
1

A Polarized Basis for Simple Types

PAUL DOWNEN, University of Oregon

ZENA M. ARIOLA, University of Oregon

We employ encodings all the time as programming language designers, implementers, and theorists, but

those encodings are not always accurate representations in practical languages where program features, like

exceptions or even recursion, can sometimes turn obvious encodings into leaky abstractions. Here, we show

how polarized types let us rely on the common encodings we know and love for supporting user-defined

types from both eager and lazy languages like ML and Haskell. We use type isomorphisms as a technique

for showing that the proposed encodings are faithful, so that we can encode and decode without any loss of

information, and that they exhibit the mathematical and logical properties that we should expect. In the end,

the polarized basis of types gives us a unified core language for both eager and lazy functional languages alike.

CCS Concepts: • Theory of computation→ Type structures; • Software and its engineering→ Data
types and structures;

Additional Key Words and Phrases: simple types, polarity, control effects, sequent calculus, type isomorphism

ACM Reference format:
Paul Downen and Zena M. Ariola. 2018. A Polarized Basis for Simple Types. Proc. ACM Program. Lang. 1, 1,
Article 1 (January 2018), 54 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Howmany types do programming languages really need?Mainstream statically typed programming

languages all have some mechanisms for programmers to declare their own custom types to make

writing software easier, so in practice there seems to be a limitless supply of different types in

languages. However, when we are not working in a language but with a language—for example,

to study its theoretical properties or to develop practical implementations—the fewer constructs

and types the language has the easier it is to work with. This is where functional programming

languages can shine by using their connection with logic to simplify the language. For example, logic

tells us that we only need a binary conjunction connective since larger conjunctions can be encoded

by nesting applications of the binary one, and nothing is gained or lost because either nesting

(to the left or to the right) is equivalently provable. This lets us encode complex propositions and

connectives in terms of a smaller number of more basic connectives. These encodings correspond

to common techniques to simplify models of functional programming languages down to just a

handful of primitive types because the rest can be encoded by converting to and fro.

Unfortunately, in real functional languages these seemingly obvious encodings are not accurate

because the two types do not actually describe the same set of program behaviors. If we want to

say that a type is unnecessary because it can be encoded away, we should expect a one-for-one

correspondence between the programs of both types, but this is often not the case because of

the computational effects in the language. For example, encoding triples as nested pairs does not

cause issue in an eager language like SML, but in a lazy language like Haskell we can observe a

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2017-07-07 21:45 page 1 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Paul Downen and Zena M. Ariola

difference because of divergent (i.e., infinitely looping) or erroneous values like 1/0 or undefined.
The conversion between nested pairs of type (a, (b, c)) and triples of type (a,b, c) goes as follows:

fromTriple (x ,y, z) = (x , (y, z)) toTriple p = (fst p, fst (snd p), snd (snd p))

However, the nested pair type (Int, (Bool, String)) in Haskell contains both (1,⊥) and (1, (⊥,⊥)),
where ⊥ = undefined, which can be distinguished by pattern-matching: casex of (, (,)) → 9

yields 9 when x = (1, (⊥,⊥)) but gives undefined when x = (1,⊥). Yet the two different pairs are
collapsed in the triple type (Int,b, c) which can only express (1,⊥,⊥), so a round trip to and from

triples doesn’t give back what we put in.
1

The issues with unfaithful encodings are not just isolated to lazy languages; eager languages

like SML have similar problems with different types. For example, the common technique known

as currying in functional languages, which converts between functions of type (a,b) → c and

a → (b → c), lets us represent binary functions as unary functions nested in the right way:

curry f x y = f (x ,y) uncurry f (x ,y) = f x y

However, this encoding too is not accurate. The type a → (b → c) contains both functions

λx . raiseDiv and λx .λy. raiseDiv (where raiseDiv raises a divide-by-zero exception in SML),

which are observably different because the partial application f 1 raises an exception when

f = λx . raiseDiv and returns a function when f = λx .λy. raiseDiv. Yet, uncurry collapses these

distinct values into λ(x ,y). raiseDiv, so a round-trip of uncurrying and currying does not give

back the same function.
2
Both of these counter-examples to simple, well-accepted encodings still

cause trouble with general recursion or loops—found pervasively among mainstream programming

languages—in place of exceptions: just replace undefined and raiseDiv with an infinite loop.

The impact of round-trip inaccuracy means that encodings have limited use in practice, for exam-

ple, to simplify intermediate languages in an optimizing compiler. Clearly in source programming

languages, we would prefer to have n-ary tuples instead of encoding them by hand. Likewise in

the target language, it is better to represent n-ary tuples directly when compiling lazy languages

since they improve efficiency by reducing excessive indirection and thunking caused by nested lazy

pairs. But in the middle of the compiler, it can be helpful to simplify the intermediate language by

reducing the complexity and number of different programming constructs to some minimal core.

That means that to utilize the above encodings in the middle of the compilation process, we need to

go back and forth between encoding and decoding, and inaccurate encodings means that properties

of the source and target language are lost: for example, the fact that λ(x ,y). f (x ,y) = f in SML is

lost by currying since λx .λy. f x y , f . The impact of such inaccuracies is that using the encoding

can prevent optimizations that would be sound in the source language, or even worse have the

potential to introduce unsound transformations with respect to the target implementation.

So does this mean all hope is lost when our functional languages have effects, or even just general

recursion? Must we choose between living with unfaithful encodings or giving up entirely on the

game of encoding complex types into simpler primitives altogether? Thankfully, we do not have

to choose! The root cause of the unfaithfulness comes from a mismatch in the opportunities for

eagerness or laziness of programs that is implicit in types. This inherent connection between types

and evaluation strategy (i.e., eagerness and laziness) has been studied under the guise of polarity
[Munch-Maccagnoni 2013; Zeilberger 2009], which was originally developed in the setting of proof

1
There is also the stricter alternative definition toTriple (x, (y, z)) = (x, y, z), but this instead collapses (5, ⊥) and ⊥.

2
Haskell also exhibits problems with currying, but instead due to differences in strictness on pairs. Specifically, λ(,).9 and

λ .9 are different functions of type (a, b) → Int because they differ on the input ⊥ :: (a, b), but these two functions are
collapsed by a round-trip through currying and uncurrying (one way or the other, depending on the strictness of uncurry).
See appendix E for more details on lazy currying.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 2 (pp. 1-54)

A Polarized Basis for Simple Types 1:3

search rather than evaluation, as well as the call-by-push-value strategy [Levy 2003]. And it turns

out that this fine-grained approach where programs can intermingle both eager and lazy evaluation

at will gives us the tools we need to build strong encodings of types in languages with effects that

accurately represent the full gamut of user-defined types.

For our setting, we will work with a language based on the classical sequent calculus (section 2).

This calculus has a built-in control effect which makes the above issues of eagerness and laziness

relevant for encodings (since an abort causes similar issues as an exception or an infinite loop),

allows for both mixing both eager and lazy evaluation (in terms of call-by-value, call-by-name,

call-by-need, or its dual) within a single program, and lets us express a set of basic connectives

with pleasant symmetries and algebraic properties. As contributions, we give:
3

• A primitive basis of polarized connectives suitable for encoding all simple (i.e., monomorphic

and non-recursive) user-defined (co-)data types in languages with effects (section 3).

• A polarized definition of isomorphism between types and (co-)data declarations (section 4).

• A syntactic theory of isomorphisms for (co-)data types and their declarations (section 5).

• A demonstration that the commonly expected algebraic and logical laws are sound (with

respect to type isomorphism) for the primitive basis of polarized connectives (section 6).

• An encoding of all user-defined (co-)data types in terms of the primitive basis, such that the

encoded type is indeed isomorphic to the user-defined one (section 7).

Since we intend for this work to be applicable to compilers which optimize programs by rewriting

code, our focus is on syntactic theories which represent isomorphisms and program equivalence

as applications of purely syntactic program transformations. For that reason, we use a syntactic

equational theory to decide a canonical, finite set of (co-)data types (i.e., connectives) used to

represent all the others. This basis of connectives should be able to represent any types that mix

evaluation strategies as in practical functional languages (like Haskell and OCaml) and any types

that are expressible in the classical sequent calculus, which is a superset of the (co-)data types

found in functional programming languages [Downen et al. 2015]. As a side-effect of establishing

this general-purpose basis for types, we learn the following new insights:

• Usually only call-by-value and call-by-name are considered in these kinds of (polarized)

encodings, but based on the analysis of Downen and Ariola [2014] we addresses how to

integrate other evaluation strategies like call-by-need which is necessary for practical lazy

languages. This is achieved by relying on the properties of linearity and thunkability that

Munch-Maccagnoni [2013] shows arise in polarized languages.

• Polarized [Zeilberger 2008] and call-by-push-value [Levy 2001] languages usually only have

the two connectives for shifting between eager (values) and lazy (computations). Here, we

instead use four for each basic evaluation order: two as data and two as co-data. The existence

of two different adjoint shift pairs is not well understood, and here we put it on firmer ground.

Furthermore, while some shifts are redundant for call-by-value and call-by-name (amounting

to trivial identity types), all four shifts seem important for embedding call-by-need.

2 A SOURCE SEQUENT CALCULUS WITH USER-DEFINED TYPES
Our source language for representing user-defined data and co-data types is based on the classical

sequent calculus. In contrast to the λ-calculus, this setting lets us simultaneously model both ML-

and Haskell-like languages within one framework, and to express additional types (like A M B and

−A in section 3) with pleasant symmetric properties (like the algebraic and logical laws in section 6)

that are generally not found in λ-based languages.

3
All the proofs for theorems stated in these sections are given in appendices A to D.

2017-07-07 21:45 page 3 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Paul Downen and Zena M. Ariola

x ∈ Variable ::= . . . α ∈ CoVariable ::= . . . K ∈ Constructor ::= . . . O ∈ Observer ::= . . .

c ∈ Command ::= ⟨v ||e⟩

v ∈ Term ::= x || µα .c || K(#»e , #»v) || µ
(

»

O[#»x , #»α].c
)

e ∈ CoTerm ::= α || µ̃x .c || µ̃
[

»

K(#»α , #»x).c
]
|| O[#»v , #»e]

Fig. 1. An untyped language of (co-)data in the sequent calculus.

The untyped syntax of our sequent calculus language is given in fig. 1, and is based on the

calculus by Downen and Ariola [2014]. This syntax is coarsely divided into three categories which

correspond to three different roles in a program: terms v which produce results, co-terms e which
consume results, and commands c which run. Terms and co-terms are symmetric reflections of one

another, and commands are formed by linking a term v and co-term e , written ⟨v ||e⟩, so that the
output of v is fed as input to e , or in other words, so that e can observe the result of v . There are
two generic (co-)terms—µ- and µ̃-abstractions—which name their partner before running another

command: the term µα .c names its output α while running c , and the co-term µ̃x .c names its

input x while running c . We also have more specific (co-)terms in the form of data and co-data

that orient the constructive and destructive forces of computation, corresponding to algebraic

data types (ADTs) from functional languages and a form of objects or functional abstractions,

respectively. Data represents constructive production and destructive consumption: a data struc-

ture is built by collecting several other (co-)terms with a constructor, K(e1, . . . , em ,vn , . . . ,v1),
which is deconstructed by a pattern-matching co-term, µ̃[K(α1, . . . ,αm ,xn , . . . ,x1).c . . .], that re-
sponds based on the shape of its input, listing cases for the possible constructions it might receive

while giving a name to their constituent parts. Co-data represents destructive production and

constructive consumption: a co-data observation is built by collecting several other (co-)terms

with an observer, O[vn , . . . ,v1, e1, . . . , em], which is deconstructed by a pattern-matching term,

µ(O[xn , . . . ,x1,α1, . . . ,αm].c . . .), that responds based on the shape of its output, listing cases for

the possible observations that might be made of it while giving a name to their constituent parts.

The type system shown in fig. 2 for carving out well-behaved programs takes the form of

an annotated sequent calculus.
5
In particular, there are three different forms of judgements for

assigning types to programs: a term producing an A-output is typed by the sequent Γ ⊢G v : A | ∆,
a co-term consuming an A-input is typed by the sequent Γ | e : A ⊢G ∆, command (which neither

produces nor consumes) is typed by the sequent c :
(
Γ ⊢G ∆

)
. In each case, A is the active type of

the sequent, denoting the primary input or output of an expression as appropriate, Γ is an input
environment assigning types to free variables, ∆ is an output environment assigning types to free

co-variables, and G holds the global environment declaring the meaning of type and (co-)term

constructors. We sometimes omit explicitly naming G when it is implicit from context. The core

typing rules [Curien and Herbelin 2000] correspond to the core rules of Gentzen’s [1935] sequent

calculus: the VR and VL rules for typing free (co-)variables correspond to the initial sequent, and

the Cut rule for forming commands is the ordinary cut. In addition, we have the activation rules AR
and AL for typing µ- and µ̃-abstractions, which turns a passive type assigned to a free (co-)variable

of a command into the active type of the abstraction.

The main interest in the type system, however, is the way that it (1) tracks different evaluation

strategies within a program, and (2) models arbitrary user-defined data and co-data types. For the

4
This is just shorthand for asserting that a (co-)data declaration of F(

»

X : S) : S′
is in G.

5
These rules differ from the LK sequent calculus because they treat the structural rules of weakening, contraction, and

exchange implicitly rather than explicitly. We use this presentation only for the simplicity of reducing the number of rules,

since the matter of explicit or implicit structural rules, while potentially of interest, is orthogonal to the main topic here.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 4 (pp. 1-54)

A Polarized Basis for Simple Types 1:5

X ∈ TypeVar ::= . . . F,G ∈ TypeCon ::= . . .

S,T ,U ∈ BaseKind ::= V || N || LV || LN A,B,C ∈ Type ::= X || F(
#»
A)

decl ∈ Declaration ::= data F(
»

X : S) : S′where
»

K :

(
»
A : T ⊢ F(

#»
X) |

»

B : U

)
|| codataG(

»

X : S) : S′where
»

O :

(
»
A : T | G(

#»
X) ⊢

»

B : U

)
G ∈ GlobalEnv ::=

»

decl Θ ∈ TypeEnv ::=
»

X : S Γ ∈ InputEnv ::=
»
x : A ∆ ∈ OutputEnv ::=

»
α : A

Judgement ::= Θ ⊢G A : S || c :
(
Γ ⊢G ∆

)
|| (Γ ⊢G v : A | ∆) || (Γ | e : A ⊢G ∆)

Type kinding rules

Θ,X : S ⊢G X : S
VT

(F(
»

X : S) : S′)4 ∈ G
»

Θ ⊢G A : S

Θ ⊢G F(
#»
A) : S′

FT

Core typing rules

Γ ⊢G v : A | ∆ ⊢G A : S Γ | e : A ⊢G ∆

⟨v ||e⟩ :
(
Γ ⊢G ∆

) Cut

Γ,x : A ⊢G x : A | ∆
VR

c :
(
Γ ⊢G α : A,∆

)
Γ ⊢G µα .c : A | ∆

AR
c :

(
Γ,x : A ⊢G ∆

)
Γ | µ̃x .c : A ⊢G ∆

AL
Γ | α : A ⊢G α : A,∆

VL

(Co-)Data typing rules

Given data F(
»

X : S) : S′where
»

Ki :
(

»
Ai j

j
⊢ F(

#»
X) |

»
Bi j

j
)i

∈ G, then we have the following rules:

»

Γ | e : Bi j
»

{C/X } ⊢G ∆
j # »

Γ ⊢G v : Ai j
»

{C/X } | ∆
j

Γ ⊢G Ki (#»e , #»v) : F(
#»
C) | ∆

FRKi

»

ci :
(
Γ,

»

xi : Ai
»

{C/X } ⊢G

»

αi : Bi
»

{C/X } ,∆
)i

Γ | µ̃
[

»

Ki (#»αi ,
#»xi).ci

i]
: F(

#»
C) ⊢G ∆

FL

Given codataG(
»

X : S) : S′where
»

Oi :
(

»
Ai j

j
| G(

#»
X) ⊢

»
Bi j

j
)i

∈ G, then we have the following rules:

»

ci :
(
Γ,

»

xi : Ai
»

{C/X } ⊢G

»

αi : Bi
»

{C/X } ,∆
)i

Γ ⊢G µ
(

»

Oi [
#»xi ,

#»αi].ci
i)

: G(
#»
C) | ∆

GR

»

Γ ⊢G v : Ai j
»

{C/X } | ∆
j # »

Γ | e : Bi j
»

{C/X } ⊢G ∆
j

Γ | Oi [
#»v , #»e] : G(

#»
C) ⊢G ∆

GLOi

Fig. 2. A multi-kinded type system for (co-)data in the sequent calculus.

first purpose, we divide types into four different basic kinds: V for call-by-value constructs, N for

call-by-name constructs, LV for “lazy call-by-value” (a.k.a call-by-need) constructs [Ariola et al.
1995], and LN for “lazy call-by-name” (i.e., the dual of call-by-need) [Ariola et al. 2011]. In other

words, we use kinds for denoting the evaluation strategy of typed programs, so that (co-)terms

v : A : V and e : A : V are evaluated under a call-by-value strategy, v : A : N and e : A : N

are evaluated according to call-by-name, and likewise for LV and LN . If we want to refer to

programs involving call-by-value and call-by-name evaluation, then we can restrict the base kinds

down to onlyV and N , which we call theVN sub-calculus. For the second purpose, we include

a mechanism for declaring new (co-)data types which enriches the type system with new rules

for (co-)terms of the declared type, corresponding to the logical left and right rules of the sequent

calculus. For example, to model pairs from functional languages, we can declare the following

2017-07-07 21:45 page 5 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 Paul Downen and Zena M. Ariola

pair type for types of kind S—instantiating S with V for ML-like pairs and with N or LV for

Haskell-like pairs—as follows to get the associated left and right rules for pairs:

data (X : S) ×S (Y : S) : SwherePairS : (X : S,Y : S ⊢ X ×S Y |)

Γ ⊢G v1 : A | ∆ Γ ⊢G v2 : B | ∆

Γ ⊢G PairS(v1,v2) : A ×S B | ∆
×SRPairS

c :
(
Γ,x1 : A,x2 : B ⊢G ∆

)
Γ | µ̃[PairS(x1,x2).c] : A ×S B ⊢G ∆

×SL

For this data type, the structure PairS(v1,v2) is just like a pair from the respective functional

language, and the usual case-analysis expression can be written as: casev of PairS(x1,x2) ⇒ v ′ ≜
µα . ⟨v ||µ̃[PairS(x1,x2).⟨v ||α⟩]⟩. As another example, function types do not need to be primitives in

this language, since they can be declared as co-data types. In particular, we have both eager and

lazy functions by again instantiating the right kind for S—picking V for eager functions and N or

LV for lazy ones—to get the associated left and right rules for functions:

codata (X : S) →S (Y : S) : SwhereCallS : (X : S | X →S Y ⊢ Y : S)

c :
(
Γ,x : A ⊢G β : B,∆

)
Γ ⊢G µ(CallS[x , β].c) : A →S B | ∆

→SR
Γ ⊢G v : A | ∆ Γ | e : B ⊢G ∆

Γ | CallS[v, e] : A →S B ⊢G ∆
→SL

The familiar λ-calculus notation for function abstraction and application is written as: λx .v ≜
µ(CallS[x , β].⟨v ||β⟩) andv v ′ ≜ µβ . ⟨v ||CallS[v ′, β]⟩. In general, we say that a (co-)data declaration

is well-formed with respect to some other declarations G if all the types are of the claimed kind, as

stated formally by the following rules:

»
»
Θ ⊢G Ai j : Ti j

j i
»
»

Θ ⊢G Bi j : Ui j
j i

G ⊢

data F(Θ) : Swhere
»

Ki :
(

»
Ai j : Ti j

j
⊢ F(Θ) |

»

Bi j : Ui j
j)i

FF

»
»
Θ ⊢G Ai j : Ti j

j i
»
»

Θ ⊢G Bi j : Ui j
j i

G ⊢

codataG(Θ) : Swhere
»

Oi :
(

»
Ai j : Ti j

j
| G(Θ) ⊢

»

Bi j : Ui j
j)i

GF

Downen et al. [2015, 2016] goes into more formal detail into how the data and co-data features

in the sequent calculus correspond to analogous features from functional languages, including

translation to and from the λ-calculus.
Finally, we give an equational theory in fig. 3 for reasoning about the operational behavior of

programs based on the theory by Downen and Ariola [2014]. The essence of evaluation strategy is

captured by the restrictions on the µ̃ and µ rules, which may only substitute values for variables
and co-values for co-variables. This avoids the known unfortunate dilemma of computation that all

commands are equal if substitution is unrestricted, since we would have c =µ ⟨µ .c ||µ̃ .c ′⟩ =µ̃ c
′
. As

described by Curien and Herbelin [2000], there are (at least) two different disciplines for substitution:

the call-by-value discipline where the substitutable values exclude µ-abstractions (as in ValueV) but

everything is a co-value (as in CoValueV), and the call-by-name discipline where the substitutable
co-values exclude µ̃-abstractions (as in CoValueN) but everything is a value (as in ValueN).

We extend beyond this binary choice to also include two further restricted notions of (co-)values

that add memoization to the basicV andN as formalized previously by Downen and Ariola [2014].

The lazy call-by-value, a.k.a call-by-need, LV discipline only substitutes call-by-value values but

also restricts co-values to only those co-terms that “need” to their input to continue (as shown in

CoValueLV): each call-by-name co-value needs their input, but so do µ̃-abstractions that observe
their input variable with another LV-co-value. Dually, the lazy call-by-name LN discipline flips

the priorities around to only substitute call-by-name co-values while also restricting values to only

those terms that are “eager” to produce their output (as shown in ValueLN): each call-by-value

value immediately produces a result, but so do µ̃-abstractions that pass another LN value to their

output co-variable. The demand for input or output in both of the LV and LN may occur within

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 6 (pp. 1-54)

A Polarized Basis for Simple Types 1:7

V ∈ Value ::= VV : A : V || VN : A : N E ∈ CoValue ::= EV : A : V || EN : A : N

|| VLV : A : LV || VLN : A : LN || ELV : A : LV || ELN : A : LN

VV ∈ ValueV ::= x || K(
#»
E ,

#»
V) || µ

(
»

O[#»x , #»α].c
)

EV ∈ CoValueV ::= e

VN ∈ ValueN ::= v EN ∈ CoValueN ::= α || µ̃
[

»

K(#»α , #»x).c
]
|| O[

#»
V ,

#»
E]

VLV ∈ ValueLV ::= VV ELV ∈ CoValueLV ::= EN || µ̃x .D
[〈
x
����ELV

〉]
VLN ∈ ValueLN ::= VV || µα .D

[〈
VLN

����α〉]
ELN ∈ CoValueLN ::= EN

D ∈ DelayedCxt ::= □ || ⟨v : A : LV||µ̃x :A:LV .D⟩ || ⟨µα :A:LN .D ||e : A : LN⟩

Core substitution axioms

(µ) ⟨µα .c ||E⟩ = c {E/α } (ηµ) µα . ⟨v ||α⟩ = v (α < FV (v))

(µ̃) ⟨V ||µ̃x .c⟩ = c {V /x} (η µ̃) µ̃x . ⟨x ||e⟩ = e (x < FV (e))

(Co-)Data βη axioms

Given data F(
»

X : S) : S′where
»

Ki :
(

#»
A i ⊢ F(

#»
X) |

#»
B i

)i
∈ G, then we have the following rules:

(βF)
〈
Ki (#»e , #»v)

������µ̃ [
»

Ki (#»αi ,
#»xi).ci

i]〉
= ⟨µ #»αi . ⟨

#»v ||µ̃ #»xi .ci ⟩||
#»e ⟩

(ηF) β : F(
#»
C) = µ̃

[
»

Ki (#»αi ,
#»xi).⟨Ki (#»αi ,

#»xi)||β⟩
i]

Given codataG(
»

X : S) : S′where
»

Oi :
(

#»
A i | G(

#»
X) ⊢

#»
B i

)i
∈ G, then we have the following rules:

(βG)
〈
µ
(

»

Oi [
#»xi ,

#»αi].ci
i)������Oi [

#»v , #»e]
〉
= ⟨ #»v ||µ̃ #»xi . ⟨µ

#»αi .ci ||
#»e ⟩⟩

(ηG) y : G(
#»
C) = µ

(
»

Oi [
#»xi ,

#»αi].⟨y ||Oi [
#»xi ,

#»αi]⟩
i)

Fig. 3. A multi-discipline equational theory for the sequent calculus.

the context of a series of other delayed LV and LN bindings represented by a context D. We can

then safely merge together these four notions of (co-)values, since we can always use the kind of a

type a (co-)term inhabits to determine whether or not is a (co-)value of the appropriate discipline,
6

and we sometimes explicitly write µV and µ̃V when substituting aV (co-)value and µN and µ̃N
when substituting a N (co-)value, and so on, for clarity.

The four different disciplines of substitution represent four different possible evaluation orders

for running programs, where the priority for determining which side of a command is in charge is

reflected in the possible µ and µ̃ substitutions. For example, consider a generic typed command

of the form ⟨µα .c1 ||µ̃x .c2⟩, so that the next step of the command is determined by the kind of A
in the interaction between µα .c1 : A and µ̃x .c2 : A. When A : V , the µ rule is able to substitute

µ̃x .c2 for α in c1 since the µ̃-abstraction is a V-co-value, and thus the producer µα .c1 has priority
to take control of the program. Dually when A : N , the µ̃ rule is able to substitute µα .c1 for x in

c2 since the µ-abstraction is a N-value, and thus the consumer µ̃x .c2 has priority. When A : LV ,

the priorities can shift back and forth as neither side of the command is substitutable, which

represents call-by-need by being demand-driven (by prioritizing the consumer first) and memoizing

(by only duplicating simple values and not complex computations). Instead, we must delay the

6
As discussed previously by Downen and Ariola [2014], full static typing is not necessary for deciding which (co-)terms

are (co-)values, since a more coarse-grained distinction can be made with either a bi-typing system [Zeilberger 2009] or

multiple syntactic categories [Munch-Maccagnoni and Scherer 2015]. However, here we use the kinds of types to decide the

(co-)value discipline to reduce the overhead of additional rules or syntax, since static typing gives the necessary distinctions.

2017-07-07 21:45 page 7 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Paul Downen and Zena M. Ariola

binding and work within c2 giving it first priority; if it happens that c2 evaluates to a command

of the form D[⟨x ||ELV⟩] that needs to observe x , then µ̃x .c2 = µ̃x .D[⟨x ||ELV⟩] has become a

LV-co-value which is subject to substitution, thereby switching priority to c1. When A : LN , the

priorities are the other way around and are production-driven (by prioritizing the producer first)

and co-memoizing (by only duplicating simple observations and not complex continuations). We

must delay the binding and work within c1 giving it first priority; if it happens that c1 evaluates
to a command of the form D[⟨VLN ||α⟩] that needs return to α , then µα .c1 = µα .D[⟨VLN ||α⟩] has
become a LN -value which is subject to substitution, thereby switching priority to c2.
The essence of (co-)data types is captured by the β and η rules, which are analogues of the

rules of the same name from the λ-calculus. Notice that these rules do not depend on the choice

of substitution discipline because they are not affected by the (co-)value restrictions. The β rules

for both data and co-data types use pattern matching to break apart structures and observations,

selecting the appropriate response and binding the constituent parts with µ- and µ̃-abstractions,
where we make use of the following shorthand notation for a sequence of bindings:

⟨v1, . . . ,vn ||µ̃x1, . . . ,xn .c⟩ ≜ ⟨v1 ||µ̃x1. . . . ⟨vn ||µ̃xn .c⟩⟩

⟨µα1, . . . ,αn .c ||e1, . . . , en⟩ ≜ ⟨µα1. . . . ⟨µαn .c ||en⟩||e1⟩

The η rules for both data and co-data types expand a (co-)variable of the type into the pattern-

matching construct which breaks down its given structure or observation into all possible cases

and then reconstitutes a fresh copy to forward to that (co-)variable.

