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A. Benchmarks
Tables 1 and 2 show the results of the spectral and real NoFib
tests for GHC 7.8.4 modified to use the new Sequent Core version
of the simplifier, versus the baseline GHC 7.8.4. There are wins
and losses; the losses are relatively few but serious (most notably
spectral/rewrite and real/cacheprof).

It is difficult to glean much from the details, largely because
rewriting the simplifier with a new intermediate representation is
such a drastic change. We hope to use the Sequent Core experience
to make more modest changes to the original simplifier, for which it
should be easier to tease out the effects of particular changes.

B. Contification Algorithm
The algorithm A is shown in Figure 9. At each command or
continuation, the traversal produces a triple (F ,G, C) of a free set
F , a good set G, and a contifiable set C, with G ⊆ F and C∩F = ∅.
The free set contains the variables occurring free in the command;
the good set contains just the “good” ones, that is, those variables
that only occur free as tail-called functions; and the contifiable set
contains the functions marked for contification. We assume here that
all binders are distinct.1 For terms, the procedure is the same, except
that onlyF and C are returned—since terms are continuation-closed,
no function occurring free in a term can be contified, so the good
set for a term is always empty.

At each binding let f = v in c, ifA JcK = (F ,G, C), we contify
f (that is, add it to C) if and only if f ∈ G. For recursive bindings,
the procedure is the same, only of course the combined analysis for
the body and the definitions must be used.

The definition of ⊕ says that, in an expression with two subex-
pressions, the good variables are those that are

• good on the left and absent on the right, or
• good on the right and absent on the left, or
• good on both sides.

Alternatively, we could track the free set and the bad set, and
then ⊕ would simply take the unions. Using the good set makes the
algoritm more flexible, however; many extensions require tracking
something about the calls to each function, such as the arity, which
is easy if the good set is represented as the domain of a finite map.

C. Proof of Correspondence (Proposition 1)
The proof is by bisimulation. After establishing some reduction
relations and their algebraic properties, we will define a readback

1 The actual code annotates the binders rather than gathering a set, so it
avoids making this assumption.

function, use it to define a bisimulation, then prove that the bisimu-
lation preserves termination.

C.1 Reduction
We define → as the compatible closure of 7→ along with one
additional rule. Note that while 7→ only relates commands, →
extends to terms and continuations as well.

The new rule is a form of η-rule:

µret.〈v || ret〉 → v (µη)

Applying the µη-rule does not affect observable behavior, but it
will be necessary for relating the two calculi. Note that it is never
a standard reduction (unless it happens to coincide with a standard
µ-reduction).

We now call 7→ standard reduction. Accordingly,→ includes
non-standard reduction; to denote non-standard reduction specifi-
cally, we write . Hence→ is the disjoint union of 7→ and .

To prove standardization, we will also make use of a parallel
reduction relation⇒. Parallel reduction consists of the simultaneous
reduction of some number of redexes, possibly zero, appearing in
the same term. Clearly, parallel reduction sits between reduction
and its reflexive-transitive closure:

→ ⊂⇒ ⊂→?

Finally, we have non-standard parallel reduction, , which
may contract several redexes but not the standard redex.

C.2 Algebraic Properties
We will need a few algebraic properties of the CBN calculus. Most
important is standardization (Proposition 8).

An easy property is that irreducibility is preserved by general
reduction, and unaffected by non-standard reduction:

Lemma 5. If c → c′ then c 67→ implies c′ 67→. Furthermore, if
c c′ then c 67→ iff c′ 67→.

Proof. The second property (if c c′ then c 67→ iff c′ 67→) can
be shown by cases on the possible non-standard reductions, since
a non-standard reduction never introduces or destroys a standard
redex. The first property is implied by the second because when a
command without a standard step is reduced, that reduction must
have been non-standard to begin with.

Also relatively simple is a standard substitution lemma, though
there are fine points to its statement.

Lemma 6 (Substitution). 1. If c→ c′ then c {σ/a} → c′ {σ/a}.
2. If c→ c′ then c {v/x} → c′ {v/x}.
3. If c→ c′ then c {k/ret} → c′ {k/ret}.



Contification analysis of terms: (F , C) = A JvK

A JxK = ({x}, ∅)
A Jλx:τ .vK = (F \ {x}, C) where (F , C) = A JvK
A JΛa:κ.vK = A JvK

A JK ( #»σ , #»v )K = (
⋃

#»F ,
⋃

#»C ) where
#          »

(F , C) =
#        »

A JvK

A Jµret.cK = (F , C) where (F , ∅, C) = A JcK

Contification analysis of continuations: (F ,G, C) = A JkK

A Jv · kK = (F , ∅, C)⊕A JkK where (F , C) = A JvK
A Jσ · kK = A JkK
A JretK = (∅, ∅, ∅)

A
r
case of

#  »

alt
z

=
⊕ #            »

A JaltK

Contification analysis of commands: (F ,G, C) = A JcK

A Jlet bind in cK = A JbindK
AJcK

A J〈v || k〉K = (F ,G, C)⊕A JkK where (F , C) = A JvK

G =

{
{f} if v = f, k =

#»

v′ · ret, |
#»

v′ | = arity(f)

∅ otherwise

A Jjump j #»σ #»v K = (
⋃

#»F ,
⋃

#»C ) where
#          »

(F , C) =
#        »

A JvK

Contification analysis of bindings: (F ,G, C) = A JbindK
(Fb,Gb,Cb)

A Jf :τ = vK
(Fb,Gb,Cb)

= (F ′ \ {f},G′ \ {f}, C′′)

where (F , C) = A JvK

(F ′,G′, C′) = (F , ∅, C)⊕ (Fb,Gb, Cb)
C′′ = C′ ∪ ({f} ∩ Gb)

A Jj:τ = µ̃[ #   »a:κ, #   »x:σ ].cK
(Fb,Gb,Cb)

= (F \ { #»x },G \ { #»x }, C)⊕ (Fb,Gb, Cb)

where (F ,G, C) = A JcK

A
r
rec

{
#              »

f :τ = v
}z

(Fb,Gb,Cb)
= (F ′′ \ { #»

f },G′ \ { #»

f }, C′′′)

where
#          »

(F , C) =
#        »

A JvK

(F ′′,G′, C′′) = (
⋃

#»F , ∅,
⋃

#»C )⊕ (Fb,Gb, Cb)

C′′′ =

{
C′′ ∪ G′ if { #»

f } ⊆ G′

C′′ otherwise

A
r
rec

{
#                                          »

j:τ = µ̃[ #   »a:κ, #   »x:σ ].c
}z

(Fb,Gb,Cb)
= (F ′,G′, C′)

where
#                 »

(F ,G, C) =
#        »

A JcK

(F ′,G′, C′) =
(⊕ #                                                   »

(F \ { #»x },G \ { #»x }, C)
)
⊕ (Fb,Gb, Cb)

Contification analysis of alternatives: (F ,G, C) = A JaltK

A Jx:τ → cK = (F \ {x},G \ {x}, C) where (F ,G, C) = A JcK
A JK ( #   »a:κ, #   »x:τ )→ cK = (F \ { #»x },G \ { #»x }, C) where (F ,G, C) = A JcK

Combination of contification analyses: (F ′,G′, C′) = (F1,G1, C1)⊕ (F2,G2, C2)

(F1,G1, C1)⊕ (F2,G2, C2) = (F1 ∪ F2, (G1 \ F2) ∪ (G2 \ F1) ∪ (G1 ∩ G2), C1 ∪ C2)

Figure 9. The analysis phase A of the contification pass, including the operator ⊕ for combining analyses.



