Effective Functional Programming
Correctness
Assignment 3

Red-Black Trees

Paul Downen

Ordered trees are an important data structure, since they let us represent
collections that can search for elements in sub-linear time; that is, without
checking every single element exhaustively. For example, consider the following
ordered binary tree where numbers larger than the one in the current node are
always stored to the right, and numbers smaller than the current node are always
stored to the left:

- e

We can quickly confirm that 9 is not in this ordered tree by only checking the
right-most path: starting from the top node containing 5, move to 8 on the right
(because 9 > 5), then move again to the right (because 9 > 8) and end the search
at the right-most terminal leaf. If there was a 9 in the tree, it would be to the
right of the 8 because the binary tree is ordered. The nodes containing 2 and 7
do not even need to be checked at all, because we know they must be smaller
than 5 and 8, respectively, which means they could not possibly lead to a node
containing the value 9.

However, balancing is an important property to make sure that ordered trees
do actually provide sub-linear search. For example, the following is also a valid
ordered tree,

?p
Co A

but it is no better than a linear list. The search for 9 in this tree is forced to visit
every single node because it is unbalanced: some paths are very short (like the
left-most path from 2, which immediately stops after one step) whereas some
paths are very long (like the right-most path from 2 to 8, which has four steps).

One way of maintaining balance is to use a red-black tree: an ordinary binary
tree but where every node is colored either red or black. Written graphically, a
red-black tree comes in three different forms: a leaf, a black node, or a red node.

.00

e R
Lemt BASOJ:: Uo&&

In addition to marking nodes with a color, a proper red-black tree also meets
the following properties:

0. Ordered: The values of the nodes are in strict ascending order with respect
to a left-to-right depth-first search. In other words, everything in the left
sub-tree of a node is strictly less than the node value, and everything in
the right sub-tree of a node is strictly greater than the node value.

1. Black Root: The root of every complete tree must be black. A leaf is
considered black. Only sub-trees can be red.

2. No Red Chains: The left and right sub-trees of a red node must be black.

3. Equal Paths: The number of black nodes contained in every path from the
root to a leaf (including the root and leaf) must be equal.

Properties 1, 2, and 3 together force proper red-black trees to be balanced, since
only balanced trees can follow these coloring criteria. For example, the balanced
tree above has the following proper coloring (among others):

\

But the unbalanced tree cannot be colored properly. For example, here are two
attempts that violate criteria 3 (Equal Paths) and 2 (red chains) respectively:

Red-black trees can be represented in Haskell with the following data types:

data Color =R | B
deriving (Eq, Show)

data RBTree a = L | N Color (RBTree a) a (RBTree a)
deriving (Show)

The constructors of Color and RBTree a effectively correspond to the three
forms of red-black trees: leaves are built by L, black nodes by N B, and red nodes
by N R. The color of a red-black tree is the color of its root node (which is built
by either L or N).

The main operations of red-black trees are the functions

find :: Ord a => a -> RBTree a -> Maybe a
insert :: Ord a => a -> RBTree a -> RBTree a

find looks to see if a given element is in a red-black tree, returning Nothing if
it is not there, and insert adds a new element to a red-black tree, returning the
updated tree with the element in it. Because red-black trees are ordered, both
find and insert only need to trace a single path from the root of the tree to
a leaf to do their job. And because the other red-black tree properties (namely
(2) No Red Chains and (3) Equal Paths) force trees to be balanced, any path
through the tree has only log(n) steps. As a result, both find and insert cost
O(log(n)) time, where n is the number of elements in the tree they operate on.

The challenge of maintaining balanced trees is that insert might make a tree
out of balance by adding one too many nodes along a path. Assuming, insert
always adds a new Red Node, this can be seen in red-black trees as a violation of
the No Red Chain property. Because of this, insert needs to rebalance the nodes
along the path it takes, according to this balancing diagram that transforms bad
red-black trees into good ones:

The subtle properties and balancing act make red-black trees a difficult data
structure to implement correctly, since it is easy to accidentally break one of
properties needed to ensure that find and insert are efficient. Because it is

not easy to see if the code implementing red-black trees is correct, they are a
great candidate for a good testing suite. The red-black tree properties form hard
invariants that must be maintained by every insert, and we need to know if
finding an element in a tree never accidentally misses the answer by taking the
wrong path.