3 A TARGET SEQUENT CALCULUS WITH THE POLAR BASIS
Our target language—which we will use for encoding all the constructs from the source—is not

really a different language at all. Rather, it is a limited subset of the source language, consisting of

only a fixed, finite number of different constructs. The idea is to declare just a handful of (co-)data

types up front, collectively named P, and then forget the declaration mechanism entirely to prevent

the language from being extended with any new types, so that we can think of the target language

as a calculus inductively defined with the types built from P. The key, then, is to ensure that all the

programs from the source language can be faithfully encoded into the limited constructs included

in the target, without running into the same troubles of unfaithful encodings from section 1.

The brunt of our pre-defined, primitive data and co-data types is given in fig. 4. Each of these

(co-)data types are chosen for their symmetry—for each one, there is a dual mirror image on the

other side—and because they all reflect one, and only one, aspect of the functionality allowed by the

(co-)data declaration mechanism. The additive (co-)data types reflect the use of multiple different

constructors or observers for a type by giving a choice between two (⊕ and &) or a choice of no

(0 and ⊤) alternatives. The multiplicative (co-)data types reflect the use of multiple components

within structures or observations, by giving a combination of two (⊗ and M) or no (1 and ⊥) parts.

And finally, we have the negation (co-)data types, which reflect the ability for data structures to

contain co-terms and co-data observations to contain terms. The typing rules for (co-)data types

are shown in fig. 5, which are derived from the general form from fig. 2.
7

7
Readers familiar with Girard’s [1987] linear logic will no doubt notice that our additive and multiplicative (co-)data types

in fig. 4 are named after the linear logic connectives. And yet the derived typing rules in fig. 5 are not the rules of linear

logic because the ⊗R and MR rules should join different environments from both premises rather than share them, and

the 1R and ⊥R rules should force the environments to be empty. This discrepancy can be easily fixed by changing the

general rules for (co-)data types so that rules for data structures and co-data observations join separate environments used

to type each of their parts, as done by Munch-Maccagnoni [2009]. The cost, however, is that this presentation needs explicit

structural rules, which we had sought to avoid in section 2 for the purpose of simplicity.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 8 (pp. 1-54)

A Polarized Basis for Simple Types 1:9

Additive (co-)data types

data (X : V) ⊕ (Y : V) : V where
ι1 : (X : V ⊢ X ⊕ Y |)

ι2 : (Y : V ⊢ X ⊕ Y |)

codata (X : N) & (Y : N) : N where
π1 : (| X & Y ⊢ X : N)

π2 : (| X & Y ⊢ Y : N)

data 0 : V where codata⊤ : N where

Multiplicative (co-)data types

data (X : V) ⊗ (Y : V) : V where
(,) : (X : V,Y : V ⊢ X ⊗ Y |)

codata (X : N) M (Y : N) : N where
[,] : (| X M Y ⊢ X : N ,Y : N)

data 1 : V where () : (⊢ 1 |) codata⊥ : N where [] : (| ⊥ ⊢)

Involutive negation (co-)data types

data−(X : N) : V where
− : (⊢ −X | X : N)

codata¬(X : V) : N where
¬ : (X : V | ¬X ⊢)

Fig. 4. Declarations of the primitive polarized data and co-data types.

Additive typing rules

Γ ⊢P v :Ai | ∆

Γ ⊢P ιi (v) :A1 ⊕ A2 | ∆
⊕Ri

i = 1, 2

Γ | e :Ai ⊢P ∆

Γ | π2 [e] :A1 &A2 ⊢P ∆
&Li

i = 1, 2

c1 : (Γ,x :A ⊢P ∆) c2 : (Γ,y :B ⊢P ∆)

Γ | µ̃[ι1 (x).c1 | ι2 (y) c2] :A ⊕ B ⊢P ∆
⊕L

c1 : (Γ ⊢P α :A,∆) c2 : (Γ ⊢P β :B,∆)

Γ ⊢P µ(π1 [α].c1 | π2 [β].c2) :A& B | ∆
&R

no 0R rule Γ | µ̃[] : 0 ⊢P ∆
0L

Γ ⊢P µ() :⊤ | ∆
⊤R

no ⊤L rule

Multiplicative typing rules

Γ ⊢P v1 :A | ∆ Γ ⊢P v2 :B | ∆

Γ ⊢P (v1,v2) :A ⊗ B | ∆
⊗R

Γ | e1 :A ⊢P ∆ Γ | e2 :B ⊢P ∆

Γ | [e1, e2] :A M B ⊢P ∆
ML

c : (Γ,x :A,y :B ⊢P ∆)

Γ | µ̃[(x ,y).c] :A ⊗ B ⊢P ∆
⊗L

c : (Γ ⊢P α :A, β :B,∆)

Γ ⊢P µ([α , β].c) :A M B | ∆
MR

Γ ⊢P () : 1 | ∆
1R

c : (Γ ⊢P ∆)

Γ | µ̃[().c] : 1 ⊢P ∆
1L

c : (Γ ⊢P ∆)

Γ ⊢P µ([].c) :⊥ | ∆
⊥R

Γ | [] :⊥ ⊢P ∆
⊥L

Involutive negation typing rules

Γ | e :A ⊢P ∆

Γ ⊢P −(e) :−A | ∆
−R

c : (Γ ⊢P α :A,∆)

Γ | µ̃[−(α).c] :−A ⊢P ∆
−L

c : (Γ,x :A ⊢P ∆)

Γ ⊢P µ(¬[x].c) :¬A | ∆
¬R

Γ ⊢P v :A | ∆

Γ | ¬[v] :¬A ⊢P ∆
¬L

Fig. 5. Derived typing rules for the primitive polarized data and co-data types.

We might think that we have some flexibility in choosing the kinds of types—denoting the

substitution discipline—involved in the declarations in fig. 4. But as it turns out, since we want

to use these (co-)data types as the backbone of faithful encodings, our hand is forced. Intuitively,

each of these declarations follows a simple rule of thumb for choosing the kinds for types: every

type to the left (of ⊢) is V and every type to the right is N , except for the active type whose

kind is the reverse. This rule of thumb has a few consequences. The first is that every data type

is call-by-value and every co-data type is call-by-name, which follows the general wisdom of

2017-07-07 21:45 page 9 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Paul Downen and Zena M. Ariola

data ↓S(X : S) : V where ↓S :

(
X : S ⊢ ↓SX |

)
codata ↑S(X : S) : N where ↑S :

(
| ↑SX ⊢ X : S

)
data S⇑(X : V) : Swhere S⇑ : (X : V ⊢ S⇑X |) codata S⇓(X : N) : Swhere S⇓ : (| S⇓X ⊢ X : N)

Fig. 6. Declarations of the shifts between disciplines (i.e., base kinds) as data and co-data types.

polarization in computation [Munch-Maccagnoni 2013; Zeilberger 2009]. The second consequence

is that every data type constructor builds onV types and every co-data type constructor builds

on N types, except for the negation constructors which are reversed because their underlying

(co-)terms are reversed. The last consequence is that the notion of data type values and co-data

type co-values are hereditarily as restrictive as possible, where a structure or observation is only a

(co-)value if it contains components that are (co-)values in the most restrictive sense.

The basic (co-)data types from fig. 4 are still incomplete, though, for our purpose of encoding all
(co-)data types expressible in the source language. In particular, how could we possibly represent a

type like the call-by-name pair A ×N B from section 2? The ⊗ data type constructor won’t do since

it operates over the wrong kind of types. Even worse, how can we represent types that make use of

the two memoizing kinds LV and LN? To address these issues, we need a mechanism for plainly

“shifting” between the different base kinds of types, and to do that we must break our rule of thumb.

For the moment, let’s consider only conversions between V and N . One way to do the conversion

is with singleton (co-)data types, declared as follows, that wraps a component of the another kind:

data ↓(X : N) : V where ↓ : (X : N ⊢ ↓X |) codata ↑(X : V) : N where ↑ : (| ↑X ⊢ X : V)

The other possibility is a singleton (co-)data type that is of another kind, declared as follows:

codata ⇓(X : N) : V where ⇓ : (| ⇓X ⊢ X : N) data ⇑(X : V) : N where ⇑ : (X : V ⊢ ⇑X |)

As it turns out, we will use both styles of shifts because they are each useful in different situations

for encoding complex (co-)data types. And in the more general case where we have all four different

base kinds, we will rely on both the ability to shift into the canonical V and N kinds and then out
again. As a technical device, we will use a family of shifts parameterized by a base kind as defined

in fig. 6, with the above as defaults when a kind is unspecified. The idea is that ↓S and ↑S shift to
V and N (respectively) from S, whereas S⇑ and S⇓ shift from V and N (respectively) to S. More

explicitly, this means defining a quadruple of shift connectives for each of the four base kinds in the

language. These parameterized shifts include some redundancy (as we will see in section 6.3), but

they are useful notationally for generically manipulating types, and also accomodate the addition

of more evaluation modes like call-by-need that go beyond basic call-by-value and call-by-name.

By combining the polarized types from fig. 4 with the shifts from fig. 6, we get the polarized

basis P for all user-defined (co-)data types. In particular, the polarized basis is expressive enough

to translate programs using any collection G of user-defined (co-)data types as shown in fig. 7, so

that if c :
(
Γ ⊢G ∆

)
then JcKG : (JΓKG ⊢P J∆KG) (where JΓKG and J∆KG are defined pointwise). We

informally use deep pattern matching to aid writing the translation, with the understanding that it is

desugared into several shallow patterns in the obvious way, and to express the repeated composition

of the binary connectives, we define the (“big”) versions of the additive and multiplicative polarized

connectives over n-ary vectors of types as follows:⊕
ϵ ≜ 0

⊕
(A,

#»
B) ≜ A ⊕

(⊕
#»
B

) ⊗
ϵ ≜ 1

⊗
(A,

#»
B) ≜ A ⊗

(⊗
#»
B

)
& ϵ ≜ ⊤ &(A,

#»
B) ≜ A&

(
&

#»
B

)
M ϵ ≜ ⊥ M(A,

#»
B) ≜ A M

(
M

#»
B

)
Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 10 (pp. 1-54)

A Polarized Basis for Simple Types 1:11

JX KG ≜ X JxKG ≜ x Jµα .cKG ≜ µα .JcKG J⟨v ||e⟩KG ≜ ⟨JvKG ||JeKG⟩ Jµ̃x .cKG ≜ µ̃x .JcKG JαKG ≜ α

Given data F(Θ) : Swhere
»

Ki :
(

»
Ai1 : Ti j

j
⊢ F(Θ) |

»

Bi j : Ui j
j)i

∈ G:

q
F(

#»
C)

y
G
≜ S⇑

(⊕ (
»⊗ (

»

−(↑Ui j

q
Bi j

y
G
θ)

j
,

»

↓Ti j

q
Ai j

y
G
θ
j
)i)) (

θ =
»{
JCKG/X

})
q
Ki (# »ei j

j , # »vi j
j)

y
G
≜ S⇑(ιi (

»

−(↑Ui j [
q
ei j

y
G
])
j
,

»

↓Ti j (
q
vi j

y
G
)
j
))

s
µ̃[

»

Ki (# »αi j
j , # »xi j

j).ci
i
]

{

G

≜ µ̃[
»

S⇑(ιi (
»

−(↑Ui j [αi j])
j
,

»

↓Ti j (xi j)
j
)).Jci KG

i
]

Given codataG(Θ) : Swhere
»

Oi :
(

»
Ai j : Ti j

j
| G(Θ) ⊢

»

Bi j : Ui j
j)i

∈ G:

q
G(

#»
C)

y
G
≜ S⇓

(
&

(
»

M
(

»

¬(↓Ti j

q
Ai j

y
G
θ)

j # »

↑Ui j

q
Bi j

y
G
θ
j
)i)) (

θ =
»{
JCKG/X

})
q
Oi [

»vi j
j , # »ei j

j]
y
G
≜ S⇓[πi [

»

¬(↓Ti j (
q
vi j

y
G
))
j
,

»

↑Ui1 [
q
ei j

y
G
]
j
]]

s
µ(

»

Oi [
»xi j

j , # »αi j
j].ci

i
)

{

G

≜ µ(
»

S⇓[πi [
»

¬[↓Ti j (xi j)]
j
,

»

↑Ti j [αi j]
j
]].Jci KG

i
)

Fig. 7. A polarizing translation from the source language into the target P.

ιi (v) ≜ ι2
(
i. . .ι1 (v)

)
(vn , . . . ,v1) ≜ (vn , (. . ., (v1, ())))

πi [e] ≜ π2
[
i. . .π1 [e]

]
[e1, . . . , en] ≜ [e1, [. . ., [en , []]]]

This encoding is sound in that equations in the source, including η , are preserved in the target.

Theorem 3.1 (Polarization soundness). For i = 1, 2,
a) if ci : (Γ ⊢G ∆) and c1 = c2 then JciKG : (JΓKG ⊢P J∆KG) and Jc1KG = Jc2KG ,
b) if Γ ⊢G vi : A | ∆ and v1 = v2 then JΓKG ⊢P JviKG : JAKG | J∆KG and Jv1KG = Jv2KG , and
c) if Γ | ei : A ⊢G ∆ and e1 = e2 then JΓKG | JeiKG : JAKG ⊢P J∆KG and Je1KG = Je2KG , and

But is the converse statement of completeness—that if the encodings of two commands or

(co-)terms are equal then they are equal to begin with—also true? Unfortunately not so directly; the

polarizing encoding has the effect of “anonymizing” types by moving away from a nominal style,

where the different declarations lead to distinct types, to a more structural style, where differently

declared types can be collapsed if they share a common underlying pattern. This collapse of types

doesn’t mean that all hope is lost, however, because the nominally distinct (co-)terms are only

collapsed between types not within types; there is still a one-for-one correspondence between typed

(co-)terms of the same type in the source with the encoded (co-)terms in the target. To argue this

case, we turn to applying the idea of isomorphisms between types [Di Cosmo 1995].

4 WHAT IS AN ISOMORPHISM BETWEEN TYPES?
Usually, we can say that two types are isomorphic when there are mappings to and from both of

them whose composition is an identity mapping. In the setting of the sequent calculus, we interpret

“mappings” as open commands with a free variable and co-variable, and the “identity” mapping is

the simple command ⟨x ||α⟩ connecting its free (co-)variables.

2017-07-07 21:45 page 11 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 Paul Downen and Zena M. Ariola

Definition 4.1 (Type isomorphism). Two closed types A and B are isomorphic, written A ≈ B, if
and only if there exist commands c : (x : A ⊢ β : B) and c ′ : (y : B ⊢ α : A) for any x ,y,α , β such

that the following equalities hold:

⟨µβ .c ||µ̃y.c ′⟩ = ⟨x ||α⟩ : (x : A ⊢ α : A) ⟨µα .c ′ ||µ̃x .c⟩ = ⟨y ||β⟩ : (y : B ⊢ β : B)

Moreover, two open types A and B with free type variables

»

X : S are isomorphic, written as

»

X : S ⊨ A ≈ B, if and only if for all types

»

C : S , it follows that A
»

{C/X } ≈ B
»

{C/X } .

Note that this definition of isomorphism between types is equivalent to a more traditional

presentation in terms of inverse functions within the language. In particular, two types A : S and

B : S are isomorphic in the sense of definition 4.1 if and only if there are two closed function values

V : A →S B and V ′
: B →S A such that V ′ ◦V = id : A →S A and V ◦V ′ = id : B →S B, because

we can always abstract over the open commands to get closed functions, or call the functions to

retrieve open commands, and one form is inverse whenever the other is. However, definition 4.1

has the advantage of not assuming that our language has a primitive function type (since they

are just user-defined co-data types like any other), and of avoiding the awkwardness of mapping

between the different kinds of types that might be isomorphic to one another.

But do type isomorphisms give us the right sense of a one-for-one correspondence between

(co-)values of those types? As it turns out, an isomorphismA ≈ B provides just enough structure to

convert all equalities betweenA-typed (co-)values to B-typed (co-)values. Note that this conversion
is a compositional mappingwithin the language, which makes it a potential syntactic transformation

for marshaling between two different but isomorphic interfaces in the context of a compiler.

Theorem 4.1. For any isomorphism A ≈ B and environments Γ and ∆, there are contexts C
and C ′ such that if Γ ⊢G Vi :A | ∆ and Γ ⊢G Ei :A | ∆ (for i = 1, 2), then Γ ⊢G C[Vi] :B | ∆ and
Γ ⊢G C ′[Ei] :B | ∆, v1 = v2 if and only if C[V1] = C[V2], and E1 = E2 if and only if C ′[E1] = C ′[E2].

Proof. Let c : (x : A ⊢ β : B) and c ′ : (y : B ⊢ α : A) witnesses the isomorphism A ≈ B, where
x ,y < Γ and α , β < ∆. The desired contexts are then C ≜ µβ . ⟨□||µ̃x .c⟩ and C ′ ≜ µ̃y. ⟨µα .c ′ ||□⟩.

C[V1] = C[V2] follows from V1 = V2 and C
′[E1] = C ′[E2] follows from E1 = E2 by just applying the

assumed equalities within the context C and C ′
. More interestingly, we can derive V1 = V2 from

C[V1] = C[V2] from the definition of the isomorphism by placing them in an even larger context

where we have the equality:

µα . ⟨C[Vi]||µ̃y.c
′⟩ ≜ µα . ⟨µβ . ⟨Vi ||µ̃x .c⟩||µ̃y.c

′⟩ =µ̃ µα . ⟨Vi ||µ̃x . ⟨µβ .c ||µ̃y.c⟩⟩

=Iso µα . ⟨Vi ||µ̃x . ⟨x ||α⟩⟩ =ηµη µ̃ Vi

And since C[V1] = C[V2], we have V1 = µα . ⟨C[V1]||µ̃y.c
′⟩ = µα . ⟨C[v2]||µ̃y.c

′⟩ = V2. E1 = E2
follows from C ′[E1] = C ′[E2] similarly because of the fact that µ̃x . ⟨µβ .c ||C[Ei]⟩ = Ei . □

Having defined isomorphisms between types, we should ask if they actually form an equivalence

relation as expected; are type isomorphisms closed under reflexivity, symmetry, and transitivity?

The reflexivity and symmetry of the isomorphism relation between types is rather straightforward.

Theorem 4.2 (Reflexivity and Symmetry). (a) A ≈ A, and (b) if A ≈ B then B ≈ A.

Proof. The symmetry of type isomorphism follows immediately from its symmetric defini-

tion. More interestingly, we can establish the reflexive isomorphism of any type with the ex-

tensionality laws of µ- and µ̃-abstractions. In particular, for a given A, we have the command

⟨x ||α⟩ : (x : A ⊢ α : A) which serves as both open commands of the isomorphism A ≈ A. The
fact that the self-composition of this command is equal to itself comes from the ηµ and η µ̃ axioms:

⟨µα . ⟨x ||α⟩||µ̃x . ⟨x ||α⟩⟩ =ηµ ⟨x ||µ̃x . ⟨x ||α⟩⟩ =η µ̃ ⟨x ||α⟩. □

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 12 (pp. 1-54)

A Polarized Basis for Simple Types 1:13

In contrast, transitivity of type isomorphisms is tricker, and in fact it is not guaranteed to hold in

every possible situation. In particular, the transitivity of isomorphism relies on the exchange of µ-
and µ̃-bindings, which reassociates the composition of commands, but this not always valid in the

multi-discipline scenario. Specifically, given two any two kinds of typed (co-)terms, v : A : S and

e : B : T , the kind-sensitive exchange law χS⊢T is:

(χS⊢T) ⟨v ||µ̃x :A:S. ⟨µα :B:T .c ||e⟩⟩ = ⟨µα :B:T . ⟨v ||µ̃x :A:S.c⟩||e⟩ (x < FV (e),α < FV (v))

And when exchanging bindings of the same kind S, we just write χS for χS⊢S . This exchange law
can be used to re-associate the binding structure of a program and in turn justify the transitive

composition of type isomorphisms. However, exchange is not valid for some kind combinations.

For any S, χN⊢S is derivable from the universal strength of the µ̃N axiom and likewise χS⊢V is

derivable from the strong µV axiom. So for all combinations of N and V , each of χN⊢N , χV⊢V ,

and χN⊢V hold, but χV⊢N is invalidated by the following counter example:
8

⟨µ :A:V .c1 ||µ̃x :A:V . ⟨µα :B:N .c ||µ̃ :B:N .c2⟩⟩ =µV c1 , c2 =µ̃N ⟨µα :B:N . ⟨µ :A:V .c1 ||µ̃x :A:V .c⟩||µ̃ :B:N .c2⟩

And when we encounter lazy bindings for types of kind LV or LN , which perform memoization

with delayed computations, both µ and µ̃ substitution laws have been restricted so we can no longer

lean on their universal strength for justifying χLV and χLN .

Transitivity is not only important for the purpose of saying that type isomorphism is an equiva-

lence relation; just like composition in programming, it is a key source of compositionality that

lets us assemble little isomorphisms together incrementally to get a big result. So if we can’t

rely on always having χS⊢T for any combination of S and T , what can we do instead to ensure

transitivity? As it turns out, the specific witnesses maps of the isomorphisms we’re interested in

here have special properties themselves that ensure that we can exchange bindings as in the χ
law. In particular, some terms behave similarly to values (but are not necessarily values) and are

thunkable in the production of their output whereas some co-terms behave similarly to co-values

and are linear on the use of their input, which allows for the same sorts of binding re-associations.
9

Definition 4.2 (Thunkability and Linearity). A term v is thunkable if and only if for all e , c ,
x < FV (e), and α < FV (v), ⟨v ||µ̃x . ⟨µα .c ||e⟩⟩ = ⟨µα . ⟨v ||µ̃x .c⟩||e⟩. Dually, a co-term e is linear if and
only if for all v , c , x < FV (e), and α < FV (v), ⟨µα . ⟨v ||µ̃x .c⟩||e⟩ = ⟨v ||µ̃x . ⟨µα .c ||e⟩⟩.

We can then use the idea of thunkability and linearity—a semantic generalization of the syntactic

idea of values and co-values—to restrict the sorts of maps that are allowed as witnesses of type

isomorphisms thereby strengthening their compositionality. This gives us a polarized view of type

isomorphisms, where positive isomorphisms are built on linear maps and negative isomorphisms

are built on thunkable maps.

Definition 4.3 (Polarized type isomorphism). Two closed types A and B are positively isomorphic,
written A ≈+ B, if and only if there is an isomorphism A ≈ B witnessed by the commands

c : (x : A ⊢ β : B) and c ′ : (y : B ⊢ α : A) such that µ̃x .c and µ̃y.c ′ are linear. Dually, A and B are

negatively isomorphic, written A ≈− B, if and only if there is an isomorphism A ≈ B witnessed

by the commands c : (x : A ⊢ β : B) and c ′ : (y : B ⊢ α : A) such that µα .c ′ and µβ .c are thunkable.

Moreover, we write

»

X : S ⊨ A ≈+ B and

»

X : S ⊨ A ≈− B to mean for all

»

C : S ,A
»

{C/X } ≈+ B
»

{C/X }

and A
»

{C/X } ≈− B
»

{C/X } , respectively.

Note that, while all isomorphisms between twoV-kinded types are positive and all isomorphisms

between two N -kinded types are negative, the definition of A ≈+ B and A ≈− B does not refer to a

8
Invalidity of χV⊢N corresponds to the loss of associativity in categorical models of polarity [Munch-Maccagnoni 2013].

9
This is a syntactic rephrasing and generalization (beyond just combination call-by-value and call-by-name) of thunkable

and linear morphisms in duploids defined in terms of their associativity properties [Munch-Maccagnoni 2013].

2017-07-07 21:45 page 13 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Paul Downen and Zena M. Ariola

prescribed V or N discipline, but rather about the behavior of particular programs independent of

their discipline. This polar view of type isomorphism does give us a computation-based equivalence

relation on types regardless of the particular discipline involved.

Theorem 4.3 (Polarized Isomorphism Eqivalence). a) A ≈+ A and A ≈− A,
b) if A ≈+ B then B ≈+ A and if A ≈− B then B ≈− A, and
c) if A ≈+ B and B ≈+ C then A ≈+ C and if A ≈− B and B ≈− C then A ≈− C .

Finally, we extend the idea of type isomorphisms to (co-)data declaration isomorphisms.

Definition 4.4 (Declaration isomorphism). Two data declarations are isomorphic, written10

data F(Θ) : Swhere
»

K : (Γ ⊢ F(Θ) | ∆) ≈ data F′(Θ) : S′where
»

K′
: (Γ ⊢ F′(Θ) | ∆)

if and only ifΘ ⊨ F(Θ) ≈ F′(Θ). Dually, we say that two co-data declarations are isomorphic, written

codataG(Θ) : Swhere
»

O : (Γ | G(Θ) ⊢ ∆) ≈ codataG′(Θ) : S′where
»

O′
: (Γ′ | G′(Θ) ⊢ ∆′)

if and only if Θ ⊨ G(Θ) ≈ G′(Θ). Positive and negative declaration isomorphisms are defined

similarly in terms of positive and negative type isomorphisms, respectively.

Theorem 4.4 (Polarized declaration isomorphism eqivalence). The positive and negative
(co-)data declaration isomorphism relations are both (a) reflexive, (b) symmetric, and (c) transitive.

Proof. The closure properties follow from the type isomorphism equivalence relation (theo-

rem 4.3) underlying definition 4.4. □

This more specific notion of type-based isomorphism is the backbone of the syntactic theory

that we will develop for the purpose of reasoning more easily about (co-)data types in general, the

polarized basis P of (co-)data types, and eventually the faithfulness of the polarization translation.

5 A SYNTACTIC THEORY OF (CO-)DATA TYPE ISOMORPHISMS
Before turning to our main result—that every user-defined (co-)data type can be represented by an

isomorphic type composed solely from the polarized basic connectives—we first explore a theory for

type isomorphisms based on data and co-data declarations. The advantage of focusing on (co-)data

type declarations for studying type isomorphisms is that the declarations themselves provide a

larger context for localized manipulations surrounded by extra alternatives (of other constructors

and observers) and extra components (within the same constructor or observer). The end result

is that we only need to manually verify a few fundamental (co-)data type isomorphisms by hand,

while the particular isomorphisms of interest can be easily composed out of basic building blocks.

5.1 Structural laws of declarations
We present an theory for the structural laws of data and co-data type isomorphisms in figs. 8 and 9,

which are exactly dual to one another and capture several facts about isomorphic ways to declare

(co-)data types.

• Commute: The first group of laws state that the parts of any declaration may be reordered,

including (1) the order of components within the signature of a constructor or observer, and

(2) the order of constructor or observer alternatives within the declaration. These axioms are

useful to show that the listed orders of the various parts of a declaration don’t matter.

10
We reuse Γ and ∆ as shorthand for the list of types

»
A : T and

»

B : U within the signatures of constructors and observers.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 14 (pp. 1-54)

A Polarized Basis for Simple Types 1:15

• Mix: The second group of laws states how two isomorphisms between (co-)data type dec-

larations may be combined together. In particular, there are two ways to mix declaration

isomorphisms: (1) an isomorphic pair of single-alternative declarations can have the compo-

nents of their single constructor or observer mixed into the signature of all the alternatives

of another declaration isomorphism, and (2) a pair of declaration isomorphism can have their

respective alternatives mixed together. These inference rules let us use localized reasoning

within a small (co-)data type declaration, and then compose the results together into a large

declaration isomorphism that does everything all at once.