Test Size Allocs Time Elapsed Memory
ansi -0.0% -11.8% 0.000 0.000 0.0%
atom -0.0% 0.0% +0.9% +0.9% 0.0%
awards 0.0% 0.0% 0.000 0.000 0.0%
banner 0.0% 0.0% 0.000 0.000 0.0%
boyer +0.0% 0.0% 0.020 0.020 0.0%
boyer2 -0.3% +5.2% 0.000 0.000 0.0%
calendar -0.0% -0.6% 0.000 0.000 0.0%
cichelli +0.2% +2.3% 0.040 0.040 0.0%
circsim +0.0% -0.1% -5.5% -5.5% +5.9%
clausify +0.0% 0.0% 0.020 0.020 0.0%
comp_lab_zift -0.0% +0.1% 0.100 0.100 +14.3%
constraints -0.0% -2.9% -6.3% -6.2% 0.0%
cryptarithm1 0.0% 0.0% -0.7% -0.7% 0.0%
cryptarithm2 -0.2% +0.0% 0.010 0.010 0.0%
cse -0.1% -1.0% 0.000 0.000 0.0%
eliza -0.0% -1.8% 0.000 0.000 0.0%
event -0.0% -2.2% 0.074 0.074 0.0%
expert +0.0% -0.6% 0.000 0.000 0.0%
fft +0.1% +1.3% 0.020 0.020 -10.0%
fft2 -0.0% +0.1% 0.030 0.030 0.0%
fibheaps 0.0% 0.0% 0.020 0.020 0.0%
fish 0.0% 0.0% 0.010 0.010 0.0%
gcd -0.0% 0.0% 0.016 0.016 0.0%
genfft -0.0% -0.0% 0.020 0.020 0.0%
ida +0.0% +1.0% 0.050 0.050 0.0%
integer +0.0% 0.0% -0.7% -0.9% 0.0%
knights 0.0% -0.0% 0.000 0.000 0.0%
lcss -0.0% -0.0% -2.6% -2.6% 0.0%
life -0.0% -0.0% 0.140 0.140 0.0%
listcompr +0.0% +0.0% 0.050 0.050 0.0%
listcopy +0.0% +0.0% 0.050 0.050 0.0%
mandel -0.0% -0.0% 0.030 0.030 0.0%
mandel2 -0.0% -0.0% 0.000 0.000 0.0%
minimax +0.0% +0.0% 0.000 0.000 0.0%
multiplier +0.0% -3.1% 0.070 0.070 0.0%
nucleic2 0.0% 0.0% 0.030 0.030 0.0%
para +0.3% -2.7% 0.162 0.162 0.0%
parstof +0.0% -0.3% 0.000 0.000 0.0%
power +0.1% -0.0% -3.1% -3.9% 0.0%
pretty -0.0% +0.0% 0.000 0.000 0.0%
primetest -0.0% -0.0% 0.056 0.056 0.0%
puzzle -0.0% -17.1% 0.082 0.082 0.0%
rewrite +0.0% +19.2% 0.010 0.010 0.0%
scc 0.0% 0.0% 0.000 0.000 0.0%
sched 0.0% 0.0% 0.010 0.010 0.0%
simple -0.6% -4.9% 0.150 0.150 +3.4%
solid -0.0% 0.0% 0.080 0.080 0.0%
sorting 0.0% 0.0% 0.000 0.000 0.0%
sphere +0.0% 0.0% 0.022 0.022 0.0%
transform -0.2% -0.6% 0.198 0.200 0.0%
treejoin +0.0% 0.0% 0.090 0.090 0.0%
typecheck -0.0% -0.0% 0.132 0.134 0.0%
wang -0.0% 0.0% 0.064 0.064 +5.0%
wave4main +0.0% -0.0% 0.130 0.130 0.0%
Min -0.6% -17.1% -6.3% -6.2% -10.0%
Max +0.3% +19.2% +0.9% +0.9% +14.3%
Geometric Mean -0.0% -0.5% -2.6% -2.7% +0.3%

Table 1. Results for the spectral NoFib tests.

Test Size Allocs Time Elapsed Memory
anna -0.1% +1.2% 0.152 0.152 0.0%
bspt +1.8% 0.0% 0.020 0.020 0.0%
cacheprof +0.5% +19.7% +10.9% +10.9% +4.5%
compress +0.1% 0.0% -0.6% -0.6% 0.0%
compress2 -0.2% 0.0% +0.5% +0.5% 0.0%
fem +0.1% -0.1% 0.046 0.046 0.0%
fluid +0.4% +0.1% 0.010 0.010 0.0%
fulsom +0.7% -8.8% -4.9% -4.9% -7.1%
gamteb -0.1% +0.1% 0.056 0.056 0.0%
gg -0.1% +2.3% 0.028 0.028 0.0%
grep +0.0% 0.0% 0.000 0.000 0.0%
hidden -0.2% -0.9% +0.7% +1.0% 0.0%
hpg -0.1% -0.2% 0.132 0.132 0.0%
infer -0.5% -0.1% 0.100 0.100 0.0%
lift -0.2% -1.2% 0.000 0.000 0.0%
maillist +0.0% -0.0% 0.060 0.060 +2.6%
mkhprog -0.1% -0.0% 0.000 0.000 0.0%
parser -0.2% +2.1% 0.050 0.050 0.0%
pic -0.0% -0.7% 0.010 0.010 0.0%
prolog +0.2% +0.3% 0.000 0.000 0.0%
reptile +0.1% +0.0% 0.022 0.022 0.0%
rsa -0.0% -0.0% 0.010 0.010 0.0%
scs +0.2% -0.6% -0.0% -0.0% 0.0%
symalg -0.2% -0.0% 0.000 0.000 0.0%
veritas +0.4% -0.1% 0.000 0.000 0.0%
Min -0.5% -8.8% -4.9% -4.9% -7.1%
Max +1.8% +19.7% +10.9% +10.9% +4.5%
Geometric Mean +0.1% +0.4% +1.0% +1.0% -0.0%

Table 2. Results for the real NoFib tests.

4. If c→ c′ then c
{
c′′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}
→?

c′
{
c′′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

.

5. If v → v′ then c {v/x} →? c {v′/x}.
6. If k → k′ then c {k/ret} →? c {k′/ret}.
7. If c′ → c′′ then c

{
c′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}
→?

c
{
c′′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

.

Proof. By mutual induction. The one subtlety is that substituting
a type, term, or continuation into a command cannot duplicate or
destroy redexes in the original command, but substituting a join
point can. Hence clauses 1–3 specify→ but clause 4 specifies→?.

Here is the crucial case of clause 4: Suppose c ≡ jump j
#»

σ′ #»

v′ .
Since c cannot take a standard reduction, the reduction must occur
in some subterm. Hence

#»

v′ →
# »

v′′ and c′ ≡ jump j
#»

σ′ # »

v′′ . Now:

c
{
c′′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

≡ c′′
#             »{
σ′/a

} #             »{
v′/x

}
→? c′′

#             »{
σ′/a

} #              »{
v′′/x

}
(by 5)

≡ c′
{
c′′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

Parallel reduction enjoys a similar substitution lemma (in fact, it
is why parallel reduction is useful!).

Lemma 7. Let z denote any term, continuation, or command, and
likewise z′.

1. If z ⇒ z′, then z {τ/a} ⇒ z′ {τ/a}.
2. If z ⇒ z′ and v ⇒ v′, then z {v/x} ⇒ z′ {v′/x}.
3. If z ⇒ z′ and k ⇒ k′, then z {k/ret} ⇒ z′ {k/ret}.



c c′

d d′

?

? ?
?

Figure 10. Core of standardization proof.

4. If z ⇒ z′ and c⇒ c′, then z
{
c

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}
⇒

z′
{
c′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

.

Proof. Each proceeds by induction, with 4 relying on 1 and 2. We
show the crucial case in 4.

Suppose z ≡ jump j
#»

σ′ #»

v′ . Hence
#               »

v′ ⇒ v′′ and z′ ≡ jump j
#»

σ′ # »

v′′ .
Then:

z
{
c

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

≡ c
#             »{
σ′/a

} #             »{
v′/x

}
⇒ c′

#             »{
σ′/a

} #              »{
v′′/x

}
(by 1 and 2)

≡ z′
{
c′

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

Now we have the tools to prove standardization:

Proposition 8 (Standardization). If c →? c′ 67→ then c 7→? c1 67→
and c1 →? c′.

We will prove Proposition 8 in several parts. The crux is the
diagram in Fig. 10, which allows us to take any series of standard
reductions and move them upward, postponing any non-standard
reductions until later.

