Effective Functional Programming
Effect APIs
Assignment 4
Calculator

Paul Downen

Parsing is tricky business. It is one thing to read a flat file format, like an
initialization file containing individual settings all listed separately on their own
line. It is another thing to read documents organized with more complex, nested
structure, like XML, JSON;, or even arithmetic expressions. For example, consider
the arithmetic expression 1-2+3*4~(-5+6); how would you write a program to
correctly parse this string? There are binary operations like + and * that sit
in the middle of sub-expressions that also have to be parsed before and after.
You have to make sure that certain operations take precedence over others: the
exponent ~ must be before the multiplication * that appears before it to the left,
which must be before the very first addition + in the string. But this default
precedence can be overridden by parenthesis: even though addition + happens
last, the right-most -5+6 must be first because it is grouped in parenthesis. This
subexpression also includes a negative number, so the - symbol is ambiguous: it
may be read a binary operation as in 1-2 or a unary negative sign as in -5.

So lets think of all the things a parser might be responsible for. In a perfect
world, a parser of as is a function that reads a String in its entirety and returns
the one a value it represents. This perfect-world parser of as has the type:

parsePerfect :: String -> a

But in the real world, parsing might fail because some Strings don’t cor-
respond to any possible value that the function needs to return. For example,
there isn’t any sensible way to parse the string "chair" as a number, because
no number is sufficiently sturdy to sit in. A parser that might fail when trying
to produce an a has the type:

parseFail :: String -> Maybe a

where a result of Nothing signals a failed parse, and Just x signals that the
input is successfully read as the value x.

Sometimes parsing can come across ambiguous words or phrases, which might
need to be clarified by the context they appear in. For example, consider trying to
parse the parts of speech (e.g., nouns, verbs, adjectives, etc.). The string "flies"

has multiple different interpretations depending on the context it appears in.
It could be read as the verb “flies” meaning soaring through the air, as in the
sentence “Time flies like an arrow.” It could also be read as the noun “flies’
meaning the insect, as in the sentence “Fruit flies like a banana.” Because of this
ambiguity, a parser might have to give multiple different answers for the same
string. A parser of ambiguous as has the type:

i

parseAmbiguous :: String -> [a]

Finally, sometimes parsing can only read part of a string, rather than the
whole thing. For example, parsing the string "12" as a number gives the result
12. If we tried to parse the larger string "12+30" as a number, we can still give
the result 12, but there is also a left-over string "+30" that hasn’t been parsed
yet. A partial parser of as which has only read some of the string, and returns
how much more string remains to be processed, has the type:

parsePartial :: String -> (a, String)
Putting it all together a, parsing function might involve these complications:
e It might fail, producing no results.
o It might have multiple interpretations, producing two or more results.

o It might only parse part of the input, producing the remaining string that
has yet to be parsed alongside its answer.

Each of these possibilities is captured by this single type for a parsing function:
parse :: String -> [(a, String)]

If parse fails it returns the empty list []. If parse is given ambiguous input,
it returns a list of two or more answers. And if an individual answer of parse
is produced by only reading part of the input string, the unread portion of the
string is returned along with that individual answer; answers created by reading
the whole input have the empty "" as their remainder.

This functionality can be captured in Non-Deterministic Parser data type,
which contains an arbitrary parsing function of the same type as parse above.

data NDParser a = Parse (String -> [(a, String)])
If you’re ever lost and forget how to parse things, remember this rhyme:

A Parser of Things

s a function from Strings
to lists of pairs

of Things and Strings

1 Parser Combinators (25 points& 5 extra credit)

The NDParser module found in the template file src/NDParser.hs already
contains the above NDParser data type, as well as instances of the Functor,
Applicative, Alternative, and Monad type classes which let you chain together
the “effect” of parsing into bigger and bigger parsing operations. The NDParser
template also provides the function

everyParse :: NDParser a -> String -> [(a, String)]

that runs the given parser of as on the given input string, to produce a list of
every possible a answer that can be parsed from the input, each a answer paired
alongside the remaining portion of the input string that hasn’t been read yet.