• Shift: The third group of laws state that every (call-by-value)V data declaration isomorphism

and every (call-by-name)N co-data declaration isomorphism may be generalized to (co-)data

types of any kind S.

• Interchange: The fourth group of laws show how isomorphisms between data type declarations

and co-data type declarations can be interchanged one-for-one with one another, so long as

the data type is call-by-value (V) and the co-data type is call-by-name (N).

• Compatibility: The final group of laws state that certain isomorphisms between types can be

lifted into an isomorphism between data and co-data type declarations with constructors

and observations containing a component of that type as either an input or an output.

These laws let us derive other facts about isomorphisms between (co-)data types. As an example,

applying the shift laws to the trivial cases of the commute laws for data declarations lets us rename

constructor and type names, telling us there is only one empty and unit type for any kind S:

data F(Θ) : SwhereK : (⊢ F(Θ) |) ≈ data F′(Θ) : SwhereK′
: (⊢ F′(Θ) |)

data F(Θ) : Swhere ≈ data F′(Θ) : Swhere

Additionally, the mix laws let us extend an existing isomorphism by combining it with a reflexive

isomorphism of any declaration, letting us add on arbitrary other alternatives or components to

two isomorphic data declarations:

data F1(Θ) : V where
»

K1 : (Γ1 ⊢ F(Θ) | ∆1)
≈
data F′

1
(Θ) : V where

»

K′
1
: (Γ′

1
⊢ F′(Θ) | ∆′

1
)

data F2(Θ) : V where
»

K2 : (Γ2 ⊢ F(Θ) | ∆2)
≈
data F2(Θ) : V where

»

K2 : (Γ2 ⊢ F(Θ) | ∆2)

data F(Θ) : V where
»

K1 : (Γ1 ⊢ F(Θ) | ∆1)

»

K2 : (Γ2 ⊢ F(Θ) | ∆2)

≈ data F′(Θ) : V where
»

K′
1
: (Γ′

1
⊢ F′(Θ) | ∆′

1
)

»

K2 : (Γ2 ⊢ F(Θ) | ∆2)

data F1(Θ) : V where
»

K1 : (Γ1 ⊢ F(Θ) | ∆1)
≈
data F′

1
(Θ) : V where

»

K′
1
: (Γ′

1
⊢ F′(Θ) | ∆′

1
)

data F2(Θ) : V where

K2 : (Γ2 ⊢ F(Θ) | ∆2)
≈
data F2(Θ) : V where

K2 : (Γ2 ⊢ F(Θ) | ∆2)

data F(Θ) : V where
»

K1 : (Γ2, Γ1 ⊢ F(Θ) | ∆1,∆1) ≈ data F′(Θ) : V where
»

K′
1
: (Γ2, Γ

′
1
⊢ F′(Θ) | ∆′

1
,∆2)

We can justify the laws in figs. 8 and 9 in terms of the definitions of type and (co-)data declaration

isomorphisms. In particular, we can calculate when specific instances of two (co-)data types happen

to be isomorphic, so that the laws for declaration isomorphisms are sound when the specific

instances hold in general for any matching choice of types.
11
Each specific isomorphism instance

justifies the soundness of the proposed structural laws for (co-)data declarations.

Theorem 5.1 (Structural laws). The declaration isomorphism laws in figs. 8 and 9 are all sound.

There is one more property about (co-)data declarations that will be useful in the following

sections: certain singleton (co-)data types are just trivial wrappers around another type. In the right

11
The statement and proofs of these facts can be found in appendix C.

2017-07-07 21:45 page 15 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Paul Downen and Zena M. Ariola

Data Commute

data F(Θ):V where

K:(Γ2, Γ1 ⊢ F(Θ) | ∆1,∆2)
≈+

data F′(Θ):V where

K′
:(Γ1, Γ2 ⊢ F′(Θ) | ∆2,∆1)

data F(Θ):V where
»

K1:(Γ1 ⊢ F(Θ) | ∆1)

»

K2:(Γ2 ⊢ F(Θ) | ∆2)

≈+

data F′(Θ):V where
»

K′
2
:(Γ2 ⊢ F′(Θ) | ∆2)

»

K′
1
:(Γ1 ⊢ F′(Θ) | ∆1)

Data Mix

data F1(Θ):V where
»

K1:(Γ1 ⊢ F1(Θ) | ∆1)
≈

data F′
1
(Θ):V where

»

K′
1
:(Γ′

1
⊢ F′

1
(Θ) | ∆′

1
)

data F2(Θ):V where

K2:(Γ2 ⊢ F2(Θ) | ∆2)
≈

data F′
2
(Θ):V where

K′
2
:(Γ′

2
⊢ F′

2
(Θ) | ∆′

2
)

data F(Θ):V where
»

K:(Γ2, Γ1 ⊢ F(Θ) | ∆1,∆2) ≈
+ data F′(Θ):V where

»

K′
:(Γ′

2
, Γ′

1
⊢ F′(Θ) | ∆′

1
,∆′

2
)

data F1(Θ):V where
»

K1:(Γ1 ⊢ F1(Θ) | ∆1)
≈

data F′
1
(Θ):V where

»

K′
1
:(Γ′

1
⊢ F′

1
(Θ) | ∆′

1
)

data F2(Θ):V where
»

K2:(Γ2 ⊢ F2(Θ) | ∆2)
≈

data F′
2
(Θ):V where

»

K′
2
:(Γ′

2
⊢ F′

2
(Θ) | ∆′

2
)

data F(Θ):V where
»

K1:(Γ1 ⊢ F(Θ) | ∆1)

»

K2:(Γ2 ⊢ F(Θ) | ∆2)

≈+ data F′(Θ):V where
»

K′
1
:(Γ′

1
⊢ F′(Θ) | ∆′

1
)

»

K′
2
:(Γ′

2
⊢ F′(Θ) | ∆′

2
)

Data Shift

data F(Θ):V where
»

K:(Γ ⊢ F(Θ) | ∆) ≈ data F′(Θ):V where
»

K′
:(Γ′ ⊢ F′(Θ) | ∆′)

data F(Θ):Swhere
»

K:(Γ ⊢ F(Θ) | ∆) ≈+ data F′(Θ):S′where
»

K′
:(Γ′ ⊢ F′(Θ) | ∆′)

Co-data-Data Interchange

codataG(Θ):N where
»

O:(Γ |G(
#»
X) ⊢ ∆) ≈ codataG′(Θ):N where

»

O′
:(Γ′ |G′(

»

X ′) ⊢ ∆′)

data F(Θ):V where
»

K:(Γ ⊢ F(Θ) | ∆) ≈+ data F′(Θ):V where
»

K′
:(Γ′ ⊢ F′(

»

X ′) | ∆′)

Data Compatibility

Θ ⊢ A:V Θ ⊢ B:V Θ ⊨ A ≈ B

data F(Θ):V where

K:(A:V ⊢ F(Θ) |)
≈+

data F′(Θ):V where

K′
:(B:V ⊢ F′(Θ) |)

Θ ⊨ A ≈− B

data F(Θ):V where

K:(A:S ⊢ F(Θ) |)
≈+

data F′(Θ):V where

K′
:(B:S ⊢ F′(Θ) |)

Θ ⊢ A:N Θ ⊢ B:N Θ ⊨ A ≈ B

data F(Θ):V where

K:(⊢ F(Θ) |A:N)
≈+

data F′(Θ):V where

K′
:(⊢ F′(Θ) | B:N)

Θ ⊨ A ≈+ B

data F(Θ):V where

K:(⊢ F(Θ) |A:S)
≈+

data F′(Θ):V where

K′
:(⊢ F′(Θ) | B:S)

Fig. 8. A theory for structural laws of data type declaration isomorphisms.

circumstances, these wrappers can be identified with their underlying types, up to isomorphism,

which lets us connect the world of (co-)data declarations with the world of actual types.

Lemma 5.1 ((Co-)Data identity). a) For any data F(Θ) : UwhereK : (A : T ⊢ F(Θ) |), if
T = V then Θ ⊨ F(Θ) ≈+ A and ifU = V then Θ ⊨ F(Θ) ≈ A.

b) For any codataG(Θ) : UwhereO : (| G(Θ) ⊢ A : T), if T = N then Θ ⊨ G(Θ) ≈− A and if
U = N then Θ ⊨ G(Θ) ≈ A.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 16 (pp. 1-54)

A Polarized Basis for Simple Types 1:17

Co-data Commute

codataG(Θ):N where

O:(Γ2, Γ1 |G(Θ) ⊢ ∆1,∆2)
≈−

codataG′(Θ):N where

O′
:(Γ1, Γ2 |G′(Θ) ⊢ ∆2,∆1)

codataG(Θ):N where
»

O1
:(Γ1 |G(Θ) ⊢ ∆1)

»

O2
:(Γ2 |G(Θ) ⊢ ∆2)

≈−

codataG′(Θ):Swhere
»

O′
2
:(Γ2 |G′(Θ) ⊢ ∆2)

»

O′
1
:(Γ1 |G′(Θ) ⊢ ∆1)

Co-data Mix

codataG1(Θ):N where
»

O1
:(Γ1 |G1(Θ) ⊢ ∆1)

≈
codataG′

1
(Θ):N where

»

O′
1
:(Γ′

1
|G′

1
(Θ) ⊢ ∆′

1
)

codataG2(Θ):N where

O2
:(Γ2 |G2(Θ) ⊢ ∆2)

≈
codataG′

2
(Θ):N where

O′
2
:(Γ′

2
|G′

2
(Θ) ⊢ ∆′

2
)

codataG(Θ):N where
»

O:(Γ2, Γ1 |G(Θ) ⊢ ∆1,∆2) ≈
− codataG′(Θ):N where

»

O′
:(Γ′

2
, Γ′

1
|G′(Θ) ⊢ ∆′

1
,∆′

2
)

codataG1(Θ):N where
»

O1
:(Γ1 |G1(Θ) ⊢ ∆1)

≈
codataG′

1
(Θ):N where

»

O′
1
:(Γ′

1
|G′

1
(Θ) ⊢ ∆′

1
)

codataG2(Θ):N where

O2
:(Γ2 |G2(Θ) ⊢ ∆2)

≈
codataG′

2
(Θ):N where

O′
2
:(Γ′

2
|G′

2
(Θ) ⊢ ∆′

2
)

codataG(Θ):N where
»

O1
:(Γ1 |G(Θ) ⊢ ∆1)

»

O2
:(Γ2 |G(Θ) ⊢ ∆2)

≈− codataG′(Θ):N where
»

O′
1
:(Γ′

1
|G′(Θ) ⊢ ∆′

1
)

»

O′
2
:(Γ′

2
|G′(Θ) ⊢ ∆′

2
)

Co-data Shift

codataG(Θ):N where
»

O:(Γ |G(Θ) ⊢ ∆) ≈ codataG′(Θ):N where
»

O′
:(Γ′ |G′(Θ) ⊢ ∆′)

codataG(Θ):Swhere
»

O:(Γ |G(Θ) ⊢ ∆) ≈− codataG′(Θ):S′where
»

O′
:(Γ′ |G′(Θ) ⊢ ∆′)

Data-Co-data Interchange

data F(Θ):V where
»

K:(Γ ⊢ F(Θ) | ∆) ≈ data F′(Θ):V where
»

K′
:(Γ′ ⊢ F′(

»

X ′) | ∆′)

codataG(Θ):N where
»

O:(Γ |G(
#»
X) ⊢ ∆) ≈− codataG′(Θ):N where

»

O′
:(Γ′ |G′(

»

X ′) ⊢ ∆′)

Co-data Compatibility

Θ ⊢ A:N Θ ⊢ B:N Θ ⊨ A ≈ B

codataG(Θ):N where

O:(|G(Θ) ⊢ A:N)
≈−

codataG′(Θ):N where

O′
:(|G′(Θ) ⊢ B:N)

Θ ⊨ A ≈+ B

codataG(Θ):N where

O:(|G(Θ) ⊢ A:S)
≈−

codataG′(Θ):N where

O′
:(|G′(Θ) ⊢ B:S)

Θ ⊢ A:V Θ ⊢ B:V Θ ⊨ A ≈ B

codataG(Θ):N where

O:(A:V |G(Θ) ⊢)
≈−

codataG′(Θ):N where

O′
:(B:V |G′(Θ) ⊢)

Θ ⊨ A ≈− B

codataG(Θ):N where

O:(A:S |G(Θ) ⊢)
≈−

codataG′(Θ):N where

O′
:(B:S |G′(Θ) ⊢)

Fig. 9. A theory for structural laws of co-data type declaration isomorphisms.

5.2 Internal polarized laws of declarations
Now that we have established some basic structural laws about isomorphisms between general

user-defined (co-)data types, we can focus on somemore specific laws about the polarized primitives

from fig. 4. In particular, we can show that the polar basis play a part in a family of isomorphisms

that closely resemble some of the logical rules of the sequent calculus. Namely, each of the left rules

for the positive data types and the right rules for the negative co-data types from fig. 5 correspond

to an isomorphism between (co-)data declarations with signatures matching the premises and

conclusion of the rules, as shown in fig. 10. The role of using declarations for this purpose is to

give enough structural substrate for stating the rules: sequents with multiple inputs and multiple

2017-07-07 21:45 page 17 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 Paul Downen and Zena M. Ariola

Additive laws

data F(Θ):V where
K1: (A:V ⊢ F(Θ) |)
K2: (B:V ⊢ F(Θ) |)

≈+
⊕L

data F′(Θ):V where

K′
:

(
A ⊕ B:V ⊢ F′(Θ) |

) codataG(Θ):V where
O1

: (|G(Θ) ⊢A:N)

O2
: (|G(Θ) ⊢ B:N)

≈−
&R

codataG′(Θ):N where

O′
:

(
|G′(Θ) ⊢A& B:N

)
data F(Θ):V where ≈+

0L

data F′(Θ):V where

K′
:

(
0:V ⊢ F′(Θ) |

) codataG(Θ):N where ≈−
⊤R

codataG′(Θ):N where

O′
:

(
|G′(Θ) ⊢ ⊤:N

)
Multiplicative laws

data F(Θ):V where
K: (A:V,B:V ⊢ F(Θ) |)≈

+
⊗L

data F′(Θ):V where

K′
:

(
A ⊗ B:V ⊢ F′(Θ) |

) codataG(Θ):N where
O: (⊢ G(Θ) |A:N ,B:N)

≈−
MR

codataG′(Θ):N where

O′
:

(
⊢ G′(Θ) |A M B:N

)
data F(Θ):V where
K: (⊢ F(Θ) |) ≈+

1L

data F′(Θ):V where

K′
:

(
1:V ⊢ F′(Θ) |

) codataG(Θ):N where
O: (|G(Θ) ⊢) ≈−

⊥R

codataG′(Θ):N where

O′
:

(
|G′(Θ) ⊢ ⊥:N

)
Negation Laws

data F(Θ):V where
K: (⊢ F(Θ) |A:N)

≈+
−L

data F′(Θ):V where
K′
: (−A:V ⊢ F(Θ) |)

codataG(Θ):N where
O: (A:V |G(Θ) ⊢) ≈−

¬R

codataG′(Θ):N where
O′

: (|G(Θ) ⊢ ¬A:N)

Shift Laws

data F(Θ):V where
K: (A:S ⊢ F(Θ) |) ≈+

↓SL

data F′(Θ):V where

K′
:

(
↓SA:V ⊢ F′(Θ) |

) codataG(Θ):N where
K: (|G(Θ) ⊢A:S) ≈−

↑SR

codataG′(Θ):N where

O′
:

(
|G′(Θ) ⊢ ↑SA:N

)
Fig. 10. Isomorphism laws of internal polarized sub-structures

outputs can be expressed by the types of constructors or observers, and multiple premises can be

expressed by multiple alternatives for constructors or observers. As a result, we can reason about

the polarized primitives appearing as part of the structure of larger (co-)data types.

Theorem 5.2 (Polarized laws). The declaration isomorphism laws in fig. 10 are all sound.

In addition to the specific laws of fig. 10, each of the polarized connectives is compatible with

isomorphism. For example, if we haveA ≈ A′
, then we also haveA⊕B ≈ A′ ⊕B and B ⊕A ≈ B ⊕A′

.

The only limitation is that we limit the types and programs to just the call-by-value (V) and

call-by-name (N) base kinds in order to establish the compatibility of theV-N shift pairs. This

fact lets us apply type isomorphisms within the context of certain larger types: if two types are

isomorphic, then we can build on them with polarized connectives however we want and still have

an isomorphism. Said another way, for any type Amade from polarized connectives and theV and

N shifts, and any other isomorphic types B ≈ C , we can substitute both B and C for X in A and

still have the isomorphism A {B/X } ≈ A {C/X }.

Theorem 5.3 (Polarized isomorphism substitution). In theVN sub-calculus, for any types
Θ,X : S ⊢P A : T , Θ ⊢G B : S, and Θ ⊢G C : S, if Θ ⊨ B ≈ C then Θ ⊨ A {B/X } ≈ A {C/X }.

6 A SYNTACTIC THEORY OF POLARIZED TYPE ISOMORPHISMS
We have just seen in the previous section that there is an encoding of user-defined (co-)data types

solely in terms of the basic polarized connectives. However, how do we know that this encoding

is canonical, or that there are not many different and unrelated encodings for the same purpose?

Does it matter what order in which the components of (co-)data types are put together, or in which

way they are nested? Or maybe we could instead encode (co-)data types in terms of the positive ⊕

and ⊗ connectives instead of the negative & and M?

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 18 (pp. 1-54)

A Polarized Basis for Simple Types 1:19

A ⊕ B ≈+ B ⊕ A

(A ⊕ B) ⊕ C ≈+ A ⊕ (B ⊕ C)

0 ⊕ A ≈+ A ≈+ A ⊕ 0

A& B ≈− B &A

(A& B) &C ≈− A& (B &C)

⊤ &A ≈− A ≈− A& ⊤

A ⊗ B ≈+ B ⊗ A

(A ⊗ B) ⊗ C ≈+ A ⊗ (B ⊗ C)

1 ⊗ A ≈+ A ≈+ A ⊗ 1

A M B ≈− B M A

(A M B) M C ≈− A M (B M C)

⊥ M A ≈− A ≈− A M ⊥

A ⊗ (B ⊕ C) ≈+ (A ⊗ B) ⊕ (A ⊗ C)

(A ⊕ B) ⊗ C ≈+ (A ⊗ C) ⊕ (B ⊗ C)

A ⊗ 0 ≈+ 0 ≈+ 0 ⊗ A

A M (B &C) ≈− (A M B) & (A M C)

(A& B) M C ≈− (A M C) & (B M C)

A M ⊤ ≈− ⊤ ≈− ⊤ M A

Fig. 11. Algebraic laws of the polarized basis of types.

As it turns out, none of these differences matter. The advantage of using the polarized connectives,

as declared in fig. 4, as the basis for encodings is that they exhibit many pleasant—if none too

surprising—properties, some of which have been explored previously by Zeilberger [2009] and

Munch-Maccagnoni [2013]. That is, in contrast with types like call-by-name tuples or call-by-value

functions, the relationships between types that we should expect—corresponding to common and

well-known relationships from algebra and logic–are full-fledged isomorphisms between polarized

types even in the face of effects that allow for terms to diverge without a result.

6.1 Algebraic laws
Let’s begin by first exploring the algebraic properties of the polarized connectives, in particular,

the isomorphic relationships between the additive and multiplicative connectives from fig. 4

• On the positive side, the ⊕ and 0 connectives form a commutative monoid of types up to

isomorphism—meaning they satisfy commutative, associative, and unit laws as positive iso-

morphisms between types—and so do the ⊗ and 1 connectives. Furthermore, all four together

form a commutative semiring up to positive isomorphism—meaning that the “multiplication”

⊗ distributes over ⊕ and is annihilated by 0.

• On the negative side, the & and ⊤ connectives form a commutative monoid up to negative

isomorphism and M and ⊥ do as well. All four together form a commutative semiring.

The algebraic laws of the additive and multiplicative connectives are summarized in fig. 11.

We can verify that each of these isomorphisms are, in fact, isomorphisms using the previously-

established laws of (co-)data declarations in general and internal polarized-substructures in par-

ticular from figs. 8 to 10. The technique follows the observation that, because of lemma 5.1, if we

have either a singleton data or co-data declaration isomorphism of the form:

data F() : V whereK : (A : V ⊢ F() |) ≈+ data F′() : V whereK′
: (A′

: V ⊢ F′() |)

codataG() : N whereO : (| G() ⊢ A : N) ≈− codataG′() : N whereO′
: (| G′() ⊢ A′

: N)

then we have A ≈ A′
by composing A ≈+ F() ≈+ F′() ≈+ A′

or A ≈− G() ≈− G′() ≈− A′
. Therefore,

we can prove isomorphism laws about the polarized (co-)data types by (1) placing both sides of the

proposed isomorphism within a singleton data or co-data type, as appropriate, (2) “unpacking” the

two sides within the structure of the containing (co-)data type declaration, and (3) use the laws of

declaration isomorphisms to show the two sides are indeed isomorphic. For example, combining

the binary connectives with their corresponding units is an identity operation that leaves types

unchanged, up to isomorphism. These unit laws rely on the fact that the right and left laws for the

nullary connectives “cancel out,” in an appropriate way, any occurrence of the nullary connective

within a (co-)data declaration as described by the 1L, 0L, ⊥R, and ⊤R laws. For the multiplicative 1

2017-07-07 21:45 page 19 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Paul Downen and Zena M. Ariola

−(A& B) ≈+ (−A) ⊕ (−B) −⊤ ≈+ 0 −(A M B) ≈+ (−A) ⊗ (−B) −⊥ ≈+ 1 −(¬A) ≈+ A

¬(A ⊕ B) ≈− (¬A) & (¬B) ¬0 ≈− ⊤ ¬(A ⊗ B) ≈− (¬A) M (¬B) ¬1 ≈− ⊥ ¬(−A) ≈− A

Fig. 12. De Morgan duality laws of the polarized basis of types.

↓VA ≈+ A ≈ V⇑A ↑NA ≈− A ≈ N⇓A

Fig. 13. Identity laws of the redundant self-shift connectives.

and ⊥ connectives, we use the fact that 1 vanishes from the left-hand side of a constructor and ⊥

vanishes from the right-hand side of an observer:

data F1() :V whereK : (1 ⊗ A :V ⊢ F1() |)

≈⊗L data F2() :V whereK : (1 :V,A :V ⊢ F2() |)

≈1L data F3() :V whereK : (A :V ⊢ F3() |)

≈1L data F4() :V whereK : (A :V, 1 :V ⊢ F4() |)

≈⊗L data F5() :V whereK : (A ⊗ 1 :V ⊢ F5() |)

codataG1() :N whereO : (|G1() ⊢ ⊥ M A :N)

≈MR codataG2() :N whereO : (|G2() ⊢ ⊥ :N ,A :N)

≈⊥R codataG3() :N whereO : (|G3() ⊢A :N)

≈⊥R codataG4() :N whereO : (|G4() ⊢A :N ,⊥ :N)

≈MR codataG5() :N whereO : (|G5() ⊢A M ⊥ :N)

Note the use of the mix law to extend 1L and ⊥R to allow for an extra component along side the

unit connective. The rest of the algebraic laws in fig. 11 can be derived from the laws in fig. 10.

6.2 Duality laws
Isomorphism of types also gives us common logical properties of the polarized connectives based

on duality, established with the same technique used in section 6.1. In particular, we get two parallel

copies of the De Morgan laws—one for − negation and the other for ¬ negation—that relates the

positive data types with the negative co-data types as shown in fig. 12. The positive “or” (⊕) is

dualized into the negative “and” (&) and the positive “and” (⊗) is dualized into the negative “or”

(M). Additionally, the two negation connectives cancel each other out, up to isomorphism. That is

to say, they are a characterization of involutive negation as data and co-data types.
12

6.3 Shift laws
The last group of polarized connectives, the shifts, have not appeared in any of the algebraic or

duality laws here. That is partially because their role is not to represent the structural aspects of

(co-)data types—like the ability to contain several components or offer multiple alternatives—but

instead serve to explicitly signal the mechanisms, like the ability to delay a computation and force

it later, that integrate different evaluation strategies. In fact, the presence of shifts have the effect

of prohibiting the usual algebraic and dual laws of polarized types as we previously saw in the

counter-examples from section 1 that appear in practice in functional programming languages.

Returning to the examples of unfaithful encodings from section 1, consider again the problem of

encoding triples in terms of pairs in a Haskell-like lazy language, where lazy pairs are described by

the ×N data type declared previously in section 2, and lazy triples are represented as:

data LazyTriple(X :N ,Y :N ,Z :N) : N where L3 : (X :N ,Y :N ,Z :N ⊢ LazyTriple(X ,Y ,Z) |)

12
This fact was noticed in another guise by Zeilberger [2009] and further brought to the forefront by Munch-Maccagnoni

[2014]. The key is to have two dual negations, where one can be encoded with implication (¬A ≈ A → ⊥) and its dual can

be encoded with the logical dual of implication called subtraction (−A ≈ 1 − A).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 20 (pp. 1-54)

A Polarized Basis for Simple Types 1:21

By applying the polarization encoding from fig. 7 to a G containing both ×N and LazyTriple, we
get that X :N ,Y :N ,Z :N ⊨ JLazyTriple(X ,Y ,Z)KG ≈ ⇑(↓X ⊗ (↓Y ⊗ ↓Z)) and X :N ,Y :N ,Z :N ⊨
JX ×N (Y ×N Z)KG ≈ ⇑(↓X ⊗ ↓⇑(↓Y ⊗ ↓Z)),13 but these two types represent very different spaces

of possible program behaviors because of the extra shifts in the encoding of X ×N (Y ×N Z). In
other words, the difference between the two is that the type X ×N (Y ×N Z) allows for extra
values like PairN(x , µ . ⟨y ||β⟩), where µ . ⟨y ||β⟩ is a term that does not return any result, but

LazyTriple(X ,Y ,Z) does not, which is explicitly expressed by the presence or absence of shifts in

their encoding. Furthermore, whereas we can apply properties like associativity of ⊗ within the

encoding of LazyTriple(X ,Y ,Z), whereX :N ,Y :N ,Z :N ⊨ ⇑(↓X ⊗(↓Y ⊗↓Z)) ≈ ⇑((↓X ⊗↓Y)⊗ ↓Z),
this is blocked by the extra shifts in ⇑(↓X ⊗ ↓⇑(↓Y ⊗ ↓Z)), which prevent the law from applying.

We can also view the troubles with currying in an ML-like eager language in terms of the extra

shifts that appear in the representation of call-by-value functions described by the →V co-data

type from section 2, whose encoding simplifies to X :V,Y :V ⊨ JX →V Y KG ≈ ⇓(¬X M ↑Y).
Again, the shifts get in the way when we try to apply the algebraic or logical laws of the polarized

connectives. The type of uncurried call-by-value functions isX :V,Y :V,Z :V ⊨ J(X ⊗ Y) →V ZK ≈

⇓(¬(X ⊗ Y) M ↑Z) ≈ ⇓(¬X M ¬Y M ↑Z), whereas the type of curried call-by-value functions is

X :V,Y :V,Z :V ⊨ JX →V (Y →V Z)K ≈ ⇓(¬X M ↑⇓(¬Y M ↑Z)), which is not the same because

of the extra shifts that appear in the curried call-by-value function.

