and false x) holds.

Typing environments specify the valid substitutions into an open term. An
environment Γ is interpreted as a relationship between two substitutions that
plug in related inputs according to the types assigned to each free variable. To
do this, we generalize from single substitution to simultaneous substitution,
M [N1/x1, . . . , Nn/xn], defined similarly to avoid capturing free variables.

Substitution ∋ σ ::= M1/x1, . . . , Mn/xn

J_K : Environment → Rel(Substitution, Substitution)
σ JΓK σ′ ⇐⇒ ∀(x : A) ∈ Γ. x [σ] JAK x [σ′]

Now, finally, typed equality judgements are interpreted as the statement that
the supposedly equal terms at type A are actually related by JAK for all possible
substitutions allowed by the typing environment:2

J_K : Judgement → Prop
JΓ ⊢M = M ′ : AK ⇐⇒ ∀σ JΓK σ′. M [σ] JAK M ′ [σ′]

The fundamental property of the logical relation is that the inductively-defined
derivations of syntactic equality Γ ⊢M = N : A can always be transformed into

1A binary relation between two sets A and B, written Rel(A, B), can be represented as a
subset of all possible pairs of A and B elements, Rel(A, B) = ℘(A × B). We will leave the
specific encoding of relations as abstract in the presentation.

2A proposition, written Prop, is a statement that could be true or false. An individual
proposition can be represented by the two-element set {tt, ff} deciding its truth value. Note
that the mapping A → Prop decides a truth value for each element of A, and is equivalent to
a predicate on A that is sometimes true and sometimes false.



CHAPTER 3. EQUATIONAL & REWRITING THEORIES 34

their interpretation as a behavioral proposition JΓ ⊢M = N : AK. To prove this,
we need to use a special property that is true of the interpretation for every type:
they are interpreted as relations that are closed under expansion.

Lemma 3.16 (Closure Under Expansion).
For all types A, if M 7→→β M ′ JAK N ′ ←←[β N then M JAK N .

Proof. By induction on the syntax of A. Left as an exercise to the reader. ■

As a warm up, you can just try proving the reflexive case:

Lemma 3.17. If Γ ⊢M : A is derivable then JΓ ⊢M = M : AK is true.

Proof. By induction on the derivation of Γ ⊢M : A. Left as an exercise to the
reader. ■

To prove soundness of typed βη-equality using syntactic rewriting rules, we
also need to handle transitivity (combining together many steps) and symmetry
(reversing the direction of steps). This can be

Lemma 3.18 (Partial Equivalence). For all types A, JAK is a partial equivalence
relation, i.e. it is

a) Symmetric: if M JAK N then N JAK M , and

b) Transitive: if M JAK N and N JAK M ′ then M JAK M ′.

Proof. By induction on the syntax of A. Left as an exercise to the reader. ■

Lemma 3.19 (Fundamental Property of the Logical Relation).
If Γ ⊢M = N : A is derivable then JΓ ⊢M = N : AK is true.

Proof. By induction on the derivation of Γ ⊢M = N : A. Left as a challenge to
the reader. ■

Hint. You may assume that the given derivation of Γ ⊢ M = N : A does not
use the Refl. or Compat. rules, based on Exercise 3.3. In place of these general
rules, you can assume the derivation only uses the “doubled-up” versions of the
regular typing rules, along with the Step, Symm., and Trans., as well as either
the η axioms or extensionality X rules for every type (your choice).
Hint. It can help to also consider the interpretation of inference rules themselves.
Given an inference rule of the form (where J and Hi are judgements)

H1 H2 . . . Hn

J
Rule

its interpretation as a logical proposition, JRuleK is
s

H1 H2 . . . Hn

J
Rule

{

⇐⇒ If JH1K and JH2K and . . . and JHnK are all true, then JJK is true.
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You can then justify Rule is sound by proving that JRuleK proposition is always
true. A derivation made up of several of these rules — all proved sound in this
way — then proves the conclusion is true without any open premises.

Lemma 3.20. Given a derivation D concluding a judgement J , if D is built by
rules Ri such that JRiK are all true, then JJK is true.

Proof. By induction on the derivation D, using the assumption that JRiK is true
in each case Ri. Left as an exercise for the reader. ■

You can then simplify the proof of Lemma 3.19 to sequence shorter lemmas
showing why the logical interpretation of each inference rule —

q
Var2y,

q
→I2y,q

→E2y, J→XK,
q
boolI2y,

q
boolE2y, JboolXK, JStepK, JSymm.K, JTrans.K —

is true.
Hint. Notice that, using Lemma 3.16 makes it easy to justify this equality rule:

M 7→→β M ′ Γ ⊢M ′ = N ′ : A N ′ ←←[β N

Γ ⊢M = N : A
Expand

In other words, JExpandK is true, and the proof follows immediately from
Lemma 3.16 and the fact that reduction is closed under substitution — if
M 7→β M ′ then M [N/x] 7→β M ′ [N/x] (by cases on the 7→β rules).

A key difference between Expand versus Step is that Expand doesn’t check
the types of the starting terms M and N . In other words, Expand potentially
lets you equate two terms M and N at a type A even if M and N themselves
don’t appear to have type A! This goes against a design goal that typed equality
only relates terms that syntactically belong to that type. However, bending this
rule has a huge advantage: it lets us cut down on the number of equality rules
we have to consider.

Of course Step can be derived in terms of Expand. But what is more
interesting is that both →I2 and boolE2 can also be derived from Expand along
with their respective extensionality rules.

As an exercise, see if you can derive proofs of

Γ, x : A ⊢M = M ′ : B.... Expand,→X

Γ ⊢ λx.M = λx.M ′ : A→ B

Γ ⊢M = M : bool Γ ⊢ N1 = N ′
1 : A Γ ⊢ N2 = N ′

2 : A.... Expand, boolX

Γ ⊢ if M then N1 else N2 = if M ′ then N ′
1 else N ′

2 : A

using Expand along with →X and boolX, respectively. Doing so means all
proofs of equality can done without using the Step, →I2, and boolE2 rules if
we add Expand to the system, so we wouldn’t need to address these cases in
our inductive proof of Lemma 3.19 (as they have been removed already and
replaced by other rules) as long as we have a case for Expand. Looking at this
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fact another way, proving JExpandK, J→XK, and JboolXK are true automatically
entails

q
→I2y and

q
boolE2y are true by just following the logical interpretation

of inference rules.
From this fundamental property, we can prove that the inductively-defined,

rewriting-based, extensional equality is sound (i.e. approximates) the behavior-
based, typed observational equivalence.

Theorem 3.21 (Soundness). If Γ ⊢M = N : A then Γ ⊢M ≈ N : A.

Proof. To demonstrate the observational equivalence, we have to show that M
and N reduce to the same boolean value when plugged into any type-preserving,
closing context with the return type bool. So let C be any context such that
• ⊢ C[M ] : bool and • ⊢ C[N ] : bool.

From compatibility (either the Compat. rule or its derivation from doubled-up
congruence rules Var2, →I2, . . . as in Exercise 3.3), we can build a derivation
of • ⊢ C[M ] = C[N ] : bool. Applying Lemma 3.19, J• ⊢ C[M ] = C[N ] : boolK
must be true. Note that the proposition J• ⊢ C[M ] = C[N ] : boolK is defined to
mean the same thing as:

C[M ] 7→→β c←←[β C[N ]

where c is either true or false, as required by typed observational equivalence.
Therefore, Γ ⊢M ≈ N : A.

3.3.4 Evaluation order and extensionality
The extensionality rules presented only really work for call-by-name evaluation,
particularly when we have general loops or side effects. For example, y++; f ̸=
λx.(y++; f) x.

So for call-by-value, we have to restrict extensionality of functions to only
function values, and not arbitrary function-producing code.

(η→) λx.V x = V : A→ B (x /∈ FV (V ))

Γ, x : A ⊢ V x = W x : B x /∈ FV (V ) ∪ FV (W )
Γ ⊢ V = W : A→ B

→X

Happily, the extensionality rules presented here for booleans in call-by-name
still apply in call-by-value. But notice that call-by-value has a different definition
of evaluation contexts, E, which adds more cases. What impact does that have
on the notion of boolean extensionality?
Exercise 3.6. Interpret the ηbool and/or boolX rules with call-by-value oper-
ational semantics (the definition of EvalCxt and reduction steps) to prove the
following more general extensionality principles of booleans:
Γ ⊢M [true/x] = N [true/x] : A Γ ⊢M [false/x] = N [false/x] : A

Γ, x : bool ⊢M = N : A
boolXV
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(ηboolV ) if V then N [true/x] else N [false/x] = N [V/x] : A

(if V : bool, x /∈ FV (N))

Exercise 3.7. Come up with a counter-example where the call-by-value exten-
sionality principle for booleans (boolXCBV or ηboolCBV ) breaks observational
equivalence under a call-by-name operational semantics. To come up with
your counter-example, you may assume that the language has some form of
looping construct (e.g. recursive functions or recursive types) such that the
non-terminating Ω 7→β Ω can be written.