Your job in this section is to create some basic parser combinators. “Combina-
tor” is just a fancy word for some simple building blocks and functions that stitch
them together to create more sophisticated, complex programs. The <*> and
<|> operations from Applicative and Alternative, and the do-notation made
possible by Monad already fill the role of “stitching parsers together.” What’s
missing, that you will fill in, is the basic parsing building blocks to be combined.

To complete the exercises below, fill in all the undefined parts of the
NDParser module found in the template file src/NDParser .hs.

Exercise 1.1 (10 points). Implement the end parser with this type signature
end :: NDParser ()

The end parser checks that it is at the end of the input string without reading
any characters. So end should only “succeed” (meaning it returns a list of at
least one answer) when it reads the empty string, and fails (meaning it returns
an empty list of answers) when given any non-empty string.

In other words, end should be a NDParser () of the form Parse f, where f is
a function that takes a string s, and returns a different list of answers depending
on the shape of s:

o If s is the empty "", then the function inside Parse should return a list
containing one element: the pair of the unit value () as the “result” of the
parser and the empty string "" as the “remainder” of the unparsed input.

o If s is any other string of the form c:cs, then the function inside Parse
should return an empty list signaling failure, since it is not already at the
end of the input string. End Exercise 1.1

Hint 1.1. For help with how to approach your implementation of end, look at the
definition of next right below it in the template file. next :: NDParser Char
reads the next character of its given input string, and fails if there is no more
input. A correct definition of end will look very similar to next, but with two
important differences:

e next “fails” and returns an empty list when given an empty string, and
“succeeds” in returning a non-empty list when given a non-empty string.
These two cases are the opposite of end when “fails” on a non-empty input
and “succeeds” on an empty input string.

¢ When next “succeeds” in reading a character from the non-empty input
c:cs, it’s single answer is (c,cs) which pairs the first character of the
input with remaining unread characters that follow. Instead, when end
“succeeds” by being given an empty string as input, it returns the single
answer ((), "") which pairs the placeholder value () with no remaining
unread characters that follow. End Hint 1.1

Bonus Exercise 1.2 (5 extra credit). Implement the parser function
feed :: Char -> NDParser ()

which does not read any characters, but instead feeds in a new character as
the next one to be read in the input stream. The parser feed c should always
succeed for any input string s, and its single answer should be the placeholder
value () paired with the longer string c:s of unread characters that remain to
be parsed. End Bonus 1.2

Hint 1.2. feed is the reverse operation as next. next undoes feed: running
feed c followed by next on any input string s will always return the character
c alongside the entire original input s as the unread remainder. For example,

> everyParse (do {feed '0O'; x <- next; return x}) "abcd"
[(|Ol ’llabcdll)]

In the opposite direction, feed undoes #next#: running next followed by feed x,
where x is the answer of next, will “do nothing” if the input string is not empty.
For example,

> everyParse (do {x <- next; feed x; return ()}) "abcd"

[CO,"abcd")]

If the input string happens to be empty, then the first next operation will fail,
so in that case next followed by feed will also fail. For example,

> everyParse (do {x <- next; feed x; return (O}) ""

[1
End Hint 1.2

Exercise 1.3 (10 points). Implement the parser function char with the type
signature

char :: Char -> NDParser Char

similar to next, char c can read the next character of the input string, and
fails if the input string is empty. However, unlike next, char c only successfully
reads the next character if it is exactly c, and fails if any other character is found
as the next input. End Exercise 1.3

Hint 1.3. The template NDParser module provides the parser function
check :: (Char -> Bool) -> NDParser Char

which takes a test (a function of type Char -> Bool which returns True or
False for any Character) and returns the next character of the input only if it
passes the test (that is, the given function returns True for that next character).
Any character which does not pass the test fails, as does an empty input string.
See if you can use check to help implement char. End Hint 1.3

Exercise 1.4 (5 points). Implement the digit parser with the type signature
digit :: NDParser Char

which parses just one digit character, that could be any one of '0', '1' '2'
.., '9n.

