
Fundamenta Informaticae XXI (2001) 1001–1054 1001

DOI 10.3233/FI-2016-0000

IOS Press

The Duality of Classical Intersection and Union Types

Paul Downen∗

University of Oregon

pdownen@cs.uoregon.edu

Zena M. Ariola∗

University of Oregon

ariola@cs.uoregon.edu

Silvia Ghilezan†

University of Novi Sad

gsilvia@uns.ac.rs

Abstract. For a long time, intersection types have been admired for their surprising ability to
complete the simply typed lambda calculus. Intersection types are an example of an implicit typ-
ing feature which can describe program behavior without manifesting itself within the syntax of a
program. Dual to intersections, union types are another implicit typing feature which extends the
completeness property of intersection types in the lambda calculus to full-fledged programming
languages. However, the formalization of union types can easily break other desirable meta-
theoretical properties of the type system. But why should unions be troublesome when their dual,
intersections, are not?

We look at the issues surrounding the design of type systems for both intersection and union types
through the lens of duality by formalizing them within the symmetric language of the classical
sequent calculus. In order to formulate type systems which have all of our properties of interest—
soundness, completeness, and type safety—we also look at the impact of evaluation strategy on
typing. As a result, we present two dual type systems—one for call-by-value and one for call-by-
name evaluation—which have all three properties. We also consider the possibility of classical

∗This work is supported by the National Science Foundation under grants CCF-1423617 and CCF-1719158.
†Courtesy Research Associate in the Global Studies Institute, University of Oregon. This work has been partly supported
by MESTD under the grants ON174026 and III44006.

1002 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

non-deterministic evaluation, for which there is a choice between two different systems depending
on which properties are desired: a full type system which is complete, and a simplified type system
which is sound and type safe.

Keywords: Intersection types, union types, duality, sequent calculus, discipline, type safety,
strong normalization, soundness and completeness, reducibility candidates, symmetric candidates

1. Introduction

Intersection types enrich the language of types to say that a single value may satisfy multiple different
static properties. Dual to intersection types, union types allow for the ability to weaken the statically-
predicted properties of a result, especially in cases where the eventual result of a program is not yet
known. When designing type systems for foundational calculi, there are several desirable properties
that we might want to hold:

• Soundness with respect to normalization: every well-typed expression is strongly normalizing.

• Completeness with respect to normalization: every strongly normalizing expression is typable.

• Subject reduction: every typed expression only reduces to other expressions of the same type.

Soundness and subject reduction are common properties for typed λ-calculi to have. In contrast,
completeness is quite an unusual property for typed λ-calculi (like the simply typed or polymorphic
λ-calculus), but it is the hallmark of intersection typing. Together, soundness and completeness means
that the type system exactly characterizes strongly normalizing expressions.

Intersection types are enough to guarantee completeness for just the lambda calculus, but union
types are also needed to scale completeness up to a more full-fledged programming language. How-
ever, it is easy for systems with both intersection and union types (or even just intersection types and
effects) to lose these nice properties. In particular, the status of subject reduction is fraught in usual
formalizations of union types in the lambda calculus. But why should it be that intersection types are
more “well-behaved” than union types, since they are supposed to be duals?

In order to investigate this problem—the mismatch between intersection and union types—we
consider how they appear in a dual language based on the sequent calculus. Duality presents intersec-
tion and union types in a perfectly symmetric way, avoiding the usual problem with formalizing union
types in natural deduction, and also extends completeness to a calculus with first-class control. Duality
alone is not enough, though, since a naı̈ve presentation of intersection and union types still does not
enjoy subject reduction. The issue surrounding subject reduction is related to the issue of type safety
of polymorphism in ML, which is solved by the well-known value restriction. Building on this, we
arrive at a more disciplined type system which enforces a symmetric (co)value restriction: intersection
types can only be introduced on values (which produce information), and dually union types can only
be introduced on covalues (which consume information). This (co)value restriction in the disciplined
type system corresponds to the notion of discipline for restricting substitution in rewriting theories [1],
which is useful for ensuring properties such as confluence and strong normalization. That is to say, the

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1003

same notion of substitution discipline that tames the non-determinism present in classical cut elimina-
tion of the sequent calculus also tames the type safety troubles caused by unconstrained intersection
and union types.