This does not mean that the shifts are completely lawless, however. Since we began with a

large family of shifts—singleton data and co-data type constructors mapping between any kind

S and V or N—some of them turn out to be redundant as shown in fig. 13. The data shifts

↓V and V⇑ for wrapping a V type as another V type and the co-data shifts ↑N and N⇓ for

doing the same to N types are all identity operations on types, up to isomorphism. In particular,

the data declarations for ↓V and V⇑ are the simplest instance of lemma 5.1 (a) which means

that ↓VA ≈+ A ≈+ V⇑A, and likewise ↑NA ≈− A ≈−
N⇓A because of lemma 5.1 (b). This fact

tells us that the polarizing translation on already-polarized types is actually an identity up to

isomorphism, i.e., for any Θ ⊢P A : S, it follows that Θ ⊨ JAKP ≈ A. For example, we have

X :V,Y :V ⊨ JX ⊕ Y KP ≜ V⇑(((↓VX ⊗ 1) ⊕ (↓VY ⊗ 1)) ⊕ 0) ≈ X ⊕ Y for the additive data type,

and X :V ⊨ J¬X KP ≜ N⇓(⊤ & (⊥ M (¬↓VX))) ≈ ¬X for the negation co-data type, justifying our

rule of thumb for deciding the appropriate disciplines for the polarized basis P of (co-)data types.

6.4 Functional laws
So far, our attention has been largely focused on properties of the polarized basis of (co-)data types

from fig. 4, some of which, like M, are unfamiliar as programming constructs. But what about a

more familiar construct like functions? We have seen that call-by-value functions don’t behave as

nicely as we’d like, which can be understood as inconvenient extra shifts between kinds denoting

an unfortunate choice of discipline. So is there a type of function that avoids these problems? As it

turns out, there is a multi-discipline, “primordial” [Zeilberger 2009] function type that captures the

best of both the call-by-value and -name worlds, represented by the co-data declaration:

codata (X : V → Y : N) : N where · : (X : V | X → Y ⊢ Y : N)

which corresponds to the call-by-push-value function type [Levy 2001]. The particular placement

of V and N again follows the rule of thumb from section 3, so as a consequence the polarized

13
More specifically, the immediate output of translation is JLazyTriple(X , Y , Z)KG ≜ ⇑((↓X ⊗ (↓Y ⊗ (↓Z ⊗ 1))) ⊕ 0) and

JX ×N Y KG ≜ ⇑((↓X ⊗ (↓Y ⊗ 1)) ⊕ 0), which is cleaned up as shown by the laws in section 6.1.

2017-07-07 21:45 page 21 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Paul Downen and Zena M. Ariola

A → B ≈− (−B) → (¬A)

(A ⊗ B) → C ≈− A → (B → C)

1 → A ≈− A

A → ⊥ ≈− ¬A

A → (B &C) ≈− (A → B) & (A → C)

(A ⊕ B) → C ≈− (A → C) & (B → C)

A → ⊤ ≈− ⊤

0 → A ≈− ⊤

−(A → B) ≈− A ⊗ (−B)

A → (¬B) ≈− ¬(A ⊗ B)

Fig. 14. Derived laws of polarized functions.

encoding forA → B avoids any non-trivial shifts. Because of the identity laws for shifts from fig. 13,

the polarizing encoding for the above declaration G simplifies down to just ¬ and M:

X : V,Y : N ⊨ JX → Y KG ≈−
N⇓(¬(↓VX) M (↑NY)) ≈

− ¬X M Y

This gives us the most primitive expression of functions in our multi-discipline language; the rest

can be encoded in terms of the above polarized function type by adding back the extra shifts.

Alternatively, we could have chosen to replace the unfamiliar M with this function type. Because

of the involutive nature of the dual ¬ and − negations, we have the following encoding of M
disjunction in terms of → implication and − negation:

A M B ≈− ¬(−A) M B ≈− (−A) → B

Certainly functions are more familiar than M as a programming construct, but the cost of leaning

on this familiarity is the loss of symmetry because functions are a “half-negated disjunction.” In

particular, we can recast all of the algebraic and logical laws about M in terms of→ as shown in

fig. 14—some of which are familiar properties of implication—that are all derived from the encoding

A → B ≈− ¬A M B. The commutativity, associativity, and unit laws of the underlying M give us

contrapositive, currying, thunking, and negating laws:

A → B ≈− (¬A) M B ≈− B M (¬A) ≈− (¬(−B)) M (¬A) ≈− (−B) → (¬A)

(A ⊗ B) → C ≈− (¬(A ⊗ B)) M C ≈− ((¬A) M (¬B)) M C ≈− (¬A) M ((¬B) M C) ≈− A → (B → C)

1 → A ≈− (¬1) M A ≈− ⊥ M A ≈− A

A → ⊥ ≈− (¬A) M ⊥ ≈− ¬A

Likewise, distributing M over & and annihilating it with ⊤ recognizes certain functions types as

products or trivial unit types:

A → (B &C) ≈− (¬A) M (B &C) ≈− ((¬A) M B) & ((¬A) M C) ≈− (A → B) & (A → C)

(A⊕B)→C ≈− (¬(A⊕B))MC ≈− ((¬A)&(¬B))MC ≈− ((¬A)MC)&((¬B)MC) ≈− (A→C)&(B→C)

A → ⊤ ≈− (¬A) M ⊤ ≈− ⊤

0 → A ≈− (¬0) M A ≈− ⊤ M A ≈− ⊤

And finally, the De Morgan duality between M and ⊗ tells us that the continuation of a→ function

is a ⊗ pair, and dually that a continuation for a ⊗ pair is a → function:

−(A → B) ≈− −((¬A) M B) ≈− (−(¬A)) ⊗ (−B) ≈− A ⊗ (−B)

A → (¬B) ≈− (¬A) M (¬B) ≈− ¬(A ⊗ B)

7 THE FAITHFULNESS OF POLARIZATION
Now that we have laid down some laws for declaration isomorphisms, we can put them to use for

encoding user-defined (co-)data types in terms of the polarized basis from fig. 4. In particular, we

can extend the laws from fig. 10 for polarized sub-structures appearing within a simple singleton

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 22 (pp. 1-54)

A Polarized Basis for Simple Types 1:23

declaration to apply to any general (co-)data type using the mix laws from figs. 8 and 9. For example,

given a declaration of the form

data F(Θ) : V where
K0

: (Γ0,A : V,B : V ⊢ F(Θ) | ∆0)

»

K : (Γ ⊢ F(Θ) | ∆)

we can combine the A and B components of the K0 constructor with the ⊗ connective by starting

with the ⊗L law, and then building up to the full declaration of F by applying the mix law to the

appropriate reflexive isomorphisms as discussed in section 5 as follows:

data F(Θ):V whereK: (A:V,B:V ⊢ F(Θ) |) ≈+ data F′(Θ):V whereK′
: (A ⊗ B:V ⊢ F′(Θ) |)

data F(Θ):V whereK0: (A:V,B:V, Γ0 ⊢ F(Θ) | ∆0) ≈
+ data F′(Θ):V whereK′

0
: (A ⊗ B:V, Γ0 ⊢ F′(Θ) | ∆0)

data F(Θ):V whereK0: (A:V,B:V, Γ0 ⊢ F(Θ) | ∆0)

»

K: (Γ ⊢ F(Θ) | ∆)

≈+ data F′(Θ):V whereK′
0
:

(
A ⊗ B:V, Γ0 ⊢ F′(Θ) | ∆0

)
»

K:
(
Γ ⊢ F′(Θ) | ∆

)
Similarly, other combinations of components at different positions in constructors of F can be

isolated and targeted with the commute laws for data declarations. This idea is the central technique

for proving the faithfulness of the polarizing encoding, which just repeats the above procedure

until we are left with only a singleton (co-)data type that “wraps” its encoding. First we consider

how to encode a just one (co-)data type declaration in terms of the polarized basis.

Theorem 7.1 (Polarizing (co-)data declarations).

a) For all data F(Θ):Swhere
»

Ki :(
»
Ai j :Ti j

j
⊢ F(Θ) |

»

Bi j :Ui j
j
)

i

∈ G, Θ ⊨ F(Θ) ≈+ JF(Θ)KG

b) For all codataG(Θ):Swhere
»

Oi :(
»
Ai j :Ti j

j
|G(Θ) ⊢

»

Bi j :Ui j
j
)

i

∈ G, Θ ⊨ G(Θ) ≈− JG(Θ)KG

Proof. a) Observe that we have the following data isomorphism by extending the polarized

laws from fig. 10 with the mix and commute laws from fig. 8:

data F1(Θ) : V where
»

Ki :
(

»
Ai j : Ti j

j
⊢ F1(Θ) |

»

Bi j : Ui j
j) i

≈+
↓L data F2(Θ) : V where

»

Ki :
(

»

↓Ti jAi j : V
j
⊢ F2(Θ) |

»

Bi j : Ui j
j) i

≈+
↑R data F3(Θ) : V where

»

Ki :
(

»

↓Ti jAi j : V
j
⊢ F3(Θ) |

»

↑Ui j
Bi j : N

j) i
≈+−L data F4(Θ) : V where

»

Ki :
(

»

↓Ti jAi j : V
j
,

»

−(↑Ui j
Bi j) : V

j
⊢ F4(Θ) |

) i
≈+
1L,⊗L data F5(Θ) : V where

»

Ki :
(⊗ (

»

↓Ti jAi j
j
,

»

−(↑Ui j
Bi j)

j)
: V ⊢ F5(Θ) |

) i
≈+
0L,⊕L data F6(Θ) : V whereK :

(⊕ (
»⊗ (

»

↓Ti jAi j
j
,

»

−(↑Ui j
Bi j)

j) i)
: V ⊢ F6(Θ) |

)
With the above isomorphism between F1 and F6, it follows from the data shift law that:

data F(Θ):Swhere
»

Ki :
(

»
Ai j :Ti j

j
⊢ F(Θ) |

»

Bi j :Ui j
j)i ≈+data F

′(Θ):Swhere

K:

(⊕ (
»⊗ (

»

↓Ti jAi j
j
,

»

−(↑Ui jBi j)
j)i)

:V ⊢ F6(Θ) |

)

2017-07-07 21:45 page 23 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 Paul Downen and Zena M. Ariola

Therefore, we get Θ ⊨ F′(Θ) ≈+ S⇑

(⊕ (
»⊗ (

»

↓Ti jAi j
j
,

»

−(↑Ui j
Bi j)

j) i))
≜ JF(Θ)KG by apply-

ing data compatibility
14
to the reflexive isomorphism of

(⊕ (
»⊗ (

»

↓Ti jAi j
j
,

»

−(↑Ui j
Bi j)

j) i))
,

so by positive transitivity Θ ⊨ F(Θ) ≈+ JF(Θ)KG
b) Analogous to the proof of theorem 7.1 (a) by duality. □

Now that we know how to encode individual (co-)data types in isolation, we look to a global

encoding of types in theVN sub-calculus made out of a collection G of (co-)data declarations. The

only limitation on the group of declarations G is that they be well-formed and non-cyclic, written

⊢ G defined by the following inference rules, where ϵ is the empty list of declarations:

⊢ ϵ

⊢ G G ⊢ decl

⊢ G,decl

The non-cyclic requirement ensures that the dependency chains between declarations is well-

founded, so the process of inlining the encodings of (co-)data types will eventually terminate and

give a final, fully-expanded encoding.

Theorem 7.2 ((Co-)Data Polarization). In the VN sub-calculus, for any well-formed ⊢ G and
type Θ ⊢G A : S, we have Θ ⊨ A ≈ JAKG .

Proof. By lexicographic induction on (1) the derivation of ⊢ G, and (2) the derivation of

Θ ⊢G A : S. Note that in the VN sub-calculus, every isomorphism A ≈ B between types of the

same kind is either positive or negative, so the so same-kinded type isomorphisms are always

transitive. The case when A is a variable is immediate. The case where A = F(
#»
C) for some

data F(
»

X : S′) : Swhere
»

K :

(
»
A : T ⊢ F(

#»
X) |

»

B : U

)
∈ G

follows from theorems 5.3 and 7.1. In particular, we have

»

Θ ⊨ C ≈ JCKG ,
»

X : S′ ⊨ Ai j ≈ JAi jKG′ ,

and

»

X : S′ ⊨ Bi j ≈ JBi jKG′ from the inductive hypothesis for some G′
strictly smaller than G.

From theorem 7.1, we have F(
#»
C) ≈ S⇑(

⊕
(

»⊗
(

»

↓Ti jAi jσ
j
,−(

»

↑Ui j
Bi jσ

j
))

i

)) where σ =
»

{C/X } , and

from theorem 5.3 we know that

Θ ⊨ S⇑

(⊕ (
»⊗ (

»

↓Ti jAi jσ
j
,−(

»

↑Ui jBi jσ
j
)

)i))
≈ S⇑

(⊕ (
»⊗ (

»

↓Ti j

q
Ai j

y
G
JσKG

j
,

»

−(↑Ui j

q
Bi j

y
G
JσKG)

j
)i))

where JσKG =
»{
JCKG/X

}
. Therefore, we have Θ ⊨ F(

#»
C) ≈

q
F(

#»
C)

y
G
by distributing the substitu-

tion σ over translation. The case for a co-data declaration in G follows similarly. □

Note that as an immediate consequence of the full (co-)data polarization encoding (theorem 7.2),

we can generalize the fact that isomorphism distributes over substitution into a type made from

polarized connectives (theorem 5.3) to conclude that isomorphism distributes over substitution

into any type built from (non-cyclic) (co-)data type constructors. In theVN sub-calculus, for any

⊢ G; Θ,X :S ⊢G A : T ; Θ ⊢G B : S; and Θ ⊢G C : S, if Θ ⊨ B ≈ C then Θ ⊨ A {B/X } ≈ A {C/X }.

This fact means that we can apply any isomorphism within the context of any VN (co-)data type.

14
The particular instance of data compatibility used here is specified and proved in the appendix lemma C.3 (a).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 24 (pp. 1-54)

A Polarized Basis for Simple Types 1:25

8 RELATEDWORK
Multi-discipline languages. We use a multi-discipline target language based on polarity in logic

[Andreoli 1992; Girard 1993; Laurent 2002] to faithfully encode user-defined types from both

strict and lazy functional languages. Similar polarized languages have been used as a framework

for modeling other functional features like the extensionality of sum types [Munch-Maccagnoni

and Scherer 2015], sub-typing [Zeilberger 2009], dependent types [Licata and Harper 2008], and

delimited control [Munch-Maccagnoni 2014; Zeilberger 2010]. As a related approach [Curien et al.

2016], Levy’s [2003] call-by-push-value paradigm mixes both functional and imperative features.

In contrast, monadic languages, like Moggi’s [1989] computational λ-calculus, is a more estab-

lished technique in functional programming for combining call-by-value and -name evaluation

within programs where the evaluation strategy can be seen as an effect, which can be used as an

intermediate language for compiling both strict and lazy functional languages [Peyton Jones et al.

1998]. However, the two styles are not so distant; polarity and call-by-push-value revolve around a

more fine-grained adjunction model of computation [Curien et al. 2016] where the shifts between

call-by-value and call-by-name types (à la fig. 6) form an adjunction, so that a round-trip of shifting

gives a monad contained within just one kind of type [Levy 2003; Zeilberger 2008].

Polarized type isomorphisms. Our interest in type isomorphisms [Di Cosmo 1995] are as a

technical device for ensuring that encodings programming constructs are faithful. Isomorphisms

between polarized types are especially interesting because of the competition between different

evaluation strategies, and several definitions arose with various levels of generality. On the more

specific end, Zeilberger [2009] separately defines isomorphisms between positive data types and

between negative co-data types. Munch-Maccagnoni [2013] gives a more general definition of

type isomorphisms with inverse mappings between any two types such that either (1) the types

have the same polarity, or (2) the mappings are both thunkable and linear. As we saw here, the

thunkable and linear restrictions work to reconcile the impact of competing evaluation strategies

on the transitive relationship between types. In comparison, the polarized notion of syntactic type

isomorphisms considered here further generalizes Munch-Maccagnoni’s [2013] by only requiring

thunkability (for a positive isomorphism) or linearity (for a negative isomorphism). Furthermore,

the first option in which both types areV-kinded orN -kinded is subsumed since aV isomorphism

is always positive and aN isomorphism is always negative by definition. The benefit of this further

generalization is call-by-need and other evaluation strategies can be integrated into the language

while still preserving the same sorts of type isomorphisms from the VN setting. Levy [2017]

formulates a single definition of type isomorphism that applies uniformly to many languages,

including multi-discipline ones, by analogy to contextual equivalence of programs: two types are

contextually isomorphic if they give the same type (up to ordinary isomorphism) when substituted

into any context. This makes a property like theorem 5.3 into the “gold standard” definition.

Complex connectives. The idea of synthesizing complex connectives in terms of basic polarized

building blocks appeared before in Girard’s [1993] chimeric connectives. This idea appears again
in Levy’s [2006b] jumbo λ-calculus, where the jumbo connectives serve a similar purpose as user-

defined (co-)data types, except limited to only intuitionistic types that would be found in a functional

language, and not classical ones with multiple conclusions like A M B or −A. Levy [2006a,b] shows

that encoding globally call-by-value and call-by-name languages with jumbo connectives into

call-by-push-value primitives gives equivalent types using denotational methods, but only considers

type isomorphisms based on syntactic program transformations for effect-free languages. Here,

we bring out the symmetries underlying encodings of complex connectives by using the basic

connectives from classical linear logic [Girard 1987] while retaining the entirely syntactic form

2017-07-07 21:45 page 25 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Paul Downen and Zena M. Ariola

of type isomorphisms that could be used as program transformations in compilers. We also show

how multiple evaluation strategies can be mixed inside complex connectives, including additional

evaluation strategies like call-by-need that goes beyond call-by-value and -name.

Multi-language semantics. The multi-discipline language used here could also be seen as a

combination of many languages—one for each kind—into one. The idea of multi-language semantics

[Matthews and Findler 2007] has been used for ensuring full abstraction—a one-for-one soundness
and completeness between source and target languages—but for different applications in compilation

including continuation-passing style translation [Ahmed and Blume 2011], closure conversion

[New et al. 2016], and modular compiler verification [Ahmed 2015; Perconti and Ahmed 2014]. The

connection between shifts (fig. 6) and language barriers deserves more investigation.

9 CONCLUSION
We employ encodings all the time as programming language designers, implementers, and theorists,

but those encodings are not always accurate representations in practical languages where program

features, like exceptions or even just recursion, can sometimes turn “obvious” encodings into leaky

abstractions. Here, we have seen how a polarized basis of types let us rely on the common encodings

we know and love for supporting both user-defined data and co-data types in eager, lazy, and mixed

languages. We used the idea of type isomorphisms as a technique for making sure that the proposed

encodings are faithful, so that we can encode and decode without any loss of information, and that

they exhibit the mathematical and logical properties that we should expect. In order to support

evaluation strategies beyond just call-by-value and call-by-name, we saw how two pairs of shifts

were needed to enter and exit the call-by-value and -name worlds where (co-)data behaves best.

We limited the source language to simple types for simplicity, but the technique presented

here straightforwardly extends from monomorphic types to polymorphic ones. In particular, we

can model polymorphism in system Fω style with explicit type abstractions and instantiations by

extending the language with type functions and letting constructors of data types and observers of

co-data type include hidden quantified types (generalizing the ∃ and ∀ quantifiers) as shown by

Downen et al. [2015]. The generalized type quantifications in user-defined types be encoded using

an existential ∃ data type and universal ∀ co-data type, and since the addition of parametrically

quantified types does not change the dynamic behavior of programs, all the same sorts of type

isomorphisms hold. Extending the polar basis to represent recursive (co-)data types, however,

would require some more work to treat formally in a similar approach as the one taken here.

In this paper, we looked at a multi-discipline language that lets programs combine four different

kinds of evaluation strategies: call-by-value, call-by-name, lazy call-by-value (call-by-need), and

lazy call-by-name (the dual of call-by-need). However, the sequent calculus that our source language

was based on [Downen and Ariola 2014] is actually much more general, and accommodates any

number of different base kinds for controlling the substitution disciplines. We can add any other

base kindD to the source language and the same encoding technique only requires thatD satisfies

some basic sanity conditions [Downen et al. 2015] of stability (i.e., (co-)values are closed under

substitution) and focalization (i.e., that there are enough (co-)values). Then in the target polarized

language, we get another quadruple of shifts from fig. 6. This way, the encodings presented here

bridge the gap the languages we want to use and their polarized foundation.

The style of accepting multiple kinds of types can be used for a practical model of intermediate

languages for implementing functional languages, and arguably already has been put to use in a

preliminary form. The core intermediate language of the Glasgow Haskell Compiler (GHC) includes

(roughly) two distinct kinds of types: types with a lazy semantics that correspond to ordinary source

Haskell types and unboxed types [Peyton Jones and Launchbury 1991] for representing things

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 26 (pp. 1-54)

A Polarized Basis for Simple Types 1:27

like machine integers which correspond to positive types that (must) have an eager semantics.

In this light, GHC’s core intermediate language can be understood as a limited form of polarized

intermediate language. We intend to build on previous work by Maurer et al. [2017] and Downen

et al. [2016] to investigate how GHC can be extended with additional constructs from polarized

logic; there is already current work on implementing unboxed (i.e., positive) sum types, but what’s

still missing are unlifted (i.e., negative) functions and other negative co-data types. In the end, the

polarized basis of types gives us a unified core language that fuses purity with impurity for both

lazy and eager functional languages alike.

REFERENCES
Amal Ahmed. 2015. Verified Compilers for a Multi-Language World. In 1st Summit on Advances in Programming Languages

(SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 32. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 15–31. DOI:http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
Amal Ahmed and Matthias Blume. 2011. An Equivalence-preserving CPS Translation via Multi-language Semantics. In

Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming (ICFP ’11). ACM, New York,

NY, USA, 431–444. DOI:http://dx.doi.org/10.1145/2034773.2034830
Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2, 3

(1992), 297–347. DOI:http://dx.doi.org/10.1093/logcom/2.3.297

Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. 2011. Classical Call-By-Need and Duality. In Typed Lambda Calculi
and Applications: 10th International Conference (TLCA’11). Springer Berlin Heidelberg, Berlin, Heidelberg, 27–44. DOI:
http://dx.doi.org/10.1007/978-3-642-21691-6_6

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-By-Need Lambda Calculus.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’95). ACM,

New York, NY, USA, 233–246. DOI:http://dx.doi.org/10.1145/199448.199507
Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A Theory of Effects and Resources: Adjunction

Models and Polarised Calculi. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’16). ACM, New York, NY, USA, 44–56. DOI:http://dx.doi.org/10.1145/2837614.2837652

Pierre-Louis Curien and Hugo Herbelin. 2000. The Duality of Computation. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). ACM, New York, NY, USA, 233–243. DOI:http://dx.doi.
org/10.1145/351240.351262

Roberto Di Cosmo. 1995. Isomorphisms of Types: From λ-calculus to Information Retrieval and Language Design. Birkhauser
Verlag, Basel, Switzerland.

Paul Downen and Zena M. Ariola. 2014. The Duality of Construction. In Programming Languages and Systems: 23rd
European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Zhong Shao (Ed.). Lecture Notes in Computer Science, Vol. 8410. Springer Berlin Heidelberg,

Berlin, Heidelberg, 249–269. DOI:http://dx.doi.org/10.1007/978-3-642-54833-8_14
Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. 2015. Structures for Structural Recursion. In Proceedings of the

20th ACM SIGPLAN International Conference on Functional Programming (ICFP ’15). ACM, New York, NY, USA, 127–139.

DOI:http://dx.doi.org/10.1145/2784731.2784762
Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyton Jones. 2016. Sequent Calculus As a Compiler Intermediate

Language. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP ’16). ACM,

New York, NY, USA, 74–88. DOI:http://dx.doi.org/10.1145/2951913.2951931
Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39, 1 (1935), 176–210.

DOI:http://dx.doi.org/10.1007/BF01201353
Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101. DOI:http://dx.doi.org/10.1016/

0304-3975(87)90045-4

Jean-Yves Girard. 1993. On the Unity of Logic. Annals of Pure and Applied Logic 59, 3 (1993), 201–217. DOI:http://dx.doi.
org/10.1016/0168-0072(93)90093-S

Olivier Laurent. 2002. Étude de la polarisation en logique. Ph.D. Dissertation. Université de la Méditerranée - Aix-Marseille

II.

Paul Blain Levy. 2001. Call-By-Push-Value. Ph.D. Dissertation. Queen Mary and Westfield College, University of London.

Paul Blain Levy. 2003. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation, Vol. 2.

Springer Netherlands. DOI:http://dx.doi.org/10.1007/978-94-007-0954-6
Paul Blain Levy. 2006a. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order and Symbolic

Computation 19, 4 (01 Dec. 2006), 377–414. DOI:http://dx.doi.org/10.1007/s10990-006-0480-6

2017-07-07 21:45 page 27 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.1145/2034773.2034830
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1007/978-3-642-21691-6_6
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1145/2837614.2837652
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1007/978-3-642-54833-8_14
http://dx.doi.org/10.1145/2784731.2784762
http://dx.doi.org/10.1145/2951913.2951931
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0168-0072(93)90093-S
http://dx.doi.org/10.1016/0168-0072(93)90093-S
http://dx.doi.org/10.1007/978-94-007-0954-6
http://dx.doi.org/10.1007/s10990-006-0480-6

1:28 Paul Downen and Zena M. Ariola

Paul Blain Levy. 2006b. Jumbo λ-Calculus. Springer Berlin Heidelberg, Berlin, Heidelberg, 444–455. DOI:http://dx.doi.org/
10.1007/11787006_38

Paul Blain Levy. 2017. Contextual Isomorphisms. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2017). ACM, New York, NY, USA, 400–414. DOI:http://dx.doi.org/10.1145/3009837.3009898

Daniel R. Licata and Robert Harper. 2008. Positively Dependent Types. In Proceedings of the 3rd Workshop on Programming
Languages Meets Program Verification (PLPV ’09). ACM, New York, NY, USA, 3–14. DOI:http://dx.doi.org/10.1145/1481848.
1481851

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-language Programs. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’07). ACM, New York,

NY, USA, 3–10. DOI:http://dx.doi.org/10.1145/1190216.1190220
Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. 2017. Compiling without Continuations. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’17). ACM, New York,

NY, USA, 482–494. DOI:http://dx.doi.org/10.1145/3062341.3062380
Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth Annual Symposium on

Logic in Computer Science. IEEE Press, Piscataway, NJ, USA, 14–23. http://dl.acm.org/citation.cfm?id=77350.77353

Guillaume Munch-Maccagnoni. 2009. Focalisation and Classical Realisability. In Computer Science Logic: 23rd international
Workshop, CSL 2009, 18th Annual Conference of the EACSL (CSL 2009), Erich Grädel and Reinhard Kahle (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 409–423. DOI:http://dx.doi.org/10.1007/978-3-642-04027-6_30
Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-Associative Composition of Programs and Proofs. Ph.D.

Dissertation. Université Paris Diderot.

Guillaume Munch-Maccagnoni. 2014. Formulae-as-Types for an Involutive Negation. In Proceedings of the Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS) (CSL-LICS ’14). ACM, New York, NY, USA, Article 70, 10 pages. DOI:
http://dx.doi.org/10.1145/2603088.2603156

Guillaume Munch-Maccagnoni and Gabriel Scherer. 2015. Polarised Intermediate Representation of Lambda Calculus

with Sums. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015). IEEE, 127–140. DOI:
http://dx.doi.org/10.1109/LICS.2015.22

Max S. New,William J. Bowman, and Amal Ahmed. 2016. Fully Abstract Compilation via Universal Embedding. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016). ACM, New York, NY, USA,

103–116. DOI:http://dx.doi.org/10.1145/2951913.2951941
James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-language Semantics. In Proceedings of

the 23rd European Symposium on Programming Languages and Systems - Volume 8410. Springer-Verlag New York, Inc.,

New York, NY, USA, 128–148. DOI:http://dx.doi.org/10.1007/978-3-642-54833-8_8
Simon Peyton Jones, Mark Shields, John Launchbury, and Andrew Tolmach. 1998. Bridging the Gulf: A Common Intermediate

Language for ML and Haskell. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’98). ACM, New York, NY, USA, 49–61. DOI:http://dx.doi.org/10.1145/268946.268951

Simon L. Peyton Jones and John Launchbury. 1991. Unboxed Values as First Class Citizens in a Non-Strict Functional

Language. In Functional Programming Languages and Computer Architecture: 5th ACM Conference, John Hughes (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 636–666. DOI:http://dx.doi.org/10.1007/3540543961_30
Noam Zeilberger. 2008. On the Unity of Duality. Annals of Pure and Applied Logic 153, 1 (2008), 660–96. DOI:http:

//dx.doi.org/10.1016/j.apal.2008.01.001

Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching. Ph.D. Dissertation. Carnegie Mellon

University.