Parsing one or more digits is implemented by the digits :: NDParser String
parser is provided in the template NDParser module, which applies the generic
some operation from Alternative to repeat your definition of a single digit
above multiple times. End Exercise 1.4

Hint 1.4. The template NDParser module provides the parser function
one0f :: [Char] -> NDParser Char

one0f [a, b, ..., z] successfully parses the next character of the input string
if it is exactly one of the characters a, b, ..., z. If the next character of the
input string is not one of these, it fails, as does the empty input string. one0f
is implemented using the <|> operator from the Alternative type class which
puts together two parsers of the same type. p1 <|> p2 can be read as “parse
the input using EITHER p1 OR p2: if both succeed, combine the results; if only
one succeeds, use its results, and if neither succeeds, fail.”

For example, look at the definition of space :: NDParser Char which oneOf
to parse any of the ASCII blank space characters: single space (' '), tab ('\t),
new line ('\n'), or line feed ('\f'). You can implement digit similar to space
by providing a different list of characters — those which represent a single digit
rather than blank space — to the oneOf function. End Hint 1.4

2 Arithmetic Expressions (50 points& 30 extra
credit)

Now that you have some basic building blocks, and ways to combine them
together into more complex parsers, you can now start to write code for parsing
real arithmetic expressions.

The Calculate module found in the template file src/Calculate.hs pro-
vides an outline and some helpful helper functions for your arithmetic expression
parser. Fill in all the undefined parts of the Calculate module to complete
the exercises below.

Exercise 2.1 (10 points). The Calculate module template already includes
the parser

naturalNumber :: NDParser Double

which parses any sequence of one or more digits as a natural number, 0, 1, 2,
.., 42, ... and so on.
First, use naturalNumber to implement the negativeNumber parser with the
type signature:

negativeNumber :: NDParser Double

The negativeNumber parser starts by reading the character '-', then reads
a naturalNumber that comes from one or more digits, and then returns the
negation of that natural number. For example, negativeNumber parses the string
"-100" as the number —100.

Second, use both the naturalNumber and negativeNumber parsers to imple-
ment the integer parser with the type signature

integer :: NDParser Double

integer will parse EITHER a negativeNumber OR a naturalNumber. Re-
member, the <|> operator lets you combine two parsers in an either-or fash-
ion! End Exercise 2.1

Hint 2.1. Look at how naturalNumber is defined for help with how to write
negativeNumber. You can use naturalNumber directly to parse a sequence of
digits as a number; just remember to negate that number before you return
it! End Hint 2.1

Bonus Exercise 2.2 (10 extra credit). In addition to supporting integers, you
can also parse fractional decimal points directly, too. To do so, implement the
following parsers with the type signatures:

decimalFraction :: NDParser Double
float :: NDParser Double
number :: NDParser Double

The decimalFraction parser should read any sequence of one or more digits
and interpret them as the fractional part that follows a decimal point. That means
that the number returned by decmalFraction should always be between 0 and
1. For example, if decimalFraction reads the digits "12345" it should return
the Double-precision floating-point number 0.12345.

The float parser should start by parsing any integer, then it should parse
the character '.', next it should parse a decimalFraction, and finally it should
return the addition of the parsed integer and the parsed decimalFraction.

Hint 2.2. Be careful of the sign on the integer when adding the fractional part! For
example, if you parse "-8.5" as the integer -8 and decimal fraction 0.5, then just
adding them together would give you -7.5 instead of -8.5. So be sure that the

signs of the whole and fractional part match. If the whole integer before the ' .
is positive, then just add the positive fraction to it. But if the whole integer before
'. ' is negative, then remember to negate the decimal fraction before adding it to
the negative integer so they are both negative (alternatively, you could subtract
the fraction from the negative integer to get the same result). End Hint 2.2

number should parse EITHER an integer OR a float, whichever matches
its input string. In the following Exercise 2.7, you can use your more general
number parser instead of integer in defining baseExpr. End Bonus 2.2

Exercise 2.3 (10 points). Implement the following three parsers with these
type signatures:

times, divide, multiplicative :: NDParser (Double -> Double -> Double)

times parses exactly the character '*' and returns the Haskell multiplication
function (*) as a result. divide is similar, and parses exactly the character '/
and returns the Haskell floating-point division function (/).