Chapter 4

Polymorphism &
Modularity

“Simple” types, the ones we have seen thus far, are extremely limited in practice.
Consider just the basic identity function

id(x) = x

represented in λ-calculus as λx.x. What is it’s type? It could be bool→ bool,
but it just as well could be int→ int or (bool→ bool)→ (bool→ bool). It
would be a shame — as well as intractable — to copy and paste the exact same
code for every single type we want to use it at. That’s why cool languages give
us parametric polymorphism (a.k.a. generics), to capture all these instances in a
single type for generic code. In ML- and Haskell-like languages, this looks like

id : α→ α

where α stands for a generic, unknown type that could be instantiated with
any specific type like bool or int or list nat. To be more explicit about this
generalization over the type α, we can add a quantifier ∀ meaning “for all” that
introduces and abstracts over the type variable:

id : ∀α. α→ α

The exciting thing is: the generic type abstraction ∀ corresponds exactly to the
universal quantifier ∀ from logic! Thanks Girard [1972] and Reynolds [1974]!

Another issue in practical programming is modularity. I might implement
first-in-first-out queues with the usual enqueue and dequeue operations. Of
course, queues need some sort of specific representation for me to implement
those operations. But I don’t want you to exploit that choice of representation in
the code that imports it. Maybe I will change the representation at some point
to optimize or improve queues somehow, and your code that uses my queues
should still work fine as long as I implement enqueue and dequeue correctly.

38
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This problem is solved by modules which set up boundaries that protect certain
information during cross-code linking to help improve maintainability. A module
that implements queues might have a signature like this:

queue : { type α;
empty : α

enqueue : int→ α→ α

dequeue : α→ maybe int

}

As you may have guessed, this corresponds to another logical quantifier, ∃, which
says there exists some type α such that the following type makes sense. The
queue module signature can be represented by ∃ as

queue : ∃α. α

× (int→ α→ α)
× (α→ 1 + int)

4.1 Type Abstraction
Start with the typing rules first, since the whole point is about types. We add
two new types for ∀ and ∃ quantifiers which abstract over type variables (α, β,
. . . ). So like with recursive types, we need to be able to use type variables as
another form of type.

TypeVar ∋ α, β ::= . . .

Type ∋ A, B ::= . . . | α | ∀α.τ | ∃α.τ

Typing judgements are generalized to also include an environment of free
type variables Θ = α, β, . . . , and are written as Θ ; Γ ⊢ M : A. Θ is a set
(an unordered list, with at most one copy of any given type variable). We also
have a judgement for checking that types are well-formed, where a derivation of
Θ ⊢ A : ⋆ implies FV (A) ⊆ Θ.

Generics ∋ Θ ::= α1, . . . , αn

Judgement ::= Θ ; Γ ⊢M : A

| Θ ⊢ A : ⋆

Θ, α ⊢ α : ⋆
VarT Θ ⊢ bool : ⋆

boolT
Θ ⊢ A : ⋆ Θ ⊢ B : ⋆

Θ ⊢ A→ B : ⋆
→T

Θ, α ⊢ τ : ⋆

Θ ⊢ ∀α.τ : ⋆
∀T

Θ, α ⊢ τ : ⋆

Θ ⊢ ∃α.τ : ⋆
∃T
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Note that we only consider typing judgements Θ ; x1 : A1, . . . , xn : An ⊢M : B
well-formed when Θ ⊢ B : ⋆ and Θ ⊢ Ai : ⋆ for 1 ≤ i ≤ n.

Θ, α ; Γ ⊢M : τ

Θ ; Γ ⊢ Λα.M : ∀α.τ
∀I

Θ ; Γ ⊢M : ∀α.B Θ ⊢ A : ⋆

Θ ; Γ ⊢M A : B [A/α] ∀E

Θ ⊢ A : ⋆ Θ ; Γ ⊢M : B [A/α]
Θ ; Γ ⊢ (A, M) : ∃α.B

∃I

Θ ; Γ ⊢M : ∃α.B Θ, α ; Γ, x : B ⊢M : A Θ ⊢ A : ⋆

Γ ⊢ case M of { (α, x:B)⇒M } : A
∃E

Note, the Θ ⊢ A : ⋆ premise of ∃E ensures that local type variable α in the
pattern-match doesn’t accidentally escape into the return type A.

These local type variables (introduced by big lambdas Λ or a case matching
on an existential package) can be used in type annotations. To help a computer
check the types of functions, we need to give a hint that says what is the type of
the argument. The easiest place to insert this annotation is on the places where
variables are introduced, like in the case expression above or a λ-abstraction
itself:

Γ, x : A ⊢M : B

Γ ⊢ λx:A.M : A→ B
→I

All of these type annotations can be omitted from specific examples if they are
obvious from the context.

4.2 Syntax and Operational Semantics
Extended syntax of terms

Term ∋M, N ::= . . . | λx:A.M

| Λα.M |M A

| (A, M) | case M of { (α, x : B)⇒ N }

Extended operational semantics

EvalCxt ∋ E ::= . . . | E A | case E of { (α, x:B)⇒ N }

(β→) (λx:A.M) N 7→M [N/x]
(β∀) (Λα.M) A 7→ M [A/α]
(β∃) case (A, M) as (α, x:B)⇒ N 7→ N [A/α] [M/x]

Notice: the typing annotations are totally ignored by the operational semantics.
Annotations are irrelevant at run-time, and all types can be erased at compile-
time.
Exercise 4.1. Give an alternate call-by-value semantics to ∀ and ∃ types.
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4.3 Extensional Equational Theory
Congruence of type abstraction:

Θ, α ; Γ ⊢M = M ′ : B

Θ ; Γ ⊢ Λα.M = Λα.M ′ : ∀α.B
∀I2 Θ ; Γ ⊢M = M ′ : ∀α.B

Θ ; Γ ⊢M A = M ′ A : B [A/α] ∀E
2

Θ ; Γ ⊢M = M ′ : B [A/α]
Θ ; Γ ⊢ (A, M) = (A, M ′) : ∃α.B

∃I2

Θ ; Γ ⊢M = M ′ : ∃α.B Θ, α ; Γ, x : B ⊢ N = N ′ : A α /∈ FV (A)
Θ ; Γ ⊢ case M of { (α, x:B)⇒ N } = case M ′ of { (α, x:B)⇒ N ′ } : A

∃E2

η axioms:

(η∀) (Λα.M α) = M : ∀α.B (if α /∈ FV (M))
(η∃) case M of { (α, x:B)⇒ E[(α, x)] } = E[M ] : A (if M : ∃α.B)

Extensionality rules:

Θ, α ; Γ ⊢M α = M ′ α : B

Θ ; Γ ⊢M = M ′ : ∀α.B
∀X

Θ ; Γ ⊢M = M ′ : ∃α.B Θ, α ; Γ, x : B ⊢ E[(α, x)] = E′[(α, x)] : A

Θ ; Γ ⊢ E[M ] = E′[M ′] : A
∃X

Note: to keep the typing judgements in the conclusions well-formed, need to
make sure that α /∈ FV (M) ∪ FV (M ′) ∪ FV (B) in the ∀X rule, and that
x /∈ FV (E) ∪ FV (E′) and α /∈ FV (E) ∪ FV (E′) ∪ FV (A) in the ∃X rule.
Exercise 4.2. Give a revised version of the η∀ axiom and ∀X rule that are sound
in call-by-value. Specifically, these rules should not be able to equate values with
non-value terms on their own without the help of β-reduction.
Exercise 4.3. Interpret the η∃ and/or ∃X rules with call-by-value operational se-
mantics to prove the following more general extensionality principles of existential
types:

(η∃CBV ) case V of { (α, x)⇒ N [(α, x)/z] } = N [V/z]
(if V : ∃α.B, z /∈ FV (N))

Θ, α ; Γ, y : B ⊢M [(α, y)/x] = M ′ [(α, y)/x] : A x /∈ FV (M) ∪ FV (M ′)
Θ ; Γ, x : ∃α.B ⊢M = M ′ : A

∃XC

4.3.1 Parametricity
We saw how to justify that extensional equality is sound w.r.t. typed observational
equivalence in Section 3.3.3. The trick was to use a logical relation, i.e. a relation
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between terms that depends on types specifying the terms expected run-time
behavior.

Let’s just try to extend the interpretation of types to include the quantifiers ∀
and ∃ in the most obvious way. The first obstacle is how to handle type variables.
We’ll use the usual trick of threading an environment through the interpreter of
types which maps type variables to term relations.

J_K_ : Type → (TypeVar → Rel(Term, Term))→ Rel(Term, Term)
M JboolKτ M ′ ⇐⇒ M 7→→β true←←[β M ′ or M 7→→β false←←[β M ′

M JA→BKτ M ′ ⇐⇒ ∀N JAKτ N ′. (M N) JBKτ (M ′ N ′)
M JαKτ M ′ ⇐⇒ M τ(α) M ′

M J∀α.BKτ M ′ ⇐⇒ ∀A ∈ Type. (M A) JBKτ,JAKτ /α (M ′ A)
M J∃α.BKτ M ′ ⇐⇒ M 7→→β (A, N) andM ′ 7→→β (A′, N ′) andN JBKτ,JA?Kτ /α N ′

There’s lots of problems with this definition! Worst of all, it is not a well-founded
definition by induction like before. Previously, JAK was defined only in terms
of smaller types found inside A, but now J∀α.BK and J∀α.BK depend on the
meaning JAK of all other types, including much larger ones that have nothing to
do with B. Besides that, the condition of M J∃α.BKτ M ′ seems bogus. Running
both M and M ′ give two different packages, with two different implementation
types A and A′. There’s no reason to assume that A and A′ are related in any
standard way, so how do we compare the contents of the package?