A complete implementation of red-black trees, along with the find and
insert functions, has been given to you in the template for this assignment.
Your job is to ensure that it is correct, and to separate it from other, subtly
buggy, alternatives. You will create an automated test suite for checking that
insert builds good red-black trees, and to work towards a proof that find does
the same thing as a complete, thorough search.

1 Testing Red-Black Properties (45 points+ 30
extra credit)

In order to confirm that the implementation of red-black trees you were given
is correct, you will need to generate several test cases to check that all the red-
black tree properties are followed, and that the operations work as expected.
This can be done automatically using the QuickCheck! library, by showing how
to generate arbitrary red-black trees. A fully-automated test suit for checking
correctness of the provided implementation of red-black trees is organized using
the hspec? framework.

The code for generating arbitrary trees as well as the main testing script
is already provided for you in the template of this assignment in the test
directory. You are responsible for writing definitions of the properties that will
be checked, and can give in your answers to the following Exercises in this
section by filling in the blanks in the library file src/Properties.hs. Your
definitions Properties are imported and used in the red-black tree specification
test :: Spec in test/Spec.hs, which is called by the main testing operation.
To check your test suite, you can run the command

> stack test
or alternatively
> cabal test

in the project directory, which will run the main operation in test/Main.hs and
print the results.

To keep things interesting, your tests will have to correctly pass or fail dif-
ferent alternative implementations of the main tree operations. Each of these
possible implementations are all instances of the OrdTree type class in the
Data.RedBlack module:

Thttps://hackage.haskell.org/package/QuickCheck
2https://hackage.haskell.org/package/hspec

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/hspec

class OrdTree t where
-— An empty tree
emptyT :: t a
-- Find a given element somewhere in a tree

find :: Ord a => a -> t a -> Maybe a
-—- Insert a new element into a tree
insert :: Ord a => a ->t a -> t a

-- Convert a tree to a list

toList :: t a -> [a]
-- Convert a list into a tree (can be defined via insert)
fromList :: Ord a => [a] -> t a

Your properties won’t know which implementation they are being used to test;
they will have to only rely on generically enforcing the invariants they are
responsible for.

Exercise 1.1 (5 points). Implement two tests with the type signatures

findAfterInsert :: (Ord a, OrdTree t) => a -> t a -> Bool
irrelevantInsert :: (Ord a, OrdTree t) => a -> a -> t a -> Property

Both of these functions must consider any possible type of orderable element
and any possible implementation of the OrdTree interface. To do this, you will
only be able to rely on the methods provided by 0rd (equality and comparison)
and OrdTree (such as find and insert).

findAfterInsert is a function which takes any Orderable a x and any or-
dered tree ys containing as, and checks that x can be found in the tree made
by inserting x into ys. In other words, the output of findAfterInsert x ys
should be:

e True if find x (insert x ys) is equal to Just x, and
o False otherwise.

irrelevantInsert takes two different elements x and y and one such tree zs,
and checks that find x returns the same result whether or not y is inserted into
zs. In other words, the property irrelevantInsert x y zs hasthe precondition
x /=y, and if that pre-condition is true, should be:

e Trueiffind x (insert y zs) returns the same result as find x zs, and
o False otherwise.
End Exercise 1.1

