
Effective Functional Programming
User Interaction

Assignment 2
Blackjack

Paul Downen

In the previous assignment, you modeled the core functionality of a playing
card game, namely blackjack. Now, you will build on that core by writing an
interface for playing blackjack as a command-line program, using your types and
functions defined in assignment 1 as a library. In the end, you will have written
an executable program from start to finish that interacts with the user to play
the card game. The following is an example input/output interaction:

Welcome to blackjack!

Ready?

Shuffling a new deck...
The dealer's first card is: 5S.
Your hand is JH AC (21), what do you do?
huh
Sorry, I didn't understand that.
Your hand is JH AC (21), what do you do?
help
You can "hit" or "stand"
Your hand is JH AC (21), what do you do?
stand
You Win!
Your hand: JH AC (21)
The dealer's hand: 7D 5S KS (22)

Ready?

The dealer's first card is: AD.
Your hand is 3S 8D (11), what do you do?
hit
Your hand is 5C 3S 8D (16), what do you do?
stand

1

You Win!
Your hand: 5C 3S 8D (16)
The dealer's hand: AD AS (22)

Ready?

The dealer's first card is: 10H.
Your hand is KD 9C (19), what do you do?
stand
You Win!
Your hand: KD 9C (19)
The dealer's hand: 10D 10H 2H (22)

...

Ready?

The dealer's first card is: 8S.
Your hand is 2C 2S (4), what do you do?
hit
Shuffling a new deck...
Your hand is JS 2C 2S (14), what do you do?
hit
The house wins.
Your hand: QH JS 2C 2S (24)
The dealer's hand: 8S 10S (18)

Ready?
quit

1 Dealing Cards (25 points)
The central part of a card game is the deck of cards used to deal cards to the
player(s) and dealer. The key point of deck management is that decks should
always be randomized by shuffling before they are used (so that the order is
unpredictable), and that cards are drawn one-at-a-time from the top of a deck
until it runs out, at which point a new deck is shuffled and used. Since you
already wrote a shuffle function in assignment 1 which uses a list of indexes
to decide the order of the shuffle, the challenge is to generate “enough” random
numbers to shuffle the deck.

A (pseudo-)random number generator can be found in the random package
on Hackage which provides the System.Random module, which provides many
types and operations for manipulating and generating various kinds of random
values and sequences. Using newStdGen and randoms from System.Random, we
can shuffle a freshDeck of cards like so:

2

freshDeck :: IO Deck
freshDeck = do

gen <- newStdGen
let indexes = randoms gen
return (shuffle indexes fullDeck)

The type of freshDeck says it is an IO action that will return a Deck when
completed. freshDeck’s code is organized by a do which lists 3 separate steps —
each of which may do IO side effects on their own — that need to be performed
in sequence from top to bottom every time freshDeck is run:

1. First, freshDeck will make a new randomness generator “seed” of type
StdGen using the newStdGen operation. newStdGen has to perform IO to
read the current state of the machine to remember what other randomness
operations happened before so that a different seed is returned every time
it run. This side effect is reflected in its type, newStdGen :: IO StdGen.
freshDeck needs to get access to the actual StdGen value it returns, which
is done through the do bind statement gen <- newStdGen that assigns
the local variable name gen to the result returned this time.

2. Second, freshDeck needs a list of random numbers to provide to the
shuffle function. These random numbers can be generated by the function
randoms that can generate an (endless) list of random numbers starting
from any seed. Note that, as is usual for pseudo-random number gener-
ators, the seed provided to randoms determines exactly the sequence of
“random” numbers it returns. In other words, randoms 491412 will return
the exact same list of random-seeming numbers every time. This makes
randoms a pure function which does not need to do any IO action to figure
out its answer, so it has the type randoms :: StdGen -> [Int]. Since
randoms gen has the type [Int], which is not an IO type, we can use
the syntax let indexes = randoms gen to assign its result to the local
variable indexes.