It turns out that the interpretation of all types as relations share one key
fact: they are closed under expansion. This was a key fact (Lemma 3.16) that is
at the heart of the fundamental lemma (Lemma 3.19). It is true by definition
for JboolK, and JA→ BK inherits this property from JBK. Therefore, we can
circumscribe interpretation of all the types we know about now — and all the
possible future types we might add to the language later — as term relations
with this special property.

Definition 4.1 (Equivalence Candidate). A relation candidate A is any binary
term relation that is closed under expansion: if M 7→→β M ′ A N ′ ←←[β N then
M A N . Furthermore, an equivalence candidate is any relation candidate A that
is also a partial equivalence relation (i.e. A is symmetric and transitive). The
set of all relation candidates is written as RC and the set of all equivalence
candidates is written as EC .

These are called candidates because some relations in RC or even EC may
not correspond to any type in our actual language. These are only candidate
relations that might correspond to some type. A good place to read more about
circumscribing a “candidate” pool of possible type interpretations is Girard et al.
[1989].

We can now fix up the problems in our definition to make it a real inductive
definition by generalizing beyond the specific problem cases to just try any
possible candidate from a candidate pool C ⊆ Rel(Term, Term) — such as
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C = EC or C = RC — that might potentially fit in that position.

J_K_
_ : Type → ℘(Rel(Term, Term))
→ (TypeVar → Rel(Term, Term))
→ Rel(Term, Term)

M JboolKC
τ M ′ ⇐⇒ M 7→→β true←←[β M ′ or M 7→→β false←←[β M ′

M JA→ BKC
τ M ′ ⇐⇒ ∀N JAKC

τ N ′. (M N) JBKC
τ (M ′ N ′)

M J∀α.BKC
τ M ′ ⇐⇒ ∀A, A′ ∈ Type,A ∈ C. (M A) JBKC

τ,A/α (M ′ A′)

M J∃α.BKC
τ M ′ ⇐⇒ M 7→→β (A, N) and M ′ 7→→β (A′, N ′) and

∃A ∈ C. N JBKC
τ,A/α N ′

This is now well-defined. . . But does it really work?? Well, at least we should be
sure that the interpretation of every type has the relation candidate properties.

τ ∈ JΘKC ⇐⇒ ∀α ∈ Θ. τ(α) ∈ C

JΘ ⊢ A : ⋆KC ⇐⇒ ∀τ ∈ JΘKC
. JAKC

τ ∈ C

Lemma 4.1 (Fundamental Property of Types). If Θ ⊢ A : ⋆ is derivable then
both JΘ ⊢ A : ⋆KRC and JΘ ⊢ A : ⋆KEC are true.

In other words, if τ maps all of A’s free type variables to relation candidates
(they are closed under expansion) then JAKRC

τ is also a relation candidate (it is
closed under expansion). Furthermore, if τ maps all of A’s free type variables to
equivalence candidates (they are also symmetric and transitive) then JAKEC

τ is
also an equivalence candidate (it is also symmetric and transitive).

Proof. By induction on the derivation of Θ ⊢ A : ⋆. Left as an exercise to the
reader. ■

Let’s finish threading type variables through the rest of our interpretation.
Since terms can have free type variables in them, syntactic substitutions can
also plug in types for generic type variables in addition to plugging in terms for
regular variables.

Substitution ∋ σ ::= • |M/x, σ | A/α, σ

σ JΓKC
τ σ′ ⇐⇒ ∀(x : A) ∈ Γ. x [σ] JAKC

τ x [σ′]
JΘ ; Γ ⊢M : AK ⇐⇒ ∀τ ∈ JΘKRC

, σ JΓKRC
τ σ′. M [σ] JAKRC

τ M [σ′]
JΘ ; Γ ⊢M = M ′ : AK ⇐⇒ ∀τ ∈ JΘKEC

, σ JΓKEC
τ σ′. M [σ] JAKEC

τ M ′ [σ′]

Note that the definition of the JΓKC
τ relation between substitutions is defined to

be as permissive as possible while still respecting the explicit type assignments
listed in Γ. That means term variables — and more importantly, generic type
variables — that aren’t assigned a type in Γ can be replaced by anything or
nothing on either side without changing the JΓKC

τ relationship.
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Lemma 4.2. a) σ JΓKC
τ σ′ iff (A/α, σ) JΓKC

τ σ′ iff σ JΓKC
τ (B/α, σ′).

b) If x is not assigned a type in Γ, then σ JΓKC
τ σ′ iff (M/x, σ) JΓKC

τ σ′ iff
σ JΓKC

τ (N/x, σ′).
Now the challenge is to prove the updated fundamental property. To deal with

the substitution of types for generic type variables, we need to relate syntactic
substitution B [A/α] used by the type system with the semantic substitution in
τ that is carried out by the interpretation JAKC

τ .

Lemma 4.3. For all types A and B, JB [A/α]KC
τ = JBKC

τ,JAKC
τ /α.

Proof. By induction on the syntax of B. Left as an exercise to the reader. ■

As before, it can help to understand the meaning of each inference rule in
isolation, before getting lost in a big inductive proof.
Lemma 4.4. The logical interpretation of the simply-typed inference rules for
type checking and equality still hold when generalized over generic type variables.
Furthermore, the logical interpretation of these new inference rules also hold:

a) J∀IK and J∀EK

b)
q
∀I2y and

q
∀E2y and J∀XK.

c)
q
∃I2y and

q
∃E2y and J∃XK.

Proof. By the definition of J_K. Left as a challenge to the reader. ■

And some cases can even be eliminated via the “semi-typed” Expand rule.
Lemma 4.5. The ∀I2 and ∃E2 rules can be derived from Expand, ∀X and ∃X:

Θ, α ; Γ ⊢M = M ′ : B.... Expand,∀X
Θ ; Γ ⊢ Λα.M = Λα.M ′ : ∀α.B

Θ ; Γ ⊢M = M ′ : ∃α.B Θ, α ; Γ, x : B ⊢ N = N ′ : A α /∈ FV (A).... Expand,∃X
Θ ; Γ ⊢ case M of { (α, x:B)⇒ N } = case M ′ of { (α, x:B)⇒ N ′ } : A

Proof. Left as an exercise to the reader. ■

Lemma 4.6 (Fundamental Property of the Logical Relation).
a) If Θ ; Γ ⊢M : A is derivable then JΘ ; Γ ⊢M : AK is true.

b) If Θ ; Γ ⊢M = N : A is derivable then JΘ ; Γ ⊢M = N : AK is true.
Proof. By induction on the derivation of Θ ; Γ ⊢M : A (for the first part) and
Θ ; Γ ⊢M = N : A (for the second part). Left as a challenge to the reader. ■

Theorem 4.7 (Soundness). If Θ ; Γ ⊢M = N : A then Θ ; Γ ⊢M ≈ N : A.
Proof. Analogous to Theorem 3.21.



Chapter 5

Compilation & Abstract
Machines

So far, we have been using a small-step operational semantics as the main tool to
explain how a program can make its way to computing its answer. This is great
for clearly specifying what that answer should be for all programs that may
be written, and also as a building block to build other higher-level theories —
like equational theories and logical relations — for understanding the properties
of programs. But a straightforward interpretation of small-step operational
semantics is a terribly inefficient to the point of being useless for any practical
application.

What’s the problem? There are two sources of wasted, redundant effort that
get in the way of a real implementation. The first, most obvious problem is that
substitution can duplicate work an arbitrary number of times. Every time we
substitute, as in β→ reduction, the result looks like:

(λx.M) N 7→β M [N/x]

How long does it take to calculate the right-hand side? Substitution has to
dig through the entire syntax tree of M . So if M is program with a hundred
thousand “lines” of code, then a single M [N/x] will traverse the whole thing. If
a program has side m and takes n β→ steps, then the real cost of running this
substitution model literally takes can take O(mn) time (each β→ step causes a
substitution which incurs a search and replace over m “lines”). Oof.

The situation is actually even more dire. Substitution can actually make the
program much bigger, not smaller, by coping a subterm a large number of times:

(λx.(. . . x . . . x . . . x . . . )) big 7→β . . . big . . . big . . . big . . .

where big is some syntactically large term. So using substitution to calculate the
answer of a program can be worse than O(mn), where m is the size of the term
and n the number of steps, because the m can grow as the program “reduces.”