To begin, we review some of the issues that arise with intersection and union types in the familiar
setting of the lambda calculus (Section 2). We then move over to the symmetric setting of the classical
sequent calculus and start with an introduction to a programming language based on the sequent
calculus (Section 3) before continuing with discussing the issues of extending this language with
intersection and union types (Section 4). We begin with a full type system λµµ̃∩∪ for intersection and
union types (Section 4.1), which presents plausible typing rules but does not impose any additional,
computationally-minded constraints. Unfortunately, some of the same problems arise again in this
basic setup, which motivates the search for type systems which have all of the desired properties—
soundness, completeness, and subject reduction. Our contributions are:

• (Section 4) An analysis of typing restrictions for establishing type safety in the sequent calculus
that leads us to the following well-behaved systems:

– (Section 4.2) A pair of dual call-by-value λµµ̃∩∪v and call-by-name λµµ̃∩∪n systems
for intersection and union types in the sequent calculus based on a value and covalue
restriction, respectively, which come with their own notion of focusing.

– (Section 4.3) A disciplined type system λµµ̃∩∪d that unifies and subsumes the specialized
call-by-value (λµµ̃∩∪v), call-by-name (λµµ̃∩∪n), and full (λµµ̃∩∪) systems.

– (Section 4.4) A further simplified type system λµµ̃∩∪−d that imposes additional restric-
tions to safely handle non-deterministic computation.

• (Section 5) A proof that the disciplined type system λµµ̃∩∪d is complete by typing all strongly
normalizing, focused expressions.

• (Section 6) A proof that the λµµ̃∩∪v, λµµ̃∩∪n, and λµµ̃∩∪−d type systems enjoy subject re-
duction, and are therefore type safe, i.e., well-typed programs do not get stuck.
• (Section 7) A pair of models of strong normalization for intersection and union types that is

uniform over a chosen discipline:

– (Section 7.4) The first model is based on reducibility candidates, and proves that the more
general λµµ̃∩∪d type system is sound only for deterministic disciplines d.

– (Section 7.7) The second model is based on symmetric candidates, and proves that the
more restrictive λµµ̃∩∪−d type system is sound even for non-deterministic disciplines d.

In summary, our framework for type systems of intersection and union types in the sequent calculus
explores three main disciplines of interest–call-by-value (v), call-by-name (n), and non-deterministic
(u)—with the following results:

Deterministic Sound Complete Type Safe

λµµ̃∩∪u No No Yes No

λµµ̃∩∪v Yes Yes Yes Yes

λµµ̃∩∪n Yes Yes Yes Yes

λµµ̃∩∪−d Either Yes No Yes

1004 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Term 3M ::= x | λx.M |MM

Ax
Γ, x : A ` x : A

Γ, x : A `M : B
→I

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A
→E

Γ `MN : B

Figure 1: λ — The simply typed lambda calculus.

Γ `M : A Γ `M : B
∩I

Γ `M : A ∩B

Γ `M : A ∩B
∩E

Γ `M : A

Γ `M : A ∩B
∩E

Γ `M : B

Figure 2: λ∩— Simply typed lambda calculus with intersection types.

In the last row, λµµ̃∩∪−d is a family of systems that include both deterministic (when d is chosen to
be v or n) and non-deterministic (when d is u) evaluation.

2. Intersection and Union Types in the Lambda Calculus

To avoid inconsistencies in the lambda calculus which lead to a formula being both true and false,
Alonzo Church introduced a simple theory of Types [2], which is described in Figure 1. All simply
typed lambda terms are strongly normalizing (a.k.a soundness). However, the converse (a.k.a com-
pleteness) is not true: some normal forms are not typable by simple types, for example, λx.xx. This
same, one-directional, strong normalization property extends to all systems of the Barendregt’s lambda
cube [3], which expresses the programming language features of polymorphism, type operators, and
dependent types. A well-typed term in any type system of the lambda cube is strongly normalizing,
but, for every corner of the cube, there are untypable strongly normalizing terms. This limitation,
where static type checking is only an approximation of strong normalization, was overcome by ex-
tending the simply typed lambda calculus with intersection types [4, 5, 6]. We refer to this system as
λ∩, and recall the typing rules for intersection in Figure 2.

Theorem 2.1. A lambda term is strongly normalizing if and only if it is typable in λ∩.

The reason for the surprising strength of λ∩ for exactly classifying strongly normalizing lambda terms
within its type system is that intersection types are not an ordinary connective like functions or prod-
ucts. Instead, intersection types effectively add new typing rules to the other proper connectives in the
calculus, so that there are more possible ways of typing a normal function. The extra typing possibili-
ties on top of the existing simply typed λ-calculus is what gives λ∩ the ability to give a type to more
terms, coming up with at least one type to describe any term which is strongly normalizing.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1005

Γ `M : A
∪I

Γ `M : A ∪B

Γ `M : B
∪I

Γ `M : A ∪B

Γ, x : A `M : C Γ, x : B `M : C Γ ` N : A ∪B
∪E

Γ `M [N/x] : C

Figure 3: λ∪— Simply typed lambda calculus with union types.