3. Third, freshDeck can generate a new ordering of a fullDeck of cards by
calling shuffle indexes fullDeck, and return the shuffled deck as its
answer.

Exercise 1.1 (10 points). Implement the function

draw :: Deck -> IO (Card, Deck)

What draw does depends on whether or not it is given a Deck with any
remaining cards in it.

• In the case that draw is given a non-empty Deck, it should return a pair
of (1) the top Card of the given Deck and (2) the remainder of the Deck
with the top card removed.

• In the case where the given Deck is empty, draw should do the following:

3

1. print out a message to the user that you are shuffling a new deck,
2. get a freshDeck of cards to use, and finally
3. draw again from the freshly shuffled Deck you got from step 2.

End Exercise 1.1

Hint 1.1. The best way to cover the two cases of what draw should do depending
on the Deck it is given is to pattern-match on its argument:

• If its argument matches the non-empty list (card:deck), as in the function
call draw (card:deck), then it should just return (card, deck).

• If its argument matches the empty list [], as in the function call draw [],
then it should do the sequence of 3 steps described above to shuffle a new
deck and draw from it. End Hint 1.1

Exercise 1.2 (10 points). Implement the three functions

hitHand :: Hand -> Deck -> IO (Hand, Deck)
deal :: Deck -> IO (Hand, Deck)

hitHand should do the following:

1. draw one card from the given deck, unpacking the pair of the top card and
the remaining Deck that is left over afterward, and

2. add it to the given Hand, returning a pair of both the new Hand (with 1
more card) and the remaining Deck.

deal should draw two cards from the given deck and return a Hand consisting
of those two cards as well as the remaining deck. This is equivalent to hitting
an empty hand twice. In particular, deal should do the following:

1. Hit (by calling hitHand above) an empty hand [] with the initial Deck
given to deal.

2. Hit again, using the 1-card Hand and remaining Deck returned by step 1.

3. Return the pair of the 2-card hand and remaining deck from step 2.

NOTE do not re-use the same Deck for the two draws, but use the Deck returned
from the first draw to perform the second draw. End Exercise 1.2

Exercise 1.3 (5 points). Implement a pretty printing function for nicely dis-
playing Hands

prettyPrint :: Hand -> String

which shows both the Cards in the Hand followed by its handValue in parenthesis.
For example, the Hand containing the ace of spades and King of diamonds should
be prettyPrinted as "AS KD (21)" (or as "A♠ K♢ (21)" if you are using
unicode suits). End Exercise 1.3

4

2 The Dealer’s Turn (20 points)
The dealer is forced to play their turn on autopilot following pre-set rules, which
can be carried out automatically within the program without having to talk to
the user at all. After being dealt their initial hand of two cards, the dealer will
draw cards until their hand has a score of 16 or more, at which point they must
stop. At the end of this turn, the dealer’s hand will either have a score between
16 and 21, which is OK, or will have a score of 22 or more, which is Bust. The
Status of a hand — being one of these two options — is represented by this
enumeration data type:

data Status = Bust | OK

Exercise 2.1 (5 points). Implement the function

checkHand :: Hand -> Status

which determines whether the given hand is OK because it has a score of 21 or
less, or Bust because it has a score of 22 or more.

Your decision on the status of a hand can use either the simplified scoring rules
calculated by handValue or the full scoring rules calculated by betterHandValue
from assignment 1, if you finished the extra credit. Using either scoring rules cor-
rectly will earn the same points in this assignment. You only need to consistently
use one or the other throughout these exercises. End Exercise 2.1

The game of blackjack has several moving parts, which all have to be kept
track of at each step. To help keep everything organized, we’ll be using this data
type for the state of a Game which holds all of the information available on the
Table shared by the player and dealer:

data Game a = Table {
player :: Hand,
dealer :: Hand,
deck :: Deck,
ask :: a
}

This data type definition uses record syntax, which provides a few helpful (but
optional) shorthands for managing a structure like Table with many parts. In
addition to creating the constructor named