45
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To see the second, consider what a literal interpretation of this rule really
tells us to do:

R 7→β N

E[R] 7→β E[N ]

where R 7→β N is an application of an actual reduction step directly to the top
of the redex R. In the conclusion of the rule, the E[R] is actually a complex
form of pattern match, which starts looking at some arbitrary term M and digs
through the syntax tree following a specific path described by the grammar of
evaluation contexts until it finally discovers a reducible expression R hidden
inside. Hypothetically, R might be very deep — e.g. hundreds of thousands
of “lines” of code — from the top of the whole program. Then, the computer
performs a single, tiny step R 7→β N to simplify just the top part of the redex.
The reduct N then gets plugged back into the original evaluation context E[N ],
which might mean “zipping” back up the whole tree (another hundred thousand
lines) from the point of the reduction to the top of the program.

Abstract machines are an alternate form of operational semantics that makes
lower-level concerns more explicit, and lets us address these concerns over cost.
The first, most apparent, way that abstract machines differ from what we’ve
seen so far is that they build in the search for the next redex directly into the
individual small steps of the semantics itself.

5.1 Introducing Continuations
A call-by-name abstract machine:

⟨M N ||K⟩ 7→ ⟨M ||N ·K⟩
⟨if M then N1 else N2||K⟩ 7→ ⟨M ||if then N1 else N2; K⟩

⟨λx.M ||N ·K⟩ 7→ ⟨M [N/x]||K⟩
⟨true||if then N1 else N2; K⟩ 7→ ⟨N1||K⟩
⟨false||if then N1 else N2; K⟩ 7→ ⟨N2||K⟩

Some rules build up continuations K while looking for the next step to perform.
Other rules use that continuation together with some value to do a “real” step.

Cont ∋ K ::= N ·K | if then N1 else N2; K | ret

The final continuation (i.e. the bottom of the call stack) is written ret for
“return,” since at that point there is nothing more to do any value it receives is
returned as the final result.

The machine keeps running until they reach a final state, in which a value (a
constant c or some abstraction λx.M) is returned.

Definition 5.1 (Final & Stuck). Final statements have the form ⟨c||ret ⟩ or
⟨λx.M ||ret ⟩. A statement S is stuck if it is not final and there is no S′ such
that S 7→ S′.
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5.2 Intermezzo: Environments & Closures
To solve both inefficiencies of substitution — it traverses a huge sub-tree and it
copies subterms that might make the result even bigger than the source program

— we can use environments (L) that stores a map from local variables to what
they stand for. Intuitively, the environment is a data structure that represents
all the delayed substitution that we should have already performed, but have not
finished yet. The environment gets carried around by the machine so that we
essentially perform a big simultaneous substitution at the same time as searching
for a redex and performing reduction steps.

⟨M N | L | K⟩ 7→ ⟨M | L | N {L} · K⟩
⟨if M then N1 else N2 | L | K⟩ 7→ ⟨M | L | if then N1 else N2 {L} ; K⟩

⟨λx.M | L | N
{

L′} · K⟩ 7→ ⟨M | x := N
{

L′}, L | K⟩

⟨true | L | if then N1 else N2
{

L′} ; K⟩ 7→ ⟨N1 | L′ | K⟩

⟨false | L | if then N1 else N2
{

L′} ; K⟩ 7→ ⟨N2 | L′ | K⟩

⟨x | L | K⟩ 7→ ⟨N | L′ | K⟩ (if x := N
{

L′} ∈ L)

Cont ∋ K ::= N {L} ·K | if then N1 else N2 {L} ; K | ret

LocalEnv ∋ L ::= x1 := N1 {L1}, . . . , xn := Nn {Ln}

Note that some steps create closures, N {L}, which is a pair of an (open) term
and its environment of local variable bindings. A good rule of thumb is that
in the machine statement ⟨M | L | K⟩, the term M can refer to bindings in L,
but K is “closed” and cannot access L. So whenever an unevaluated, open term
moves outside of an L’s bindings, then it needs to carry with it a snap-shot of
that L to remember what variable bindings were active so they can be reinstated
when that code might eventually be run.

You can check that closures are introduced and used correctly from the
invariant that substituting the local environment now gives the same result as
running the machine as-is.

Lemma 5.1.

a) If ⟨M | L | K⟩ 7→→β ⟨V1 | L1 | ret ⟩ then ⟨M [L] | • | K⟩ 7→→β ⟨V2 | L2 | ret ⟩
for some V1 ∼ V2.

b) If ⟨M [L] | • | K⟩ 7→→β ⟨V1 | L1 | ret ⟩ then ⟨M | L | K⟩ 7→→β ⟨V2 | L2 | ret ⟩
for some V1 ∼ V2.

Proof. Left as a challenge to the reader. ■

Exercise 5.1. Define an alternate machine with environments, like above, that
follows the call-by-value operational semantics, rather than call-by-name.
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5.3 Compilation
I have two gripes with the abstract machine(s) we’ve seen so far:

1. There is a lot of redundancy: e.g. I can apply M to N either as ⟨M N ||K⟩
or ⟨M ||N ·K⟩, and the two mean the same thing.

2. I could use the operational semantics on plain terms to derive all sorts
of equational theories between open terms that are fragments of whole
programs. I can only use the abstract machine to reason about a complete
program; it is helpless to say anything interesting about individual program
fragments.

Both of these problems can be fixed by compiling source code to an appropriate
abstract machine code!

Abstract machine code:

Term ∋M, N ::= x | c | λx.M | run S

Cont ∋ K ::= N ·K | if then S1 else S2 | ret

State ∋ S ::= ⟨M ||K⟩

Compilation from source functional programs to machine code:

JM NK = run ⟨M ||N · ret ⟩
Jif M then N1 else N2K = run ⟨M ||if then ⟨N1||ret ⟩ else ⟨N2||ret ⟩⟩

JxK = x

JcK = c

Jλx.MK = λx.JMK

Steps of the abstract machine:

(β→) ⟨λx.M ||N ·K⟩ 7→ ⟨M [N/x]||K⟩
(βbool1) ⟨true||if then N1 else N2; K⟩ 7→ ⟨N1||K⟩
(βbool1) ⟨false||if then N1 else N2; K⟩ 7→ ⟨N2||K⟩

(βrun ) ⟨run S||K⟩ 7→ S [K/ret ]

Plugging a continuation K in for the final “return” pointer.

⟨M ||K ′⟩ [K/ret ] = ⟨M ||K ′ [K/ret ]⟩
ret [K/ret ] = K

(N ·K ′) [K/ret ] = N · (K ′ [K/ret ])
(if then S1 else S2) [K/ret ] = if then S1 [K/ret ] else S2 [K/ret ]
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5.3.1 Intensional Machine Equality
Now we have a meaningful reduction theory with reduction in any context:

S 7→ S′

C[S]→ C[S′] Compat.

General reduction (→→) is the reflexive, transitive closure of→, and β-equivalence
(=β) is the reflexive, transitive, symmetric closure of →.

In addition, we can add some extensionality to the equational theory. Here
is a presentation in the form of η-axioms:

(ηµ) µx̃. ⟨M ||x̃⟩ =η M : A (if x̃ /∈ FV (M))
(η→) λx.µỹ. ⟨M ||x · ỹ⟩ =η M : A→ B (if x, ỹ /∈ FV (M))

(ηbool)
if then ⟨true||K⟩

else ⟨false||K⟩
=η K : bool

Note that the ηµ axiom can apply to a term of any type, so it works just as well
in an untyped setting.

Theorem 5.2 (Soundness). If M =β N then JMK =β JNK in the machine.

Proof. By induction on the derivation of M =β N . Left as an exercise to the
reader. ■

Hint. The main thing to check is that translating both sides of each source
rewriting rule (a.k.a. axiom) gives you two target expressions that you can
equate using the target machine’s rewriting rules.

To complete soundness, you also have to justify that other rules map from
the source to the target: reflexivity, symmetry, transitivity, and compatibility.
The first three are immediate, but compatibility can take a lot of work to show
all the details (by induction on the context it introduces).

However, the compilation translation is defined in a nicely-organized way.
Namely, it is compositional: the compilation of each syntax node is defined only
in terms of the translation of its immediate sub-terms. In other words, you
can infer from the given definition that there is also a translation of arbitrary
contexts, C ∈ Context, such that JC[M ]K = JCK[JMK]. (If this is not entirely
obvious, try defining some of the cases for JCK and checking the compositionality
property.) From this property, compatibility follows immediately without having
to look at C in any more detail. (How come?)

Compilation is also hygienic, in the sense that C and JCK introduce exactly
the same bound variables around the hole □. Together with compositionality,
we can automatically prove another important lemma, about how substitution
commutes with translation, that is necessary for showing soundness:

Lemma 5.3. For any compositional and hygienic J_K such that JxK = x,
JMK [JNK/x] =α JM [N/x]K
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Proof. Left as a hint for the reader. Why should this always work if you only
know that JC[M ]K = JCK[JMK], the variable bindings in scope around □ in C is
the same as in JCK, and that JxK = x? ■

More detail about these two shortcuts for proving equational correspondence
of compositional and hygienic can be found in [Downen and Ariola, 2014a].