A direct attempt at this diagram will fail, however, as we cannot
get a footing. What holds for single reductions is:

c c′

d d′

?

?

Moving a standard reduction forward may produce extra work, so
there may be extra steps between c′ and d′; also, the non-standard
reduction may happen to be the next standard reduction, leading to
more standard steps between c and c′. But this diagram cannot be
“tiled” by induction to produce Fig. 10.

Happily, the extra work created by moving a standard reduction
forward always has a particular form—the duplicated redexes can all
be reduced in parallel. Thus we can obtain a more helpful diagram
using parallel reduction.

Lemma 9. If c⇒ d and d 7→ d′, then c 7→? c′ with c′ ⇒ d′.

c c′

d d′

?

Proof. Proceed by induction on the number of reductions in c⇒ d.
If c ≡ d, we can take c′ ≡ d and we are done.

Otherwise, consider whether c⇒ d takes the standard reduction.
If it does, we can refactor it as c 7→ c1 ⇒ d:

c c1 c′

d d′

?

Since c1 ⇒ d by fewer reductions than c ⇒ d, we can finish
using the induction hypothesis.

Otherwise, since we are not performing the standard reduction
(which is always at the top level in our language), c and d have the
same top-level form, simplifying the case analysis:

• The case where c is a jump is impossible, since then d would
have to be a jump and a jump cannot take a standard reduction.
• Suppose c ≡ letx = v in c0 and d ≡ letx = v′ in c′0

with v ⇒ v′ and c0 ⇒ c′0. Then d 7→ d′ ≡ c′0 {v′/x}. Let
c′ ≡ c0 {v/x}; then c 7→ c′, and by Lemma 7, c′ ⇒ d′.
• The case for c ≡ let j = µ̃[ #»a , #»x ].d0 in c0 is similar.
• Finally, we have that c ≡ 〈v || k〉 and d ≡ 〈v′ || k′〉 with v ⇒ v′

and k ⇒ k′. Continue by case analysis on v:
The case v ≡ x is impossible since 〈x || k′〉 cannot take a
standard reduction.
If v ≡ µret.c0, we must account for a possible µη-reduction.
In this case, c0 ≡ 〈v0 || ret〉 and v0 ⇒ v′.

v0 k c ≡〈µret. 〈v0 || ret〉 || k〉 〈v0 || k〉

v′ k′ d ≡〈v′ || k′〉 d′

Since we have removed one reduction, we can use the
induction hypothesis to finish:

c ≡〈µret. 〈v0 || ret〉 || k〉 〈v0 || k〉 c′

d ≡〈v′ || k′〉 d′

?

If there is no µη-reduction in v, then v′ ≡ µret.c′0 with
c0 ⇒ c′0:

c0 k c ≡〈µret.c0 || k〉 c0 {k/ret}

c′0 k′ d ≡〈µret.c′0 || k′〉 c′0 {k′/ret}

Here we take c′ ≡ c0 {k/ret} and finish by Lemma 7.
In the other cases, v is a WHNF, so k is a matching con-
tinuation (that is, not ret and not a mismatched case). We
show the case for v ≡ λx.v0; the Λ-case is simpler, and the
constructor case is more complex but no more illuminating.

v0, v1, k0 〈λx.v0 || v1 · k0〉 〈v0 {v1/x} || k0〉

v′0, v
′
1, k

′
0 〈λx.v′0 || v′1 · k0〉 〈v′0 {v′1/x} || k′0〉

As before, along the right side we use Lemma 7.

Now we need to reconcile Lemma 9 with Fig. 10. First, we
can break down⇒ into standard reduction ( 7→) followed by non-
standard parallel reduction ( ):

Lemma 10. If c⇒ c′ then c 7→? c′.

Proof. By induction on the number of reductions taken by the
derivation of c⇒ c′. If c ≡ c′, we are done. Otherwise, if c⇒ c′



does not take the standard reduction, we are again done. Finally,
if it does take the standard reduction, then c 7→ c1 ⇒ c′ where
c1 ⇒ c′ takes fewer reductions, so we finish using the induction
hypothesis.

Now we can move Lemma 9 closer by referring to non-standard
(parallel) reduction:

Lemma 11. If c d and d 7→ d′, then c 7→? c′ with c′ d′.

c c′

d d′

?

Proof. Immediate from Lemmas 9 and 10.

This is the diagram that we can “tile” to produce Fig. 10.

Lemma 12. If c ? d and d 7→? d′, then c 7→? c′ with c′ ? d′

(see Fig. 10).

Proof. Follows from Lemma 11. By induction, its diagram can be
“tiled horizontally” to give:

c c′

d d′

?

?

Now that the top and bottom match, we can “tile vertically”:

c c′

d d′

?

? ?
?

But then ?= ?, and we’re done.

Now we are ready to prove standardization.

Proof of Proposition 8.

c c1 67→

c′ 67→

?

? ?

Proceed by induction on c →? c′. If there are no standard
reductions in the sequence, then we can take c1 ≡ c and we’re
done by Lemma 5.

Thus assume there is at least one standard reduction; isolating
the first one, we have c ? d 7→ d′ →? c′.

c

d d′

c′ 67→

?
?

?

We can fill in the upper-left corner by Lemma 12 and the lower-right
corner by the induction hypothesis:

c

d d′ 67→

c′ 67→

?
?

?

?
?

? ?

Finally, applying Lemma 12 again, along with Lemma 5, gives us
our c1:

c c1 67→

d d′ 67→

c′ 67→

?
?

?

?

?

?
?

? ?

We will also have occasion to move a standard reduction after a
non-standard one:

Lemma 13. If c 7→ c′ and c→? d, then d 7→0/1 d′ with c′ →? d′.

c c′

d d′
? ?

0/1

Proof. Proceed by induction on c→? d. If c ≡ d, then trivially we
take d′ ≡ c′.

Now suppose c → c1 →? d. By the induction hypothesis, if
we can find c′1 with c′ →? c′1 and c1 7→ c′1, then we get d′ with
d 7→0/1 d′ and c′1 →? d′ and we’re done.

c c′

c1 c′1

d d′

?

? ?
0/1

Alternatively, if we find that c′1 ≡ c1 (i.e., that c′ →? c1), then
we can pick d′ ≡ d as well.

Now, if in fact c 7→ c1, then we must have that c′ ≡ c1 so
we take c′1 ≡ c1. Otherwise, c → c1 by a non-standard reduction.
Considering the cases for c 7→ c1, none can be interfered with
by a reduction in a subterm, and such a reduction can always be
performed afterward (though it may be replicated if the subterm is
a substituend in the right-hand side of the rule). Thus the standard
reduction can still take place in c1, with the nonstandard reduction
postponed to part of c′ →? c′1.

C.3 Readback Function
To show the correspondence between the call-by-name and call-
by-need calculi, we will use a bisimulation. Key to defining the
bisimulation will be our readback function, defined in Fig. 11.

The key property of the readback is this:

Lemma 14. If

〈H; J ,R; c〉 〈H′; J ′,R′; c′〉,



U(〈H; J ,R; c〉) = UH(H)(UR(R)(UJ(J )(c)))

UH(ε) = id

UH(H, x = v) = UH(H) ◦ {v/x}
UH(H, x = •) = UH(H)

UJ(ε) = id

UJ(J , j = µ̃[ #   »a:κ #   »x:τ ].c) = UJ(J ) ◦
{
c

#          »

{τ/a}
#          »

{v/x}/jump j #»τ #»v
}

UR(ε)(c) = id

UR((k,J ) : R)(c) = UR(R)(c {UJ(J )(k)/ret})
UR(updx : R)(c) = (UR(R)(c)) {µret.c/x}

Figure 11. Readback function.

then

U(〈H; J ,R; c〉)→? U(〈H′; J ′,R′; c′〉).

First, we will need a simple fact about reduction:

Lemma 15. If c→ c′, then

1. UH(H)(c)→ UH(H)(c′)
2. UJ(J )(c)→? UJ(J )(c′)
3. UR(R)(c)→? UR(R)(c′)

Proof. Parts 1 and 2 are immediate from Lemma 6, since UH and
UJ produce substitutions.