Putting them together, the multiplicative parser should parse EITHER
a times operator OR a divide operator. Remember, the <|> operator lets you
combine parsers in an either-or way! End Exercise 2.3

Hint 2.3. For help with how to write times, divide, and multiplicative, look
at the similar definitions provided in Calculate for

plus, minus, additive :: NDParser (Double -> Double -> Double)

Your definitions for times and divide should be very similar to plus and minus:
the change is that a different character will be read, and a different Haskell
function for the numeric operation corresponding to that character is returned.

End Hint 2.3

Bonus Exercise 2.4 (5 extra credit). Implement the power parser:
power :: NDParser (Double -> Double -> Double)

for the exponential operator. power should parse exactly the character '~'
and returns the floating-point exponential operation named (**) in Haskell.
End Bonus 2.4

Exercise 2.5 (10 points). Implement the trim parser function with the type
signature

trim :: NDParser a -> NDParser a

which surrounds any parser in any mount of blank spaces. The template NDParser
already implements spaces which parses zero or more blank space characters.
trim p should:

1. first, parse any spaces that might be found at the start of the input string,

2. second, parse the given p, and bind its result to x to remember it for later,

3. third, parse any additional spaces that might be found after step 2, and

4. fourth, return the x from step 2.
End Exercise 2.5

Hint 2.4. For help with how to write trim, look at the definition provided
for parenthesized :: NDParser a -> NDParser a. parenthesized p modi-
fies the parser p by parsing p surrounded by the open ' (' and close ') ' paren-
theses characters, which may be separated from p by any number of blank spaces.
The result returned by parenthesized p is whatever p returns inside of the
parentheses and blank spaces. End Hint 2.4

Exercise 2.6 (10 points). One of the main challenges with parsing arithmetic ex-
pressions is to correctly interpret the groupings of operations, called associativity.
For example, the string "10-1-2-3" should be read as the left associative group-
ing (((10—1)—2)—3) instead of the right associative grouping (10— (1—(2—3))).
Implement these three pure functions with the following type signatures:

applyBinR :: (a => b -> ¢c) => b -> (a -> ¢)
compose :: (a ->b) -> (b -> ¢c) -> (a -> ¢)
applyL :ta->(a->hb) >b

applyBinR f y takes a two-argument, binary function f and the second argu-
ment y for £, and returns a function taking one argument x and calling £ with
x and y.

compose f g takestwo functions, and returns a function taking one argument
x and calling the composition of g and f on x so that £ is applied first and g is
applied second: g (f x).

applyL x f takes an argument x for the function f, and returns the result
of calling £ with x.

These pure functions are used to implement the following parser combinators,
provided for you in the template Calculate module:

binopR :: NDParser (a -> b -> ¢) -> NDParser b -> NDParser (a -> c)
chainR :: NDParser (a -> a -> a) -> NDParser a -> NDParser (a -> a)
assocL :: NDParser (a -> a -> a) -> NDParser a -> NDParser a

binopR op right parses a binary operator via op followed by its second argu-
ment via right, and returns the partial application of op to its second argument
on the right. chainR op subexpr combines together a chain of partial, right-
ward applications of the binary operator parsed by op to the sub-expressions
parsed by subexpr. Finally, assocL op subexpr parses left-associative applica-
tions of operations parsed by op applied to sub-expressions parsed by subexpr.

End Exercise 2.6

Hint 2.5. Do not change the type signatures of applyBinR, compose, or applyL!!
While there are options for a few minor syntactic variations, in the end each
of these type signatures has only one answer that fits. If you can replace the
undefined with a value that type checks, then your answer will be correct.

End Hint 2.5

Exercise 2.7 (10 points). Implement the following expression parsers with the
type signature:

baseExpr, mulExpr :: NDParser Double

The base expression baseExpr should parse EITHER a parenthesized addExpr
OR an integer. (Remember the either-or combinator <|>!)
The multiplication expression mulExpr should use assocL to parse left-
associative multiplicative operators applied to sub-expressions from baseExpr.
End Exercise 2.7

Hint 2.6. The template Calculate module provides the addition expression
addExpr (as needed to implement baseExpr) which parses left-associative additive
operations applied to sub-expressions from mulExpr. You can use the definition
of addExpr as an example for help with how to implement mulExpr.