Noam Zeilberger. 2010. Polarity and the Logic of Delimited Continuations. In Proceedings of the 2010 25th Annual IEEE
Symposium on Logic in Computer Science (LICS ’10). IEEE Computer Society, Washington, DC, USA, 219–227. DOI:
http://dx.doi.org/10.1109/LICS.2010.23

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 28 (pp. 1-54)

http://dx.doi.org/10.1007/11787006_38
http://dx.doi.org/10.1007/11787006_38
http://dx.doi.org/10.1145/3009837.3009898
http://dx.doi.org/10.1145/1481848.1481851
http://dx.doi.org/10.1145/1481848.1481851
http://dx.doi.org/10.1145/1190216.1190220
http://dx.doi.org/10.1145/3062341.3062380
http://dl.acm.org/citation.cfm?id=77350.77353
http://dx.doi.org/10.1007/978-3-642-04027-6_30
http://dx.doi.org/10.1145/2603088.2603156
http://dx.doi.org/10.1109/LICS.2015.22
http://dx.doi.org/10.1145/2951913.2951941
http://dx.doi.org/10.1007/978-3-642-54833-8_8
http://dx.doi.org/10.1145/268946.268951
http://dx.doi.org/10.1007/3540543961_30
http://dx.doi.org/10.1016/j.apal.2008.01.001
http://dx.doi.org/10.1016/j.apal.2008.01.001
http://dx.doi.org/10.1109/LICS.2010.23

A Polarized Basis for Simple Types 1:29

A PROOF OF SOUNDNESS OF THE POLARIZATION ENCODING
The polarizing encoding of (co-)data types as shown in fig. 7 is stated in terms of deep pattern

matching on data structures and co-data observations, which avoids the terrifying bureaucracy of

the many levels of shallow patterns needed to implement the translation. Thankfully, these deep

patterns fit a certain form which makes them much easier to desugar compared to fully general

patterns. In particular, every pattern used in the encoding begins with a match on a S⇑ or S⇓ shift,

then several nested matches on the additive structure of type A ⊕ B or A& B, and then concludes

with a match on the multiplicative structure of the following form:

p ∈ Pattern ::= S⇑
(
p+

)
q ∈ CoPattern ::= S⇓

[
q+

]
p+ ∈ AddPattern ::= p× || ι1

(
p+

)
|| ι2

(
p+

)
q+ ∈ AddCoPattern ::= q× || π1

[
q+

]
|| π2

[
q+

]
p× ∈ MultPattern ::= x || () || (x ,p×) || −

(
q×

)
|| ↓S(x) q× ∈ MultCoPattern ::= α || [] || [α ,q×] || ¬p× || ↑S[α]

We can then easily desugar (co-)patterns of this form by just un-nesting the pattern one level at a

time within the alternatives of every pattern matching (co-)term as follows:

µ̃
[

»

S⇑
(
p+i

)
.ci

i]
≜ µ̃

[
S⇑x .

〈
x
������µ̃ [

»

p+i .ci
i]〉]

µ̃


»

ι1
(
p+i

)
.ci

i

»

ι2
(
p ′+i

)
.c ′i

i

 ≜ µ̃


ι1 (x).

〈
x
������µ̃ [

»

p+i .ci
i]〉

ι2 (x).
〈
x
������µ̃ [

»

p ′+i .c
′
i
i]〉

µ̃[x .c] ≜ µ̃x .c

µ̃
[
(y,p×).c

]
≜ µ̃

[
(y,x).

〈
x
����µ̃ [

p×.c
]〉]

µ̃
[
−
(
q×

)
.c
]
≜ µ̃

[
−(α).

〈
µ
(
q×.c

) ����α〉]

µ

(
»

S⇓
[
q+i

]
.ci

i
)
≜ µ

(
S⇓[α].

〈
µ
(

»

q+i .ci
i)������α〉)

µ
©­«

»

π1
[
q+i

]
.ci

i

»

π2
[
q′+i

]
.c ′i

i
ª®¬ ≜ µ

©­­«
π1 [α].

〈
µ
(

»

q+i .ci
i)������α〉

π2 [α].
〈
µ
(

»

q′+i .c
′
i
i)������α〉ª®®¬

µ(α .c) ≜ µα .c

µ
(
[β,q×].c

)
≜ µ

(
[β,α].

〈
µ
(
q×.c

) ����α〉)
µ
(
¬
[
p×

]
.c
)
≜ µ

(
¬[x].

〈
x
����µ̃ [

p×.c
]〉)

Additionally, in order to prove the soundness of the η law for (co-)data types with respect to the

encoding, we use a couple helpful tricks with η. First, note that the seemingly stronger version

of the η law for co-data types which applies to values (or the stronger η law for data types that

applies to co-values)

(ηF
S
) E : F(

#»
C) = µ̃

[
»

K(#»α , #»x).⟨K(#»α , #»x)||E⟩
]
(ηG

S
) V : G(

#»
C) = µ

(
»

O[#»x , #»α].⟨V ||O[#»x , #»α]⟩

)
can be derived from the η law on (co-)variables by combining with the ηµ and η µ̃ rules for µ- and
µ̃-abstractions as follows:

E : F(
#»
C) =ηµη µ̃ µ̃y: F(

#»
C).

〈
µβ : F(

#»
C). ⟨y ||β⟩

����E〉
=ηF µ̃y: F(

#»
C).

〈
µβ : F(

#»
C).

〈
y
������µ̃ [

»

K(#»α , #»x).⟨K(#»α , #»x)||β⟩
]〉������E〉

=µ µ̃y: F(
#»
C).

〈
y
������µ̃ [

»

K(#»α , #»x).⟨K(#»α , #»x)||E⟩
]〉

=η µ̃ µ̃
[

»

K(#»α , #»x).⟨K(#»α , #»x)||E⟩
]

V : G(
#»
C) =ηµη µ̃ µβ :G(

#»
C).

〈
V
����µ̃y:G(#»

C). ⟨y ||β⟩
〉

=ηG µβ :G(
#»
C).

〈
V
������µ̃y:G(#»

C).
〈
µ
(

»

O[#»x , #»α].⟨y ||O[#»x , #»α]⟩

)������β〉〉
=µ̃ µβ :G(

#»
C).

〈
µ
(

»

O[#»x , #»α].⟨V ||O[#»x , #»α]⟩

)������β〉
=ηG µ

(
»

O[#»x , #»α].⟨V ||O[#»x , #»α]⟩

)
2017-07-07 21:45 page 29 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 Paul Downen and Zena M. Ariola

Second, note that we have the following equalities

(µ̃ηF
S
) c =

〈
z
������µ̃ [

»

K(#»α , #»x).c {K(#»α , #»x)/z}
]〉

(µ̃z.c : F(
#»
C) ∈ CoValueS)

(µηG
S
) c =

〈
µ
(

»

H[#»x , #»α].c {H[#»x , #»α]/γ }
)������γ 〉

(µγ .c : G(
#»
C) ∈ ValueS)

the first of which is derived from the η law of the F as follows:

c =µ̃S ⟨z ||µ̃z.c⟩

=ηF
S

〈
z
������µ̃ [

»

K(#»α , #»x).⟨K(#»α , #»x)||µ̃z.c⟩
]〉

(µ̃z.c : F(
#»
C) ∈ CoValueS)

=µ̃S

〈
z
������µ̃ [

»

K(#»α , #»x).c {K(#»α , #»x)/z}
]〉

and the second of which is likewise derived from the η law of G as follows:

c =µS ⟨µγ .c ||γ ⟩

=ηG
S

〈
µ
(

»

H[#»x , #»α].⟨µγ .c ||H[#»x , #»α]⟩

)������γ 〉
(µγ .c : G(

#»
C) ∈ ValueS)

=µS

〈
µ
(

»

H[#»x , #»α].c {H[#»x , #»α]/γ }
)������γ 〉

As examples, the particular instances of this rule for the polarized data types are:

(µ̃η⊗
V
) c = ⟨z ||µ̃[(x ,y).c {(x ,y)/z}]⟩ (z : A ⊗ B)

(µ̃η⊕
V
) c = ⟨z ||µ̃[ι1 (x).c {ι1 (x)/z}|ι2 (y).c {ι2 (y)/z}]⟩ (z : A ⊕ B)

(µ̃η1V) c = ⟨z ||µ̃[().c {()/z}]⟩ (z : 1)

(µ̃η0
V
) c = ⟨z ||µ̃[]⟩ (z : 0)

(µ̃η−V) c = ⟨z ||µ̃[−(α).c {−(α)/z}]⟩ (z : −A)

and the instances for the polarized co-data types are:

(µηM
N
) c = ⟨µ([α , β].c {[α , β]/γ })||γ ⟩ (γ : A M B)

(µη&
N
) c = ⟨µ(π1 [α].c {π1 [α]/γ }|π2 [β].c {π2 [β]/γ })||γ ⟩ (γ : A& B)

(µη⊥N) c = ⟨µ([].c {[]/γ })||γ ⟩ (γ : ⊥)

(µη⊤N) c = ⟨µ()||γ ⟩ (γ : ⊤)

(µη¬N) c = ⟨µ(¬[x].c {¬[x]/γ })||γ ⟩ (γ : ¬A)

With the above observations about pattern matching and extensionality, we are now ready to

prove that the translation is sound.

Theorem 3.1 (Polarization soundness). For i = 1, 2,
a) if ci : (Γ ⊢G ∆) and c1 = c2 then JciKG : (JΓKG ⊢P J∆KG) and Jc1KG = Jc2KG ,
b) if Γ ⊢G vi : A | ∆ and v1 = v2 then JΓKG ⊢P JviKG : JAKG | J∆KG and Jv1KG = Jv2KG , and
c) if Γ | ei : A ⊢G ∆ and e1 = e2 then JΓKG | JeiKG : JAKG ⊢P J∆KG and Je1KG = Je2KG , and

Proof. The fact that well-typed commands and (co-)terms have the associated translated type

follows straightforwardly by (mutual) induction on their typing derivations. More interesting is

the translation of equalities across the encoding. Note that since the translation is compositional

and hygienic, the reflexive, symmetric, transitive, and (importantly) congruent closure of the

equational theory is guaranteed. Therefore, we only need to check that each axiom is preserved by

the translation. In that regard, it is important to note the fact that (1) that (co-)values translate to

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 30 (pp. 1-54)

A Polarized Basis for Simple Types 1:31

(co-)values and (2) substitution distributes over translation (that is, JcKG
{
JV KG/x

}
=α Jc {V /x}KG ,

etc.), both of which can be confirmed by induction on the syntax of (co-)terms.

The substitution axioms translate directly without change because of the above mentioned two

facts about (co-)values and substitution, like so:

(ηµ) µα . ⟨v ||α⟩ = v translates to Jµα . ⟨v ||α⟩KG ≜ µα .⟨JvKG ||α⟩ =ηµ JvKG
(η µ̃) µ̃x . ⟨x ||e⟩ = e translates to Jµ̃x . ⟨x ||e⟩KG ≜ µ̃x .⟨x ||JeKG⟩ =η µ̃ JeKG
(µ) ⟨µα .c ||E⟩ = c {E/α } translates to J⟨µα .c ||E⟩K ≜

〈
µα .JcKG

����JEKG
〉
=µ JcKG

{
JEKG/α

}
=α

Jc {E/α }KG
(µ̃) ⟨V ||µ̃x .c⟩ = c {V /x} translates to J⟨V ||µ̃x .c⟩K ≜

〈
JV KG

����µ̃x .JcKG〉
=µ̃ JcKG

{
JV KG/x

}
=α

Jc {V /x}KG

Given data F(Θ) : Swhere
»

Ki :
(

»
Ai1 : Ti j

j
⊢ F(Θ) |

»

Bi j : Ui j
j) i

∈ G we have:

(βF)

〈
Ki (# »ei j

j , # »vi j
j)

��������µ̃ [
»

Ki (# »αi j
j , # »xi j

j).ci
i
]〉
=

〈
µ # »αi j

j .
〈

»vi j
����µ̃ # »xi j

j .ci
〉���� # »ei j

j 〉
translates by induction on

the pattern ιi

(
»

¬

[
↑Ui j

[
αi j

]] j
,

»

↓Ti j

(
xi j

) j)
to:

s〈
Ki (# »ei j

j , # »vi j
j)

��������µ̃ [
»

Ki (# »αi j
j , # »xi j

j).ci
i
]〉{

G

≜

〈
ιi

(
»

¬

[
↑Ui j

[q
ei j

y
G

]] j
,

»

↓Ti j

(q
vi j

y
G

) j)������
������µ̃


»

ιi

(
»

¬

[
↑Ui j

[
αi j

]] j
,

»

↓Ti j

(
xi j

) j)
.Jci KG

i 
〉

=β⊕η µ̃

〈(
»

¬

[
↑Ui j

[q
ei j

y
G

]] j
,

»

↓Ti j

(q
vi j

y
G

) j)�����
�����µ̃

[(
»

¬

[
↑Ui j

[
αi j

]] j
,

»

↓Ti j

(
xi j

) j)
.Jci KG

]〉

≜

〈(
¬

[
↑Ui1

[
Jei1KG

]]
, . . . ,¬

[
↑Uim

[
JeimKG

]]
,

»

↓Ti j

(q
vi j

y
G

) j)���������µ̃ [(
¬
[
↑Ui1 [αi1]

]
, . . . ,¬

[
↑Uim [αim]

]
,

»

↓Ti j

(
xi j

) j)
.Jci KG

]〉

=β⊗η µ̃

〈
¬

[
↑Ui1

[
Jei1KG

]] �����������µ̃
¬

[
↑Ui1 [αi1]

]
.. . .

〈
¬

[
↑Uim

[
JeimKG

]] ��������µ̃
[
¬
[
↑Uim [αim]

]
.

〈(
»

↓Ti j

(q
vi j

y
G

) j)�����
�����µ̃ [

»

↓Ti j

(
xi j

) j
.Jci KG

]〉]〉 
〉

=β¬ηµ

〈
µ̃

[
↑Ui1 [αi1].. . .

〈
µ̃

[
↑Uim [αim].

〈(
»

↓Ti j

(q
vi j

y
G

) j)�����
�����µ̃ [

»

↓Ti j

(
xi j

) j
.Jci KG

]〉]�����
�����↑Uim

[
JeimKG

]〉]��������↑Ui1

[
Jei1KG

]〉
=β ↑ηµ

〈
µαi1. . . .

〈
µα1m .

〈(
»

↓Ti j

(q
vi j

y
G

) j)�����
�����µ̃ [

»

↓Ti j

(
xi j

) j
.Jci KG

]〉�����
�����JeimKG

〉�����
�����Jei1KG

〉
≜

〈
µ # »αi j

j .

〈(
»

↓Ti j

(q
vi j

y
G

) j)�����
�����µ̃ [

»

↓Ti j

(
xi j

) j
.Jci KG

]〉�����
����� # »q
ei j

y
G

j
〉

=β⊗β 1η µ̃

〈
µ # »αi j

j .
〈
↓Ti1

(
Jvi1KG

)������µ̃ [
↓Ti1 (xi1).. . .

〈
↓Tin

(
JvinKG

)������µ̃ [
↓Tin (xin).Jci KG

]〉]〉�������� # »q
ei j

y
G

j
〉

2017-07-07 21:45 page 31 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 Paul Downen and Zena M. Ariola

=β ↓η µ̃

〈
µ # »αi j

j .
〈
Jvi1KG

������µ̃xi1. . . . 〈JvinKG
������µ̃xin .Jci KG〉〉�������� # »q

ei j
y
G

j
〉

≜

〈
µ # »αi j

j .

〈
»q
vi j

y
G

j
��������µ̃ # »xi j

j .Jci KG

〉�������� # »q
ei j

y
G

j
〉

≜
q〈

µ # »αi j
j .

〈
»vi j

����µ̃ # »xi j
j .ci

〉���� # »ei j
j 〉y

G

(ηF) β : F(
#»
C) = µ̃

[
»

Ki (# »αi j
j , # »xi j

j).
〈
Ki (# »αi j

j , # »xi j
j)
����β〉i] translates by induction on the pattern

ιi

(
»

¬

[
↑Ui j

[
αi j

]] j
,

»

↓Ti j

(
xi j

) j)
to:

s
µ̃

[
»

Ki (# »αi j
j , # »xi j

j).
〈
Ki (# »αi j

j , # »xi j
j)
����β〉i]{

G

≜ µ̃


»

S⇑

(
ιi

(
»

−

(
↑Ui j

[
αi j

]) j
,

»

↓Ti j

(
xi j

) j))
.

〈
S⇑

(
ιi

(
»

−

(
↑Ui j

[
αi j

]) j
,

»

↓Ti j

(
xi j

) j))�����
�����β〉

i 
=µ̃η ↓

V

µ̃


»

S⇑

(
ιi

(
»

−

(
↑Ui j

[
αi j

]) j
, # »xi j

j
))
.

〈
S⇑

(
ιi

(
»

−

(
↑Ui j

[
αi j

]) j
, # »xi j

j
))�����

�����β〉
i 

=µ̃η ↑

V

µ̃

[
»

S⇑

(
ιi

(
»

−
(
αi j

) j
, # »xi j

j
))
.
〈
S⇑

(
ιi

(
»

−
(
αi j

) j
, # »xi j

j
))������β〉i]

=µ̃η−
V
µ̃

[
»

S⇑
(
ιi

(
»yi j

j , # »xi j
j)) .〈S⇑ (

ιi
(

»yi j
j , # »xi j

j)) ����β〉i]
=µ̃η⊗

V
η1
V
µ̃
[

»

S⇑(ιi (x)).⟨S⇑(ιi (x))||β⟩
i]

=µ̃η⊕
V
µ̃[S⇑(x).⟨S⇑(x)||β⟩]

=η ⇑ β

Given codataG(Θ) : Swhere
»

Oi :
(

»
Ai j : Ti j

j
| G(Θ) ⊢

»

Bi j : Ui j
j) i

∈ G we have:

(βG) is analogous to the translation of βF by duality.

(ηG) is analogous to the translation of ηF by duality. □

B PROOFS OF TYPE ISOMORPHISM PROPERTIES
Theorem B.1. Two typesA andB are isomorphic if and only if there are two closed valuesV1 : A → B

and V2 : B → A such that the following equalities hold:

V2 ◦V1 = λx .x : A → A V1 ◦V2 = λy.y : B → B

Proof. Recall that the λ-abstraction λx .v is syntactic sugar for the object µ(x · α .⟨v ||α⟩), so that

the identity function λx .x expands to µ(x · α .⟨x ||α⟩). Additionally, the composition of functions,

f ◦ д, is defined in the sequent calculus as:

f ◦ д ≜ µ(x · α .⟨f ||µβ . ⟨д ||x · β⟩ · α⟩)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 32 (pp. 1-54)

A Polarized Basis for Simple Types 1:33

First, we show that an isomorphism between types A and B gives us two inverse functions

between types A and B. Let c1 : (x : A ⊢ β : B) and c2 : (y : B ⊢ α : A) be the open commands given

by the isomorphism. These commands can be closed as the two functional objects:

V1 : A → B ≜ µ(x · β .c1) V2 : B → A ≜ µ(y · α .c2)

To show that these are inverses, we have V2 ◦V1:

V2 ◦V1 ≜ µ(x · α .⟨V2 ||µβ . ⟨V1 ||x · β⟩ · α⟩)

=β→µ µ̃ µ(x · α .⟨V2 ||µβ .c1 · α⟩)

=β→µ µ(x · α .⟨µβ .c1 ||µ̃y.c2⟩)

=Iso µ(x · α .⟨x ||α⟩)

≜ λx .x

The fact that V1 ◦V2 = λy.y follows analogously.

Second, we show that two inverse functions between types A and B give us an isomorphism

between types A and B. Let V1 : A → B and V2 : B → A be the closed inverse functions. These

functions can be applied as the two open commands:

c1 ≜ ⟨V1 ||x · β⟩ : (x : A ⊢ β : B) c2 ≜ ⟨V2 ||y · α⟩ : (y : B ⊢ α : A)

To show that these commands form an isomorphism, we have:

⟨µβ .c1 ||µ̃y.c2⟩ ≜ ⟨µβ . ⟨V1 ||x · β⟩||µ̃y. ⟨V2 ||y · α⟩⟩

=ς→ ⟨V2 ||µβ . ⟨V1 ||x · β⟩ · α⟩

=β→µ µ̃ ⟨µ(⟨V2 ||µβ . ⟨V1 ||x · β⟩ · α⟩)||x · α⟩

≜ ⟨V2 ◦V1 ||x · α⟩

=Inv ⟨µ(x · α .⟨x ||α⟩)||x · α⟩

=β→µ µ̃ ⟨x ||α⟩

The fact that ⟨µα .c2 ||µ̃x .c1⟩ = ⟨y ||β⟩ follows analogously. □

Lemma B.1 (Linear and Thunkable Composition). For any commands c1 : (x : A ⊢ β : B) and
c2 : (y : B ⊢ α : A),

a) if µ̃x .c1 and µ̃y.c2 are linear then µ̃x . ⟨µβ .c1 ||µ̃y.c2⟩ is also linear, and
b) if µα .c2 and µβ .c1 are thunkable then µα . ⟨µβ .c1 ||µ̃y.c2⟩ is also thunkable.

Proof. a) Let v be any term and c be any command such that β ,γ < FV (v). The linearity of

the co-term µ̃x . ⟨µβ .c1 ||µ̃y.c2⟩ follows from the linearity of both µ̃x .c1 and µ̃y.c2:

⟨µγ . ⟨v ||µ̃z.c⟩||µ̃x .⟨µβ .c1 ||µ̃y.c2⟩⟩ =Lin ⟨µβ . ⟨µγ . ⟨v ||µ̃z.c⟩||µ̃x .c1⟩||µ̃y.c2⟩

=Lin ⟨µβ . ⟨v ||µ̃z. ⟨µγ .c ||µ̃x .c1⟩⟩||µ̃y.c2⟩

=Lin ⟨v ||µ̃z. ⟨µβ . ⟨µγ .c ||µ̃x .c1⟩||µ̃y.c2⟩⟩

=Lin ⟨v ||µ̃z. ⟨µγ .c ||µ̃x . ⟨µβ .c1 ||µ̃y.c2⟩⟩⟩

2017-07-07 21:45 page 33 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 Paul Downen and Zena M. Ariola

b) Let e be any co-term and c be any command such that y, z < FV (e). The thunkability of the

term µα . ⟨µβ .c1 ||µ̃y.c2⟩ follows from the thunkability of both µα .c2 and µβ .c1:

⟨µα . ⟨µβ .c1 ||µ̃y.c2⟩||µ̃z. ⟨µγ .c ||e⟩⟩ =Thk ⟨µβ .c1 ||µ̃y. ⟨µα .c2 ||µ̃z. ⟨µγ .c ||e⟩⟩⟩

=Thk ⟨µβ .c1 ||µ̃y. ⟨µγ . ⟨µα .c2 ||µ̃z.c⟩||e⟩⟩

=Thk ⟨µγ . ⟨µβ .c1 ||µ̃y. ⟨µα .c2 ||µ̃z.c⟩⟩||e⟩

=Thk ⟨µγ . ⟨µα . ⟨µβ .c1 ||µ̃y.c2⟩||µ̃z.c⟩||e⟩ □

Lemma B.2. a) v is linear if v = V for some value V .
b) e is thunkable if e = E for some co-value E.

Proof. a) Suppose we have any command c , co-term e , variable x < FV (e) and co-variable

α < FV (v). Because we assumed thatv = V for some valueV , we have the following equality:

⟨v ||µ̃x . ⟨µα .c ||e⟩⟩ = ⟨V ||µ̃x . ⟨µα .c ||e⟩⟩

=µ̃ ⟨µα .c {V /x}||e⟩

=µ̃ ⟨µα . ⟨V ||µ̃x .c⟩||e⟩

= ⟨µα . ⟨v ||µ̃x .c⟩||e⟩

b) Analogous to the proof of lemma B.2 (a) by duality. □

Lemma B.3. a) For any types A : V and B : V , A ≈ B if and only if A ≈+ B.
b) For any types A : N and B : N , A ≈ B if and only if A ≈− B.

Proof. Note that both A ≈+ B and A ≈− B imply A ≈ B by definition, so we only need to

show that A ≈ B implies A ≈+ B and A ≈− B in the appropriate case. Suppose that A ≈ B is

witnessed by the commands c : (x : A ⊢ β : B) and c ′ : (y : B ⊢ α : A). Note that every V-co-term is

aV-co-value (i.e., e ∈ CoValueV for all e : A : V), so all co-terms e : A : V are trivially linear by

lemma B.2 (b). Thus, when A : V and B : V , µ̃x .c : A : V and µ̃y.c ′ : B : V are linear as required

by A ≈+ B. Dually, note that every N-term is a N-value (i.e., v ∈ ValueN for all v : A : N), so all

termsv : A : N are trivially thunkable by lemma B.2 (a). Thus, whenA : N and B : N , µα .c ′ : A : N

and µβ .c : B : N are thunkable as required by A ≈− B. □

Theorem 4.3 (Polarized Isomorphism Eqivalence). a) A ≈+ A and A ≈− A,
b) if A ≈+ B then B ≈+ A and if A ≈− B then B ≈− A, and
c) if A ≈+ B and B ≈+ C then A ≈+ C and if A ≈− B and B ≈− C then A ≈− C .