For part 3, note that UR(R)(c) always has the form cσ for
some substitution σ (which may include c in a substituend), so the
substitution argument still applies—except that multiple reductions
may be necessary since c may be copied.

Proof of Lemma 14. By case analysis on the reduction:

• (β→)

U(〈H; J ,R; 〈λx:τ .v1 || v2 · k〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈λx:τ .v1 || v2 · k〉)))
→? UH(H)(UR(R)(UJ(J )(〈v1 {v2/x} || k〉)))
≡ (UH(H) ◦ {v2/x})(UR(R)(UJ(J )(〈v1 || k〉)))
≡ U(〈H, x = v2; J ,R; 〈v1 || k〉〉)

• (β∀)

U(〈H; J ,R; 〈Λa:κ.v || τ · k〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈Λa:κ.v || τ · k〉)))
→? UH(H)(UR(R)(UJ(J )(〈v {τ/a} || k〉)))
≡ U(〈H; J ,R; 〈v {τ/a} || k〉〉)

• Similarly for casecons and casedef .

• (µ)

U(〈H; J ,R; 〈µret.c || k〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈µret.c || k〉)))
≡ UH(H)(UR(R)(〈µret.c || UJ(J )(k)〉))
→? UH(H)(UR(R)(c {UJ(J )(k)/ret}))
≡ UH(H)(UR((k,J ) : R)(c))

≡ UH(H)(UR((k,J ) : R)(UJ(ε)(c)))

≡ U(〈H; ε, (k,J ) : R; c〉)

Note that in pushing the substitution UJ(J ) into the continua-
tion of the command above, specifically:

UJ(J )(〈µret.c || k〉) ≡ 〈µret.c || UJ(J )(k)〉

we exploit the fact that the term µret.c must be continuation-
closed, so that it is unaffected by UJ(J ).
• (jump)

Assuming that

j = µ̃[ #   »a:κ, #   »x:τ ].c ∈ J ,

U(〈H; J ,R; jump j #»σ #»v 〉)
≡ UH(H)(UR(R)(UJ(J )(jump j #»σ #»v )))

≡ UH(H)(UR(R)(UJ(J )(c
#          »

{σ/a}
#          »

{v/x})))

≡ (UH(H) ◦
#          »

{v/x})(UR(R)(UJ(J )(c
#          »

{σ/a})))

≡ U(〈H, #         »x = v ; J ,R; c
#          »

{σ/a}〉)

• (lookup)
Assuming that

x = V ∈ H,

U(〈H; J ,R; 〈x || k〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈x || k〉)))
≡ UH(H)(UR(R)(UJ(J )(〈V || k〉)))
≡ U(〈H; J ,R; 〈V || k〉〉)

• (lazysubst)
Assuming that

x = K ( #»σ , #»v ) ∈ H,



U(〈H; J ,R; 〈x || k〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈x || k〉)))
≡ UH(H, x = K ( #»σ , #»v ))

(UR(R)(UJ(J )(〈K ( #»σ , #»v ) || k〉)))
≡ (UH(H) ◦ {K ( #»σ , #»v )/x})

(UR(R)(UJ(J )(〈K ( #»σ , #»v ) || k〉)))

≡ (UH(H) ◦ {K ( #»σ , #»v )/x} ◦
#          »

{v/y})
(UR(R)(UJ(J )(〈K ( #»σ , #»y ) || k〉)))

≡ (UH(H) ◦
#          »

{v/y} ◦ {K ( #»σ , #»y )/x})
(UR(R)(UJ(J )(〈K ( #»σ , #»y ) || k〉)))

≡ 〈H, #         »y = v, x = K ( #»σ , #»y ); J ,R; 〈K ( #»σ , #»y ) || k〉〉
• (force)

Assuming that
x = µret.c ∈ H,

U(〈H; J ,R; 〈x || k〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈x || k〉)))
≡ UH(H)(UR(R)(UJ(J )(〈µret.c || k〉)))
≡ UH(H)(UR(R)(〈µret.c || UJ(J )(k)〉))
→? UH(H)(UR(R)(c {UJ(J )(k)/ret}))
≡ UH(H)(UR((k,J ) : R)(c))

≡ UH(H, x = •, x = µret.c)(UR((k,J ) : R)(c))

≡ UH(H, x = •)((UR((k,J ) : R)(c)) {µret.c/x})
≡ UH(H, x = •)(UR(updx : (k,J ) : R)(c))

≡ UH(H, x = •)(UR(updx : (k,J ) : R)(UJ(ε)(c)))

≡ U(〈H, x = •; ε,updx : (k,J ) : R; c〉)
• (update)

U(〈H; J ,updx : R; 〈W || ret〉〉)
≡ UH(H)(UR(updx : R)(UJ(J )(〈W || ret〉)))
≡ UH(H)(UR(R)(UJ(J )(〈W || ret〉)) {µret.〈W || ret〉/x})
→? UH(H)(UR(R)(UJ(J )(〈W || ret〉)) {W/x})
≡ (UH(H) ◦ {W/x})(UR(R)(UJ(J )(〈W || ret〉))
≡ U(〈H, x = W ; J ,R; 〈W || ret〉〉)

• (ret)

U(〈H; J , (k′,J ′) : R; 〈W || ret〉〉)
≡ UH(H)(UR(R)(UJ(J )(〈W || ret〉))

{
UJ(J ′)(k′)/ret

}
)

≡ UH(H)(UR(R)(
〈
W
∣∣∣∣UJ(J ′)(k′)

〉
)

≡ UH(H)(UR(R)(UJ(J ′)(
〈
W
∣∣∣∣ k′〉))

≡ U(〈H; J ′,R; 〈W || k′〉〉)
Note that in discarding UJ(J ) above, we exploit the fact thatW
is continuation-closed, and hence the substitution UJ(J ) was
accomplishing nothing. Similarly, W is unaffected by UJ(J ′),
so we can move the latter out.
• (letval)

U(〈H; J ,R; letx = v in c〉)
≡ UH(H)(UR(R)(UJ(J )(letx = v in c)))

→? UH(H)(UR(R)(UJ(J )(c {v/x})))
≡ (UH(H) ◦ {v/x})(UR(R)(UJ(J )(c)))

≡ U(〈H, x = v; J ,R; c〉)
• Similarly for letcont .

We will also require that the readback respects termination:

Lemma 16. If 〈H; J ,R; c〉 6 , then U(〈H; J ,R; c〉) 67→.

Proof. There are two forms of irreducible state in the call-by-need
semantics: a missing case alternative and a WHNF passed to ret
in an empty stack. The former reads back as a similarly stuck term,
and the latter reads back as a WHNF.

C.4 Bisimulation
Now we use the readback to define our bisimulation:

Definition 17. Let ∼ relate call-by-name terms to call-by-need
states, such that c ∼ S when c→? U(S).

Lemma 18 (Bisimulation). Let c ∼ S.

1. If c 7→ c′, then S  ? S ′ with c′ ∼ S ′.
2. If S  S ′, then c 7→? c′ with c′ ∼ S ′.

c c′

d d′

S S ′

? ?

U U
?

c c′

d d′

S S ′

?

? ?

U U

Proof. 2 is a corollary of Lemma 14; we simply take c′ ≡ c so that
we get c ≡ c′ →? d→? d′.2

For 1, suppose c ∼ S and c 7→ c′. By definition of ∼, we have
c→? d ≡ U(S):

c c′

d

S

?

U

By Lemma 13, we have d 7→0/1 d′ ←? c′:

c c′

d d′

S

? ?

U

0/1

If d ≡ d′, then we can pick S ′ ≡ S and we’re done. Otherwise,
assume d 7→ d′. It will suffice to show that S  ? S ′ with
U(S ′) ≡ d′:

c c′

d d′

S S ′

? ?

U U
?

2 Allowing c 7→? c′ is not necessary here, but it is pro forma for a
bisimulation.



As noted before,U produces a substitution—U(〈H; J ,R; c〉) ≡
cσ for some σ. In general, for a substitution σ, if cσ 7→ c′σ, then at
least one of the following is true:

1. c ≡ 〈v || k〉 7→ c′.
2. c ≡ jump j #»σ #»v and j ∈ domσ.
3. c ≡ 〈v || ret〉 and ret ∈ domσ.
4. c ≡ 〈x || k〉 and x ∈ domσ.