The template also provides a top-level parser expr :: NDParser Double
which trims blank spaces before and after the expression, and makes sure the
entire input string is read until the end. End Hint 2.6

Bonus Exercise 2.8 (15 extra credit). Add exponential operators to your
expression parser. To do so, first implement the parser combinators

binop :: NDParser a -> NDParser (a -> b -> c) -> NDParser b -> NDParser c
assocR :: NDParser (a -> a -> a) -> NDParser a -> NDParser a

binop left op right parsesthe left sub-expression, then parses the operation
given by op, then parses the right sub-expression, and finally combines all three
together by returning the application of op’s operator to the results of 1eft and
right.

assocR op subexpr parses right-associative applications of operators parsed
by op applied to sub-expressions parsed by subexpr. assocR op subexpr will
be EITHER just a single subexpr or the binop application of a subexpr followed
by an op followed by another right-associative assocR op subexpr.

Then, implement the parser of exponential power expressions:

powExpr :: NDParser Double

The power expression powExpr should parse right-associative (via assocR) ap-
plications of the power operator applied to baseExpr sub-expressions.

Finally, modify your definition of mulExpr from Exercise 2.7 to use powExpr
as its sub-expressions, rather than baseExpr. End Bonus 2.8

3 Bonus: Parser API (45 extra credit)

Previously in section 1 you defined some basic general building blocks as NDParsers,
and in section 2 you put those building blocks together to parse arithmetic ex-
pressions. However, there is nothing about parsing arithmetic that specifically
requires NDParser; but there are other, potentially more efficient, implementa-
tions of parsing different from NDParser that would work just as well.

The Parser API defined in the GenericParser module

class (Alternative m) => Parser m where
end c:m Q)
char :: Char -> m Char

defines the type signatures for the two primitive parsing operations end and
char that you previously saw in section 1.

In addition to the primitives above, the Parser API also inherits the opera-
tions from Alternative (including the either-or combination <|> and the empty
parser that always fails) which in turn inherits the operations from Applicative
(including the pure parser that returns a value without reading any input just
like return, and the application <*> operator that parses a function, parses an
argument, and then applies the function to the argument).

The optional bonus exercises that follow in this section have you generalize
your arithmetic expressions to use any type of parser that has the right building
blocks. This generalization involves creating a Parser type class that defines
an API with the only essential primitive parsing-specific operations—on top
of generic ones already provided by Alternative, Applicative, and Functor—
needed to complete the rest of the exercises. All the other building blocks and
arithmetic-specific parsers are then built on those two primitives. Abstraction
away the specifics of parsing with the Parser API lets you quickly swap out one
parsing implementation, like NDParser above, with another, like ParseTable
below in section 4 while changing very few lines of code.

To complete this section, you will fill in the undef ined parts of the GenericParser
module in src/GenericParser.hs, and rewrite parts of the Calculate module
in src/Calculate.hs to work with any generic Parser instead of the specific
NDParser.

Bonus Exercise 3.1 (5 extra credit). Define an instance of the Parser type
class for NDParser. In other words, fill in the instance Parser NDParser block
with definitions of the end and char functions. End Bonus 3.1

Hint 3.1. You already gave definitions of end and char in Exercises 1.1 and 1.3,
so you can use that same code to implement the end and char functions of the
instance Parser NDParser block. End Hint 3.1

Bonus Exercise 3.2 (10 extra credit). Implement the generic string parser
with the following type signature:

string :: Parser m => String -> m String

The string operation is similar to char, but it matches a whole String of
multiple characters instead of just a single Char. Given a string s of zero or more
characters, string s successfully returns s only if the input string starts with
exactly s, otherwise string s fails. End Bonus 3.2

Hint 3.2. Note that the Parser API does not include the operations from the
Monad API. That means that you cannot use do-notation for a generic Parser,
which might not implement the Monad operations. Instead, you will have to
implement string using only the operations made available from Functor,
Applicative, Alternative, and Parser itself. End Hint 3.2

10

Bonus Exercise 3.3 (10 extra credit). Implement generic versions of these
parser combinators which work for any generic Parser, and not just the specific