Proof. a) Note that in the witness of isomorphism reflexivity in the proof of theorem 4.2 (a),

⟨x ||α⟩ : (x : A ⊢ α : A), we have that µ̃x . ⟨x ||α⟩ =η µ̃ α is linear and µα . ⟨x ||α⟩ is thunkable via
lemma B.2, so the reflexive isomorphism is both positive and negative.

b) The symmetry of positive and negative isomorphisms follows immediately from their sym-

metric definition.

c) Suppose thatA ≈+ B is witnessed by the commands c1 : (x : A ⊢ β : B) and c2 : (y : B ⊢ α : A)
and B ≈+ C is witnessed by the commands B ≈+ C is witnessed by the commands c3 :

(y ′
: B ⊢ γ : C) and c4 : (z : C ⊢ β ′

: B). The isomorphism A ≈+ C is then established by

composing c1 with c3 and c2 with c4 as follows:

c5 ≜ ⟨µβ .c1 ||µ̃y
′.c3⟩ : (x : A ⊢ γ : C) c6 ≜ ⟨µβ ′.c4 ||µ̃y.c2⟩ : (z : C ⊢ α : A)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 34 (pp. 1-54)

A Polarized Basis for Simple Types 1:35

From the linearity of µ̃y.c2 and µ̃z.c4 implied by A ≈+ B and B ≈+ C , we get that the

composition of c5 and c6 is the identity command ⟨x ||α⟩ : (x : A ⊢ α : A) as follows:

⟨µγ .c5 ||µ̃z.c6⟩ ≜ ⟨µγ .⟨µβ .c1 ||µ̃y
′.c3⟩||µ̃z.⟨µβ

′.c4 ||µ̃y.c2⟩⟩

=Lin ⟨µβ ′. ⟨µγ .⟨µβ .c1 ||µ̃y
′.c3⟩||µ̃z.c4⟩||µ̃y.c2⟩

=Lin ⟨µβ ′. ⟨µβ .c1 ||µ̃y
′. ⟨µγ .c3 ||µ̃z.c4⟩⟩||µ̃y.c2⟩

=Iso ⟨µβ
′. ⟨µβ .c1 ||µ̃y

′. ⟨y ′ ||β ′⟩⟩||µ̃y.c2⟩

=η µ̃ ⟨µβ ′. ⟨µβ .c1 ||β
′⟩||µ̃y.c2⟩

=ηµ ⟨µβ .c1 ||µ̃y.c2⟩

=Iso ⟨x ||α⟩

And from the linearity of µ̃y ′.c3 and µ̃x .c1 implied by A ≈+ B and B ≈+ C , we get that the
composition of c6 and c5 is the identity command ⟨z ||γ ⟩ : (z : C ⊢ γ : C) as follows:

⟨µα .c6 ||µ̃x .c5⟩ ≜ ⟨µα .⟨µβ ′.c4 ||µ̃y.c2⟩||µ̃x .⟨µβ .c1 ||µ̃y
′.c3⟩⟩

=Lin ⟨µβ . ⟨µα . ⟨µβ ′.c4 ||µ̃y.c2⟩||µ̃x .c1⟩||µ̃y
′.c3⟩

=Lin ⟨µβ . ⟨µβ ′.c4 ||µ̃y. ⟨µα .c2 ||µ̃x .c1⟩⟩||µ̃y
′.c3⟩

=Iso ⟨µβ . ⟨µβ
′.c4 ||µ̃y. ⟨y ||β⟩⟩||µ̃y

′.c3⟩

=η µ̃ ⟨µβ . ⟨µβ ′.c4 ||β⟩||µ̃y
′.c3⟩ =ηµ ⟨µβ ′.c4 ||µ̃y

′.c3⟩ =Iso ⟨z ||γ ⟩

Finally, we get that the co-terms µ̃x .c5 and µ̃z.c6 are linear from lemma B.1 (a).

The transitivity of negative type isomorphisms are similar to the positive case. Suppose that

A ≈− B is witnessed by the commands c1 : (x : A ⊢ β : B) and c2 : (y : B ⊢ α : A) and B ≈− C
is witnessed by the commands B ≈+ C is witnessed by the commands c3 : (y

′
: B ⊢ γ : C) and

c4 : (z : C ⊢ β ′
: B). The isomorphism A ≈− C is then established by composing c1 with c3

and c2 with c4 as follows:

c5 ≜ ⟨µβ .c1 ||µ̃y
′.c3⟩ : (x : A ⊢ γ : C) c6 ≜ ⟨µβ ′.c4 ||µ̃y.c2⟩ : (z : C ⊢ α : A)

From the thunkability of µβ .c1 and µγ .c3 implied by A ≈− B and B ≈− C , we get that the
composition of c5 and c6 is the identity command ⟨x ||α⟩ : (x : A ⊢ α : A) as follows:

⟨µγ .c5 ||µ̃z.c6⟩ ≜ ⟨µγ .⟨µβ .c1 ||µ̃y
′.c3⟩||µ̃z.⟨µβ

′.c4 ||µ̃y.c2⟩⟩

=Thk ⟨µβ .c1 ||µ̃y
′. ⟨µγ .c3 ||µ̃z.⟨µβ

′.c4 ||µ̃y.c2⟩⟩⟩

=Thk ⟨µβ .c1 ||µ̃y
′. ⟨µβ ′. ⟨µγ .c3 ||µ̃z.c4⟩||µ̃y.c2⟩⟩

=Iso ⟨µβ .c1 ||µ̃y
′. ⟨µβ ′. ⟨y ′ ||β ′⟩||µ̃y.c2⟩⟩

=ηµ ⟨µβ .c1 ||µ̃y
′. ⟨y ′ ||µ̃y.c2⟩⟩

=η µ̃ ⟨µβ .c1 ||µ̃y.c2⟩

=Iso ⟨x ||α⟩

2017-07-07 21:45 page 35 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:36 Paul Downen and Zena M. Ariola

And from the thunkability of µβ ′.c2 and µα .c2 implied by A ≈− B and B ≈− C , we get that
the composition of c6 and c5 is the identity command ⟨z ||γ ⟩ : (z : C ⊢ γ : C) as follows:

⟨µα .c6 ||µ̃x .c5⟩ ≜ ⟨µα .⟨µβ ′.c4 ||µ̃y.c2⟩||µ̃x .⟨µβ .c1 ||µ̃y
′.c3⟩⟩

=Thk ⟨µβ ′.c4 ||µ̃y. ⟨µα .c2 ||µ̃x .⟨µβ .c1 ||µ̃y
′.c3⟩⟩⟩

=Thk ⟨µβ ′.c4 ||µ̃y. ⟨µβ . ⟨µα .c2 ||µ̃x .c1⟩||µ̃y
′.c3⟩⟩

=Iso ⟨µβ
′.c4 ||µ̃y. ⟨µβ . ⟨y ||β⟩||µ̃y

′.c3⟩⟩

=ηµ ⟨µβ ′.c4 ||µ̃y. ⟨y ||µ̃y
′.c3⟩⟩

=η µ̃ ⟨µβ ′.c4 ||µ̃y
′.c3⟩

=Iso ⟨z ||γ ⟩

Finally, we get that the terms µγ .c5 and µα .c6 are thunkable from lemma B.1 (b). □

C PROOFS OF THE (CO-)DATA STRUCTURAL LAWS
Lemma C.1 (Data commute instance). F(

#»
C) ≈+ F′(

#»

C ′) for any
»

C : S ,
»

C ′
: S′ and declarations

a)
data F(

»

X :S):V where

K:(Γ2, Γ1 ⊢ F(
#»
X) | ∆1,∆2)

and
data F′(

»

X ′
:S′):V where

K′
:(Γ′

1
, Γ′

2
⊢ F′(

»

X ′) | ∆′
2
,∆′

1
)

such that Γ1θ = Γ′
1
θ ′, Γ2θ = Γ′

2
θ ′, ∆1θ = ∆′

1
θ ′, ∆1θ = ∆′

1
θ ′, θ =

»

{C/X } , and θ ′ =
»

{C ′/X ′} , or

b)

data F(
»

X :S):V where
»

K1
:(Γ1 ⊢ F(

#»
X) | ∆1)

»

K2
:(Γ2 ⊢ F(

#»
X) | ∆2)

and

data F′(
»

X ′
:S′):V where

»

K′
2
:(Γ′

2
⊢ F′(

»

X ′) | ∆′
2
)

»

K′
1
:(Γ′

1
⊢ F′(

»

X ′) | ∆′
1
)

such that
»

Γ1θ = Γ′
1
θ ′ ,

»

Γ2θ = Γ′
2
θ ′ ,

»

∆1θ = ∆′
1
θ ′ ,

»

∆2θ = ∆′
2
θ ′ , θ =

»

{C/X } , and θ ′ =
»

{C ′/X ′} .

Proof. The isomorphisms between F(
#»
C) and F′(

#»

C ′) are established by c : (x : F(
#»
C) ⊢ α ′

: F′(
#»

C ′))

and c ′ : (x ′
: F′(

#»

C ′) ⊢ α : F(
#»
C)) as follows:

a)

c ≜ ⟨x ||µ̃[K(
#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1).⟨K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2)||α
′⟩]⟩

c ′ ≜ ⟨x ′ ||µ̃[K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2).⟨K(
#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1)||α⟩]⟩

b) c ≜

〈
x

�����
�����µ̃

[
K1(

#»

β1 ,
#»y1).⟨K′

1
(

#»

β1 ,
#»y1)||α

′⟩

K2(
#»

β2 ,
#»y2).⟨K′

2
(

#»

β2 ,
#»y2)||α

′⟩

]〉
c ′ ≜

〈
x ′

�����
�����µ̃

[
K′
2
(

#»

β2 ,
#»y2).⟨K2(

#»

β2 ,
#»y2)||α⟩

K′
1
(

#»

β1 ,
#»y1).⟨K1(

#»

β1 ,
#»y1)||α⟩

]〉
And note that since both F(

#»
C) : V and F′(

#»

C ′) : V , the isomorphismmust be positive (lemma B.3 (a)).

For part (a), the composition of c ′ and c along α and x of type F(
#»
C) is equal to the identity

command ⟨x ′ ||α ′⟩ via the βF and ηF
′

axioms as follows:

⟨µα .c ′ ||µ̃x .c⟩

≜

〈
µα .⟨x ′ ||µ̃[K′(

#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2).⟨K(
#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1)||α⟩]⟩
������µx .⟨x ||µ̃[K(#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1).⟨K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2)||α
′⟩]⟩

〉
=η µ̃

〈
µα .⟨x ′ ||µ̃[K′(

#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2).⟨K(
#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1)||α⟩]⟩
������µ̃[K(#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1).⟨K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2)||α
′⟩]

〉
=µ ⟨x ′ ||µ̃[K′(

#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2).⟨K(
#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1)||µ̃[K(
#»

β1 ,
#»

β2 ,
#»y2 ,

#»y1).⟨K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2)||α
′⟩]⟩]⟩

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 36 (pp. 1-54)

A Polarized Basis for Simple Types 1:37

=β Fµ µ̃ ⟨x ′ ||µ̃[K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2).⟨K′(
#»

β2 ,
#»

β1 ,
#»y1 ,

#»y2)||α
′⟩]⟩

=ηF′ ⟨x
′ ||α ′⟩

And the reverse composition of c and c ′ along α ′
and x ′

of type F′(
#»

C ′) is equal to the identity

command ⟨x ||α⟩ via the βF
′

and ηF.

For part (b), the composition of c ′ and c along α and x of type F(
#»
C) is equal to the identity

command ⟨x ′ ||α ′⟩ via the βF and ηF
′

axioms as follows:

⟨µα .c ′ ||µ̃x .c⟩

≜

〈
µα .

〈
x ′

�����
�����µ̃

[
K′
2
(

#»

β2 ,
#»y2).⟨K2(

#»

β2 ,
#»y2)||α⟩

K′
1
(

#»

β1 ,
#»y1).⟨K1(

#»

β1 ,
#»y1)||α⟩

]〉�����
�����µ̃x .

〈
x

�����
�����µ̃

[
K1(

#»

β1 ,
#»y1).⟨K′

1
(

#»

β1 ,
#»y1)||α

′⟩

K2(
#»

β2 ,
#»y2).⟨K′

2
(

#»

β2 ,
#»y2)||α

′⟩

]〉〉
=η µ̃

〈
µα .

〈
x ′

�����
�����µ̃

[
K′
2
(

#»

β2 ,
#»y2).⟨K2(

#»

β2 ,
#»y2)||α⟩

K′
1
(

#»

β1 ,
#»y1).⟨K1(

#»

β1 ,
#»y1)||α⟩

]〉�����
�����µ̃

[
K1(

#»

β1 ,
#»y1).⟨K′

1
(

#»

β1 ,
#»y1)||α

′⟩

K2(
#»

β2 ,
#»y2).⟨K′

2
(

#»

β2 ,
#»y2)||α

′⟩

]〉

=µ

〈
x ′

�������
�������µ̃


K′
2
(

#»

β2 ,
#»y2).

〈
K2(

#»

β2 ,
#»y2)

������µ̃ [
K1(

#»

β1 ,
#»y1).⟨K′

1
(

#»

β1 ,
#»y1)||α

′⟩ | K2(
#»

β2 ,
#»y2).⟨K′

2
(

#»

β2 ,
#»y2)||α

′⟩

]〉
K′
1
(

#»

β1 ,
#»y1).

〈
K1(

#»

β1 ,
#»y1)

������µ̃ [
K1(

#»

β1 ,
#»y1).⟨K′

1
(

#»

β1 ,
#»y1)||α

′⟩ | K2(
#»

β2 ,
#»y2).⟨K′

2
(

#»

β2 ,
#»y2)||α

′⟩

]〉
〉

=β Fµ µ̃

〈
x ′

�����
�����µ̃

[
K′
2
(

#»

β2 ,
#»y2).⟨K′

2
(

#»

β2 ,
#»y2)||α

′⟩

K′
1
(

#»

β1 ,
#»y1).⟨K′

1
(

#»

β1 ,
#»y1)||α

′⟩

]〉
=ηF′ ⟨x

′ ||α ′⟩

And the reverse composition of c and c ′ along α ′
and x ′

of type F′(
#»

C ′) is equal to the identity

command ⟨x ||α⟩ via the βF
′

and ηF. □

Lemma C.2 (Data mix instance). For any types and
»

C : S ,
»

C ′
: S′ data declarations

data F1(
»

X :S) :V where
»

K1
:

(
Γ1 ⊢ F1(

#»
X) | ∆1

) data F′
1
(

»

X ′
:S′) :V where

»

K′
1
:

(
Γ′
1
⊢ F′

1
(

»

X ′) | ∆′
1

)
data F2(

»

X :S) :V where
»

K2
:

(
Γ2 ⊢ F2(

#»
X) | ∆2

) data F′
2
(

»

X ′
:S′) :V where

»

K′
2
:

(
Γ′
2
⊢ F′

2
(

»

X ′) | ∆′
2

)
data F3(

»

X :S) :V where

K3
:

(
Γ3 ⊢ F3(

#»
X) | ∆3

) data F′
3
(

»

X ′
:S′) :V where

K′
3
:

(
Γ′
3
⊢ F′

3
(

»

X ′) | ∆′
3

)
data F(

»

X :S) :V where
»

K4
:

(
Γ3, Γ1 ⊢ F(

#»
X) | ∆1,∆3

)
»

K5
:

(
Γ3, Γ2 ⊢ F(

#»
X) | ∆2,∆3

)
data F′(

»

X ′
:S) :V where

»

K′
4
:

(
Γ′
3
, Γ′

1
⊢ F′(

»

X ′) | ∆′
1
,∆′

3

)
»

K′
5
:

(
Γ′
3
, Γ′

2
⊢ F′(

»

X ′) | ∆′
2
,∆′

3

)
if F1(

#»
C) ≈ F′

1
(

#»

C ′), F2(
#»
C) ≈ F′

2
(

#»

C ′), and F3(
#»
C) ≈ F′

3
(

#»

C ′), then F(
#»
C) ≈+ F′(

#»

C ′).

2017-07-07 21:45 page 37 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:38 Paul Downen and Zena M. Ariola

Proof. Suppose that the isomorphisms F1(
#»
C) ≈ F′

1
(

#»

C ′), F2(
#»
C) ≈ F′

2
(

#»

C ′), and F3(
#»
C) ≈ F′

3
(

#»

C ′)

are witnessed by the commands

c1 : (x1 : F1(
#»
C) ⊢ α ′

1
: F′

1
(

#»

C ′)) c2 : (x2 : F2(
#»
C) ⊢ α ′

2
: F′

2
(

#»

C ′)) c3 : (x3 : F3(
#»
C) ⊢ α ′

3
: F′

3
(

#»

C ′))

c ′
1
: (x ′

1
: F′

1
(

#»

C ′) ⊢ α1 : F1(
#»
C)) c ′

2
: (x ′

2
: F′

2
(

#»

C ′) ⊢ α2 : F2(
#»
C)) c ′

3
: (x ′

3
: F′

3
(

#»

C ′) ⊢ α3 : F3(
#»
C))

respectively. Then isomorphisms between F(
#»
C) and F′(

#»

C ′) are established by c : (x : F(
#»
C) ⊢ α ′

:

F′(
#»

C ′)) and c ′ : (x ′
: F′(

#»

C ′) ⊢ α : F(
#»
C)) as follows:

c ≜

〈
x

������������

������������
µ̃



»

K4i (
»

β1i ,
#»

β3 ,
#»y3 ,

»y1i).

〈
v ′
1i

�����
�����µ̃

[
»

K′
1i (

»

β ′
1j ,

»

y′
1j).

〈
v ′
3

��������µ̃ [
K′
3
(

#»

β ′
3
,

#»

y′
3
).

〈
K′
4j (

»

β ′
1j ,

#»

β ′
3
,

#»

y′
3
,

»

y′
1j)

��������α ′

〉]〉j]〉i
»

K5i (
»

β2i ,
#»

β3 ,
#»y3 ,

»y2i).

〈
v ′
2i

�����
�����µ̃

[
»

K′
2i (

»

β ′
2j ,

»

y′
2j).

〈
v ′
3

��������µ̃ [
K′
3
(

#»

β ′
3
,

#»

y′
3
).

〈
K′
5j (

»

β ′
2j ,

#»

β ′
3
,

#»

y′
3
,

»

y′
2j)

��������α ′

〉]〉j]〉i

〉

c ′ ≜

〈
x ′

������������

������������
µ̃



»

K′
4i (

»

β ′
1i ,

#»

β ′
3
,

#»

y′
3
,

»

y′
1i).

〈
v3

�����
�����µ̃

[
K3(

#»

β3 ,
#»y3).

〈
v1i

�����
�����µ̃

[
»

K1j (
»

β1j ,
»y1j).

〈
K4j (

»

β1j ,
#»

β3 ,
#»y3 ,

»

β1j)
������α〉j]〉]〉i

»

K′
5i (

»

β ′
2i ,

#»

β ′
3
,

#»

y′
3
,

»

y′
2i).

〈
v3

�����
�����µ̃

[
K3(

#»

β3 ,
#»y3).

〈
v2i

�����
�����µ̃

[
»

K2j (
»

β2j ,
»y2j).

〈
K5j (

»

β1j ,
#»

β3 ,
#»y3 ,

»

β1j)
������α〉j]〉]〉i


〉

where we make use of the following shorthand:

v1i ≜ µα1.⟨K′
1i (

»

β ′
1i ,

»

y ′
1i)||µ̃x

′
1
.c ′
1
⟩ v2i ≜ µα2.⟨K′

2i (
»

β ′
2i ,

»

y ′
2i)||µ̃x

′
2
.c ′
2
⟩ v3 ≜ µα3.⟨K′

3
(

#»

β ′
3
,

#»

y ′
3
)||µ̃x ′

3
.c ′
3
⟩

v ′
1i ≜ µα ′

1
.⟨K1i (

»

β1i ,
»y1i)||µ̃x1.c1⟩ v ′

2i ≜ µα ′
2
.⟨K2i (

»

β2i ,
»y2i)||µ̃x2.c2⟩ v ′

3
≜ µα ′

3
.⟨K3(

#»

β3 ,
#»y3)||µ̃x3.c3⟩

And note that since both F(
#»
C) : V and F′(

#»

C ′) : V , the isomorphismmust be positive (lemma B.3 (a)).

The composition of c and c ′ along α ′
and x ′

of type F′(
#»

C ′) is equal to the identity command

⟨x ||α⟩ via the combined strength of the µ̃ and η axioms for the call-by-value data types F′
1
, F′

2
, and

F′
3
, as previously discussed in appendix A, as well as the call-by-value χ axiom to reassociate the

bindings to bring the isomorphisms for those data types together, as follows:〈
µα ′.c

����µ̃x ′.c′〉
=η µ̃

〈
µα ′.

〈
x

�����������

�����������
µ̃



»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i).

〈
v ′
1i

�����
�����µ̃

[
»

K′
1i (

»

β ′
1j ,

»

y′
1j).

〈
v ′
3

��������µ̃ [
K′
3
(

#»

β ′
3
,

#»

y′
3
).

〈
K′
4j (

»

β ′
1j ,

#»

β ′
3
,

#»

y′
3
,

»

y′
1j)

��������α ′

〉]〉j]〉i
»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i).

〈
v ′
2i

�����
�����µ̃

[
»

K′
2i (

»

β ′
2j ,

»

y′
2j).

〈
v ′
3

��������µ̃ [
K′
3
(

#»

β ′
3
,

#»

y′
3
).

〈
K′
5j (

»

β ′
2j ,

#»

β ′
3
,

#»

y′
3
,

»

y′
2j)

��������α ′

〉]〉j]〉i

〉����������������������

µ̃



»

K′
4i (

»

β ′
1i ,

#»

β ′
3
,

#»

y′
3
,

»

y′
1i).

〈
v3

�����
�����µ̃

[
K3(

#»

β3, #»y3).
〈
v1i

�����
�����µ̃ [

»

K1j (
»

β1j , # »y1j).
〈
K4j (

»

β1j ,
#»

β3, #»y3,
»

β1j)
������α 〉j]〉]〉i

»

K′
5i (

»

β ′
2i ,

#»

β ′
3
,

#»

y′
3
,

»

y′
2i).

〈
v3

�����
�����µ̃

[
K3(

#»

β3, #»y3).
〈
v2i

�����
�����µ̃ [

»

K2j (
»

β2j , # »y2j).
〈
K5j (

»

β1j ,
#»

β3, #»y3,
»

β1j)
������α 〉j]〉]〉i


〉

=µ µ̃ β F′

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 38 (pp. 1-54)

A Polarized Basis for Simple Types 1:39

〈
x

���������������

���������������
µ̃



»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨v ′
1i |

| µ̃[
»

K′
1i (

»

β ′
1j ,

»

y′
1j). ⟨v

′
3
|| µ̃[K′

3
(

#»

β ′
3
,

#»

y′
3
). ⟨v3 || µ̃[K3(

#»

β3, #»y3). ⟨v1j || µ̃[
»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩]⟩]⟩

j

]⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨v ′
2i |

| µ̃[
»

K′
2i (

»

β ′
2j ,

»

y′
2j). ⟨v

′
3
|| µ̃[K′

3
(

#»

β ′
3
,

#»

y′
3
). ⟨v3 || µ̃[K3(

#»

β3, #»y3). ⟨v2j || µ̃[
»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩]⟩]⟩

j

]⟩

i



〉

=
µ̃η

F′
3

V

〈
x

���������������

���������������
µ̃



»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K3(
#»

β3, #»y3) || µ̃x3 . ⟨v ′
1i |

| µ̃[
»

K′
1i (

»

β ′
1j ,

»

y′
1j). ⟨µα

′
3
.c3 || µ̃x ′3 . ⟨µα3 .c

′
3
|| µ̃[K3(

#»

β3, #»y3). ⟨v1j || µ̃[
»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩]⟩⟩

j

]⟩⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K3(
#»

β3, #»y3) || µ̃x3 . ⟨v ′
2i |

| µ̃[
»

K′
2i (

»

β ′
2j ,

»

y′
2j). ⟨µα

′
3
.c3 || µ̃x ′3 . ⟨µα3 .c

′
3
|| µ̃[K3(

#»

β3, #»y3). ⟨v2j || µ̃[
»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩]⟩⟩

j

]⟩⟩

i



〉

=χV

〈
x

���������������

���������������
µ̃



»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K3(
#»

β3, #»y3) || µ̃x3 . ⟨v ′
1i |

| µ̃[
»

K′
1i (

»

β ′
1j ,

»

y′
1j). ⟨µα3 .

〈
µα ′

3
.c3

����µ̃x ′
3
.c3

〉
|| µ̃[K3(

#»

β3, #»y3). ⟨v1j || µ̃[
»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩]⟩

j

]⟩⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K3(
#»

β3, #»y3) || µ̃x3 . ⟨v ′
2i |

| µ̃[
»

K′
2i (

»

β ′
2j ,

»

y′
2j). ⟨µα3 .

〈
µα ′

3
.c3

����µ̃x ′
3
.c′

3

〉
|| µ̃[K3(

#»

β3, #»y3). ⟨v2j || µ̃[
»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩]⟩

j

]⟩⟩

i



〉

=Isoηµ

〈
x

���������������

���������������
µ̃



»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K3(
#»

β3, #»y3) || µ̃x3 . ⟨v ′
1i |

| µ̃[
»

K′
1i (

»

β ′
1j ,

»

y′
1j). ⟨x3 || µ̃[K3(

#»

β3, #»y3). ⟨v1j || µ̃[
»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩]⟩

j

]⟩⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K3(
#»

β3, #»y3) || µ̃x3 . ⟨v ′
1i |

| µ̃[
»

K′
2i (

»

β ′
2j ,

»

y′
2j). ⟨x3 || µ̃[K3(

#»

β3, #»y3). ⟨v2j || µ̃[
»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩]⟩

j

]⟩⟩

i



〉

=µ̃ µ β F
3

〈
x

���������
���������µ̃


»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨v ′
1i || µ̃[

»

K′
1i (

»

β ′
1j ,

»

y′
1j). ⟨v1j || µ̃[

»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩

j

]⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨v ′
2i || µ̃[

»

K′
2i (

»

β ′
2j ,

»

y′
2j). ⟨v2j || µ̃[

»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩

j

]⟩

i


〉

=
µ̃η

F′
1

V
η
F′
2

V〈
x

��������
��������µ̃


»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K1i (
»

β1i , # »y1i) || µ̃x1 . ⟨µα ′
1
.c1 || µ̃x ′1 . ⟨µα1 .c

′
1
|| µ̃[

»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩⟩⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K2i (
»

β2i , # »y2i) || µ̃x2 . ⟨µα ′
2
.c2 || µ̃x ′2 . ⟨µα2 .c

′
2
|| µ̃[

»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩⟩⟩

i


〉

=χV〈
x

��������
��������µ̃


»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K1i (
»

β1i , # »y1i) || µ̃x1 . ⟨µα1 .
〈
µα ′

1
.c1

����µ̃x ′
1
.c′

1

〉
|| µ̃[

»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K2i (
»

β2i , # »y2i) || µ̃x2 . ⟨µα2 .
〈
µα ′

2
.c2

����µ̃x ′
2
.c′

2

〉
|| µ̃[

»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩⟩

i


〉

=Iso

2017-07-07 21:45 page 39 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:40 Paul Downen and Zena M. Ariola

〈
x

��������
��������µ̃


»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K1i (
»

β1i , # »y1i) || µ̃x1 . ⟨µα1 . ⟨x1 ||α1 ⟩ || µ̃[
»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K2i (
»

β2i , # »y2i) || µ̃x2 . ⟨µα2 . ⟨x2 ||α2 ⟩ || µ̃[
»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩⟩

i


〉

=ηµη µ̃〈
x

��������
��������µ̃


»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K1i (
»

β1i , # »y1i) || µ̃[
»

K1j (
»

β
1k ,

»y
1k). ⟨K4k (

»

β
1k ,

#»

β3, #»y3,
»

β
1k) ||α ⟩

k
]⟩

i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K2i (
»

β2i , # »y2i) || µ̃[
»

K2j (
»

β
2k ,

»y
2k). ⟨K5k (

»

β
2k ,

#»

β3, #»y3,
»

β
2k) ||α ⟩

k
]⟩

i


〉

=µ µ̃ β F
1 β F

2〈
x

�������
�������µ̃


»

K4i (
»

β1i ,
#»

β3, #»y3, # »y1i). ⟨K4i (
»

β1i ,
#»

β3, #»y3,
»

β1i) ||α ⟩
i

»

K5i (
»

β2i ,
#»

β3, #»y3, # »y2i). ⟨K5i (
»

β2i ,
#»

β3, #»y3,
»

β2i) ||α ⟩
i


〉

=ηF

⟨x ||α ⟩

And the reverse composition of c ′ and c along α and x of type F(
#»
C) is equal to the identity command

⟨x ′ ||α ′⟩ similarly. □

Lemma C.3 (Data compatibility instance). For any types A : T , A′
: T ′,

»

C : S ,
»

C ′
: S′ ,

a) given
data F(

»

X : S) : V where

K : (A : T ⊢ F(
#»
X) |)

and
data F′(

»

X ′
: S′) : V where

K′
: (A′

: T ′ ⊢ F′(
»

X ′) |)
then F(

#»
C) ≈+ F′(

#»

C ′)

if either A
»

{C/X } ≈− A′
»

{C ′/X ′} or A
»

{C/X } ≈ A′
»

{C ′/X ′} and T = T ′ = V , and

b) given
data F(

»

X : S) : V where

K : (⊢ F(
#»
X) | A : T)

and
data F′(

»

X ′
: S′) : V where

K′
: (⊢ F′(

»

X ′) | A′
: T ′)

then F(
#»
C) ≈+ F′(

#»

C ′)

if either A
»

{C/X } ≈+ A′
»

{C ′/X ′} or A
»

{C/X } ≈ A′
»

{C ′/X ′} and T = T ′ = N .