Table :: Hand -> Hand -> Deck -> a -> Game a

for building new Game a states, it also creates field accessor functions

player :: Game a -> Hand
dealer :: Game a -> Hand
deck :: Game a -> Deck
ask :: Game a -> a

5

which take a Game a and extract one of the parts: the Hand held by either the
player or dealer, the current deck of cards, and finally an ask field that we’ll
be using later to talk to the user. This record data type definition is equivalent
to the following code:

data Game a = Table Hand Hand Deck a

player (Table p _ _ _) = p
dealer (Table _ c _ _) = c
deck (Table _ _ d _) = d
ask (Table _ _ _ a) = a

In addition, record syntax gives us a more convenient way to build Game a
values by using the names of the fields, rather than positions. For example, to
make an empty game from scratch, we could apply Table to four arguments
as in Table [] [] [] (), or we could name each field that is being initialized
as in Table{player = [], dealer = [], deck = [], ask = ()}. By using
names, the order doesn’t matter. We can also create slight modifications of
Game a in a similar way. If t is already a Game a value, then t{deck = newDeck}
is the same as t in all fields except for deck which contains newDeck instead.
As another example, t{dealer = ace spaces : dealer t} is the same as t
except that the dealer’s Hand now starts with the ace of spades, and then
continues as the original dealer hand from t.

As an example of how to use this record-builder syntax in practice, here is a
function which will hit the dealer’s hand by taking the current Game state of
the table, and return a new Game state where only the dealer and deck fields
have been changed:

hitDealer :: Game a -> IO (Game a)
hitDealer table = do

(dealer', deck') <- hitHand (dealer table) (deck table)
return (table{dealer = dealer', deck = deck'})

Exercise 2.2 (15 points). Implement the function

dealerTurn :: Game a -> IO (Status, Game a)

which performs dealer’s autopilot turn given their current Hand of cards in the
Game state, and returns the Status of their final hand along with the updated
Game state.

At each step, the next action of dealerTurn table depends entirely on the
value (calculated from handValue or betterHandValue) of the dealer’s current
Hand on the table:

• If the value of the dealer’s Hand (in dealer table) is less than or equal
to 16 (according to the same scoring rules used in Exercise 2.1), then
dealerTurn table should do the following:

1. hit the dealer’s current hand on the table (hitDealer table), then

6

2. run dealerTurn again with the updated table from step 1.

• Otherwise, immediately return the Status of the dealer’s Hand along with
the current table, unchanged. End Exercise 2.2

3 Talking to the User (30 points+25 extra credit)
In class, you saw methods of prompting a user for input and reading the result.
The simplest one,

simplePrompt :: String -> IO String
simplePrompt question = do

putStrLn question
answer <- getLine
return answer

just asks the user a given question and returns their answer, both represented
as plain, unstructured, unsanitary Strings.

To effectively respond to the user, we need to add some pre-processing that
checks their answers to either put them in a more predictable form or do an
action directly. Conventionally, you would have to put together all your pre-
processing into a big switch-loop that keeps prompting for input until it gets a
real answer. But we can do something better! The trick is to consider a prompt
action — which takes a String to show the user and does some IO to return
their answer of type a — as a regular value of type Prompt a:

type Prompt a = String -> IO a

The simple version of prompting above counts as a Prompt that returns a
String, simplePrompt :: Prompt String. We can now build a collection of
modifiers which change the way we interact with the user, letting us handle each
step of pre-processing separately in a way that can be later combined into the
fully-featured Prompt action.