NDParser:

one0f :: Parser
space :: Parser
spaces :: Parser
digit :: Parser
digits :: Parser

m

m
m
m
m

=> [Char]
=> m Char

m
=> m Char
m

String

String

-> m Char

End Bonus 3.3

Hint 3.3. The definitions of one0f, space, spaces, digit, and digits you give
in GenericParser will look a lot like the ones from NDParser. The difference is
that the NDParser versions are defined specifically to only work for parsers of
the type NDParser a. In contrast, the GenericParser versions only rely on the
char function from the generic Parser type class, as well as other operations
from the type classes inherited by Parser: Alternative and Applicative and

Functor.

End Hint 3.3

Bonus Exercise 3.4 (20 extra credit). Generalize the Calculate module by
rewriting the top-level type signatures to use these more general types:

naturalNumber

negativeNumber ::

integer

(Num a, Read
(Num a, Read
(Num a, Read

plus, minus, additive

times, divide, multiplicative ::

trim :: Parser m
parenthesized :: Parser m
binopR :: Parser m

chainR :: Parser m

assocL :: Parser m

baseExpr, mulExpr, addExpr ::

=>m
=>m

a, Parser m) => m a
a, Parser m) => m a
a, Parser m) => m a

(Num a, Parser m) => m (a -> a -> a)
(Fractional a, Parser m) => m (a -> a —-> a)

a->ma
a->ma

=>m(a->b->c¢c) ->mb->m (a -> c)

=>m(a->a->a) ->ma->mn (a->a)
=>m((a->a->a) >ma->ma

(Floating a, Read a, Parser m) => m a

Additionally, if you previously implemented any bonus exercises in section 2,
also generalize those type signatures like so:

decimalFraction :: (Fractional a, Read a, Parser m) => m a
float (Fractional a, Read a, Parser m) => m a
number (Fractional a, Read a, Parser m) => m a
power :: (Floating a, Parser m) => m (a -> a -> a)

11

binop :: Parserm =>ma ->m (a ->b ->c¢c) ->mb ->mc
assocR :: Parser m=>m (a > a ->a) ->ma ->m a

powExpr :: (Floating a, Read a, Parser m) => m a
End Bonus 3.4

Hint 3.4. A generic Parser m might not be a Monad. That means that you
can’t use the monad operations like return and (>>=), or do-notation in your
generalized definitions. Make sure to replace all returns with pures, and find
a way to use the Applicative operations like (<$>) and (<*>) to write these
parsers without using do. End Hint 3.4

4 Bonus: Parse Tables (60 extra credit)

While NDParser is an effective type of parser, it has a problem: it’s entirely
opaque. A value of NDParser is just a function, and there is no way to look
inside and inspect that function without giving it a specific String input to
parse and look at what it returns. As a consequence, NDParsers are hard to
analyze, modify, and optimize.

If we want to be able to look more closely at how a particular parser is
implemented, we need a more concrete representation that shows the individual
steps of the parser. Such a concrete representation is given by the ParseTable
data type given in the src/ParseTable.hs file:

= Done a

| Fork [ParseTable a]

| Look (Map (Maybe Char) (ParseTable a))
deriving Show

data ParseTable a

There are three different basic kinds of ParseTables: Done x immediately returns
x,Fork [p_1, ..., p_n] combines the results from each alternative sub-parser
p_1...p_n, and Look table checks the first character of the input string with
the lookup table to decide what to do next.

As an example of how ParseTable is easier to analyze, notice how (unlike
NDParser) we can derive an implementation of Show which prints out a full
string representation of any ParseTable. For example, we can define this basic
ParseTable using the Parser API that parses either one of the strings "aba",
"abb" or "abc"

abc :: ParseTable String
abc = string "aba" <|> string "abb" <[> string "abc"

showing the value of abc in the interpreter prints this result (with better inden-
tation):