Union types were first proposed in [7] and further studied in [8, 9], as a dual counterpart to inter-
section types. We recall the rules for union types in Figure 3, and refer to λ∩∪ as the extension of the
simply typed lambda calculus with both intersection and union types. The apparently more permissive
system λ∩∪ also types exactly the strongly-normalizing lambda terms, the same terms as λ∩, so the
two systems are equivalent from the point of view of typability for just the lambda calculus.

Theorem 2.2. A lambda term is strongly normalizing if and only if it is typable in λ∩∪.

However, even though λ∩ and λ∩∪ both admit the same lambda terms as well-typed, they are
still very different type systems. From a programmer’s perspective, intersection and union types offer
two different interfaces on how a value of a type can be used. A union type is effectively an untagged
union, as found in systems programming languages like C. Whereas an intersection type is akin to a
finite version of polymorphism. For example, a function of type (int → int) ∩ (float → float)
can be given either integer or floating-point arguments, and returns a result of the same type as it
was given. From a language designer’s perspective, intersection and union types have different meta-
theoretic properties, and naı̈vely extending a language with intersection or union types can easily lead
to some undesirable outcomes.

2.1. Failure of completeness in the λ-calculus with conditionals and no union types

The heart of the iconic completeness property for intersection types is the following fact: all normal
forms of the lambda calculus are typable. Without this fact, there is no hope for completeness. For
example, the term xy can be given type B by assuming x : A→ B and y : A. The bigger challenge is
when a variable appears more than once, which can lead to self-application like xx. Here, intersection
types come to the rescue by allowing for xx : B under the assumption that x : (A→ B) ∩A.

The typability of normal forms works in the lambda calculus with intersection types, in part,
because it only has one real type with programming constructs: the function type. All other types
are the special intersection type or some abstract type constant which lacks any specific inhabi-
tants. But completeness does not easily extend to a more practical prototypical programming lan-
guage with conditionals for a boolean or other sum type. For example, consider the conditional term
if x then 1 else “two”; is it an int or a string? The answer depends on whether or not x
gets instantiated with true or false, so there is no way of knowing statically during type checking.
This perfectly sensible normal form is not typable with only intersection types. Union types are also
required to give the type assignment

if x then 1 else “two” : int ∪ string

1006 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

under the assumption that x : bool. In other words, once conditionals and base types are added to the
lambda calculus, both union and intersection types are needed to establish completeness of typability
for strongly normalizing terms.

There is one additional complication for completeness when base types are introduced: some
normal forms should not be typable because they are manifestly ill-typed. For example, it is sensible
for the normal form xy to be typable because there are contexts which bind x and y to values (like
x = λx.x and y = 1) for which evaluating xy results in an answer. However, a normal form with
an ill-typed application like 1(“augh”) is fatally stuck because 1 is not a function, and can never give
an answer in any context. Therefore, in a more general programming language, the completeness
property should be further weakened to avoid such possibilities: all strongly normalizing terms with
non-fatal normal forms are typable. Note that the example conditional normal form above is not fatal
in this sense, since binding x to either true or false will yield an answer. So it should be typable,
which requires a union between the types of its two possible branches.

2.2. Failure of subject reduction in the λ-calculus with intersection and union types

The λ-calculus with intersection and union types λ∩∪ does not enjoy subject reduction [8, 9]. This
is due to the union elimination rule (∪E); the root cause of the problem is the use of substitution,
M [N/x], in the conclusion of the rule.

Example 2.3. The following counter-example is given in [9]. Consider the term

M ≡ λxyz.x((λt.t)yz)((λt.t)yz)

and its possible β-reducts

λxyz.x((λt.t)yz)((λt.t)yz) →β λxyz.x(yz)((λt.t)yz) or λxyz.x((λt.t)yz)(yz)

→β λxyz.x(yz)(yz)

The terms λxyz.x((λt.t)yz)((λt.t)yz) and λxyz.x(yz)(yz) are typable with the type

(A→ A→ C) ∩ (B → B → C)→ (D → A ∪B)→ D → C

Let Γ = {x : (A→ A→ C) ∩ (B → B → C), y : D → A ∪B, z : D}, then

Γ, w : A ` xww : C Γ, w : B ` xww : C Γ ` (λt.t)yz : A ∪B
∪E

Γ ` x((λt.t)yz)((λt.t)yz) : C

Similarly,
Γ, w : A ` xww : C Γ, w : B ` xww : C Γ ` yz : A ∪B

∪E
Γ ` x(yz)(yz) : C

However, the terms λxyz.x(yz)((λt.t)yz) and λxyz.x((λt.t)yz)(yz) which are obtained from M by
one step β-reduction are not typable in Γ.