Theorem 5.4 (Soundness & Completeness). JMK =β JNK in the machine iff
M =βκ N , where the κ reduction rules (a.k.a. commuting conversions) are:

(κ bool→)

 if M

then N1

else N2

 N ′ →
if M

then (N1 N ′)
else (N2 N ′)

(κ bool bool)
if (if M then N1 else N2)
then N ′

1

else N ′
2

→
if M

then (if N1 then N ′
1 else N ′

2)
else (if N2 then N ′

1 else N ′
2)

Proof. Left as a challenge to the reader. ■

Hint. It might be helpful to define a decompilation translation J_K−1 from ab-
stract machine terms, continuations, and statements back to the source language.
If both forward and backward translations are sound, and if both round-trips
are equal to the starting point (using rewriting in the equational theory), then
you can derive completeness. How can you show this?
Hint. Even if you define the decompilation translation J_K−1, you may quickly
run into the problem in showing how the β run reduction can be simulated in
the source language. From the perspective of the source language, β run will
seemingly inline evaluation contexts into various places (which are written as
the places invoking ret in the machine). This is captured by the one generic κ
axiom that commutes evaluation contexts E with tail contexts T that point out
all the places that a program returns from; in our case, this will include all the
places that a program returns from chains of if-then-else.

TailCxt ∋ T ::= □ | if M then T else T ′

(κ) E[T [M1, . . . , Mn]]→ T [E[M1], . . . , E[Mn]]

Note that one tail context L may have multiple different holes □ in it, hence filling
an L may require more than one term. Furthermore, the result T [E[M1], . . . , E[Mn]]
will replicate an evaluation context E multiple different times (one for each □ in
T ). How do you derive this general κ rule from the specific cases κ bool→ and
κ bool bool written in Theorem 5.4.
Exercise 5.2. Prove that β-reduction of compiled abstract machine expressions is
confluent: if S1 ←←β S →→β S2 then there is some S′ such that S1 →→β S′ ←←β S2,
and similarly for terms (M) and continuations (K).
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Challenge 5.3. Prove that β-reduction of compiled abstract machine expressions
enjoys the standardization property: if S →→β S1 for some final state S1, then
there is another final state S2 such that S 7→→β S2 →→β S1.
Challenge 5.4. Define a notion of untyped contextual equivalence (S ≈ S′) for
compiled abstract machine expressions, and prove that β-equivalence is sound
with respect to that untyped contextual equivalence (if S =β S′ then S ≈ S′).

5.4 Machine Types
There are now three different typing judgements for the three different syntactic
sorts:

Judgement ::= (Γ ⊢M : A)
| (Γ | K : A ⊢ ret : B)
| S : (Γ ⊢ ret : B)

Typing rules for the abstract machine:

Γ ⊢M : A Γ | K : A ⊢ ret : B

⟨M ||K⟩ : (Γ ⊢ ret : B) Cut

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A→ B
→R

Γ ⊢ N : A Γ | K : B ⊢ ret : B′

Γ | N ·K : A→ B ⊢ ret : B′ →L

Γ ⊢ true : bool
boolR1 Γ ⊢ false : bool

boolR2

S1 : (Γ ⊢ ret : B) S2 : (Γ ⊢ ret : B)
Γ | if then S1 else S2 : bool ⊢ ret : B

boolL

Γ, x : A ⊢ x : A
Var Γ | ret : A ⊢ ret : A

Ret

S : (Γ ⊢ ret : A)
Γ ⊢ run S : A

Run

If you erase all the program bits (M , K, S), you get a form of logic called the
sequent calculus. In particular, it is equivalent to the LJ system of intuitionistic
logic by Gentzen [1935].

More down to earth, this type system lets us prove type safety directly on
machine statements.

Theorem 5.5 (Type Preservation). If Γ ⊢M : A then Γ ⊢ JMK : A.

Proof. By induction on the derivation of Γ ⊢M : A. Left as an exercise to the
reader. ■
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Lemma 5.6 (Typed Substitution).

a) If S : (Γ, x : A ⊢ ret : B) and Γ ⊢M : A then S [M/x] : (Γ ⊢ ret :B).

b) If S : (Γ ⊢ ret :A) and Γ | K : A ⊢ ret :B then S [K/ret ] : (Γ ⊢ ret :B).

And similarly for substitution into terms and continuations.

Lemma 5.7 (Progress). If S : (• ⊢ ret : A) then either S is final or S 7→ S′

for some S′.

Proof. By induction on the derivation of S : (• ⊢ ret : A). Left as an exercise
to the reader. ■

Lemma 5.8 (Preservation). If S : (Γ ⊢ ret : A) and S 7→ S′ then S′ : (Γ ⊢
ret : A).

Proof. By induction on the derivation of S : (Γ ⊢ ret : A) and the reduction
step S 7→ S′. Left as an exercise to the reader. ■

5.4.1 Extensional Machine Equality
Since we now have typing information directly in the machine, we can now also
specify a syntactic notion of extensionality on machine terms and continuations.
For our two types, functions and booleans, we can define extensionality like so:

⟨M ||x · ret ⟩ = ⟨M ′||x · ret ⟩ : (Γ, x : A ⊢ ret : B) x /∈ FV (M) ∪ FV (M ′)
Γ ⊢ M = M ′ : A → B

→X

⟨true||K⟩ = ⟨true||K′⟩ : (Γ ⊢ ret :B) ⟨false||K⟩ = ⟨false||K′⟩ : (Γ ⊢ ret :B)
Γ | K = K′ : bool ⊢ ret : B

boolX

The →X rule says that two functions of type A → B are equal if they form
equal statements for any generic call stack of the form x · ret . The boolX says
that two continuations taking type bool are equal if they form equal statements
when both are given true or both are given false.

The form of these rules suggest more generic forms that do no separate the
sub-cases of bool or sub-structure of A→ B like so:

⟨M ||ret ⟩ = ⟨M ′||ret ⟩ : (Γ ⊢ ret : A)
Γ ⊢M = M ′ : A

XR

⟨x||K⟩ = ⟨x||K ′⟩ : (Γ, x : A ⊢ ret : B) F /∈ FV (K) ∪ FV (K ′)
Γ | K = K ′ : A ⊢ ret : B

XL

With this, we can also relate the typed, extensional equational theory of the
source λ-calculus with the abstract machine.

Theorem 5.9 (Soundness). If Γ ⊢M = N : A then Γ ⊢ JMK = JNK : A in the
machine.
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Proof. By induction on the derivation of Γ ⊢ M = N : A, using the fact that
type checking in preserved (Theorem 5.5). Left as an exercise to the reader. ■

Theorem 5.10 (Completeness). If Γ ⊢ JMK = JNK : A in the machine then
Γ ⊢M = N : A.

Proof. Left as a challenge to the reader. ■

Hint. Consider using a similar strategy as Theorem 5.4, where instead you define
a decompilation translation J_K−1 that is sound and forms a round-trip (up to
β-equality) with compilation J_K in either direction. From there, completeness
follows in the same way as before.
Hint. Note that we are missing the commuting conversions κ that were needed
before in Theorem 5.4 to prove soundness of β ret . Can you somehow derive
the κ rules from just β and extensionality?
Exercise 5.5. Add product (A × B) and sum (A + B) types to the abstract
machine, giving the syntax of terms and continuations, operational reduction
rules, compilation, typing rules, and extensionality rules.

5.5 First-Class Control: Classical Logic
Why just one return pointer? Let’s have lots of return pointers! In the program,
they are represented as continuation variables (or just covariables for short),
written with a tilde over them like x̃, ỹ, z̃.

Variable ∋ x, y, z ::= . . .

CoVariable ∋ x̃, ỹ, z̃ ::= . . .

Term ∋ M, N ::= x | λ(x · ỹ).S | µx̃.S

Cont ∋ K ::= x̃ | N ·K
State ∋ S ::= ⟨M ||K⟩

This calculus is based on the λµµ̃-calculus by Curien and Herbelin [2000]. The
main difference is that a function can now give a name (ỹ) to its return pointer of
the form λ(x · ỹ).S [Johnson-Freyd et al., 2015]. The entire continuation can be
bound to a covariable using µx̃.S.1 This new syntax for functions is equivalent
to the familiar form:

λx.M ≈ λ(x · ỹ). ⟨M ||ỹ⟩
λ(x · ỹ).S ≈ λx.µỹ.S

Covariables enjoy similar α-equivalence properties as regular variables.

(αµ) µx̃.S =α µỹ.S [ỹ/x̃] (if ỹ /∈ FV (S))
(α→) λ(x · ỹ).S =α λ(x′ · ỹ′).S [x′/x] [ỹ′/ỹ] (if x′, ỹ′ /∈ FV (S))

1Apologies for the notation clash with recursive types. The choice of µ for this binder comes
from the λµ-calculus by Parigot [1992] and has nothing to do with recursion, but is instead
about setting up labels and jumps for a natural deduction logic with multiple conclusions.
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Compilation in the presence of multiple covariables:

JxK = x

JM NK = µx̃. ⟨M ||N · x̃⟩
Jλx.MK = λ(x · ỹ). ⟨JMK||ỹ⟩

Machine reduction steps for functions and µ-abstractions:

(β→) ⟨λ(x · ỹ).S||N ·K⟩ 7→ S [N/x, K/ỹ]
(βµ) ⟨µx̃.S||K⟩ 7→ S [K/x̃]

Now judgements can have multiple consequences which corresponds to a
choice of multiple outputs. Each named covariable in ∆ represents a different
output channel (i.e. sinks) that can receive a result, similar to the way that each
named variable in Γ represents a different input channel (i.e. sources) that stand
for incoming values.