Hint 1.1. The operation (==>) :: Bool -> Property from Test.QuickCheck
is the proper way to add a precondition to a property. Unlike a simple boolean
implication (like an if then else), (==>) has special support for making sure
the expected number of test cases actually run. If an example input fails the

precondition (i.e., the boolean to the left of ==> is False), then that example is
thrown out without being counted, and another is tried, until the property (i.e.,
to the right of ==>) is actually run and proved successful for the total number
of test cases. Note, that if QuickCheck has too hard of a time trying to come up
with examples that satisfy the precondition (e.g., it goes through 1000 examples
when trying to just find 100 that work), it will give up, and the test will fail
due to insufficient examples. For example, requiring that x and y are not equal
is not particularly restrictive, as it is unlikely to pick the same value for both.
However, requiring that x and y are equal is unlikely to happen coincidentally
by random chance, and will tend to exhaust QuickCheck’s patience when trying
to come up with enough valid examples. End Hint 1.1

Bonus Exercise 1.2 (10 extra credit). Balanced trees, like red-black trees,
are useful because even in the worst case, their height grows (logarithmically,
O(log(n))) slower than the number (n) of elements they contain. Specifically in
the case of proper red-black trees containing n elements, the upper bound on
their maximum height is 2log,(n + 1).

Calculate the maximum height of a red-black tree, and make sure it is within
the expected bounds, by implementing the functions:

height :: RBTree a -> Int
upperBound :: Int -> Int

The height of an empty tree (L) is 0, and the height of a node is 1 plus the
maximum hight of its two sub-trees. upperBound n should return the result of
the formula 2logy(n + 1) (rounded up). End Bonus 1.2

Hint 1.2. The Haskell function for calculating the logarithm of a number with
a given base is logBase :: Floating a => a -> a -> a. However, note that
you will have to do some numeric coercions to turn an integer into a floating
number, and then back again. End Hint 1.2

Bonus Exercise 1.3 (20 extra credit). The OrdTree type class includes the
functions

fromList :: Ord a => [a] -> RBTree a
tolList e RBTree a -> [a]

for converting between trees and lists. Since RBTrees implement a form of sets
(the order between elements cannot be controlled, and duplicates are overwritten),
a round-trip from a list to a tree and back effectively converts that list into an
(ordered) set.

Implement the function

roundTrip :: (Ord a, OrdTree t) => t a -> [a] -> [a]

for sending a list through a red-black tree round-trip: roundTrip _ xs should
generate an intermediate tree ys :: ta using fromList, which is then converted
back to a list using toList.

Note that since fromList and toList are generic functions that work for any
instance of OrdTree t, Haskell will get confused and not know which implementa-
tion to use if you just compose these two functions directly as toList (fromList xs).
That’s where the first parameter comes in: it’s value does not change the output,
but its type t a spells out which instance of OrdTree t to use. In order to avoid
the “ambiguous” type errors when composing fromList and toList, you might
find this helper function useful:

ofType :: a -> a -> a
x “ofType” _ = x

The result is exactly the value of the first argument (ignoring the value of the
second argument), however the types of the two arguments have to be the same.
If you want the value of x but Haskell can’t figure out that it’s type should be a,
you can use another y :: a on hand to call x ~ofType™ y :: a which is just
the value of x (now that we know it’s an a).

To make sure that a round-trip through red-black trees correct, fill out the
following properties on lists that the result of a correct implementation should
satisfy:

sortedList :: (Ord a) => [a] -> Bool
uniqueList :: (Ord a) => [a] -> Bool
subList :: (0rd a) => [a] -> [a] -> Bool

e sortedList xs returns True when xs is in order (that is, xs is already
sorted).

e uniquelist xs returns True when xs contains no duplicates (that is, any
element of xs never appears more than once).

o subList xs ys returns true if every element of xs appears somewhere (at
least once) in ys, similar to a subset. End Bonus 1.3

Hint 1.3. The Data.List module provides the two functions

sort :: Ord a => [a] -> [a]
nub :: Eq a => [a] -> [a]

sort sorts a list and nub removes duplicate elements from a list. End Hint 1.8

Exercise 1.4 (15 points). Implement tests with these type signatures

ordered :: Ord a => RBTree a -> Bool
blackRoot HR RBTree a -> Bool
noRedChains :: RBTree a -> Bool

that encode properties 0-2 of red-black trees as Haskell functions returning a
boolean value: a True is returned if the given tree satisfies that property and a
False is returned if the tree violates that property.