The failure of subject reduction under unrestricted contextual reduction can be recovered in several
ways [10]: (i) by using parallel reduction or subtyping [9], or (ii) by using a different notion of
contextual closure in a fully type-decorated setting [11].

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1007

2.3. Failure of type safety in the λ-calculus with intersection types and effects

Implicit polymorphism, as it appears in ML, has the possibility of being type unsafe in the presence
of effects [12]. For example, consider the following expression, where ref creates a new mutable ref-
erence, the := operator updates a reference, and the ! operator returns the current value of a reference:

let f = ref (λx.x)

in f := (λx.1 + x);

(!f) “bang”

On the surface, the expression ref (λx.x) could be given the polymorphic type ref (a→ a), for any
choice of a, since λx.x is a generic identity function. Assigning this type to f makes the expression
type check, since both the update f := (λx.1+x) and the dereference (!f) “bang” are specializations
of the generic type of f : ref (int→ int) and ref (string→ string).

However, this expression will result in a type error, since its evaluation will eventually reach the
state 1 + “bang” which is clearly ill-typed. This problem is not just an issue with mutable state;
similar type unsafe examples can be written for other effects like first-class control [13]. ML imposes
the value restriction on its implicit polymorphism because of these issues, which keeps the language
type safe by ruling out counterexamples like the above.

The full generality of polymorphism isn’t required for this counterexample, though. We could
instead assign the much more specific type (ref (int → int)) ∩ (ref (string → string)) to
f , since the generic identity function has both types; (λx.x) : int → int and (λx.x) : string →
string. Doing so again makes the whole expression type check, which is quite undesirable since it
leads to a type error. Therefore, once computational effects enter the picture, unrestricted intersection
types are no longer safe in a call-by-value language like ML. Dually, unrestricted use of union types
is not type safe in a call-by-name language.

3. Computation in a Classical Sequent Calculus

In order to address both issues with intersection and union types—the loss of subject reduction and
type safety—we will move away from the λ-calculus and onto Curien and Herbelin’s λµµ̃-calculus
[14]: a core programming language based on the sequent calculus rather than on natural deduction.
The syntax, operational semantics, and simple type system of the λµµ̃ sequent calculus, which is the
starting point for every other type system to follow, are given in Figure 4 and Figure 5. Due to the
syntactic structure of the λµµ̃-calculus, every step of the operational semantics (denoted by 7→) is
always at the top of a command, and a final command that can no longer take a step has the form
cfin . In contrast, the reduction theory, which allows for reduction rules to be applied in any context
(denoted by→), and not just at the top of the command, is the compatible closure of the operational
steps (7→).

Notation

As notation, for any set of rules R, we write the operational R-step relation as 7→R and use →R to
denote the compatible closure of 7→R (i.e., an R-reduction →R denotes a 7→R step applied in any

1008 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Command 3 c ::= 〈v || e〉 Term 3 v ::= x | µα.c | λx.v CoTerm 3 e ::= α | µ̃x.c | v · e

〈µα.c || e〉 7→µ c [e/α] 〈v || µ̃x.c〉 7→µ̃ c [v/x]
〈
λx.v

∣∣∣∣ v′ · e〉 7→β

〈
v
[
v′
/
x
] ∣∣∣∣ e〉

FinalCommand 3 cfin ::= 〈x ||α〉 | 〈λx.v ||α〉 | 〈x || v · e〉

Figure 4: λµµ̃ — Syntax and operational semantics.

InputEnv 3 Γ ::= x1 : An, . . . , xn : An

OutputEnv 3 ∆ ::= α1 : An, . . . , αn : An

Judgement 3 H,J ::= (Γ ` v : A | ∆) | (Γ | e : A ` ∆) | c : (Γ ` ∆)

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v || e〉 : (Γ ` ∆)
Cut

Γ, x : A ` x : A | ∆ VarR
Γ | α : A ` α : A,∆

VarL

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆ ActR
c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
ActL

Γ, x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆ →R

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
→L

Figure 5: λµµ̃ — A simply typed sequent calculus.

context). The reflexive-transitive closure of 7→R and→R is written as 7→→R and→→R, respectively. We
also denote the reflexive closure of 7→R as 7→?