The last three cases may apply multiple times, but not infinitely
many as bindings are not recursive (each substitution reduces the
size of the context). Eventually we must land on case 1. Thus we
may proceed by induction on the number of substitutions required
to expose a redex.

In case 1, we have c ≡ 〈v || k〉 7→ c′. This means that S ≡
〈H; J ,R; 〈v || k〉〉, and the substitution produced was not crucial
to forming the redex. Therefore one of the “external” reduction
rules—namely β→, β∀, casecons , casedef , µ, letval , and letcont—
must apply; each of them makes precisely the same substitutions
as a corresponding call-by-name rule, only delaying some work by
adding toH, J , orR.

In case 2, the jump rule applies, and we apply the induction
hypothesis. Similarly, case 3 is covered by some number of updates
(each of which consumes an update frame) followed by a ret, and
case 4 is covered by one of lookup, lazysubst, and force.

Lemma 19 (Bisimulation respects termination). Let c ∼ S.

1. If c 67→, then S  ?6 .
2. If S 6 , then c 7→?67→.

Proof. 1. By Lemma 5, U(S) 67→. From there, the case analysis
is similar to that for Lemma 18, as internal reductions perform
whatever substitutions are necessary for the stuck command to
appear.

2. We know that c→? U(S). By Lemma 16, we have that U(S) 67→;
then the result holds by standardization (Proposition 8).

The proposition is now reduced to a corollary:

Proof of Proposition 1. Since c ∼ 〈ε; ε, ε; c〉, both directions fol-
low directly from Lemmas 18 and 19 by induction on the reduction
sequence.

D. Proof of Type Safety (Proposition 2)
As is typical when proving type safety, we will require a lemma
dealing with substitution and typing.

Lemma 20 (Substitution). 1. If Γ ` τ : κ, then:
(a) If Γ, a : κ ` σ : κ′, then Γ {τ/a} ` σ {τ/a} : κ′.
(b) If Γ, a : κ ` v : σ, then Γ {τ/a} ` v {τ/a} : σ {τ/a}.
(c) If Γ, a : κ | k : σ ` ∆, then Γ {τ/a} | k {τ/a} :

σ {τ/a} ` ∆ {τ/a}.
(d) If c : (Γ, a : κ ` ∆), then c {τ/a} : (Γ {τ/a} `

∆ {τ/a}).
2. If Γ ` v : τ , then:

(a) If Γ, x : τ ` v′ : σ, then Γ ` v′ {v/x} : σ.
(b) If Γ, x : τ | k : σ ` ∆, then Γ | k {v/x} : σ ` ∆.
(c) If c : (Γ, x : τ ` ∆), then c {v/x} : (Γ ` ∆).
(d) For any k, v ≡ v {k/ret}.
(e) For any c and j, v ≡ v

{
c

#          »

{σ/a}
#            »

{v′/x}/jump j #»σ
#»

v′
}

.

3. If Γ | k : τ ` ∆, ret : σ, then:
(a) If Γ | k′ : σ′ ` ∆, ret : τ , then Γ | k′ {k/ret} : σ′ `

∆, ret : σ.

(b) If c : (Γ ` ∆, ret : τ), then c {k/ret} : (Γ ` ∆, ret : σ).
4. If c : (Γ, #      »a : κ, #      »x : τ ` ∆), then:

(a) If Γ | k : σ′ ` ∆, j : ∃ #   »a:κ.( #»τ ), then
Γ | k

{
c

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

: σ′ ` ∆.

(b) If c′ : (Γ ` ∆, j : ∃ #   »a:κ.( #»τ )), then
c′
{
c

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

: (Γ ` ∆).

Proof. A series of straightforward (if large) mutual inductions. 2(d)
and 2(e) are trivial since well-typed terms have no free continu-
ation variables. 4 relies on the first three to handle the structural
substitution.

For example, in 4(b), for the case where c′ ≡ jump j #»σ #»v , we
have

c′
{
c

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}
≡ c

#          »

{σ/a}
#          »

{v/x}

The result then follows by (repeated applications of) 1(d) and
2(c).

Proof of Proposition 2. 1. A simple case analysis on c:
• If c is a let, one of the let rules applies.
• c cannot be a jump because its context has no join variables.
• Suppose c ≡ 〈v || k〉. Then v is not a variable since it is

closed. If it is a µ-abstraction, we can reduce no matter what
k is. Otherwise, v is a WHNF; if k is ret, we are done, and
otherwise either we can reduce or k is a stuck case.

2. An easy case analysis, applying Lemma 20 in each case.

E. Proof of Round-Trip Equivalence
(Proposition 3)

E.1 Equational Reasoning
As is standard, we will avoid proving observational equivalence
directly and instead rely on equational reasoning. To this end, we
define equality in Sequent Core (=) as the reflexive-transitive-
symmetric closure of→ as defined in Section C.1. Note that the
reduction theory of Sequent Core is confluent (here z and z′ may be
terms, continuations, or commands).

Proposition 21 (Confluence). If z1 ←? z →? z2 then there is a z′

such that z1 →? z′ ←? z2.

Proof. All reduction rules are left-linear, and there are no critical
pairs. In particular, the only overlapping redexes are between µ
reduction and µη reduction, but they lead to exactly the same result:

〈µret. 〈v || ret〉 || k〉 → 〈v || k〉

It then follows that the parallel reduction relation also defined in
Section C.1 has the diamond property:

z

z1 z2

z′

And thus the single-step reduction relation is confluent.

Standardization (Proposition 8) and confluence (Proposition 21)
then give us license to use equational reasoning to prove observa-
tional equivalence:

Proposition 22. If z = z′, then z ∼= z′.



E ∈ EvalCxt ::= � | E e | caseE of
#  »

alt

W ∈WHNF ::= λx:τ .e | Λa:κ.e | x | K #»σ #»e

(λx:τ .e) e′ 7→ e
{
e′/x

}
(Λa:κ.e) σ 7→ e {σ/a}

caseK #»σ #»e of
#  »

alt 7→ e′
#          »

{σ/b}
#          »

{e/x} K
#  »

b:κ #   »x:τ → e′ ∈ #  »

alt

caseW of
#  »

alt 7→ e′ {W/x} x→ e′ ∈ #  »

alt

letx:τ = e in e′ 7→ e′ {e/x}
E[e] 7→ E[e′] e 7→ e′

Figure 12. Call-by-name operational semantics for Core

Proof. Suppose z = z′ and, without loss of generality for arbitrary
C, C[z] 7→? c 67→. To show z ∼= z′, we need to show that there is a
c′ such that C[z′] 7→? c′ 67→. By confluence (Proposition 21), z →?
z1 ←? z′, so since→ is a congruence, C[z]→?C[z1]←?C[z′].

C[z] c 67→

C[z′] C[z1]

?

?

?

Invoking confluence again, we get c →? c1 ←? C[z1]. By
Lemma 5, c1 67→. Now standardization (Proposition 8) gives us
c′ with C[z′] 7→? c′ 67→.

C[z] c 67→

C[z1] c1 67→

C[z′] c′ 67→

?

?

?
?

?

?

?

In addition to the equational reasoning about Sequent Core
terms (and commands and continuations), we will also need to
reason equationally about Core terms to establish the round-trip
equivalence. The theory for Core equations is built up in the same
way as we did for Sequent Core. In particular, we equip Core
with a standard call-by-name operational semantics ( 7→), with the
basic single-step rules and compatible closure under evaluation
contexts illustrated in Figure 12. For the general reduction of Core
expressions (→), we take the compatible closure of the single-
step operational relation ( 7→) along with the additional rule for
performing a generalized case-of-case:

E[case e′ of
#               »
pat → e]→ case e′ of

#                       »

pat → E[e]

As before, we write the reflexive-transitive closures of 7→ and→
for Core as 7→? and →?, respectively, and the reflexive-transitive-
symmetric closure of→ as =. Note that other forms of commutative
conversions besides the generalized case-of-case hold up to equa-
tional reasoning due to other steps from the operational semantics,
including:

E[letx:τ = e′ in e] = letx:τ = e′ inE[e]

E[(λx:τ .e) e′] = (λx:τ .E[e]) e′

E[(Λa:κ.e) σ] = (Λa:κ.E[e]) σ

E[case e′ of
#               »
pat → e] = case e′ of

#                       »

pat → E[e]

The first and the last equations in particular will be useful for
reflecting the µ-reduction of Sequent Core back into Core.