(0) ordered xs returns True only when the list of elements in xs, as given by
toList xs, are in order.

Hint 1.4. Remember that sort from Data.List sorts a list. You can
check if a list ys is in order by checking that ys is equal to sort ys.
End Hint 1.4

(1) blackRoot xs returns True only when the root node of is black.

Hint 1.5. Remember that a leaf L counts as black, and a node built by N
has the color contained in the first parameter of N. Since you only need
to check the color of the root, the blackRoot function does not need to
recurse or check any sub-trees. End Hint 1.5

(2) noRedChains xs returns True only when there is never any two red nodes
in a row. In other words, if xs contains a node of the shape N R left x right
anywhere, then it must be the case that both its 1left and right sub-trees
have a blackRoot.

Hint 1.6. noRedChains xs needs to check the property for every single
node within xs. So noRedChains xs needs to recursively check the sub-
trees of xs, unlike blackRoot xs that only checks a property of the top-
most node of xs. End Hint 1.6

End Exercise 1.4

Exercise 1.5 (20 points). The last property of red-black trees is the most
complex, and involves comparing a particular count over all possible paths you
can take from the root to the leaf of a tree. Generating this list of paths has
already been defined for you in the RedBlackTree module in the template, which
includes the function

type Path a = [(Color, a)l

paths :: RBTree a -> [Path al

The result of paths xs contains a list of paths. Each path is itself a list contain-
ing the Color and value contained within each non-leaf node visited along that
path. The only path possible starting from an empty leaf L is the empty path
[1. The two possible paths starting from the single-node tree (N B L 1 L) are
[[(B,1)],[(B,1)]]: both start at the root Node with color B and value 1, and can
continue down to the left or right Leaf. The two-nodetree (N B L 1 (N R L 2 L))
has three paths [[(B,1)],[(B,1),(R,2)],[(B,1),(R,2)]1], and so on.

To finish implementing a test for the Equal Paths property, break it down
into smaller parts. First, implement helper functions with the type signatures

countBlackNodes :: Path a -> Int
pathCounts :: RBTree a -> [Int]

countBlackNodes takes a single path, and should count only the black
nodes visited along that path. So countBlackNodes [] = 1, because an empty

path always ends at a leaf, which counts as a black node. Another example is
countBlackNodes [(B,1)] = 2, which counts 1 for the first Black non-leaf Node,
and another 1 for the final Leaf. In addition, countBlackNodes [(B,1),(R,2)] = 2
as well, because the Red Node visited in the second step isn’t counted. In general,
countBlackNodes ((c, x) : path) should add 1 to the count of path when
c is Black, and otherwise just be the same count as path when c is Red.
pathCounts takes a red-black tree xs, calculates all the paths starting from
xs, and applies countBlackNodes to each one of those paths, collecting the list
of counts taken for each individual path. As examples,

pathCounts L = [1]
pathCounts (N B L 1 L) = [2,2]
pathCounts (NBL 1 (NRL 2 L)) = [2,2,2]

Hint 1.7. Recall from the lectures that you can use the map function or a list
comprehension to apply a function to every element of a list. End Hint 1.7

Using the above helper functions, implement a test with the type signature
equalPaths :: RBTree a -> Bool

that encodes property 3 (Equal Paths) of red-black trees as a Haskell function
returning True for a tree only when it satisfies property 3. More specifically,
equalPaths xs should:

1. Calculate the list of all pathCounts xs for the given tree.

2. Check if every number in the list from step 1 is equal, returning True if
they are all equal to the same number n, and False otherwise.