12

> abc

Fork
[Fork
[Look (fromList
[(Just 'a',
Look (fromList
[(Just 'b',

Look (fromList [(Just 'a', Done "aba")]))1))1),
Look (fromList
[(Just 'a',
Look (fromList
[(Just 'b',
Look (fromList
[(Just 'b', Done "abb")1))1))1)1,
Look (fromList
[(Just 'a',
Look (fromList
[(Just 'b',
Look (fromList [(Just 'c',Done "abc")1))1))1)]

That’s quite a mouthful! And the worst part isn’t just the size of that output.
The description of abc says that it will try to read the input string three different
times to look for a successfull parse. abc will first check that the input starts
with the characters 'a', 'b', and 'a' in that order. If it doesn’t, it will go back
to the beginning and check that the input starts with 'a', 'b', and 'b'. If that
fails, too, it goes back to the beginning yet again, and finally checks if the input
starts with 'a', 'b', 'c', before giving up entirely.

This retracing and going back to the beginning is inefficient, because we
keep rechecking that the first two characters are 'a' and 'b' every time. If
we try to parse the string "abd", then the initial "ab" will be checked three
times before we figure out that none of the options match. It would be better for
both performance, and for the size of the ParseTable, to combine these common
checks into an optimized version of abc which never retraces back to earlier parts
of the string; only looking at each character exactly once and then never again.
This optimized version of abc would look like:

> optimize abc
Look (fromList
[(Just 'a',
Look (fromList
[(Just 'b',
Look (fromList
[(Just 'a', Done "aba"),
(Just 'b', Done "abb"),
(Just 'c', Domne "abc")1))1I))1)

Now, this parser begins by just checking that the input starts with 'a' and then
'b'—anything else will fail. Assuming those two checks pare passed, then it

13

looks for any one of 'a', 'b', or 'c', and returns the appropriate final result in
each case.

This optional section has bonus exercises for implementing a parser based
on ParseTables, making basic ParseTable building blocks using the same
generic Parser API from section 3, and finally analyzing and optimizing hask
ParseTables into, that you can use to more efficiently implement arithmetic
calculations. To get started, the template file src/ParseTable.hs includes the
ParseTable data type above, along with instances of the Functor, Applicative,
and Alternative type classes for it (but not Monad; why not?).

Bonus Exercise 4.1 (10 extra credit). Implement the function parseTable of
type
parseTable :: ParseTable a -> String -> [(a, String)]

which uses a ParseTable a data structure to process a given string input and
return a list of possible a results paired with unread remainders of the input, sim-
ilar to everyParse for NDParser. To implement this function, parseTable p s
should pattern-match on its first argument p to say what to do in each case.

e parseTable (Done x) s doesn’t look at the input string at all, and just
immediately finishes parsing and returns a list containing only x paired
with s.

o parseTable (Fork ps) s combines all results of parsing each alternative
parseTable p s, where p is drawn from the list of ParseTables ps.

e parseTable (Look table) s checks the first character of the input string
s to decide what to do. The parameter table is represented as a Map (é.e., a
dictionary or hash table) that maps certain characters, which might appear
at the beginning of the string, to the next ParseTable to use to parse the
rest of the string.

— In the empty string case parseTable (Look table) "", table might
map Nothing to a ParseTable which says what to do at the end of
the input.

— In the non-empty string case parseTable (Look table) (c:s),table
might map Just ¢ to a ParseTable which says what to do for the
character c.

In either case, if table doesn’t associate anything to the next character (or
end of string), then parseTable (Look table) s fails, and just returns
the empty list of results. End Bonus 4.1

Bonus Exercise 4.2 (10 extra credit). Define an instance of the generic
Parser type class for ParseTable. In other words, fill in the definitions for end
and char in the instance Parser Parsetable declaration block. These end
and char parser operations should do equivalent things as the ones for NDParser,
but they return a ParseTable value instead. Specifically, it should be the case
that, for any string s and character c, both of these equalities are True:

14

parseTable end s == everyParse end s
parseTable (char c) s == everyParse (char c) s

End Bonus 4.2
Bonus Exercise 4.3 (20 extra credit). Implement the two analysis functions

immediate :: ParseTable a -> [a]
lookahead :: ParseTable a -> Map (Maybe Char) (ParseTable a)

immediate searches through a ParseTable a and returns a list of all the
values it can immediately return without looking at the input string at all. So
immediate (Done x) gives just the one immediate result [x], immediate (Look table)
gives no immediate results, and immediate (Fork ps) combines all the imme-
diate results from each ParseTable a in ps.