For example, we might want to add a special case so that when the user
enters quit, the program exits. This functionality can be added onto a prompt
action (which returns a plain String) like so:

untilQuit :: Prompt String -> Prompt String
untilQuit prompt = \question -> do

quitOrAnswer <- prompt question
case quitOrAnswer of

"quit" -> exitSuccess
answer -> return answer

The untilQuit function takes an existing Prompt String value, and returns
a new Prompt String. When this new Prompt String is given a question to
present the user, untilQuit prompt will do the following:

7

1. Ask the given question via the original prompt action and remember the
user’s response—which might be any string—in the variable quitOrAnswer.

2. Check which case the response quitOrAnswer matches:

• If the response is exactly the string "quit", then the program imme-
diately exits using the exitSuccess operation from System.Exit.

• If the response is any other answer not matching "quit", then that
answer is returned.

3.1 Interpreting Answers (30 points)
Exercise 3.1 (10 points). To be more user-friendly, the program should explain
what it expects to see when the user asks for help. Implement the function

helpAdvice :: Prompt String -> String -> Prompt String

which takes an existing Prompt String and adds additional advice to tell the
user when they input "help". helpAdvice prompt advice should return a new
Prompt String that, when given a question, will do the following:

1. Ask the given question via the original prompt action and remember the
response.

2. Check which of the following cases the response from step 1 matches:

• If it is exactly the string "help", then print out the given advice,
and then try to prompt the user again with the same helpful advice
and question (helpAdvice prompt advice question).

• If it is any other string, then return it without doing anything else.
End Exercise 3.1

Hint 3.1. Notice how the overall behavior for helpAdvice prompt advice is
very similar to untilQuit prompt above. To get started, you can look at the
code in untilQuit and modify the special string it looks for, and what to do
when that string is found. End Hint 3.1

Exercise 3.2 (10 points). Sometimes, running a prompt action once might fail
to produce any answer, because the user entered some nonsense that couldn’t
be understood. In these situations, we need to re-run the same prompt action
over and over until the user finally enters something sensible that we can use.

Implement the function

retryPrompt :: Prompt (Maybe a) -> Prompt a

that repeatedly re-runs the given Prompt (Maybe a) action until it finally re-
turns Just a real answer, that can be returned. retryPrompt prompt should
return a new Prompt a that, when given a question, will do the following:

8

1. Ask the given question via the original prompt action and remember the
response.

2. Check which of the following cases the response from step 1 matches:

• If it is Just answer, for any answer of type a, then return the plain
answer as-is.

• If it is Nothing, then print out the message telling the user they
weren’t understood ("Sorry, I didn't understand that."), and
retry the same thing again (retryPrompt prompt question).

End Exercise 3.2

Hint 3.2. Notice how retryPrompt is similar to both helpAdvice prompt advice
and untilQuit prompt above. Now, the difference is that instead of looking for a
special string, we are looking for either Just answer (in order to return answer)
versus Nothing (which triggers the re-run similar to helpAdvice’s response to
"help"). End Hint 3.2

Exercise 3.3 (10 points). Sometimes we need to change the answer typed by
the user into some other form, like converting a string of digits into a number.

Implement the function

changeAnswerBy :: Prompt a -> (a -> b) -> Prompt b

that modifies the answer of a given Prompt a by some function a -> b. Calling
changeAnswerBy prompt change should return a new Prompt b that, when
given a question, will do the following:

1. Ask the given question via the original prompt action and remember the
response (of type a).

2. return a result of type b using the change function on answer.
End Exercise 3.3

Hint 3.3. Inside of changeAnswerBy prompt change, you can use change just
like any other function for converting as into bs, so that return (change answer)
will return a result of type b assuming that answer has type a. End Hint 3.3
Hint 3.4. The generic types (a and b) are your friend! As long as you run
prompt question exactly one time and fill in all undefineds, there is only one
possible thing that changeAnswerBy prompt change question can do which
passes the type checker. This also happens to conveniently be the right answer
to the exercise. End Hint 3.4

3.2 Bonus: Sanitization (25 extra credit)
Bonus Exercise 3.4 (5 extra credit). Sometimes users type responses with
small variations that can be easily corrected, like capitalization. Instead of an
expected response like "stand", the user might type "Stand" or "STAND" or
"sTaNd". But if we ignore capitalization, these are all the same.