InEnvironment ∋ Γ ::= x1 : A1, . . . , xn : An

OutEnvironment ∋ ∆ ::= x̃1 : A1, . . . , x̃n : An

Judgement ::= (Γ ⊢M : A | ∆)
| (Γ | K : A ⊢ ∆)
| S : (Γ ⊢ ∆)

The updated typing rules with multiple consequences:

Γ ⊢M : A | ∆ Γ | K : A ⊢ ∆
⟨M ||K⟩ : (Γ ⊢ ∆) Cut

S : (Γ, x : A ⊢ ỹ : B, ∆)
Γ ⊢ λ(x · ỹ).S : A→ B | ∆ →R

Γ ⊢ N : A | ∆ Γ | K : B ⊢ ∆
Γ | N ·K : A→ B ⊢ ∆ →L

Γ, x : A ⊢ x : A | ∆ Var Γ | x̃ : A ⊢ x̃ : A, ∆ CoVar

S : (Γ ⊢ x̃ : A, ∆)
Γ ⊢ µx̃.S : A | ∆ Act

This type system now corresponds to LK [Gentzen, 1935] by erasing all the
program bits (M , K, S), which is a system of classical logic. That means the
addition of multiple consequences to the right — along with a µ-abstraction that
lets us assign a name a term’s output channel so it can be used as many times
(zero or more) as you want — can let us write new programs that inhabit types
that used to be empty.
Exercise 5.6. Try writing terms (and their typing derivations) of these types for
an arbitrary unknown A and B:
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1. A→ ((A→ B)→ B)

2. ((A→ B)→ A)→ A

Exercise 5.7. Use the product and sum types from Exercise 5.5 to write terms
(and their typing derivations) of these types for an arbitrary unknown A1, A2,
and B:

1. ((A1 → B)× (A2 → B))→ ((A1 + A2)→ B)

2. ((A1 + A2)→ B)→ ((A1 → B)× (A2 → B))

3. ((A1 → B) + (A2 → B))→ ((A1 ×A2)→ B)

4. ((A1 ×A2)→ B)→ ((A1 → B) + (A2 → B))

5. A + (A→ B)

Challenge 5.8. The extension from a single ret to multiple covariables x̃ is a
conservative extension, in the sense that any typing derivation, operational step,
or βη equality that was valid before is still valid after. That means Theorems 5.2,
5.5 and 5.9, etc., still hold when the λ-calculus is compiled to the extended
machine.

However, the other direction of completeness, Theorems 5.4 and 5.10, is not
so easy. We can now write strictly more programs in the machine language
compared to the source λ-calculus language. What would you need to add to
the λ-calculus to translate back all multi-covariable machine code to the source?
Can you extend the λ-calculus with this new feature, and show how to complete
completeness with classical machines?

5.6 Call-by-Value is Dual to Call-By-Name
Abstract machines have an inherent symmetry between producers (terms M
returning results) and consumers (continuations K taking results). Variables are
exactly dual to covariables. To complete the symmetry, we need to have a mirror
image of functions and call stacks, as well as µ-abstractions. Lets just add some
syntax that copies things from one side to the other without thinking too hard.

Variable ∋ x, y, z ::= . . .

CoVariable ∋ x̃, ỹ, z̃ ::= . . .

Term ∋ M, N ::= x | µx̃.S | λ(x · ỹ).S | K ·N
Cont ∋ K ::= x̃ | µ̃x.S | N ·K | λ̃(ỹ · x).S
State ∋ S ::= ⟨M ||K⟩

As a form of syntactic salt (some explicit, perhaps annoying, annotations to
make things more explicit or obvious), the dual of something we already have
is going to have a tilde on top of it, like µ̃ is the dual of the µ we already
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had. Traditionally, the opposite of functions (written as a λ̃ continuation that
consumes a pair K ·N of a term and continuation) is called a subtraction type,
written A−B.

Generalized semantics [Downen and Ariola, 2014b]: defined in terms of values
(V ) and covalues (E) corresponding to evaluation contexts . . . but don’t worry
about how they are defined yet.

Value ∋ V, W ::= . . .

CoValue ∋ E, F ::= . . .

(βµ̃) ⟨V ||µ̃x.S⟩ 7→ S [V/x]
(βµ) ⟨µx̃.S||E⟩ 7→ S [E/x̃]

(β→) ⟨λ(x · ỹ).S||V · E⟩ 7→ S [V/x, E/ỹ]
(β−)

〈
E · V

∣∣∣∣λ̃(k · x).S
〉
7→ S [V/x, E/ỹ]

The new rules involving µ̃ and λ̃ are just mirror images of µ and λ.
For call-by-value semantics, define

Value ∋ V, W ::= x | λ(x · ỹ).S | E · V
CoValue ∋ E, F ::= K

For call-by-value semantics, define

Value ∋ V, W ::= M

CoValue ∋ E, F ::= k | V · E | λ̃(ỹ · x).S

Challenge 5.9. Add a new “subtraction” type A−B with left and right inference
rules to the type system to type-check the new program constructs λ̃(ỹ · x).S
and K ·M , and prove Progress and Preservation for them. The intuition is that
a pair K ·M has type A−B when the term M has type A and the continuation
expects a B (i.e. it has an A but is lacking a B). That means the matching
abstraction λ̃(ỹ · x).S expects an A−B when its body can run under the scope
of the variable x : A and covariable ỹ : B.

We also have some η-axioms that work for any evaluation strategy:

(ηµ) µx̃. ⟨M ||x̃⟩ =η M : A (if x̃ /∈ FV (M))
(ηµ̃) µ̃x. ⟨x||K⟩ =η K : A (if x /∈ FV (K))

(η→) λ(x · ỹ). ⟨z||x · ỹ⟩ =η z : A→ B

(η−) λ̃(ỹ · x). ⟨ỹ · x||z̃⟩ =η z̃ : A−B

Duality — swapping machine states reverses the flow of information between
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producers and consumers:

⟨M ||K⟩⊥ =
〈
K⊥∣∣∣∣M⊥〉

x⊥ = x̃ x̃⊥ = x

(µx̃.S)⊥ = µ̃x.S⊥ (µ̃x.S)⊥ = µx̃.S⊥

(λ(x · ỹ).S)⊥ = λ̃(x̃ · y).S⊥ (λ̃(x̃ · y).S)⊥ = λ(x · ỹ).S⊥

(K ·M)⊥ = K⊥ ·M⊥ (M ·K)⊥ = M⊥ ·K⊥

This mirroring of producers and consumers formally expresses the fact that
call-by-value is dual to call-by-name [Curien and Herbelin, 2000, Wadler, 2003].
Theorem 5.11 (Involutive Duality). a) S⊥⊥ = S

b) M⊥⊥ = M

c) K⊥⊥ = K

Proof. By induction on the structure of syntax. Left as an exercise to the
reader. ■

Theorem 5.12 (Operational Duality). S 7→β S′ under the call-by-value se-
mantics if and only if S⊥ 7→β S′⊥ under the call-by-name semantics.

Proof. By induction on the given reduction step 7→β . Left as an exercise to the
reader. ■

Challenge 5.10. Extend the definition of duality to the type level (A⊥) using
your typing rules for subtraction types from Challenge 5.9 to prove the following
theorem:
Theorem 5.13 (Type Duality). a) If S : (Γ ⊢ ∆) then S⊥ : (∆⊥ ⊢ Γ⊥).

b) If Γ ⊢M : A | ∆ then ∆⊥ |M⊥ : A⊥ ⊢ Γ⊥

c) If Γ | K : A ⊢ ∆ then ∆⊥ ⊢ K⊥ : A⊥ | Γ⊥

where Γ⊥ and ∆⊥ are defined point-wise:

(x1 : A1, . . . , xn : An)⊥ = x̃1 : A⊥
1 , . . . , x̃n : A⊥

n

(x̃1 : A1, . . . , x̃n : An)⊥ = x1 : A⊥
1 , . . . , xn : A⊥

n

Expressing logical duality as a computational duality is useful for all sorts
of applications [Downen and Ariola, 2021]! Examples include induction and
coinduction [Downen et al., 2015], compiling programs [Downen et al., 2016,
Downen and Ariola, 2019], and abstracting over a large class of logical relations
using the “bi-orthogonality” (a.k.a. ⊤⊤-closure) technique [Downen et al., 2020]
that uses subtyping to describe (co)recursive programs [Downen and Ariola,
2023] and intersection and union types [Downen et al., 2019]. To learn more
about the bi-orthogonal types, check the previous OPLSS 2022 lecture series2

and the accompanying notes [Downen, 2022, 2014].
2https://www.cs.uoregon.edu/research/summerschool/summer22/topics.php#Downen

https://www.cs.uoregon.edu/research/summerschool/summer22/topics.php#Downen
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Encodings