Hint 1.8. Since even the empty tree L has one path in it, you know that
pathCounts t will never be an empty list. So you can check that ev-
ery element of pathCounts xs is equal to the head of pathCounts xs.
The all :: (a -> Bool) -> [a] -> Bool function from the standard li-
brary checks if every element in a list satisfies some Boolean test. FEnd Hint 1.8

End Exercise 1.5

2 Trees as Maps (55 points)

As-is, red-black trees provide an efficient (logarithmic) data structure for model-
ing sets. But what if we need to model a dictionary mapping some type of keys
(indexes) to values (items)? There’s a quick trick to reuse our code!

The Indexed i a type, way back from Assignment 1, can turn a red-black
tree into a red-black map. Its associated Eq and Ord instances produce exactly
the right behavior of only paying attention to the key for the purpose of inserting
and finding, while the value is along for the ride:

type RBMap i a = RBTree (Indexed i (Maybe a))

10

e Because Indexed i (Maybe a) only looks at the i value for equality and
ordering, so it acts as the “key” by the underlying RBTree implementation
of insert and find for deciding what order to put this pair into the tree,
and how to access it in logarithmic time.

o If we insert a new item at an index that is already in the tree, the two
index-item pairs will look the “same” according to equality (==), so insert
will replace the old item with the new one.

e The reason that the item is a Maybe a instead of just an a is to more easily
support a (simple, but sadly memory leaking) deletion operation.

An outline sketching how to repurpose red-black trees as maps is given in
src/Map.hs. Your job is to fill in the undefined code.

Exercise 2.1 (10 points). First, copy your definition of Indexed values from
Assignment 1, including:

data Indexed i a = ...

item :: Indexed i a -> a
index :: Indexed i a -> i

instance Eq i => Eq (Indexed i a) where

instance Ord i => Ord (Indexed i a) where

Second, give your Indexed data type a new instance of Arbitrary:

instance (Arbitrary i, Arbitrary a) => Arbitrary (Indexed i a) where

by implementing the overloaded function arbitrary :: Gen a. The instance
of arbitrary :: Indexed i a needs to return multiple different, well-defined
values, depending on the randomness of Gen. End Exercise 2.1

Hint 2.1. Gen is itself an instance of Monad, which means you can use do-notation
to stitch together multiple Gen-operations, like arbitrary. To properly gen-
erate an arbitrary value of Indexed i a, you will (unsurprisingly) need an
arbitrary value of type a and an arbitrary value of type i. Once you’ve got-
ten hold of both values (for example, using a do to bind the results), constructing
and returning your Indexed i a value should be straightforward. Feel free to
peak at test/Spec.hs for more hints. End Hint 2.1

NOTICE: Your definition of Indexed, it’s operations, and its Arbitrary in-
stance are needed to test red-black maps, and so Exercise 2.1 is a prerequisite
for the exercises below. Don’t invest too much time in them before completely
finishing Exercise 2.1.

11

Exercise 2.2 (10 points). Implement the following wrapper functions

findAt :: Ord 1 => i -> RBMap i a -> Maybe a
insertAt :: Ord i => i -> a -> RBMap i a -> RBMap i a

using find and insert. Find should return the element stored at the given
index (or Nothing if there is no element stored at the index) and insertAt
should insert a new index-value mapping into the given RBMap i a, overriding
the existing mapping if one was already present.

To be correct, your definitions of findAt and insertAt need to satisfy these
properties:

e We can always find an item after it is inserted at the same index:
findAt i (insertAt i x t) = Just x

e find is not affected by irrelevant insertions: given that i /= j,
findAt i (insertAt j x t) = findAt i t

o The most recent insertion overrides older ones:
insertAt i x (insertAt i y t) =~= insertAt i x t

e Multiple insertions at different indexes can be reordered:
insertAt i x (insertAt j y t) =~= insertAt j y (insertAt i x t)

where =~= means comparing two trees only in terms of their index-item mapping
set, and ignoring their underlying tree structures. End Exercise 2.2

Exercise 2.3 (20 points). Implement the function
deleteAt :: Ord i => 1 -> RBMap i a -> RBMap i a

which removes an element stored at an index i from the given tree by setting
the element at that index to Nothing. If it turns out there is no element in the
tree stored at the given index, then deleteAt should return the same tree it was
given. Like find and insert found in the Data.RedBlack module, deleteAt
should not search the entire tree, but only check the single relevant path of the
tree based on the order of the indexes.