Implement the function

9

makeAllLowercase :: String -> String

which transforms a string by replacing every uppercase letter with its lowercase
equivalent. End Bonus 3.4

Hint 3.5. The toLower :: Char -> Char function from the Data.Char module
takes a single character and will either

• return the corresponding lowercase letter when given 'A' to 'Z', or

• return the same character given if it is not an uppercase letter. End Hint 3.5

Bonus Exercise 3.5 (15 extra credit). Another innocent variation in user
input is extra stray space characters before or after the real response. Instead of
"stand", the user might accidentally type a leading space " stand" or trailing
spaces like "stand " which should be ignored.

Implement the function

trimLeadingSpaces :: String -> String

which removes all consecutive space characters at the very beginning of a String
and leave the rest alone. For example, trimLeadingSpaces " abc" should be
trimmed to " abc", and trimLeadingSpaces "abc " should be the same
"abc ".

Implement the functions

seekNonSpace :: String -> Maybe (String, Char, String)
trimTrailingSpaces :: String -> String

trimTrailingSpaces should remove all consecutive space characters at the very
end of a String, and leave the rest alone. For example, trimTrailingSpaces "abc "
should be "abc", while trimTrailingSpaces " abc" should be the same " abc".

To help with implementing trimTrailingSpaces, the seekNonSpace helper
function should look for the first non-space character in a string.

• In the case where str has any non-space character in it, seekNonSpace str
should return Just (spaces, non, rest) where non is the first non-space
character in str, spaces is the string of 0 or more spaces found before
non, and rest is the remaining string left after non.

• In the case where str has only space characters in it, seekNonSpace str
should return Nothing.

For example, since the empty string "" doesn’t contain a non-space character,
seekNonSpace "" should return Nothing. Additionally, given a non-space char-
acter 'c', a sequence of (for example) 3 spaces " ", and any string str, calling
seekNonSpace(" "++['c']++str) should return Just(" ",c,str) where
the first component is the same 3 spaces. End Bonus 3.5

Bonus Exercise 3.6 (5 extra credit). Implement the function

10

sanitizeAnswer :: Prompt String -> Prompt String

which takes a Prompt String and a returns a new Prompt String which sani-
tizes the user’s answer by returning a String where

• all uppercase letters are converted to lowercase, and

• all leading and trailing space characters have been removed. End Bonus 3.6

Hint 3.6. Can you re-use changeAnswerBy to automatically apply the string-
processing functions in Bonus Exercises 3.4 and 3.5 to the answer of the prompt?

End Hint 3.6

4 The Player’s Turn (25 points)
After being given their initial 2-card hand, the player has two possible moves.
They can either:

• “hit” which means they ask for another card to be added to their hand, or

• “stand” which means they will keep the hand they have for the remainder
of the round.

Both of these moves are represented by this data type:

data Move = Hit | Stand

Exercise 4.1 (5 points). Define a function

parseMove :: String -> Maybe Move

that parses a String and tries to return one of the two Move values. In the cases
of a successful parse, parseMove should return Just

• Hit when given the string "hit", and

• Stand when given the string "stand".

Given any other strings, parseMove should return Nothing.
This function is used to build a Prompt Move which interprets the user’s

choice of action:

promptMove :: Prompt Move
promptMove = untilQuit simplePrompt

`helpAdvice` "You can \"hit\" or \"stand\""
`parseAnswerAs` parseMove

End Exercise 4.1

Exercise 4.2 (10 points). First, define a function

hitPlayer :: Game a -> IO (Game a)

11

that will hit the player’s hand by drawing a card from the deck in the given
Game a and moving it to the player hand.

Next, define a function

playerMove :: Move -> Game a -> IO (Maybe (Game a))

which carries out the Move given as the first parameter:

• Given Stand as the first parameter, playerMove should return Nothing.