A.1 Untyped Encodings
A.1.1 Booleans

IfThenElse = λx.λt.λf.x t f

True = λt.λf.t

False = λt.λf.f

And = λx.λy.IfThenElse x y False
Or = λx.λy.IfThenElse x True y

Not = λx.IfThenElse x False True

A.1.2 Sums

Case = λi.λl.λr.i l r

Inl = λx.λl.λr.l x

Inr = λx.λl.λr.r x

A.1.3 Products

Pair = λx.λy.λp.p x y

58
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Fst = λx.λy.x

Snd = λx.λy.y

A.1.4 Numbers

Iter = λn.λz.λs.n z s

Zero = λz.λs.z

Suc = λn.λz.λs.s (n z s)

One = Suc Zero =β λz.λs.s z

Two = Suc One =β λz.λs.s (s z)
Three = Suc Two =β λz.λs.s (s (s z))
Four = Suc Three =β λz.λs.s (s (s (s z)))
Five = Suc Four =β λz.λs.s (s (s (s (s z))))

A.1.5 Lists

Fold = λl.λn.λc.l n c

Nil = λn.λc.n

Cons = λx.λl.λn.λc.c x (l n c)

A.2 Typed Encodings
A.2.1 Booleans

Bool = ∀δ.δ → δ → δ

IfThenElse : ∀δ.Bool → δ → δ → δ

IfThenElse = Λδ.λx:Bool.λt:δ.λf :δ.x δ t f
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True, False : Bool
True = Λδ.λt:δ.λf :δ.t

False = Λδ.λt:δ.λf :δ.f

And, Or : Bool → Bool → Bool
And = λx:Bool.λy:Bool.IfThenElse Bool x y False
Or = λx:Bool.λy:Bool.IfThenElse Bool x True y

Not : Bool → Bool
Not = λx:Bool.IfThenElse Bool x False True

A.2.2 Sums

Sum A B = ∀δ.(A→ δ)→ (B → δ)→ δ

Case : ∀α.∀β.∀δ.Sum α β → (α→ δ)→ (β → δ)→ δ

Case = Λα.Λβ.Λδ.λi:Sum α β.λl:α→ δ.λr:β → δ.i δ l r

Inl : ∀α.∀β.α→ Sum α β

Inl = Λα.Λβ.λx:α.Λδ.λl:α→ δ.λr:β → δ.l x

Inr : ∀α.∀β.β → Sum α β

Inr = Λα.Λβ.λx:β.Λδ.λl:α→ δ.λr:β → δ.r x

A.2.3 Products

Prod A B = ∀δ.(A→ B → δ)→ δ

Pair : ∀α.∀β.α→ β → Prod α β

Pair = Λα.Λβ.λx:α.λy:β.Λδ.λp:α→ β → δ.p x y

Fst : ∀α.∀β.α→ β → α

Fst = λx:α.λy:β.x

Snd : ∀α.∀β.α→ β → β

Snd = λx:α.λy:β.y
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A.2.4 Existentials
To properly encode existential types with universal types, we should use type
functions which, which is like pushing a second level of λ-calculus (λs and
applications) into types:

Type ∋ A, B ::= . . . | λα.B | A B

Kind ∋ k ::= ⋆ | k → k′

Note that this means we now have other kinds of “types” that do different things
that types did before. There are the old ⋆ kind of types that classify terms, but
also function (k → k′) kinds of types. For example, a type A : ⋆→ ⋆ does not
classify a term, instead it transforms one ⋆ into another ⋆, so that A B : ⋆ (when
A : ⋆) can classify terms but not just τ . This is the difference between List Bool
(a list of booleans) versus just List (the list type constructor).

Because there are different kinds of types serving different roles (like different
kinds of terms serving different roles), the well-formedness rules for types are
more serious, and look like “type-checking the types.” For type functions, we
have the inference rules:

Γ, α : k ⊢ B : k′

Γ ⊢ λα.B : k → k′ →I2 Γ ⊢ A : k → k′ Γ ⊢ B : k
Γ ⊢ A B : k′ →E2

The addition of type-level λs and applications makes deciding the equality
of to types (for the purpose of type-checking and unification) tricky. When we
just had simple types built from →, ×, and +, type equality was strict syntactic
equality. When we added type variable binders like µα.τ , ∀α.B and ∃α.B then
type equality incorporates α-equivalence which is easily decidable. When λα.B
and A B then type equality should incorporate at least β-equivalence (and
possibly η-equivalence) which requires more care and effort than just α.

Because there are now several kinds of types, it makes sense to annotate the
bound type variables (introduced by the ∀s) with their kind as in the following
encoding of existential types.

Exists α:⋆.τ = ∀δ:⋆.(∀α:⋆.τ → δ)→ δ

Open : ∀ϕ:⋆→ ⋆.∀δ:⋆.(Exists α:⋆.ϕ δ)→ (∀α:⋆.ϕ α→ δ)→ δ

Open = Λϕ:⋆→ ⋆.Λδ:⋆.λp:Exists α : ⋆.ϕ α.λf :∀α : ⋆.ϕ α→ δ.p δ f

Pack : ∀ϕ:⋆→ ⋆.∀α:⋆.ϕ α→ Exists α:⋆.ϕ α

Pack = Λϕ:⋆→ ⋆.Λα:⋆.λy:ϕ α.Λδ:⋆.λf :∀α:⋆.ϕ α→ δ.f α y
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A.2.5 Numbers

Nat = ∀δ.δ → (δ → δ)→ δ

Iter : ∀δ.Nat → δ → (δ → δ)→ δ

Iter = λn:Nat.Λδ.λz:δ.λs:δ → δ.n δ z s

Zero : Nat
Zero = Λδ.λz:δ.λs:δ → δ.z

Suc : Nat → Nat
Suc = λn:Nat.Λδ.λz:δ.λs:δ → δ.s (n δ z s)

A.2.6 Lists

List A = ∀δ.δ → (A→ δ → δ)→ δ

Fold : ∀α.∀δ.List α→ δ → (α→ δ → δ)→ δ

Fold = Λα.Λδ.λl:List α.λn:δ.λc:α→ δ → δ.l δ n c

Nil : ∀α.List α

Nil = Λα.Λδ.λn:δ.λc:α→ δ → δ.n

Cons : ∀α.α→ List α→ List α

Cons = Λα.λx:α.λl:List α.Λδ.λn:δ.λc:α→ δ → δ.c x (l δ n c)

A.3 Intermezzo: Russel’s Paradox
An implementation of sets where

M ∈ N = M N

Example A.1.

M ∪N = λx.or (M x) (N x)
M ∩N = λx.and (M x) (N x)
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Russel’s set

R = {M |M /∈M}

is then written as

R = λx.not (x x)

Is Russel’s set in Russel’s set? R ∈ R?

R R 7→ (not (x x))[R/x] = not (R R)
7→ not (not (R R)) 7→ . . .

7→ not (not (not . . . ))

A.4 Untyped λ-Calculus: Recursion
Perhaps surprisingly, not every λ-calculus term reaches an answer.
Example A.2.

Ω = (λx.x x) (λx.x x)

Notice that

Ω = (λx.x x) (λx.x x) 7→ (x x)[(λx.x x)/x] = (λx.x x) (λx.x x) = Ω

That means

Ω 7→ Ω 7→ Ω 7→ . . .

In other words, some terms of the λ-calculus will never reach an answer;
sometimes you might spin forever without getting any closer to a result.

Ω isn’t very useful; a reduction step just regenerates the same Ω again. But
what happens if we have something like Ω that changes a bit every step.1

Y f = (λx.f (x x)) (λx.f (x x))

Now what happens when Y f takes a step?

Y f = (λx.f (x x)) (λx.f (x x))
7→ (f (x x))[(λx.f (x x))/x]
= f ((λx.f (x x)) (λx.f (x x)))
= f (Y f)

That means

Y f =β f (Y f)
1Notice that Ω =β Y (λx.x) and the encoding of Russel’s set is R =β Y not.
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In other words, Y f is a fixed point of the function f .
Why is a the fixed-point generator Y useful? Because it can be used to

implement recursion, even though there is no recursion in the λ-calculus to begin
with. For example, this recursive definition of multiplication

times = λx.λy. if x ≤ 0 then 0 else y + (times (x− 1) y)

can instead be written non-recursively by using Y like so:

timesish = λnext.λx.λy. if x ≤ 0 then 0 else y + (next (x− 1) y)
times = Y timesish

Now check that times does the same thing as the recursive definition above:

times 0 y = Y timesish 0 y

7→ timesish (Y timesish) 0 y

7→→ if 0 ≤ 0 then 0 else y + (Y timesish (0− 1) y)
7→ 0

times (x + 1) y = Y timesish (x + 1) y

7→ timesish (Y timesish) (x + 1) y

7→→ if (x + 1) ≤ 0 then 0 else y + (Y timesish (x + 1− 1) y)
7→→ y + (Y timesish (x + 1− 1) y)
→→ y + (times x y)

The fact that the untyped λ-calculus can express the Y combinator as-is
— just using higher-order functions and nothing else — is the main ingredient
that makes the λ-calculus Turing complete. Furthermore, it is the fundamental
insight behind the Church-Turing thesis: not only are Turing machines and
λ-calculus equivalent, but they can encode every computable function.2

2The other insight is about the other direction — implementing λ-calculus in a Turing
machine — and essentially boils down to the fact that program source code can be written as
a sequence of finite characters (e.g. ASCII byte strings) and interpreters for those encoded
programs can be written on conventional computer processors (e.g. python exists).
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Free Theorems

B.1 Logical Operators
As useful shorthand, define some “logical” operations on binary term relations
from a candidate pool C (e.g. where C = RC or C = EC ).