Proof. Let B = A
»

{C/X } , B′ = A′
»

{C ′/X ′} , and suppose that the commands c1 : (y : B ⊢ β ′
: B′)

and c ′
1
: (y ′

: B′ ⊢ β : B) witness the isomorphism B ≈ B′
. The isomorphisms between F(

#»
C) and

F′(
#»

C ′) are established by the commands c : (x : F(
#»
C) ⊢ α ′

: F′(
#»

C ′)) and c ′ : (x ′
: F′(

#»

C ′) ⊢ α : F(
#»
C))

as follows:

a) c ≜ ⟨x ||µ̃[K(y).⟨µβ ′.c1 ||µ̃y
′. ⟨K′(y ′)||α ′⟩⟩]⟩ c ′ ≜ ⟨x ′ ||µ̃[K′(y ′).

〈
µβ .c ′

1

����µ̃y. ⟨K(y)||α⟩〉]⟩
b) c ≜ ⟨x ||µ̃[K(β).

〈
µβ ′. ⟨K′(β ′)||α ′⟩

����µ̃y ′.c ′
1

〉
]⟩ c ′ ≜ ⟨x ′ ||µ̃[K′(β ′).⟨µβ . ⟨K(β)||α⟩||µ̃y.c1⟩]⟩

For part (a), the composition of c and c ′ along α ′
and x ′

of type F′(
#»

C ′) is equal to the identity

command ⟨x ′ ||α ′⟩ via βF
′

and ηF along with either thunkability or the call-by-value χV to reveal

the isomorphism, as follows:

⟨µα ′.c ||µ̃x ′.c ′⟩ =η µ̃
〈
µα ′. ⟨x ||µ̃[K(y).⟨µβ ′.c1 ||µ̃y

′. ⟨K′(y ′)||α ′⟩⟩]⟩
����µ̃[K′(y ′).

〈
µβ .c ′

1

����µ̃y. ⟨K(y)||α⟩〉]〉
=µ

〈
x
����µ̃ [

K(y).
〈
µβ ′.c1

����µ̃y ′.
〈
K′(y ′)

����µ̃[K′(y ′).
〈
µβ .c ′

1

����µ̃y. ⟨K(y)||α⟩〉]〉〉]〉
=µ̃ β F’

〈
x
����µ̃ [

K(y).
〈
µβ ′.c1

����µ̃y ′.
〈
µβ .c ′

1

����µ̃y. ⟨K(y)||α⟩〉〉]〉
=Thk/χV

〈
x
����µ̃ [

K(y).
〈
µβ .

〈
µβ ′.c1

����µ̃y ′.c ′
1

〉����µ̃y. ⟨K(y)||α⟩〉]〉
=Iso ⟨x ||µ̃[K(y).⟨µβ . ⟨y ||β⟩||µ̃y. ⟨K(y)||α⟩⟩]⟩

=ηµ µ̃ ⟨x ||µ̃[K(y).⟨K(y)||α⟩]⟩

=ηF ⟨x ||α⟩

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 40 (pp. 1-54)

A Polarized Basis for Simple Types 1:41

Note that the equation marked Thk/χV follows in the case that either µβ ′.c ′
1
is thunkable (by the

definition of thunkability) or T = V (in which case µ̃y. ⟨K(y)||α⟩ is co-value and the µV axiom

applies). Likewise, the composition of c ′
2
and c ′

1
along α ′

and x ′
of type F1(

#»
C) is equal to the identity

command ⟨y ′ ||β ′⟩ analogously to the derivation above.

For part (b), the composition of c and c ′ along α ′
and x ′

of type F′(
#»

C ′) is equal to the identity

command ⟨x ′ ||α ′⟩ also via βF
′

and ηF along with linearity or the call-by-name χN to reveal the

isomorphism, as follows:

⟨µα ′.c ||µ̃x ′.c ′⟩ =η µ̃
〈
µα ′.c ⟨x ||µ̃[K(β).

〈
µβ ′. ⟨K′(β ′)||α ′⟩

����µ̃y ′.c ′
1

〉
]⟩
����µ̃[K′(β ′).⟨µβ . ⟨K(β)||α⟩||µ̃y.c1⟩]

〉
=µ ⟨x ||µ̃[K(β).

〈
µβ ′. ⟨K′(β ′)||µ̃[K′(β ′).⟨µβ . ⟨K(β)||α⟩||µ̃y.c1⟩]⟩

����µ̃y ′.c ′
1

〉
]⟩

=µβ F′ ⟨x ||µ̃[K(β).
〈
µβ ′. ⟨µβ . ⟨K(β)||α⟩||µ̃y.c1⟩

����µ̃y ′.c ′
1

〉
]⟩

=Lin/χN ⟨x ||µ̃[K(β).
〈
µβ . ⟨K(β)||α⟩

����µ̃y. 〈µβ ′.c1
����µ̃y ′.c ′

1

〉〉
]⟩

=Iso ⟨x ||µ̃[K(β).⟨µβ . ⟨K(β)||α⟩||µ̃y. ⟨y ||β⟩⟩]⟩

=η µ̃ µ ⟨x ||µ̃[K(β).⟨K(β)||α⟩]⟩

=ηF ⟨x ||α⟩

Note that the equation marked Lin/χN follows in the case that either µ̃y ′.c ′
1
is linear or T = N

(in which case µβ . ⟨K(β)||α⟩ is a value and the µ̃N axiom applies). Likewise, the composition of c ′
2

and c ′
1
along α ′

and x ′
of type F1(

#»
C) is equal to the identity command ⟨y ′ ||β ′⟩ analogously to the

derivation above.

Finally, note that the isomorphism F(
#»
C) ≈ F′(

#»

C ′)must be positive since F(
#»
C) : V and F′(

#»

C ′) : V

(lemma B.3 (a)). □

Lemma C.4 ((Co-)Data interchange shift instance). For any types
»

C : S ,
»

C ′
: S′ and (co-)data

declarations

data F(
»

X : S) : T where
»

K :

(
Γ ⊢ F(

»

X : S) | ∆
) data F′(

»

X ′
: S′) : T where

»

K′
:

(
Γ′ ⊢ F′(

»

X ′
: S′) | ∆′

)
codataG(

»

X : S) : Uwhere
»

O : (Γ | F(
»

X : S) ⊢ ∆)

codataG′(
»

X ′
: S′) : Uwhere

»

O′
: (Γ′ | G′(

»

X ′
: S′) ⊢ ∆′)

F(
#»
C) ≈ F′(

#»

C ′) implies G(
#»
C) ≈− G′(

#»

C ′) when T = V and G(
#»
C) ≈ G′(

#»

C ′) implies F(
#»
C) ≈+ F′(

#»

C ′)

whenU = N .

Proof. First, suppose that the commands c1 : (x1 : F(
#»
C) ⊢ α ′

1
: F′(

#»

C ′)) and c ′
1
: (x ′

1
: F′(

#»

C ′) ⊢ α1 :

F(
#»
C)) witness the isomorphism F(

#»
C) ≈+ F′(

#»

C ′). Then the negative isomorphism between G(
#»
C)

and G′(
#»

C ′) is established by:

c2 ≜

〈
µ

(
»

O′
i [

#»

y ′
i ,

#»

β ′
i].

〈
µα1.

〈
K′
i (

#»

β ′
i ,

#»

y ′
i)

������µ̃x ′
1
.c ′
1

〉��������µ̃ [
»

Kj (
#»

βj ,
#»yj).⟨x2 ||Oj [

#»yj ,
#»

βj]⟩
j
]〉i)�����

�����α ′
2

〉
: (x2:G(

#»
C) ⊢ α ′

2
:G′(

#»

C ′))

c ′
2
≜

〈
µ

(
»

Oi [
#»yi ,

#»

βi].

〈
µα ′

1
.
〈
Ki (

#»

βi ,
#»yi)

������µ̃x1.c1〉��������µ̃ [
»

K′
j (

#»

β ′
j ,

#»

y ′
j).⟨x

′
2
||O′

j [
#»

y ′
j ,

#»

β ′
j]⟩

j]〉i)�����
�����α2

〉
: (x ′

2
:G′(

#»

C ′) ⊢ α2:G(
#»
C))

2017-07-07 21:45 page 41 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:42 Paul Downen and Zena M. Ariola

Note that both µα2.c
′
2
and µα ′

2
.c2 are thunkable (by lemma B.2 (a)) because they are both ηµ -

equivalent to a value for any choice of U. So we only need to demonstrate that both compositions

of c2 and c
′
2
are equal to the appropriate identity commands.

The composition of c ′
2
and c2 along α2 and x2 of type G(

#»
C) is equal to the identity command〈

x ′
2

����α ′
2

〉
via the βG, ηF

V
, βF

′

, and ηG
′

axioms as follows:〈
µα2.c

′
2

����µ̃x2.c2〉
≜

〈
µα2.

〈
µ

(
»

Oi [
#»yi ,

#»

βi].

〈
µα ′

1
.
〈
Ki (

#»

βi ,
#»yi)

������µ̃x1.c1〉��������µ̃ [
»

K′
j (

#»

β ′j ,
#»

y′j).⟨x
′
2
||O′

j [
#»

y′j ,
#»

β ′j]⟩
j]〉i)�����

�����α2
〉����������µ̃x2.

〈
µ

(
»

O′
i [

#»

y′i ,
#»

β ′i].

〈
µα1.

〈
K′
i (

#»

β ′i ,
#»

y′i)
������µ̃x ′

1
.c ′
1

〉��������µ̃ [
»

Kj (
#»

βj ,
#»yj).⟨x2 ||Oj [

#»yj ,
#»

βj]⟩
j
]〉i)�����

�����α ′
2

〉〉

=ηµ

〈
µ

(
»

Oi [
#»yi ,

#»

βi].

〈
µα ′

1
.
〈
Ki (

#»

βi ,
#»yi)

������µ̃x1.c1〉��������µ̃ [
»

K′
j (

#»

β ′j ,
#»

y′j).⟨x
′
2
||O′

j [
#»

y′j ,
#»

β ′j]⟩
j]〉i)����������µ̃x2.

〈
µ

(
»

O′
i [

#»

y′i ,
#»

β ′i].

〈
µα1.

〈
K′
i (

#»

β ′i ,
#»

y′i)
������µ̃x ′

1
.c ′
1

〉��������µ̃ [
»

Kj (
#»

βj ,
#»yj).⟨x2 ||Oj [

#»yj ,
#»

βj]⟩
j
]〉i)�����

�����α ′
2

〉〉

=µ̃

〈
µ

©­­­­­­­­­«

»

O′
i [

#»

y′i ,
#»

β ′i].

〈
µα1.

〈
K′
i (

#»

β ′i ,
#»

y′i)
������µ̃x ′

1
.c ′
1

〉�������������µ̃


»

Kj (
#»

βj ,
#»yj).

〈
µ

©­­­­«
»

Ok [
#»yk ,

»

βk].

〈
µα ′

1
.
〈
Kk (

»

βk ,
#»yk)

������µ̃x1.c1〉�������µ̃ [
»

K′
l (

#»

β ′l ,
#»

y′l).⟨x
′
2
||O′

l [
#»

y′l ,
#»

β ′l]⟩
l]〉

k ª®®®®¬
��������
��������Oj [

#»yj ,
#»

βj]

〉j 
〉
iª®®®®®®®®®¬

��������������

��������������
α ′
2

〉

=βGµ µ̃

〈
µ

©­­­­­«

»

O′
i [

#»

y′i ,
#»

β ′i].

〈
µα1.

〈
K′
i (

#»

β ′i ,
#»

y′i)
������µ̃x ′

1
.c ′
1

〉���������µ̃


»

Kj (
#»

βj ,
#»yj).

〈
µα ′

1
.
〈
Kj (

#»

βj ,
#»yj)

������µ̃x1.c1〉��������µ̃ [
»

K′
l (

#»

β ′l ,
#»

y′l).⟨x
′
2
||O′

l [
#»

y′l ,
#»

β ′l]⟩
l]〉j 

〉iª®®®®®¬

����������
����������α

′
2

〉

=µ̃ηF
V

〈
µ
©­«

»

O′
i [

#»

y′i ,
#»

β ′i].

〈
µα1.

〈
K′
i (

#»

β ′i ,
#»

y′i)
������µ̃x ′

1
.c ′
1

〉��������µ̃x1. 〈µα ′
1
.c1

��������µ̃ [
»

K′
l (

#»

β ′l ,
#»

y′l).⟨x
′
2
||O′

l [
#»

y′l ,
#»

β ′l]⟩
l]〉〉iª®¬

������
������α ′
2

〉

=χV

〈
µ
©­«

»

O′
i [

#»

y′i ,
#»

β ′i].

〈
K′
i (

#»

β ′i ,
#»

y′i)

��������µ̃x ′1. 〈µα ′
1
.
〈
µα1.c

′
1

����µ̃x1.c1〉��������µ̃ [
»

K′
l (

#»

β ′l ,
#»

y′l).⟨x
′
2
||O′

l [
#»

y′l ,
#»

β ′l]⟩
l]〉〉iª®¬

������
������α ′
2

〉

=Iso

〈
µ
©­«

»

O′
i [

#»

y′i ,
#»

β ′i].

〈
K′
i (

#»

β ′i ,
#»

y′i)

��������µ̃x ′1. 〈µα ′
1
.
〈
x ′
1

����α ′
1

〉��������µ̃ [
»

K′
l (

#»

β ′l ,
#»

y′l).⟨x
′
2
||O′

l [
#»

y′l ,
#»

β ′l]⟩
l]〉〉iª®¬

������
������α ′
2

〉

=ηµη µ̃

〈
µ
©­«

»

O′
i [

#»

y′i ,
#»

β ′i].

〈
K′
i (

#»

β ′i ,
#»

y′i)

��������µ̃ [
»

K′
l (

#»

β ′l ,
#»

y′l).⟨x
′
2
||O′

l [
#»

y′l ,
#»

β ′l]⟩
l]〉iª®¬

������
������α ′
2

〉
=β F′ µ µ̃

〈
µ

(
»

O′
i [

#»

y′i ,
#»

β ′i].⟨x
′
2
||O′

i [
#»

y′i ,
#»

β ′i]⟩
i)��������α ′

2

〉
=ηG′

〈
x ′
2

����α ′
2

〉
The composition of c2 and c ′

2
along α ′

2
and x ′

2
of type G′(

#»
C) is equal to the identity command

⟨x2 ||α2⟩ via the β
G′

, ηF
′

V
, βF, and ηG similarly.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 42 (pp. 1-54)

A Polarized Basis for Simple Types 1:43

Second, suppose that the commands c2 : (x2 : G(
#»
C) ⊢ α ′

2
: G′(

#»

C ′)) and c ′
2
: (x ′

2
: G′(

#»

C ′) ⊢ α2 :

G(
#»
C)) witness the isomorphism G(

#»
C) ≈ G′(

#»

C ′). Then the isomorphism between F(
#»
C) and F′(

#»

C ′)

is established by:

c1 ≜

〈
x1

�����
�����µ̃

[
»

Ki (
#»

βi ,
#»yi).

〈
µ

(
»

O′
j [

#»

y ′
j

#»

β ′
j].⟨K

′
j (

#»

y ′
j ,

#»

β ′
j)||α

′
1
⟩
j)��������µ̃x ′

2
.
〈
µ̃α2.c

′
2

������Oi [
#»yi ,

#»

βi]
〉〉i]〉

: (x1: F(
#»
C) ⊢ α ′

1
: F′(

#»

C ′))

c ′
1
≜

〈
x ′
1

�����
�����µ̃

[
»

Ki (
#»

βi ,
#»yi).

〈
µ

(
»

Oj [
#»yj

#»

βj].⟨Kj (
#»yj ,

#»

βj)||α1⟩
j
)��������µ̃x2. 〈µ̃α ′

2
.c2

������O′
i [

#»

y ′
i ,

#»

β ′
i]

〉〉i]〉
: (x ′

1
: F′(

#»

C ′) ⊢ α1: F(
#»
C))

Again, note that both µ̃x1.c1 and µ̃x ′
1
.c ′
1
are linear (by lemma B.2 (b)) because they are both η µ̃ -

equivalent to a co-value for any choice of T . Furthermore, both compositions of c and c ′ are equal
to the identity command analogously to the previous part by duality. □

Lemma 5.1 ((Co-)Data identity). a) For any data F(Θ) : UwhereK : (A : T ⊢ F(Θ) |), if
T = V then Θ ⊨ F(Θ) ≈+ A and ifU = V then Θ ⊨ F(Θ) ≈ A.

b) For any codataG(Θ) : UwhereO : (| G(Θ) ⊢ A : T), if T = N then Θ ⊨ G(Θ) ≈− A and if
U = N then Θ ⊨ G(Θ) ≈ A.

Proof. a) Let Θ =
»

X : S , suppose

»

C : S , and let B = A
»

{C/X } . F(
#»
C) ≈ B is established by

the commands:

c1 ≜ ⟨x ||µ̃[K(y).⟨y ||β⟩]⟩ : (x : F(
#»
C) ⊢ β : B) c2 ≜ ⟨K(y)||α⟩ : (y : B ⊢ α : F(

#»
C))

First, the composition of c2 and c1 along α and x of type F(
#»
C) : U is equal to the identity

command ⟨y ||β⟩ by using the ηµ and η µ̃ axioms to reveal the βF redex as follows:

⟨µα .c2 ||µ̃x .c1⟩ ≜ ⟨µα . ⟨K(y)||α⟩||µ̃x . ⟨x ||µ̃[K(y).⟨y ||β⟩]⟩⟩

=ηµη µ̃ ⟨K(y)||µ̃[K(y).⟨y ||β⟩]⟩

=β F ⟨y ||µ̃y. ⟨y ||β⟩⟩

=µ̃ ⟨y ||β⟩

Next, suppose that T = V . The composition of c1 and c2 along β and y of type B : V is equal

to the identity command ⟨x ||α⟩ by using the strength of the µV axiom to reveal the ηF redex
as follows:

⟨µβ .c1 ||µ̃y.c2⟩ ≜ ⟨µβ . ⟨x ||µ̃[K(y).⟨y ||β⟩]⟩||µ̃y. ⟨K(y)||α⟩⟩

=µV ⟨x ||µ̃[K(y).⟨y ||µ̃y. ⟨K(y)||α⟩⟩]⟩

=µ̃ ⟨x ||µ̃[K(y).⟨K(y)||α⟩]⟩

=ηF ⟨x ||α⟩

2017-07-07 21:45 page 43 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:44 Paul Downen and Zena M. Ariola

Otherwise, suppose thatU = V . The composition of c1 and c2 along β and y of type B : T

is equal to the identity command ⟨x ||α⟩ by using the combined strength of the µV and ηF

axioms to percolate out the case analysis on x and create an inner βF redex:

⟨µβ .c1 ||µ̃y.c2⟩ ≜ ⟨µβ . ⟨x ||µ̃[K(y).⟨y ||β⟩]⟩||µ̃y. ⟨K(y)||α⟩⟩

=µV ⟨x ||µ̃x . ⟨µβ . ⟨x ||µ̃[K(y).⟨y ||β⟩]⟩||µ̃y. ⟨K(y)||α⟩⟩⟩

=µVηF ⟨x ||µ̃[K(y).⟨K(y)||µ̃x . ⟨µβ . ⟨x ||µ̃[K(y).⟨y ||β⟩]⟩||µ̃y. ⟨K(y)||α⟩⟩⟩]⟩

=µ̃V ⟨x ||µ̃[K(y).⟨µβ . ⟨K(y)||µ̃[K(y).⟨y ||β⟩]⟩||µ̃y. ⟨K(y)||α⟩⟩]⟩

=β F µ̃ ⟨x ||µ̃[K(y).⟨µβ . ⟨y ||β⟩||µ̃y. ⟨K(y)||α⟩⟩]⟩

=ηµ µ̃ ⟨x ||µ̃[K(y).⟨K(y)||α⟩]⟩ =ηF ⟨x ||α⟩

Finally, we need to demonstrate the required linearity constraints for a positive type isomor-

phism. First, note that by lemma B.2 µ̃x .c1 is linear and µα .c2 is thunkable for any choice of T
and U. In the case that T = V , then µ̃y.c2 : V which is trivially linear since all V-co-terms

are co-values, and thus Θ ⊨ F(Θ) ≈+ A.
b) Analogous to the proof of lemma 5.1 (a) by duality. □

Theorem 5.1 (Structural laws). The declaration isomorphism laws in figs. 8 and 9 are all sound.

Proof. The data laws all follow by generalizing the particular instances where the data types

are isomorphic: the commute, interchange, and compatibility laws are all immediate consequence

of lemmas C.1, C.3 and C.4, both mix laws follow from lemma C.2 by taking either F1 and F′
1
to be

the empty data declaration of no alternatives or taking F3 and F′
3
to be the unit data declaration of

one alternative with no components (both of which are isomorphic by reflexivity), and the shift law

follows by applying lemma C.4 twice. The co-data laws follow from the data laws by lemma C.4. □

Theorem 5.2 (Polarized laws). The declaration isomorphism laws in fig. 10 are all sound.

Proof. Due to the (co-)data interchange laws from figs. 8 and 9 we only need to demonstrate

half of the isomorphisms in fig. 10 since each side implies the other. So let us focus only on the

more familiar data type declarations, because all the laws for polarized co-data sub-structures

are derived from those. In each case, the main technique for establishing these laws is that, for

any substitution θ matching the environment Θ, the data type F′(Θ)θ on each right-hand side is

positively isomorphic to the single component of the single alternative under the substitution θ
according to lemma 5.1 because that single component is call-by-value (e.g., 1 : V). What remains

is to then demonstrate that in each case, the data type F(Θ)θ is also positively isomorphic to that

same single component type.

The sub-structure laws for the nullary data types (0, 1) are the easiest to show. Note how for

the 0L law we directly have that F(Θ) ≈+ 0 as a trivial case of lemma C.1 (b), and F′(Θ) ≈+ 0 by
lemma 5.1 (a), so together we know F(Θ) ≈+ 0 ≈+ F′(Θ) by positive transitivity (theorem 4.3 (c)).

Similarly for the 1L law, we have F(Θ) ≈+ 1 as a trivial case of lemma C.1 (a), and so we get

F(Θ) ≈+ 1 ≈+ F′(Θ) from lemma 5.1 (a) and theorem 4.3 (c) as well.

The sub-structural laws for the unary data types (−, ↓S) follow a different line of reasoning, but

are not much more difficult to demonstrate. For instance, consider the negating −L law, where we

know that F(Θ)θ ≈+ −Aθ by lemma C.3 (b) because Aθ ≈+ Aθ by reflexivity, and F′(Θ)θ ≈+ −Aθ
by lemma 5.1 (a). Additionally, the shifting ↓SL law is sound because we know that F(Θ)θ ≈+ ↓SAθ
by lemma C.3 (a) because of the reflexive isomorphism Aθ ≈− Aθ , and F′(Θ)θ ≈+ ↓SAθ by

lemma 5.1 (a).

And finally, the sub-structural laws for the binary (co-)data types (⊕, ⊗) require the most effort.

This is because each of these types have two parts, and so we must relate one part at a time and then

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 44 (pp. 1-54)

A Polarized Basis for Simple Types 1:45

mix the result together. In particular, we know that F1(Θ)θ ≈+ F′
1
(A,B)θ and F2(Θ)θ ≈+ F′

2
(A,B)θ

for the declarations

data F1(Θ) :V whereK1
: (A :V ⊢ F1(Θ) |) data F′

1
(X :V,Y :V) :V whereK′

1
:

(
X :V ⊢ F′

1
(Θ) |

)
data F2(Θ) :V whereK2

: (B :V ⊢ F2(Θ) |) data F′
2
(X :V,Y :V) :V whereK′

2
:

(
Y :V ⊢ F′

2
(Θ) |

)
by applying lemma C.3 (a) to the reflexive isomorphisms Aθ ≈− X {Aθ/X } and Bθ ≈− Y {Bθ/Y }.
Now note the two different ways to mix these isomorphisms together with lemma C.2. First, we

could mix the above F1(Θ)θ ≈+ F′
1
(A,B)θ and F2(Θ)θ ≈+ F′

2
(A,B)θ as the first two isomorphisms

while the third is F3(Θ)θ ≈+ F′
3
(A,B)θ given by lemma C.1 (a) of the trivial data declarations

data F3(Θ) :V whereK3
: (⊢ F3(Θ) |) data F′

3
(X :V,Y :V) :V whereK′

3
:

(
⊢ F′

3
(X ,Y) |

)
which tells us that F(Θ)θ ≈+ A ⊕ B as required by the ⊕L law. Second, we could mix together

F1(Θ)θ ≈+ F′
1
(A,B)θ and F2(Θ)θ ≈+ F′

2
(A,B)θ as the second two isomorphisms while the first is

F0(Θ)θ ≈+ F′
0
(A,B)θ by lemma C.1 (b) of the trivial data declarations

data F3(Θ) : V where data F′
3
(X : V,Y : V) : V where

which tells us that F(Θ)θ ≈+ A ⊗ B as required by the ⊗L law. □

Theorem 5.3 (Polarized isomorphism substitution). In theVN sub-calculus, for any types
Θ,X : S ⊢P A : T , Θ ⊢G B : S, and Θ ⊢G C : S, if Θ ⊨ B ≈ C then Θ ⊨ A {B/X } ≈ A {C/X }.

Proof. By induction on the typing derivation of Θ,X : S ⊢P A : T and the fact that each

polarized connective is compatible with isomorphism. For example, in the case of ⊗, given A1
: V

and A2
: V and that A1 ≈ A′

1
and A2 ≈ A′

2
from the inductive hypothesis, we have

data F1() :V whereK : (A1 ⊗ A2
:V ⊢ F1() |)

≈+⊗L data F2() :V whereK : (A1
:V,A2

:V ⊢ F2() |)

≈+IH data F3() :V whereK :

(
A′
1
:V,A′

2
:V ⊢ F3() |

)
≈+⊗L data F4() :V whereK :

(
A′
1
⊗ A′

2
:V ⊢ F4() |

)
by the ⊗L, data compatibility, and data mix laws, and so A1 ⊗ A2 ≈

+ F1() ≈+ F4() ≈+ A′
1
⊗ A′

2
by

lemma 5.1. The compatibility of the other polarized connectives follows similarly. The trickiest

cases are for the shifts. S⇑ follows immediately from lemma C.3 using a similar argument as ⊗

since the single component is call-by-value, and S⇓ is dual since its component is call-by-name. ↓S
follows for the same reason as S⇑ when S = V . Otherwise S = N and we have A : N , A′

: N ,

and so A ≈ A′
implies A ≈− A′

(lemma B.3 (b)), so ↓NA ≈+ ↓NA
′
by lemma C.3. Likewise, the

compatibility of ↑S follows dually to the case for ↓S . □

D PROOFS OF THE ALGEBRAIC AND DUALITY LAWS
As described in section 6, all of the follow laws are derived from (co-)data declarations of the form

data F() : V whereK : (A : V ⊢ F() |) ≈+ data F′() : V whereK′
: (A′

: V ⊢ F′() |)

codataG() : N whereO : (| G() ⊢ A : N) ≈− codataG′() : N whereO′
: (| G′() ⊢ A′

: N)

via lemma 5.1 to get A ≈ A′
by composing A ≈+ F() ≈+ F′() ≈+ A′

or A ≈− G() ≈− G′() ≈− A′
.