• Given Hit and table as parameters, playerMove should

1. hitPlayer on the current table,
2. return Just the updated game state from step 1. End Exercise 4.2

Hint 4.1. For comparison, look at the definition of hitDealer in section 2.
End Hint 4.1

Hint 4.2. Like all other data types, you can pattern-match on the Move argument
given to playerMove give two separate actions of what to do for the two different
Move choices. End Hint 4.2

To actually talk to the user to get their decision, we can use the ask field of
an appropriate \Game state. This askPlayer function will show the player their
current hand to ask what they want to do, and then return their decision as a
Move value:

askPlayer :: Game (Prompt Move) -> IO Move
askPlayer table = do

let query = "Your hand is "
++ prettyPrint (player table)
++ ", what do you do?"

ask table query

askPlayer table avoids all the details of interpreting the user’s response be-
cause the table’s type Game (Prompt Move) forces the ask field to be a Prompt Move.
That means, every time we feed ask table a question, we always get some Move
in response which must be either Hit or Stand. The details on what happens if the
user types something else must already be handled internally inside ask table.

Exercise 4.3 (10 points). Finally, implement the player’s full turn in the func-
tion

playerTurn :: Game (Prompt Move) -> IO (Status, Game (Prompt Move))

that asks the player for their next move given the current game state, which
includes the current player hand. playerTurn table should do the following:

1. Ask the player on the table for their next move (askPlayer table).

2. perform the playerMove (that you already defined above) with their Move
selection from step 1 the current table.

12

3. Check whether anything changed from step 2:

• In the case where step 2 returns Nothing, then return the Status of
the player’s Hand (via Exercise 2.1) and the originally given table.

• In the case where step 2 returns Just a new Game state, then check
the Status of player’s new Hand:

– If the player’s new Hand is OK, then continue the playerTurn
again with the new Game state from step 2.

– If the player’s new Hand is Bust, then return the Bust status
with the updated Game state. End Exercise 4.3

5 Putting It All Together (25 points + 10 extra
credit)

Now that the logic for the player’s and dealer’s turns have been implemented,
you can now put together the main game loop for playing blackjack.

Exercise 5.1 (10 points). Implement a function

dealHands :: Game a -> IO (Game a)

that deals an initial 2-card Hand to both the player and dealer from the top
of the deck. End Exercise 5.1

Hint 5.1. Remember to maintain good Deck management, to make sure cards
aren’t accidentally duplicated or dropped from the top of the deck! End Hint 5.1

Exercise 5.2 (10 points). Define the function compareHands

data Result = Lose | Tie | Win

compareHands :: Game a -> Result

which returns the Result of a round based on the player and dealer hand
(from the point of view of the player). So compareHands returns a Win if the
player has the winning Hand, Lose if the dealer has the winning Hand, and a
Tie otherwise.

Note that a Bust hand (according to checkHand) cannot ever Win, so you
must take this into account before comparing the values of the two hands. In
the case that someone has gone Bust, compareHands should return:

• Win if the dealer is Bust,

• Lose if the player is Bust,

• and Tie if they are both Bust.

Otherwise, in the case that both Hands are OK, compareHands should return

13

• Win if the player’s Hand has a higher value,

• Lose if the dealer’s Hand has a higher value, or

• Tie if both Hands have equal values,

using the same hand scoring method as compareHands. End Exercise 5.2

Exercise 5.3 (5 points). Now, you can implement a full round of blackjack in
the function

playRound :: Game (Prompt Move) -> IO (Result, Game (Prompt Move))

that takes the current state of the Game and returns the Result of the round
(Win, Lose, Tie) along with the updated game state. playRound should do the
following:

1. Run the playerTurn on the initial Game state to get the Status of the
player’s final Hand and an updated Game state.

2. Run the dealerTurn on the Game state from step 2 to get the Status of
the dealer’s final Hand and another updated Game state.