lookahead searches through a ParseTable a and returns a single Map which
says what the parser will do after looking at just 1 character (or detecting the end
of the input). lookahead (Look table) is just table itself, Lookahead (Done x)
is the empty map since Done doesn’t look at the input string, and lookahead (Fork ps)
is the combination of the lookahead map of each ParseTable a in the list
ps. End Bonus 4.3

Hint 4.1. The Data.Map module from the containers package defines the
emptymap and an operation unionsWith for combining together several maps
with these type signatures:

empty :: Map k a
unionsWith :: Ord k => (a -> a -> a) -> [Map k a] -> Map k a

The first parameter to unionsWith is a function that says how to combine the
a values associated with the same key in two different Maps. So for this exercise,
you will want to use empty and unionsWith with these specialized types:

empty :: Map (Maybe Char) (ParseTable a)

unionsWith :: (ParseTable a -> ParseTable a -> ParseTable a)
-> [Map (Maybe Char) (ParseTable a)]
-> Map (Maybe Char) (ParseTable a)

If you encounter a scenario where you have a Fork of several alternative parsers,
and two of them both associate some ParseTable a response to the same
Maybe Char input, then those two responses to the same input need to be merged
into one that combines both results. Remember that <|> from Alternative can
combine the ambiguous results from multiple parsers. End Hint 4.1

Bonus Exercise 4.4 (25 extra credit). Implement the two optimization func-
tions

inlineForkl :: ParseTable a -> ParseTable a
optimize :: ParseTable a -> ParseTable a

15

inlineFork1l just eliminates the redundant case of a Fork with only one
alternative. So inlineForkl (Fork [pl) is just p, and otherwise inlineForkl
returns the same ParseTable a it was given.

optimize performs a more serious optimization over an entire ParseTable a.
optimize p will rewrite p into the following special form:

e optimize should simplify future lookup tables. So first, calculate all of
p’s future steps from lookahead p, and optimize each of them in turn.
Call this optimized mapping of future parsers the table in the next two
possible steps.

o If the optimized future table does not look at the input string at all (in
other words, table is the empty Map), then optimize p returns a single
Fork between Done parsers that return each of the immediate results of p.

o If the optimized future table does look at the input string (in other words,
table is not the empty Map), then optimize p returns a single Fork start-
ing with Done parsers that return each of the immediate results of p,
followed by the single non-empty Look table given by table.

In either case, if the result of optimize p would be a single-alternative Fork [p'],
then the result should just be p' itself, so make sure to use inlineFork1 on the
final result of optimize! End Bonus 4.4

Hint 4.2. The function null :: Map k a -> Bool from Data.Map checks if a
Map is empty or not. End Hint 4.2

Bonus Exercise 4.5 (5 extra credit). Now, if you have successfully generalized
your arithmetic parsers following the exercises in section 3, you can quickly
switch to your implementation of parse tables and optimize the final calculator
expression parser used by the main program.

First, remove the import NDParser from the top of the Calculate module
and uncomment the two lines that import GenericParser and ParseTable.

Second, change the type signature of the expr parser in the Calculate
module to be

expr :: ParseTable Double

and then optimize the right-hand side of expr. In otherwords, change the
definition from expr = ... to expr = optimize (...).

Third, in the app/Main.hs file defining the app, remove the import NDParser
from the top of the Main module and uncomment the import ParseTable line.

Fourth, inside the definition of the calculate action, replace the everyParse
function (which expects an NDParser a) with parseTable (which expects a
ParseTable a).

These four steps entirely replace the parser engine used by the app, swap-
ping out NDparser for ParseTable everywhere! You can now try running the
calculator app with

16

> stack run

and check that your program can correctly calculate some arithmetic expressions!
End Bonus 4.5

17

	Parser Combinators (25 points& 5 extra credit)
	Arithmetic Expressions (50 points& 30 extra credit)
	Bonus: Parser API (45 extra credit)
	Bonus: Parse Tables (60 extra credit)