To be correct, your definition of deleteAt needs to satisfy these properties:

e deleteAt removes one, and only one, element. Given a non-empty RBMap i a,
deleting an index that is associated with an item produces a map with
exactly one less element (when ignoring all Nothing entries).

e Deleted indexes can no longer be found:
findAt i (deleteAt i t) = Nothing

e find is not affected by deleting other indexes: given that i /= j,

12

findAt i (deleteAt j t) = findAt i t
o Deletion overrides insertion at the same index:
deleteAt i (insertAt i x t) =~= deleteAt i t
o Insertion overrides deletion at the same index:
insertAt i (deleteAt i x t) =~= insertAt i t
e Deletion and insertion at different indexes can be reordered: given that
i/=3
deleteAt i (insertAt j x t) =~= insertAt j x (deleteAt i t)
¢ Redundant deletions at the same index are idempotent:
deleteAt i (deleteAt i t) =~= deleteAt i t
e Multiple deletions can always be reordered: regardless if i == jori /= j,
deleteAt i (deleteAt j t) =-~= deleteAt j (deleteAt i t)

where =~= again means comparing two trees only in terms of their index-item
mapping set. End Exercise 2.3

Exercise 2.4 (15 points). Implement the functions

toAssoc :: RBMap i a -> [Indexed i a]
fromAssoc :: Ord i => [Indexed i a] -> RBMap i a

that convert between an RBMap i a and an association list [Indexed i a].
These two functions are similar to toList and fromList, except that toAssoc
should ignore any index mapped to Nothing in RBMap i a.

To be correct, your definition of toAssoc and fromAssoc need to satisfy these
properties:

e A toAssoc . fromAssoc round-trip always produces a sorted list.

e A toAssoc . fromAssoc round-trip always produces a list with no dupli-
cate elements.

e A toAssoc . fromAssoc round-trip always produces a list that contains
every element (up to ==) that was in the input.

o fromAssoc produces trees that with all red-black invariants (0-3).

End Exercise 2.4

13

3 Bonus: Proving Correctness (100 extra credit)

The purpose behind a red-black tree is to more efficiently implement a search (via
the above find function) that scales logarithmically rather than linearly with
the number of elements to search through. For example, doubling the number of
elements in the red-black tree only adds a constant (some fixed number) of steps
to find, since only a single path from the root of the tree to a leaf is searched,
and the tree only grows (approximately) one more level deep after doubling.

By analogy, the red-black tree find function should be equivalent to a linear
search through a sequential list, just faster. We can define the linear search
function as

search :: Eq a => a -> [a] -> Maybe a
search x [] = Nothing
search x (y:ys)

| x ==y = Just y

| otherwise = search x ys

It is relatively easier to see that the linear search function is correct because
it exhaustively checks every element: if the given list contains an element equal
to the given value, then search will return that element, and otherwise search
will return nothing. In contrast, it is harder to see that the binary find function
is correct, because it skips over many elements without even checking them. You
can prove that the efficient find function is correct by proving that it is equal
to the simpler search specification function. Proving, which considers every
possible argument to a function, even if there are infinitely many options, is
much more thorough than testing, which only checks a relatively small, finite
number of possible arguments.

The following exercises in this section ask you to employ equational reasoning
to prove that two expressions are equal to one another. Show your work by doing
a “pen-and-paper” style calculation by hand, chaining equations together similar
to solving an algebra problem, and include your work in a (plain text, pdf, word,
or hand-written) document. The template for this assignment contains an outline
for this section in test/Proofs.md, where you can fill in your answers to each
of the following sections. Only Bonus Exercises 3.1 and 3.3 are mandatory for
this assignment. You can optionally do the Bonus Exercises 3.2 and 3.4 for extra
credit.