3. return the Result of the round from compareHands of the final Game state
from step 3, along with that Game state.

End Exercise 5.3

The main loop of the game is given to you in the function

gameLoop :: Game (Prompt Move) -> IO a

that takes the current Game state, and then

1. asks if the player is ready, and waits for them to press enter,

2. deals both the dealer and player 2 cards,

3. reveals the dealer’s first card to the user,

4. plays a round of blackjack (playRound),

5. prints out a message revealing the final Hands along with the Result of
the round,

6. and finally, restarts the gameLoop with the updated Game state.

This gameLoop is used by the main entry point to the program, which prints a
nice welcome message, and then starts the loop with an empty Table.

14

Bonus Exercise 5.4 (5 extra credit). It can happen that both the player and
the dealer would go bust in the same round. Standard rules for blackjack always
have the player go first, and the dealer second. To give an (unfair) advantage to
the dealer, the round is stopped once the player goes bust, immediately giving
the dealer the win even if they would also go bust n the same round.

Implement this dealer advantage by updating your playRound function from
Exercise 5.3 to check the Status returned by both playerTurn and dealerTurn:

1. If playerTurn returns Bust, then print a message telling the user that
"You are bust!". Then immediately return a Lose and the state of the
Game right at the end of the playerTurn, skipping the dealerTurn.

2. Otherwise, playerTurn returns an OK Hand. In this case, continue on to
the dealerTurn as usual.

(a) If dealerTurn returns Bust, then print a similar message telling the
user that "The dealer is bust." and return Win and the state of
the Game at the end of the dealerTurn.

(b) Otherwise, both have an OK Hand. In this case, return the Result of
comparing the two Hands as usual.

End Bonus 5.4

Bonus Exercise 5.5 (5 extra credit). The victor proclaimed by compareHands
in Exercise 5.3 is a simplification of the full game rules. The real game has the
notion of a natural blackjack, which is hand of exactly 2 cards with a total value
of 21. A natural blackjack is only possible with one ace card combined with any
other 10-valued card (a King, Queen, Jack, or numeric 10 card). Blackjack hands
are considered more valuable than any other 21-card hand. For example, the
hand containing exactly A♢ K♣ will beat the hand containing 9♣ J♡ 2♢, even
though they both have the same score of 21.

Because everyone starts with a 2-card hand, the only way to get a natural
blackjack is if those initial 2 cards add up to 21. So the check for natural
blackjacks only need to happen at the very beginning of a round, before anyone
has drawn any cards. If neither player is dealt a natural blackjack, they can
never draw into one. If either player starts a round with a natural blackjack,
then it will beat anything the other player could get, so the player’ and dealer’s
turns are skipped since it is pointless to play the round out.

To check for natural blackjacks, first implement the functions

isBlackjack :: Hand -> Bool
blackjackCheck :: Game a -> Maybe Result

isBlackjack determines if a single Hand counts as a natural blackjack. blackjackCheck
looks at the Game state to see if the Result of the round can already be deter-
mined from the opening hands. blackjackCheck returns

• Just Win if only the player has a natural blackjack,

15

• Just Lose if only the dealer has a natural blackjack,

• Just Tie in the unlikely event that both opening hands are natural black-
jacks, and

• Nothing if neither are natural blackjacks.

Next, add one extra step to the start of playRound that does a blackjackCheck
on the starting Game state. If it returns Nothing, the round proceeds as before.
But if it returns Just a result, then playRound should announce a "Blackjack!"
and return that result. End Bonus 5.5

16

	Dealing Cards (25 points)
	The Dealer's Turn (20 points)
	Talking to the User (30 points+25 extra credit)
	Interpreting Answers (30 points)
	Bonus: Sanitization (25 extra credit)

	The Player's Turn (25 points)
	Putting It All Together (25 points + 10 extra credit)