( ⇒C ) : C × C → C

M (A⇒ B) M ′ ⇐⇒ ∀N A N ′. (M N) B (M ′ N ′)
\∀C : (C → C)→ C

M \∀C(F) M ′ ⇐⇒ ∀A, A′ ∈ Type,A ∈ C. (M A) F(A) (M ′ A′)
|∃C : (C → C)→ C

M |∃(F) M ′ ⇐⇒ M 7→→β (A, N) and M ′ 7→→β (A′, N ′) and
∃A ∈ RC . N F(A) N ′

We omit the candidate pool C when it is clear from context. And notice that
these operators are the essential meaning of the reducibility interpretation of
types:

JαKC
τ = τ(α)

JA→ BKC
τ = JAKC

τ ⇒
C JBKC

τ

J∀α.BKC
τ = \∀C(λA : C. JBKC

τ,A/α)

J∃α.BKC
τ = |∃C(λA : C. JBKC

τ,A/α)

B.2 Polymorphic Absurdity (Void Type)
Theorem B.1. There is no term M such that • ; • ⊢M : ∀α.α is derivable.

Proof. Suppose that we had some M and a derivation of • ; • ⊢M : ∀α.α. From
Lemma 4.6, we would know that M J∀α.αKRC

M , i.e. M \∀RC (λA. A) M . In

65
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other words, for any types A, A′ and reducibility candidate A ∈ RC , it must
be that (M A) A (M ′ A′). So let’s choose A = A′ = α and the empty relation
candidate

M A M ′ ⇐⇒ never
which is vacuously closed under expansion. It follows that (M α) A (M α) which
is a contradiction. Therefore, there is no such • ; • ⊢M : ∀α.α.

B.3 Polymorphic Identity (Unit Type)
Theorem B.2. If • ; • ⊢M : ∀α.α→ α then • ; • ⊢M = Λα.λx:α.x : ∀α.α→
α.

Proof. Lemma 4.6 ensures M J∀α.α→ αKRC
M, i.e. M \∀RC (λA. A ⇒ A) M.

In other words, for any types A, A′, relation candidate A ∈ CR, and related
terms N A N ′, it must be that M A N A M A′ N ′. So let’s choose the types
A = A′ = α and relation candidate

M A M ′ ⇐⇒ M 7→→β x←←[β M ′

so the variable x is related to itself by A by definition (x A x holds by reflexivity).
It follows that M α (A⇒ A) M α and thus M α x A M α x as well, meaning
M α x 7→→β x. Therefore,

M =η Λα.(M α) =η Λα.λx:α.(M α x) =β Λα.λx:α.x

B.4 Encodings
B.4.1 Booleans
Recall that

Bool = ∀δ.δ → δ → δ

True : Bool
True = Λδ.λx:δ.λy:δ.x

False : Bool
False = Λδ.λx:δ.λy:δ.y

Theorem B.3 (Canonicity). If • ; • ⊢M : Bool then • ; • ⊢M = True : Bool
or • ; • ⊢M = False : Bool.

Proof. Using Lemma 4.6. Left as an exercise to the reader. ■

Hint. An example equivalence candidate with two elements can be defined as

M A M ′ ⇐⇒ M 7→→β x←←[β M ′ or M 7→→β y ←←[β M ′

where x and y are two arbitrary, different free variables.
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B.4.2 Sums
Recall that

Sum A B = ∀δ.(A→ δ)→ (B → δ)→ δ

Left : ∀α.∀β.α→ Sum α β

Left = Λα.Λβ.λx:α.Λδ.λl:α→ δ.λr:β → δ.l x

Right : ∀α.∀β.β → Sum α β

Right = Λα.Λβ.λx:β.Λδ.λl:α→ δ.λr:β → δ.r x

Theorem B.4 (Canonicity). If • ; • ⊢M : Sum A B then either

a) • ; • ⊢M = Left A B N ′ : Sum A B for some N JAKRC
N ′ or

b) • ; • ⊢M = Right A B N ′ : Sum A B for some N JBKRC
N ′.

Proof. Using Lemma 4.6. Left as an exercise to the reader. ■

Hint. We can generalize the simple “boolean” two-element relation candidate
and assume the free variables act like functions that can be applied to arguments
with certain properties like so:

M C M ′ ⇐⇒ ∃N1 JAKRC
N ′

1. M 7→→β x N1 and M ′ 7→→β x N ′
1

or ∃N2 JBKRC
N ′

2. M 7→→β y N2 and M ′ 7→→β y N ′
2

where x and y are two arbitrary, different free variables.

B.4.3 Products
Recall that

Prod A B = ∀δ.(A→ B → δ)→ δ

Pair : ∀α.∀β.α→ β → Prod α β

Pair = Λα.Λβ.λx:α.λy:β.Λδ.λp:α→ β → δ.p x y

Theorem B.5 (Canonicity). If • ; • ⊢ M : Prod A B then • ; • ⊢ M =
Pair A B N ′

1 N ′
2 : Prod A B for some N1 JAKRC

N ′
1 and N2 JBKRC

N ′
2.

Proof. Using Lemma 4.6. Left as an exercise to the reader. ■

Hint. Instead of defining a relation candidate that pretends two different free
variables act like one-argument functions, a relation candidate can pretend one
free variable x acts like a two-function argument expects its arguments have two
different properties like so:

M C M ′ ⇐⇒ ∃N1 JAKRC
N ′

1. ∃N2 JBKRC
N ′

2.

M 7→→β x N1 N2 and M ′ 7→→β x N ′
1 N ′

2
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B.4.4 Numbers
Recall that

Nat = ∀δ.δ → (δ → δ)→ δ

Zero : Nat
Zero = Λδ.λz:δ.λs:δ → δ.z

Succ : Nat → Nat
Succ = λn:Nat.Λδ.λz:δ.λs:δ → δ.s (n δ z s)

Define the nth iteration of s as:

s0 z = z

sn+1 z = s (sn z)

Theorem B.6 (Numericity). If • ; • ⊢M : Nat then

α ; z : α, s : α→ α ⊢M α z s = sn z : α

for some natural number n ∈ N.

Proof. Using Lemma 4.6. Left as a challenge to the reader. ■

Theorem B.7 (Canonicity). If • ; • ⊢M : Nat then either • ; • ⊢M = Zero :
Nat or • ; • ⊢M = Succ N : Nat for some • ; • ⊢ N : Nat.

Proof. Using Theorem B.6. Left as an exercise to the reader. ■

Hint. These relation candidates can also be defined inductively as well. For
example, this relation candidate is defined in terms of itself:

M C M ′ ⇐⇒M 7→→β z and M ′ 7→→β z

or ∃N C N ′. M 7→→β s N and M ′ 7→→β s N ′

where z and s are two arbitrary, different free variables. This circular definition
is well-defined, because it is the limit of this step-based, inductive definition of
an increasingly-expanding sequence of relations Cn:

M C0 M ′ ⇐⇒ never
M Cn+1 M ′ ⇐⇒M 7→→β z and M ′ 7→→β z

or ∃N Cn N ′. M 7→→β s N and M ′ 7→→β s N ′

Where C =
⋃∞

n=0 Cn.
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B.5 Relational Parametricity
Let’s add consider products and strings, and add them to our logical relation
interpretation of types:

M JA×BKC
τ M ′ ⇐⇒ (fst M) JAKC

τ (fst M ′) and (snd M) JBKC
τ (snd M ′)

M JstringKC
τ M ′ ⇐⇒ M 7→→β c←←[β M and c is a string literal

Now we can model small modules, like a enumeration between red and blue,
with a printing function:

red v blue : { type α;
red : α;
blue : α;
print : α→ string

}

such that print(red) 7→→β “red” and print(blue) 7→→β “blue”. This module
signature can be encoded as the following existential type with two different
implementations:

red v blue1,2 : ∃α.(α× (α× (α→ string)))
red v blue1 = (string, (“red”, (“blue”, (λx.x))))
red v blue2 = (bool, (true, (false, (λx. if x then “red” else “blue”))))

We want to show that red v blue1 ≈ red v blue2 in some appropriate sense,
even though their internal representation is incomparable.

Theorem B.8. red v blue1 J∃α.(α× (α× (α→ string)))KRC red v blue2

Proof. Using Lemma 4.6. Left as a challenge to the reader. ■

Hint. The two different implementations use totally different internal repres-
entations, string versus bool. How do you relate true to “red” and false to
“blue”??
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