The specific (co-)data declaration isomorphisms needed for each law are derived from the laws for

polarized connectives appearing in (co-)data declaration in fig. 10 extended with the general laws

in figs. 8 and 9.

2017-07-07 21:45 page 45 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:46 Paul Downen and Zena M. Ariola

D.1 Proofs of the algebraic laws
D.1.1 Commutativity. The commutativity laws for reordering the binary connectives, unsur-

prisingly, follows from the commutativity laws for reordering the parts of declarations. For the

multiplicative ⊗ and M, we use the first commute law to reorder the components within a single

constructor or observer, as follows:

data F1() : V whereK : (A ⊗ B : V ⊢ F1() |)

≈+⊗L data F2() : V whereK : (A : V,B : V ⊢ F2() |)

≈+ data F3() : V whereK : (B : V,A : V ⊢ F3() |)

≈+⊗L data F4() : V whereK : (B ⊗ A : V ⊢ F4() |)

codataG1() : N whereO : (| G1() ⊢ A M B : N)

≈−
MR codataG2() : N whereO : (| G2() ⊢ A : N ,B : N)

≈− codataG3() : N whereO : (| G3() ⊢ B : N ,A : N)

≈−
ML codataG4() : N whereO : (| G4() ⊢ B M A : N)

Whereas for the additive ⊕ and &, we use the second commute law to reorder the alternatives

within a declaration as shown in the following isomorphism:

data F1() : V whereK : (A ⊕ B : V ⊢ F1() |)

≈+⊕L data F2() : V whereK1
: (A : V ⊢ F2() |)

K2
: (B : V ⊢ F2() |)

≈+ data F3() : V whereK2
: (B : V ⊢ F3() |)

K1
: (A : V ⊢ F3() |)

≈+⊕L data F4() : V whereK : (B ⊕ A : V ⊢ F4() |)

codataG1() : N whereO : (| G1() ⊢ A& B : N)

≈−
&R codataG2() : N whereO1

: (| G2() ⊢ A : N)

O2
: (| G2() ⊢ B : N)

≈− codataG3() : N whereO2
: (| G3() ⊢ B : N)

O1
: (| G3() ⊢ A : N)

≈−
&R codataG4() : N whereO : (| G4() ⊢ B &A : N)

D.1.2 Unit. Combining the binary connectives with their corresponding units is an identity

operation that leaves types unchanged, up to isomorphism. These unit laws rely on the fact that the

right and left laws for the nullary connectives “cancel out,” in an appropriate way, any occurence

of the nullary connective within a (co-)data declaration as described by the 1L, 0L, ⊥R, and ⊤R
laws. For the multiplicative 1 and ⊥ connectives, we use the fact that 1 vanishes from the left-hand

side of a constructor and ⊥ vanishes from the right-hand side of an observer:

data F1() : V whereK : (1 ⊗ A : V ⊢ F1() |)

≈+⊗L data F2() : V whereK : (1 : V,A : V ⊢ F2() |)

≈+
1L data F3() : V whereK : (A : V ⊢ F3() |)

≈+
1L data F4() : V whereK : (A : V, 1 : V ⊢ F4() |)

≈+⊗L data F5() : V whereK : (A ⊗ 1 : V ⊢ F5() |)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 46 (pp. 1-54)

A Polarized Basis for Simple Types 1:47

codataG1() : N whereO : (| G1() ⊢ ⊥ M A : N)

≈−
MR codataG2() : N whereO : (| G2() ⊢ ⊥ : N ,A : N)

≈−
⊥R codataG3() : N whereO : (| G3() ⊢ A : N)

≈−
⊥R codataG4() : N whereO : (| G4() ⊢ A : N ,⊥ : N)

≈−
MR codataG5() : N whereO : (| G5() ⊢ A M ⊥ : N)

Note the use of the mix law to extend 1L and ⊥R to allow for an extra component along side

the unit connective. Alternatively, for the additive 0 and ⊤ connectives, we use the fact that any

constructor containing a 0 on its left-hand side completely vanishes itself, whereas an observer

containing a ⊤ on its right-hand side vanishes:

data F1() : V whereK : (0 ⊕ A : V ⊢ F1() |)

≈+⊕L data F2() : V whereK1
: (0 : V ⊢ F2() |)

K2
: (A : V ⊢ F2() |)

≈+
0L data F3() : V whereK : (A : V ⊢ F3() |)

≈+
0L data F4() : V whereK1

: (A : V ⊢ F4() |)

K2
: (0 : V ⊢ F4() |)

≈+⊕L data F5() : V whereK : (A ⊕ 0 : V ⊢ F5() |)

codataG1() : N whereO : (| G1() ⊢ ⊤ &A : N)

≈−
&R codataG2() : N whereO1

: (| G2() ⊢ ⊤ : N)

O2
: (| G2() ⊢ A : N)

≈−
⊤R codataG3() : N whereO : (| G3() ⊢ A : N)

≈−
⊤R codataG4() : N whereO1

: (| G4() ⊢ A : N)

O2
: (| G4() ⊢ ⊤ : N)

≈−
&R codataG5() : N whereO : (| G5() ⊢ A& ⊤ : N)

Again, the mix law is used to extend 0L and ⊤R for (co-)data declarations with another alternative.

D.1.3 Associativity. Nested applications of the same binary connective can be reassociated, up to

isomorphism. This is because (co-)data declarations are “flat:” there is a single, flat list of alternative,

with each one containing a single, flat list of components on either side of the turnstyle. Therefore,

after we fully unpack a nested application of a connective, it flattens out, so that we may repack the

2017-07-07 21:45 page 47 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:48 Paul Downen and Zena M. Ariola

same parts back together in the other order. For the multiplicative ⊗ and M, we have the following
isomorphism:

data F1() : V whereK : ((A ⊗ B) ⊗ C : V ⊢ F1() |)

≈+⊗L

data F2() : V where
K : (A ⊗ B : V,C : V ⊢ F2() |)

≈+⊗L

data F3() : V where
K : (A : V,B : V,C : V ⊢ F3() |)

≈+⊗L

data F4() : V where
K : (A : V,B ⊗ C : V ⊢ F4() |)

≈+⊗L

data F5() : V where
K : (A ⊗ (B ⊗ C) : V ⊢ F5() |)

codataG1() : N whereO : (| G1() ⊢ (A M B) M C : N)

≈−
MR

codataG2() : N where
O : (| G2() ⊢ A M B : N ,C : N)

≈−
MR

codataG3() : N where
O : (| G3() ⊢ A : N ,B : N ,C : N)

≈−
MR

codataG4() : N where
O : (| G4() ⊢ A : N ,B M C : N)

≈−
MR

codataG4() : N where
O : (| G4() ⊢ A M (B M C) : N)

Note that the mix law is used to extend ⊗L and MR to allow for an extra component on either side

of the main pair. For the additive ⊕ and &, we have the following isomorphisms, again using mix

to extend ⊕L and &R to allow for an extra alternative before or after the main pair:

data F1() : V whereK : ((A ⊕ B) ⊕ C : V ⊢ F1() |)

≈+⊕L data F2() : V whereK1
: (A ⊕ B : V ⊢ F2() |)

K2
: (C : V ⊢ F2() |)

≈+⊕L data F3() : V whereK1
: (A : V ⊢ F3() |)

K2
: (B : V ⊢ F3() |)

K3
: (C : V ⊢ F3() |)

≈+⊕L data F4() : V whereK1
: (A : V ⊢ F4() |)

K2
: (B ⊕ C : V ⊢ F4() |)

≈+⊕L data F5() : V whereK : (A ⊕ (B ⊕ C) : V ⊢ F5() |)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 48 (pp. 1-54)

A Polarized Basis for Simple Types 1:49

codataG1() : N whereO : (| G1() ⊢ (A& B) &C : N)

≈−
&R codataG2() : N whereO1

: (| G2() ⊢ A& B : N)

O2
: (| G2() ⊢ C : N)

≈−
&R codataG3() : N whereO1

: (| G3() ⊢ A : N)

O2
: (| G3() ⊢ B : N)

O3
: (| G3() ⊢ C : N)

≈−
&R codataG4() : N whereO1

: (| G4() ⊢ A : N)

O2
: (| G4() ⊢ B &C : N)

≈−
&R codataG5() : N whereO : (| G5() ⊢ A& (B &C) : N)

D.1.4 Distributivity. Distributing a multiplication over an addition also arises from the flat

nature of (co-)data declarations much like reassociating a binary connective. The difference is that

when the addition is flattened out into the structure of the declaration, the multiplied type is carried

along for the ride (via the mix law) and copied across both alternatives, as shown in the following

isomorphisms:

data F1() : V whereK : (A ⊗ (B ⊕ C) : V ⊢ F1() |)

≈+⊗L data F2() : V whereK : (A : V,B ⊕ C : V ⊢ F2() |)

≈+⊕L data F3() : V whereK1
: (A : V,B : V ⊢ F3() |)

K2
: (A : V,C : V ⊢ F3() |)

≈+⊗L data F4() : V whereK1
: (A ⊗ B : V ⊢ F4() |)

K2
: (A : V,C : V ⊢ F4() |)

≈+⊗L data F5() : V whereK1
: (A ⊗ B : V ⊢ F5() |)

K2
: (A ⊗ C : V ⊢ F5() |)

≈+⊕L

data F6() : V where
K : ((A ⊗ B) ⊕ (A ⊗ C) : V ⊢ F6() |)

codataG1() : N whereO : (| G1() ⊢ A M (B &C) : N)

≈−
MR codataG2() : N whereO : (| G2() ⊢ A : N ,B &C : N)

≈−
&R codataG3() : N whereO1

: (| G3() ⊢ A : N ,B : N)

O2
: (| G3() ⊢ A : N ,C : N)

≈−
MR codataG4() : N whereO1

: (| G4() ⊢ A M B : N)

O2
: (| G4() ⊢ A : N ,C : N)

≈−
MR codataG5() : N whereO1

: (| G5() ⊢ A M B : N)

O2
: (| G5() ⊢ A M C : N)

≈−
&R

codataG6() : N where
O : (| G6() ⊢ (A M B) & (A M Cx) : N)

D.1.5 Annihilation. When a type is multiplied by the additive unit, it is cancelled out. This occurs

because, unlike an addition, the multiplication places the type next to the unit where it is in harms

2017-07-07 21:45 page 49 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:50 Paul Downen and Zena M. Ariola

way. Thus, when 0L and⊤R are extended (by the mix law) to allow for an extra component alongside

the units, it is swept aside as the entire alternative is deleted, as in the following isomorphisms:

data F1() : V whereK : (A ⊗ 0 : V ⊢ F1() |)

≈+⊗L data F2() : V whereK : (A : V, 0 : V ⊢ F2() |)

≈+
0L data F3() : V where

≈+
0L data F4() : V whereK : (0 : V,A : V ⊢ F4() |)

≈+⊗L data F5() : V whereK : (0 ⊗ A : V ⊢ F5() |)

codataG1() : N whereO : (| G1() ⊢ A M ⊤ : N)

≈−
MR codataG2() : N whereO : (| G2() ⊢ A : N ,⊤ : N)

≈−
⊤R codataG3() : N where

≈−
⊤R codataG4() : N whereO : (| G4() ⊢ ⊤ : N ,A : N)

≈−
MR codataG5() : N whereO : (| G5() ⊢ ⊤ M A : N)

D.2 Proofs of the duality laws
D.2.1 Involutive negation. Double negation elimination is, perhaps, deceptively simple: the

−L and ¬R laws just flip the double-negated type back and forth across the turnstyle until both

negations disappear:

data F1() : V whereK : (−(¬A) : V ⊢ F1 |)

≈+−L data F2() : V whereK : (⊢ F2 | ¬A : N)

≈+¬R data F3() : V whereK : (A : V ⊢ F3 |)

codataG1() : V whereO : (| G1 ⊢ ¬(−A) : N)

≈−
¬R codataG2() : V whereO : (−A : V | G2 ⊢)

≈−
−L codataG3() : V whereO : (| G3 ⊢ A : N)

Note that in the case of−(¬A),¬R must be used in a data declaration instead of a co-data declaration,

and likewise −L must be used in a co-data declaration for ¬(−A). This can be accomplished with

the (co-)data interchange laws, that let us convert each data isomorphism from fig. 10 into a co-data

isomorphism and vice versa.

D.2.2 Constant negation. Involutive negation converts “true” into “false” and “false” into “true,”

but it also swaps between the data and co-data formulations of each. For the multiplicative units,

the data type 1 for true is the negation of the co-data type ⊥ for false because both represent a

(co-)data type with one alternative containing nothing:

data F1() : V whereK : (−⊥ : V ⊢ F1 |)

≈+−L data F2() : V whereK : (⊢ F2 | ⊥ : N)

≈+⊥R data F3() : V whereK : (⊢ F3 |)

≈+
1L data F4() : V whereK : (1 : V ⊢ F4 |)

codataG1() : N whereO : (| G1 ⊢ ¬1 : N)

≈−
¬R codataG2() : N whereO : (1 : V | G2 ⊢)

≈−
1L codataG3() : N whereO : (| G3 ⊢)

≈−
⊥R codataG4() : N whereO : (| G4 ⊢ ⊥ : N)

For the additive units, the data type 0 for false is the negation of the co-data type ⊤ for true because

both represent a (co-)data type with no alternatives:

data F1() : V whereK : (−⊤ : V ⊢ F1() |)

≈+−L data F2() : V whereK : (⊢ F2() | ⊤ : N)

≈+⊤R data F3() : V where

≈+
0L data F4() : V whereK : (0 : V ⊢ F4() |)

codataG1() : V whereO : (| G1() ⊢ ¬0 : N)

≈−
¬R codataG2() : V whereO : (0 : V | G2() ⊢)

≈−
0L codataG3() : V where

≈−
⊤R codataG4() : V whereO : (| G4() ⊢ ⊤ : N)

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 50 (pp. 1-54)

A Polarized Basis for Simple Types 1:51

D.2.3 De Morgan laws. Involutive negation also converts “and” into “or” and “or” into “and”

while interchanging data with co-data. For the multiplicatives, the connective ⊗ is an “and” pair

that amalgamates two pieces of data into a single structure, and this is the negation of M which is

an “or” pair that conjoins two observers together:

data F1() : V whereK : (−(A M B) : V ⊢ F1() |)

≈+−L data F2() : V whereK : (⊢ F2() | A M B : N)

≈+MR data F3() : V whereK : (⊢ F3() | A : N ,B : N)

≈+−L data F4() : V whereK : (−A : V ⊢ F4() | B : N)

≈+−L data F5() : V whereK : (−A : V,−B : V ⊢ F5() |)

≈+⊗L data F6() : V whereK : ((−A) ⊗ (−B) : V ⊢ F6() |)

codataG1() : N whereO : (| G1() ⊢ ¬(A ⊗ B) : N)

≈−
¬R codataG2() : N whereO : (A ⊗ B : V | G2() ⊢)

≈−
⊗L codataG3() : N whereO : (A : V,B : V | G3() ⊢)

≈−
¬R codataG4() : N whereO : (A : V | G4() ⊢ ¬B : N)

≈−
¬R codataG5() : N whereO : (| G5() ⊢ ¬A : N ,¬B : N)

≈−
MR codataG6() : N whereO : (| G6() ⊢ (¬A) M (¬B) : N)

For the additives, the connective ⊕ is an “or” that yields one of two possible alternative types of

answers, and this is the negation of & which gives observers the option of one of two possible

types of questions:

data F1() : V whereK : (−(A& B) : V ⊢ F1() |)

≈+−L data F2() : V whereK : (⊢ F2() | A& B : N)

≈+
&R data F3() : V whereK1

: (⊢ F3() | A : N)

K2
: (⊢ F3() | B : N)

≈+−L data F4() : V whereK1
: (−A : V ⊢ F4() |)

K2
: (⊢ F4() | B : N)

≈+−L data F5() : V whereK1
: (−A : V ⊢ F5() |)

K2
: (−B : V ⊢ F5() |)

≈+⊕L data F6() : V whereK : ((−A) ⊕ (−B) : V ⊢ F6() |)

codataG1() : N whereO : (| G1() ⊢ ¬(A ⊕ B) : N)

≈−
¬R codataG2() : N whereO : (A ⊕ B : V | G2() ⊢)

≈−
⊕L codataG3() : N where

O1
: (A : V | G3() ⊢)

O2
: (B : V | G3() ⊢)

≈−
⊕L codataG4() : N where

O1
: (| G4() ⊢ ¬A : N)

O2
: (B : V | G4() ⊢)

≈−
⊕L codataG5() : N where

O1
: (| G5() ⊢ ¬A : N)

O2
: (| G5() ⊢ ¬B : N)

≈−
&R codataG6() : N whereO : (| G6() ⊢ (¬A) & (¬B) : N)

2017-07-07 21:45 page 51 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:52 Paul Downen and Zena M. Ariola

E NONLINEAR SHIFT LAWS
In section 1, we mentioned that the well-known isomorphism (A × B) → C ≈ A → (B → C)
doesn’t hold under the naïve reading in either ML or Haskell because currying and uncurrying are

not truly inverses of each other. This is in stark contrast to the pure, call-by-name λ-calculus with
products where the currying isomorphism does indeed hold. This is because in the call-by-name

λ-calculus with products, we get to use the full η law for functions (λx . f x =η f) as well as the
surjectivity law for products ((π1 x ,π2 x) =surj x). Then using the ordinary definition of curry and

uncurry in terms of projection,

curry ≜ λf .λx .λy. f (x ,y) uncurry ≜ λf .λz. f (π1 z) (π2 z)

we can demonstrate that the composition curry ◦ uncurry is the identity function because of the

call-by-name η law for functions

curry ◦ uncurry =β λf .curry (uncurry f) =β λf .λx .λy.uncurry f (x ,y)

=β λf .λx .λy. f (π1(x ,y)) (π2(x ,y))) =π λf .λx .λy. f x y =η λf . f

and we can also demonstrate that the reverse composition uncurry ◦ curry is the identity function

because of the surjectivity law for products

uncurry ◦ curry =β λf .uncurry (curry f) =β λf .λz.curry f (π1 z) (π2 z)

=β λf .λz. f (π1 z,π2 z) =surj λf .λz. f z =η λf . f

So what goes wrong in real programming languages like ML and Haskell? In ML, we can only rely

on a restriction version of the η law, so that λy.(f x) y , f x because the function call f x is a

computation which might case effects—like nontermination, exceptions, or mutation—instead of a

value like λy.(f x) y which causes no effects. In Haskell, we cannot rely on the surjectivity law for

pair types, because the context case□ of (x ,y) → () distinguishes between a constructed pair and

a computation of a pair, so that case z of (x ,y) → () will not return any result if z never returns a
pair (like any expression that causes an error or loops forever), but case (fst z, snd z) of (x ,y) → ()

always returns () regardless of what z is.
But then where does that leave our polarized analysis of such encodings? We should expect

that if the call-by-name λ-calculus is capable of proving that currying and uncurrying form an

isomorphism, then the analogous isomorphism should hold up in the polarized calculus as well. The

issue is that since the polarized function space takes a positive argument rather than a negative one,

we have that the purely call-by-name function type is A →N B ≈ (↓A) → B That means that the

corresponding uncurried function type, where surjective products are represented as the negative

& product type, is ↓(A & B) → C , which does not fit the mould of our currying isomorphism

(A ⊗ B) → C ≈ A → (B → C) from fig. 14.

As it turns out, there are some additional laws about the shift connectives besides the simple

identity laws we used in section 6.3. In particular, [Zeilberger 2009] mentions laws for distributing

shifts over other connectives:

↓(A& B) ≈ (↓A) ⊗ (↓B) ↓⊤ ≈ 1

↑(A ⊕ B) ≈ (↑A) M (↑B) ↑0 ≈ ⊥

The ability to distribute shifts over negative products lets us derive the law exactly corresponding

to currying in the call-by-name λ-calculus as follows:

(A& B) →N C ≈ ↓(A& B) → C ≈ (↓A) ⊗ (↓B) → C ≈ (↓A) → (↓B) → C ≈ A →N B →N C

The proofs of these distributive shift laws are actually interesting, because they differ from all the

previous ones we used to encode (co-)data types. In particular, distributing shifts over the additive

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 52 (pp. 1-54)

A Polarized Basis for Simple Types 1:53

connectives is explicitly nonlinear, and requires copying or erasing objects, which is in contrast to

all the previous isomorphisms which are linear in the sense of linear logic (not to be confused with

the similarly named “linear co-terms” from definition 4.2 which generalize co-values). For example,

the isomorphism ↓⊤ ≈ 1 is established by the following two commands:

c ≜ ⟨()||α ′⟩ : (x : ↓⊤ ⊢ α ′
: 1) c ′ ≜ ⟨↓(µ())||α⟩ : (x ′

: 1 ⊢ α : ↓⊤)

Notice how we completely drop the input x and x ′
from these commands. The proof that the

composition of these commands is the identity relies on the incredible strength of the η⊤
N
and η1

V

laws, which let us prove that every value of the 1 and ⊤ types are interchangeable.

⟨µα ′.c ||µ̃x ′.c ′⟩ =ηµ ⟨()||µ̃x ′. ⟨↓(µ())||α⟩⟩ =µ̃ ⟨↓(µ())||α⟩

=µ̃η ↓ ⟨x ||µ̃[↓(y).⟨↓(µ())||α⟩]⟩ =η⊤ ⟨x ||µ̃[↓(y).⟨↓(y)||α⟩]⟩ =η ↓ ⟨x ||α⟩

⟨µα .c ′ ||µ̃x .c⟩ =ηµ ⟨↓(µ())||µ̃x . ⟨()||α ′⟩⟩ =µ̃ ⟨()||α⟩ =µ̃η1
V
⟨x ||µ̃[().⟨()||α⟩]⟩ =η1 ⟨x ||α⟩

Scaling up, the isomorphism ↓(A&B) ≈ (↓A) ⊗ (↓B) is established by the following two commands

(where we make use of a little deep pattern matching for notational convenience):

c ≜ ⟨x ||µ̃[↓(y).⟨(↓(µβ1. ⟨y ||π1 [β1]⟩), ↓(µβ2. ⟨y ||π2 [β2]⟩))||α
′⟩]⟩

: (x : ↓(A& B) ⊢ α ′
: (↓A) ⊗ (↓B))

c ′ ≜ ⟨x ′ ||µ̃[(↓(y1), ↓(y2)).⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))||α⟩]⟩

: (x ′
: (↓A) ⊗ (↓B) ⊢ α : ↓(A& B))

Notice that in c , the inner value of type A & B is necessarily duplicated and observed twice to

extract both the A and B components to build the pair. Contrarily in c ′, the inner values ↓A and ↓B
are each only referenced in one branch of the product case analysis, effectively dropping one or the

other depending on which projection is requested which violates the normal discipline from linear

logic. However, these commands are also inverses thanks to the correctly chosen disciplines for the

respective types and the strength of the call-by-value η
↓

V
law.〈

µα ′.c
����µ̃x ′.c ′〉

=η µ̃
⟨µα ′. ⟨x ||µ̃[↓(y).⟨(↓(µβ1. ⟨y ||π1 [β1]⟩), ↓(µβ2. ⟨y ||π2 [β2]⟩))||α

′⟩]⟩|

|µ̃[(↓(y1), ↓(y2)).⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))||α⟩]⟩

=µ

〈
x

��������µ̃ [
↓(y).

⟨(↓(µβ1. ⟨y ||π1 [β1]⟩), ↓(µβ2. ⟨y ||π2 [β2]⟩))|
|µ̃[(↓(y1), ↓(y2)).⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))||α⟩]⟩

]〉
=β⊗

〈
x

��������µ̃ [
↓(y).

⟨↓(µβ1. ⟨y ||π1 [β1]⟩)|
|µ̃[↓(y1).⟨↓(µβ2. ⟨y ||π2 [β2]⟩)||µ̃[↓(y2).⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))||α⟩]⟩]⟩

]〉
=β ↓ ⟨x ||µ̃[↓(y).⟨µβ1. ⟨y ||π1 [β1]⟩||µ̃y1. ⟨µβ2. ⟨y ||π2 [β2]⟩||µ̃y2. ⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))||α⟩⟩⟩]⟩

=µ̃N µ ⟨x ||µ̃[↓(y).⟨↓(µ(π1 [β1].⟨y1 ||π1 [β1]⟩ | π2 [β2].⟨y2 ||π2 [β2]⟩))||α⟩]⟩

=η& ⟨x ||µ̃[↓(y).⟨↓(y)||α⟩]⟩

=η ↓ ⟨x ||α⟩

2017-07-07 21:45 page 53 (pp. 1-54) Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:54 Paul Downen and Zena M. Ariola

〈
µα .c ′

����µ̃x .c〉 =η µ̃ ⟨µα . ⟨x ′ ||µ̃[(↓(y1), ↓(y2)).⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))||α⟩]⟩|
|µ̃[↓(y).⟨(↓(µβ1. ⟨y ||π1 [β1]⟩), ↓(µβ2. ⟨y ||π2 [β2]⟩))||α

′⟩]⟩

=η µ̃

〈
x ′

��������µ̃ [
(↓(y1), ↓(y2)).

⟨↓(µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩))|
|µ̃[↓(y).⟨(↓(µβ1. ⟨y ||π1 [β1]⟩), ↓(µβ2. ⟨y ||π2 [β2]⟩))||α

′⟩]⟩

]〉
=β ↓ µ̃

〈
x ′

�����
�����µ̃

[
(↓(y1), ↓(y2)).

〈
(↓(µβ1. ⟨µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩)||π1 [β1]⟩),

↓(µβ2. ⟨µ(π1 [β1].⟨y1 ||β1⟩ | π2 [β2].⟨y2 ||β2⟩)||π2 [β2]⟩))

�����
�����α ′

〉]〉
=β ↓ µ̃

〈
x ′

����µ̃ [
(↓(y1), ↓(y2)).

〈
(↓(µβ1. ⟨y1 ||β1⟩), ↓(µβ2. ⟨y2 ||β2⟩))

����α ′
〉]〉

=β ↓ µ̃
〈
x ′

����µ̃ [
(↓(y1), ↓(y2)).

〈
(↓(y1), ↓(y2))

����α ′
〉]〉

=
µ̃η ↓

V

〈
x ′

����µ̃ [
(y1,y2).

〈
(y1,y2)

����α ′
〉]〉

=η⊗

〈
x ′

����α ′
〉

The other isomorphisms for distributing shifts, ↑(A ⊕ B) ≈ (↑A) M (↑B) and ↑0 ≈ ⊥ follow a

dual construction as above.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2018. 2017-07-07 21:45 page 54 (pp. 1-54)

	Abstract
	1 Introduction
	2 A source sequent calculus with user-defined types
	3 A target sequent calculus with the polar basis
	4 What is an isomorphism between types?
	5 A syntactic theory of (co-)data type isomorphisms
	5.1 Structural laws of declarations
	5.2 Internal polarized laws of declarations

	6 A syntactic theory of polarized type isomorphisms
	6.1 Algebraic laws
	6.2 Duality laws
	6.3 Shift laws
	6.4 Functional laws

	7 The faithfulness of polarization
	8 Related work
	9 Conclusion
	References
	A Proof of soundness of the polarization encoding
	B Proofs of type isomorphism properties
	C Proofs of the (co-)data structural laws
	D Proofs of the algebraic and duality laws
	D.1 Proofs of the algebraic laws
	D.2 Proofs of the duality laws

	E Nonlinear shift laws