Bonus Exercise 3.1 (15 points). Using equational reasoning, prove that, if
x == y is False for each y in the list ys, then

search x ys = Nothing
End Bonus 3.1

Hint 3.1. Try to prove this property by induction on the structure of the list ys.
To do so, answer these two questions:

14

1. What happens when ys is the empty list [1?7 In other words, manually
calculate for yourself the result of the function call search x [], according
to the definition of search, and show it is equal to Nothing regardless of
the value of x.

2. Assuming that search x ys' = Nothing, what happens when ys is the
non-empty list built by y:ys'? In other words, use equational reasoning
to calculate the result of the function call search x (y:ys') according
to the definition of search and the assumption that x == y is False, and
show it is equal to Nothing. In one of the steps, you will need to use
the assumption that search y ys' = Nothing (known as the inductive
hypothesis) to finish the equation. End Hint 3.1

Bonus Exercise 3.2 (20 extra credit). Use equational reasoning to prove the
following two properties:

1. If x == z is False for each z in the list zs, then
search x (zs ++ ys) = search x ys
2. If x == y is False for each y in the list ys, then
search x (zs ++ ys) = search x zs
End Bonus 3.2
Hint 3.2. The built-in append function (++) has the recursive definition

(++) :: [a]l -> [a] —> [a]
(1 ++ ys = ys
(z:zs) ++ ys = z : (zs ++ ys)

Since (++) recursively takes apart its left (first) argument, it may be helpful to
start the proof of Bonus Exercise 3.2 by doing an induction on the structure of
the list zs (the left argument to (++) in both equations). For the purposes of
this exercise, you may assume that (++) is associative, meaning that for all list
values xs, ys, zs :: [al, you may assume that

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

This means that it doesn’t matter how you parenthesize a chain of (++) opera-
tions, as all groupings all equal. By default, an unparenthesized chain of (++)
is grouped to the right, so that

WS ++ Xxs ++ ys ++ zs = ws ++ (xs ++ (ys ++ zs))
End Hint 3.2

Bonus Exercise 3.3 (10 points). Use equational reasoning to prove that, if
x == y is True and x == z is False for each z in zs, then

search x (zs ++ ([y] ++ ys)) = Just y

15

End Bonus 3.3

Hint 3.3. You do not need to use induction to prove this property. Instead,
you can apply one of the properties from Bonus Exercise 3.2 (whether or not
you completed that optional exercise) to calculate the result directly. Which
of the assumptions in the two properties of Bonus Exercise 3.2 matches the
assumptions that you have here? End Hint 3.3

Bonus Exercise 3.4 (25 extra credit). Use equational reasoning to prove that,
if t is a well-formed red-black tree (meaning it satisfies properties 0-3 described
in the introduction to red-black trees), then

search x (toList t) = find x t
End Bonus 3.4

Hint 3.4. The ordered property of red-black trees (property 0) will be important
for proving Bonus Exercise 3.4. You may also find some of properties proved
above in Bonus Exercises 3.1 to 3.3 useful when doing equational reasoning in
Bonus Exercise 3.4. End Hint 3.4

Bonus Exercise 3.5 (30 extra credit). 1. Use equational reasoning to prove
that, insert preserves the red-black properties. In other words, prove that
foranyx :: aandt :: RBTree a,ift satisfies properties 0—3 of red-black
trees, then insert x t does, too.

2. Prove that, for any list xs :: [al, the tree fromList xs :: RBTree a
satisfies all red-black properties 0-3. End Bonus 3.5

Hint 3.5. Because insert is defined in terms of a (recursive!) helper function
ins, you may find it similarly helpful to prove a related lemma directly about
ins itself. What red-black properties does it preserve? Which might it break?
Then use that lemma in your larger proof about insert itself. FEnd Hint 3.5

16

	Testing Red-Black Properties (45 points+ 30 extra credit)
	Trees as Maps (55 points)
	Bonus: Proving Correctness (100 extra credit)