Just like with Sequent Core, the standard semantics of Core
enjoys both confluence and standardization. Therefore equational
reasoning in Core is a valid method of establishing an observational
equivalence in Core.

Proposition 23 (Confluence of Core). If e1 ←? e→? e2 then there
is an e′ such that e1 →? e′ ←? e2.

Proposition 24 (Standardization of Core). If e →? e′ 67→? then
e→? e1 67→? and e1 →? e′.

Proposition 25. If e = e′ then e ∼= e′.

Proof. The same reasoning as for Proposition 22, except for using
confluence (Proposition 23) and standardization (Proposition 24)
for Core instead of for Sequent Core.

E.2 Proof
For simplicity, we will prove round-trip equivalence for the compo-
sitional translation S rather than the administrative-free translation
Sa. In other words, we will use the following fact:

Proposition 26. S JeK = Sa JeK.

Proof. Note that the Sa transformation has two forms on expres-
sions:

Sa JeK Sa JeK k

It can be shown simultaneously that both S JeK = Sa JeK and〈
S JeK

∣∣∣∣ k〉 = Sa JeK k hold by induction on the Core expression e.
The most common difference between S JeK and Sa JeK is that S JeK
µ-reduces to Sa JeK. For example, in the case where e ≡ e1 e2, we
have:〈
S Je1 e2K

∣∣∣∣ k〉 ≡ 〈µret. 〈S Je1K
∣∣∣∣S Je2K · ret

〉 ∣∣∣∣ k〉
=
〈
S Je1K

∣∣∣∣S Je2K · k
〉

= Sa Je1K (Sa Je2K · k) (by I.H.)
≡ Sa Je1 e2K k

The only other difference to account for is the shrink operation,
which is undone by inlining the created let bindings.

To make full use of this equivalence, we need to know that D
preserves this equality, at least for programs without join points.
(Join points can be accommodated, but it would complicate the
proof.)

Lemma 27. In the join-point-free fragment:

1. If v = v′, then D JvK = D Jv′K.
2. If k = k′ and e = e′, then D JkK [e] = D Jk′K [e′].
3. If c = c′, then D JcK = D Jc′K.

Proof. By mutual induction on the derivation of =. Because the D
translation is compositional and hygienic (it does not cause escape
or capture of static variables), it suffices to show that each reduction
rule is preserved. Crucially, we must deal with how translation
interacts with continuation substitution. We claim:

D Jc {k/ret}K = D JkK [D JcK]

D
q
k′ {k/ret}

y
[e] = D JkK [D

q
k′

y
[e]]

The claim is proved by mutual induction. Important cases:



• For c ≡ 〈v || k′〉:
D

q〈
v
∣∣∣∣ k′〉 {k/ret}y

≡ D
q
k′ {k/ret}

y
[D JvK]

= D JkK [D
q
k′

y
[D JvK]] (by I.H.)

≡ D JkK [D
q〈
v
∣∣∣∣ k′〉y]

• For k′ ≡ v · k′′:
D

q
(v · k′′) {k/ret}

y
[e]

≡ D
q
v · k′′ {k/ret}

y
[e]

≡ D
q
k′′ {k/ret}

y
[�D JvK][e]

≡ D
q
k′′ {k/ret}

y
[e D JvK]

= D JkK [D
q
k′′

y
[e D JvK]] (by I.H.)

≡ D JkK [D
q
k′′

y
[�D JvK][e]]

≡ D JkK [D
q
v · k′′

y
[e]]

• For k′ ≡ case of
#               »
pat → c (letting p stand for a pattern, which

may be a default pattern):

D
q
case of

#               »
pat → c {k/ret}

y
[e]

≡ (case�of
#                                                 »

pat → D JcK) {k/ret}[e]

≡ case�of
#                                              »

pat → D Jc {k/ret}K [e]

≡ case eof
#                                              »

pat → D Jc {k/ret}K

= case eof
#                                             »

pat → D JkK [D JcK] (by I.H.)

← D JkK [case eof
#                          »

pat → D JcK ]

≡ D JkK [(case�of
#                          »

pat → D JcK)[e]]

≡ D JkK [D
q
case of

#               »
pat → c

y
[e]]

Note that we have made use of the extra reduction rule to perform
the case-of-case transform.

With the claim proved, we can handle µ-reduction. If c 7→ c′ by
µ, then c ≡ 〈µret.c′′ || k〉 and c′ ≡ c′′ {k/ret}. Then:

D
q〈
µret.c′′

∣∣∣∣ k〉y
≡ D JkK [D

q
µret.c′′

y
]

≡ D JkK [D
q
c′′

y
]

= D
q
c′′ {k/ret}

y

The other cases of reduction are straightforward.

Now we are prepared to show thatD
q
Sa JeK

y
= e. To show the

other direction, that Sa
q
D JvK

y
= v, we must deal with the erasure

of join points—since our direct-style language has no join points,
we translate them back as ordinary functions. We can describe the
effect this has in terms of the sequent calculus; this will simplify the
proofs greatly.

Definition 28. Define the decontification function V J−K as homo-
morphic on all syntax except

V Jj = µ̃[ #»a , #»x ].cK ≡ j =
#    »
Λa.

#   »

λx.µret.V JcK

and

V Jjump j #»σ #»v K ≡
〈
j
∣∣∣∣∣∣ #»σ ·

#         »

V JvK · ret
〉
.

Decontification is purely syntactic—it does not affect the observ-
able behavior of the program.

Lemma 29. For all v, k, and c with no free continuation variables,

1. V JvK = v,
2. V JkK = k, and
3. V JcK = c.

Proof. To investigate the effect of structural substitution versus
substitution of a decontified function, we will need a version of V
that only decontifies some variables. Hence for each set of variables
ρ, let Vρ be homomorphic on all syntax except that

Vρ
q
let j = µ̃[ #»a , #»x ].c in c′

y
≡

let j =
#    »
Λa.

#   »

λx.µret.Vρ JcK inVρ∪{j}
q
c′

y

and

Vρ Jjump j #»σ #»v K ≡

{〈
j
∣∣∣∣∣∣ #»σ ·

#          »

Vρ JvK · ret
〉
, j ∈ ρ

jump j #»σ
#          »

Vρ JvK , j /∈ ρ.

It is obvious that
V JzK ≡ Vfjv(z) JzK

for any term, continuation, or command z, where fjv gives the free
join variables in its argument.

Now we can characterize the interaction of V with structural
substitution. Supposing that j /∈ ρ and fjv(c′) ⊆ ρ, we claim:

Vρ JcK
{
Vρ

q
c′

y #          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

=

Vρ∪{j} JcK
{

#    »
Λa.

#   »

λx.µret.Vρ
q
c′

y
/j
}

Note that we have tacitly made use of the fact that Vρ Jc′K has no
free join variables (since c′ has only ρ as free join variables) so that
µret.VρJc′K is well-typed.

The claim is proved by induction; the interesting case is this:

Vρ Jjump j #»σ #»v K
{
Vρ

q
c′

y #          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

≡ (jump j #»σ
#          »

Vρ JvK)
{
Vρ

q
c′

y #          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

≡ Vρ
q
c′

y #          »

{σ/a}
#                       »{
Vρ JvK/x

}
←?
〈

#    »
Λa.

#   »

λx.µret.Vρ
q
c′

y ∣∣∣∣∣∣ #»σ ·
#          »

Vρ JvK · ret
〉

≡
〈
j
∣∣∣∣∣∣ #»σ ·

#          »

Vρ JvK · ret
〉{

#    »
Λa.

#   »

λx.µret.Vρ
q
c′

y
/j
}

≡
〈
j
∣∣∣∣∣∣ #»σ ·

#                     »

Vρ∪{j} JvK · ret
〉{

#    »
Λa.

#   »

λx.µret.Vρ
q
c′

y
/j
}

≡ Vρ∪{j} Jjump j #»σ #»v K
{

#    »
Λa.

#   »

λx.µret.Vρ
q
c′

y
/j
}

Note that the penultimate step makes use of the fact that the subscript
of V does not matter when operating on terms, since terms have no
free join variables.

Now we can prove the lemma by mutual induction, generalizing
each clause by replacing V with Vρ. The crucial case is in clause 3:

Vρ
q
let j = µ̃[ #»a , #»x ].c in c′

y

≡ let j =
#    »
Λa.

#   »

λx.µret.Vρ JcK inVρ∪{j}
q
c′

y

→ Vρ∪{j}
q
c′

y { #    »
Λa.

#   »

λx.µret.Vρ JcK/j
}

= Vρ
q
c′

y {
Vρ JcK

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

= c′
{
c

#          »

{σ/a}
#          »

{v/x}/jump j #»σ #»v
}

(by I.H.)

← let j = µ̃[ #»a , #»x ].c in c′

Decontification also does not affect how the program translates
back to direct style.



Lemma 30. 1. D
q
V JvK

y
≡ D JvK.

2. D
q
V JkK

y
≡ D JkK.

3. D
q
V JcK

y
≡ D JcK.

Proof. Easy induction. For example:

D
q
V Jjump j #»σ #»v K

y

≡ D J〈j || #»σ · #»v · ret〉K
≡ j #»σ #»v

≡ D Jjump j #»σ #»v K

Now for the meat of the proof. Decontification will free us from
having to consider join points when translating to direct style and
back.

Lemma 31. 1. D
q
S JeK

y
≡ e.

2. (a) S
q
D JvK

y
= v.

(b) S
q
D JkK [e]

y
= µret.

〈
S JeK

∣∣∣∣ k〉.
(c) S

q
D JcK

y
= µret.c.

Proof. 1. By induction on e:
• All cases where e is a value are trivial.
• For e ≡ let bind in e:

D
q
S Jlet bind in eK

y

≡ D
q
µret. letS JbindK in

〈
S JeK

∣∣∣∣ ret〉y
≡ letD

q
S JbindK

y
in(D JretK)[D

q
S JeK

y
]

≡ letD
q
S JbindK

y
inD

q
S JeK

y

≡ let bind in e (by I.H.)

We used in passing the fact that D
q
S JbindK

y
≡ bind ,

which (under the induction hypothesis) is obvious in both
cases of bind .
• For e ≡ e′ e′′:

D
q
S

q
e′ e′′

yy

≡ D
q
µret.

〈
S

q
e′

y ∣∣∣∣S q
e′′

y
· ret

〉y
≡ D

q
S

q
e′′

y
· ret

y
[D

q
S

q
e′

yy
]

≡ (D JretK [�D
q
S

q
e′′

yy
])[D

q
S

q
e′

yy
]

≡ (�D
q
S

q
e′′

yy
)[D

q
S

q
e′

yy
]

≡ D
q
S

q
e′

yy
D

q
S

q
e′′

yy

≡ e′ e′′ (by I.H.)

• The case for e ≡ e′ τ is similar.
• For e ≡ case e′ of

#  »

alt :

D
r
S

r
case e′ of

#  »

alt
zz

≡ D
r
µret.

〈
S

q
e′

y ∣∣∣∣∣∣ case of #            »

S JaltK
〉z

≡ D
r
case of

#            »

S JaltK
z

[D
q
S

q
e′

yy
]

≡ (case�of
#                         »

D
q
S JaltK

y
)[D

q
S

q
e′

yy
]

≡ caseD
q
S

q
e′

yy
of

#                         »

D
q
S JaltK

y

≡ case e′ of
#  »

alt (by I.H.)

As with bindings, it is obvious that D
q
S JaltK

y
≡ alt .

2. We can assume without loss of generality that we’re in the join-
point-free fragment of the language, since then by Lemmas 29
and 30, we will have

S
q
D JvK

y
≡ S

q
D

q
V JvK

yy
= V JvK = v

(and similar statements for continuations and commands).
Thus proceed by mutual induction on v, k, and c, assuming that
none of them contain join points.
(a) • All cases where v is a variable or WHNF are trivial.

• For v ≡ µret.c:
S

q
D Jµret.cK

y

≡ S
q
D JcK

y

= µret.c (by (c))

(b) • For k ≡ ret:

S
q
D JretK [e]

y

≡ S J�[e]K
≡ S JeK
= µret.

〈
S JeK

∣∣∣∣ ret〉
• For k ≡ v · k′:

S
q
D

q
v · k′

y
[e]

y

≡ S
q
D

q
k′

y
[�D JvK][e]

y

≡ S
q
D

q
k′

y
[e D JvK]

y

= µret.
〈
S

q
e DJvK

y ∣∣∣∣ k′〉 (by I.H.)

≡ µret.
〈
µret.

〈
S JeK

∣∣∣∣S q
D JvK

y
· ret

〉 ∣∣∣∣ k′〉
→ µret.

〈
S JeK

∣∣∣∣S q
D JvK

y
· k′
〉

= µret.
〈
S JeK

∣∣∣∣ v · k′〉 (by (a))

• The case for k ≡ τ · k′ is similar.
• For k = case of

#  »

alt :

S
r
D

r
case of

#  »

alt
z

[e]
z

≡ S
r

(case�of
#             »

D JaltK)[e]
z

≡ S
r
case eof

#             »

D JaltK
z

≡ µret.
〈
S JeK

∣∣∣∣∣∣ case of #                         »

S
q
D JaltK

y〉
= µret.

〈
S JeK

∣∣∣∣∣∣ case of #  »

alt
〉

(by (c))

(c) • For c ≡ let bind in c:

S
q
D Jlet bind in cK

y

≡ S
q
letD JbindK inD JcK

y

≡ letS
q
D JbindK

y
inS

q
D JcK

y

= let bind in c (by (a), I.H.)

In the last step, we use the assumption that there are no
join points, and thus the binding is a value binding.
• For c ≡ 〈v || k〉:

S
q
D J〈v || k〉K

y

≡ S
q
D JkK [D JvK]

y

= µret.
〈
S

q
D JvK

y ∣∣∣∣ k〉 (by (b))

= µret. 〈v || k〉 (by (a))

• The case where c is a jump is impossible by assumption.



Proof of Proposition 3. From Proposition 26 and Lemma 31 we get
Sa

q
D JvK

y
= S

q
D JvK

y
= v. From Proposition 26, Lemma 27,

and Lemma 31 we get D
q
Sa JeK

y
= D

q
S JeK

y
= e. Finally,

from Propositions 22 and 25 we have Sa
q
D JvK

y ∼= v and
D

q
Sa JeK

y ∼= e.

F. Proof of Well-Typed Translation
(Proposition 4)

To show that the translations between Core and Sequent Core are
well-typed, we need to refer to the type system for Core, which is
illustrated in Figure 13. Notice that, except for lacking the type for
jumps, Core has exactly the same rules for determining the kinds of
types as Sequent Core from Figure 4.

We already have that Sa is equivalent to S (Proposition 26). We
can make use of this to prove type safety of Sa from S by extending
type preservation:

Proposition 32 (Preservation under =). If Γ1 ` v1 : τ1, Γ2 ` v2 :
τ2, and v1 = v2, then τ1 ≡ τ2.

Proof. Uniqueness of types (i.e., the case where v1 ≡ v2) is
obvious, since the typing rules are syntax-directed. Thus if we
find v with v1 →? v ←? v2, we are done, since type preservation
(Proposition 2)3 says that v has the same type as both v1 and v2. But
confluence gives us exactly such a v.

Proving type safety of S is now straightforward.

Lemma 33 (Type safety of S).
If Γ ` e : τ in Core, then Γ ` S JeK : τ in Sequent Core.

Proof. An easy induction on the typing derivation. For example, to
handle term application, suppose we have:

D....
Γ ` e : σ → τ

E....
Γ ` e′ : σ

Γ ` e e′ : τ
→E

By the induction hypothesis, we then have:

D′
....

Γ ` S JeK : σ → τ

E ′....
Γ ` S Je′K : σ

Now, noting that

S
q
e e′

y
= µret.

〈
S JeK

∣∣∣∣S q
e′

y
· ret

〉
,

we have:

D′
....

Γ ` S JeK : σ → τ

E ′....
Γ ` S Je′K : σ Γ | ret : τ ` ret : τ

Ret

Γ | S Je′K · ret : σ → τ ` ret : τ
→L〈

S JeK
∣∣∣∣S Je′K · ret

〉
: (Γ ` ret : τ)

Cut

Γ ` µret.
〈
S JeK

∣∣∣∣S Je′K · ret
〉

: τ
Act

Proving type safety of D hits a snag: while D does not change
the type of a term, it does change the type of a join point. Namely,
if a join point has type ∃ #»a .( #»σ ) and its context gives ret the type τ ,

3 In fact, we need to extend type preservation from 7→ to→, but this is trivial
since→ adds only the µη-rule (easily verified) and compatibility, and our
type system is compositional.

it will become a function of type ∀ #»a . #»σ → τ . Thus we define Dτ
on types, homomorphically except for

Dτ J∃ #»a .( #»σ )K ≡ ∀ #»a . #»σ → τ.

Then, we have D operate on continuation contexts:

D
r

#      »
j : σ, ret : τ

z
≡ Dτ

r
#      »
j : σ

z
≡

#                    »

j : Dτ JσK .

Now we can state and prove the general form of type safety for
D:

Lemma 34 (Type safety of D). 1. If Γ ` v : τ , then Γ ` D JvK :
τ .

2. If Γ | k : σ ` ∆, ret : τ and Γ ` e : σ, then Γ, Dτ J∆K `
D JkK [e] : τ .

3. If c : (Γ ` ∆, ret : τ), then Γ, Dτ J∆K ` D JcK : τ .
4. If bind : (Γ | ∆′ ` Γ′ | ∆, ret : τ), then Γ, Dτ J∆K `
D JbindK : Γ′, Dτ J∆′K.

Proof. By mutual induction on the typing derivations. We show a
few cases:

• In 2, suppose we have

D....
Γ ` v : σ

E....
Γ | k : σ′ ` ∆, ret : τ

Γ | v · k : σ → σ′ ` ∆, ret : τ
→L

and also:
F....

Γ ` e : σ → σ′

By the induction hypothesis, we then have:

D′
....

Γ ` D JvK : σ

Γ ` e D JvK : σ′
....
E ′....

Γ, Dτ J∆K ` D JkK [e D JvK] : τ

Noting that

D Jv · kK [e] ≡ D JkK [e D JvK],

we see that E ′ is has the conclusion we require, so long as we
can prove its premise. Thus we write:

F....
Γ ` e : σ → σ′

D′
....

Γ ` D JvK : σ

Γ ` e D JvK : σ′ →E

....
E ′....

Γ, Dτ J∆K ` D JkK [e D JvK] : τ

• In 3, suppose we have:
#»D....

#                   »

Γ ` σ′ : κ

#»E....
#                                   »

Γ ` v : σ
#            »

{σ′/a}

jump j
#»

σ′ #»v : (Γ ` j : ∃ #   »a:κ.( #»σ ),∆, ret : τ)
Jump



Γ ∈ Environment ::= ε | Γ, x : τ | Γ, a : κ | Γ,K : τ | Γ,T : κ

Type kinding: Γ ` τ : κ

Γ, a : κ ` a : κ
TyVar

Γ, T : κ ` T : κ
TyCon

Γ ` σ : κ′ → κ Γ ` τ : κ′

Γ ` σ τ : κ
TyApp

Γ, a : κ ` τ : ?

Γ ` ∀a:κ.τ : ?
∀

Expression typing: Γ ` e : τ

Γ, x : τ ` x : τ
Var

Γ ` bind : {Γ′} Γ,Γ′ ` e′ : σ

Γ ` let bind in e′ : σ
Let

Γ, x : τ ` e : σ

Γ ` λx:τ .e : τ → σ
→I

Γ ` e : τ → σ Γ ` e′ : τ

Γ ` e e′ : σ
→E

Γ, a : κ ` e : τ

Γ ` Λa:κ.e : ∀a:κ.τ
∀I

Γ ` e : ∀a:κ.τ Γ ` σ : κ

Γ ` e σ : τ {σ/a} ∀E

K : ∀ #   »a:κ.∀
#    »

b:κ′ .
#»

τ ′ → T #»a
#                   »

Γ ` σ : κ′
#                                                  »

Γ ` e : τ ′
#          »

{τ/a}
#          »

{σ/b}
Γ ` K #»σ #»e : T #»τ

TKI
Γ ` e : τ

#                             »

Γ | τ ` alt : σ

Γ ` case eof
#  »
alt : σ

Case

Alternative typing: Γ | τ ` e : σ

Γ, x : τ ` e : σ

Γ | τ ` x:τ → e : σ
Deflt

K : ∀
#     »

a:κ′ .∀ #  »
b:κ. #»σ → T #»a Γ,

#      »
b : κ,

#                      »

x : σ
#          »

{τ/a} ` e : σ′

Γ | T #»τ ` K
#  »
b:κ #   »x:σ → e : σ′ TKE

Binding typing: Γ ` bind : {Γ′}

Γ ` e : τ

Γ ` x:τ = e : {x : τ} Name

#                               »
Γ, #      »x : τ ` e : τ

Γ ` rec { #              »x:τ = e} : {Γ′} Rec

Figure 13. Type system for Core

Γ′ ` j : ∀ #      »a : κ. #»σ → τ
Var

#»D....
#                   »

Γ ` σ′ : κ

Γ′ ` j
#»

σ′ : σ
#            »

{σ′/a} → τ

# »∀E

#»

E ′....
#                                              »

Γ ` D JvK : σ
#            »

{σ′/a}

Γ′ ` j
#»

σ′ #         »

D JvK : τ

#    »→E

Figure 14. Proof of Lemma 34, jump case

By the induction hypothesis, we have:
#»

E ′....
#                                              »

Γ ` D JvK : σ
#            »

{σ′/a}

Noting that

D
r
jump j

#»

σ′ #»v
z
≡ j

#»

σ′ #         »

D JvK

and
Dτ Jj : ∃ #      »a : κ.( #»σ )K ≡ j : ∀ #      »a : κ. #»σ → τ,

letting
Γ′ ≡ Γ, j : ∀ #      »a : κ. #»σ → τ,Dτ J∆K ,

we then have the derivation in Figure 144.
• In 4, suppose we have:

D....
c : (Γ, #      »a : κ, #       »x : σ ` ∆, ret : τ)

(j = µ̃[ #   »a:κ, #   »x:σ ].c) : (Γ | j : ∃ #   »a:κ.( #»σ ) ` ε | ∆, ret : τ)
Label

4 The reader may notice we make implicit use of weakening in this derivation.

By the induction hypothesis, we have:

D′
....

Γ, #      »a : κ, #       »x : σ,Dτ J∆K ` D JcK : τ

Noting that

D Jj = µ̃[ #   »a:κ, #   »x:σ ].cK ≡
(
j =Λ #   »a:κ.λ #   »x:σ.D JcK

)
and

Dτ Jj : ∃ #      »a : κ.( #»σ )K ≡ j : ∀ #      »a : κ. #»σ → τ,

we then have:
D′
....

Γ, #   »a:κ, #   »x:σ,Dτ J∆K ` D JcK : τ

Γ, #   »a:κ,Dτ J∆K ` λ #   »x:σ.D JcK : #»σ → τ

Γ, Dτ J∆K ` Λ #   »a:κ.λ #   »x:σ.D JcK : ∀ #   »a:κ. #»σ → τ
→I

Γ, Dτ J∆K ` (j = Λ #   »a:κ.λ #   »x:σ.D JcK) : (j : ∀ #   »a:κ. #»σ → τ)
∀I

Proof of Proposition 4. Immediate from Lemmas 33 and 34.
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