R.
Environments Γ = {x1 : A1, . . . , xn : An} and ∆ = {α1 : A1, . . . , αn : An} are sets (i.e.,

unordered lists) of basic type assignments, such that every variable xi in Γ is distinct from all the
others, and likewise for every covariable αi in ∆. We usually will omit the braces when writing
environments. The setDom(Γ) = {x1, x2, . . . , xn} is the set of variables assigned in Γ andDom(∆)
is the set of covariables assigned in ∆.

The definitions of free and bound variables are conventional for the λµµ̃-calculus. λx.v and µ̃x.c
binds x in v and c, respectively, and µα.c binds α in c. A variable or covariable that is not bound is
called free. Capture-avoiding substitution is written as c[v/x] and c[e/α] (and similarly with a term or
coterm in place of c) which replaces v for each free occurence of x and e for each free occurence of α
so long as these occurences do not appear in a context which binds any free variable or covariable in

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1009

Valuev 3 Vv ::= x | λx.v FinalCommandfinv 3 cfinv ::= 〈x ||α〉 | 〈λx.v ||α〉 | 〈x ||Vv · e〉
〈µα.c || e〉 7→µv c [e/α]

〈Vv || µ̃x.c〉 7→µ̃v c [Vv/x]

〈λx.v ||Vv · e〉 7→βv 〈v [Vv/x] || e〉
v · e 7→ςv µ̃y. 〈v || µ̃x. 〈y ||x · e〉〉 (v /∈ Valuev)

e 7→ςv e
′

〈Vv || e〉 7→ςv 〈Vv || e
′〉

Figure 6: Call-by-value operational semantics for λµµ̃.

v or e. More details about binding can be found in Appendix A.

3.1. Call-by-value and call-by-name computation

The fundamental dilemma of computation in the sequent calculus, going back all the way to Gentzen’s
original cut elimination procedure, is that there is a non-deterministic choice of which step to take. The
non-deterministic choice is neatly summarized by the critical pair between opposed µ- and µ̃-redexes:

c1 [µ̃x.c2/α]←[µ 〈µα.c1 || µ̃x.c2〉 7→µ̃ c2 [µα.c1/x]

In the worst case, where x is not free in c2 and α is not free in c1, we have two completely diverging
and unconnected reduction paths:

c1 ←[µ 〈µα.c1 || µ̃x.c2〉 7→µ̃ c2

This non-deterministic choice can be either a weakness or a strength, depending on one’s point of
view. In Barbanera and Berardi’s symmetric λ-calculus [15], non-determinism was embraced as part
of the classical reduction system. Whereas in Curien and Herbelin’s λµµ̃-calculus [14], determinism
was restored by imposing a discipline onto reduction which prioritized one side over the other:

Call-by-value consists in giving priority to the (µ)-redexes (which serve to encode the
terms, say, of the form M N), while call-by-name gives priority to the (µ̃)-redexes.

Call-by-value

The call-by-value semantics can be formalized by making use of a notion of value (written Vv) that
is either a variable or a λ-abstraction, as given in Figure 6. Call-by-value reduction gives priority to
the µv-redexes since the µ̃v rule only substitutes values and a µ-abstraction is never a value in call-by-
value. And since a µv step can substitute any coterm, the fundamental dilemma is resolved in favor of
µ. To go along with this value restriction, the βv step for reducing function calls is also restricted to
only substitute a value argument, analogous to the call-by-value λ-calculus. Lastly, a command of the
form 〈x || v · e〉 is only final if v is a value; in other words, the argument of a function call is always
eagerly evaluated.

1010 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

CoValuen 3 En ::= α | v · En FinalCommandn 3 cfinn ::= 〈x ||En〉 | 〈λx.v ||α〉

〈µα.c ||En〉 7→µn c [En/α]

〈v || µ̃x.c〉 7→µ̃n c [v/x]

〈
λx.v

∣∣∣∣ v′ · En〉 7→βn

〈
v
[
v′
/
x
] ∣∣∣∣En〉

v · e 7→ςn µ̃y. 〈µα. 〈y || v · α〉 || e〉 (e /∈ CoValuen)

e 7→ςn e
′

〈v || e〉 7→ςn 〈v || e
′〉

Figure 7: Call-by-name operational semantics for λµµ̃.

In addition to these three reduction rules from λµµ̃, we also have a ς rule—first appearing in
Wadler’s dual calculus [16]—whose purpose is to lift out a serious non-value argument v buried in a
call-stack v · e, thereby refocusing the attention of a command onto v. The ς rule is necessary in the
sequent calculus for type safety of call-by-value evaluation by making sure a command does not get
stuck prematurely before it reaches a finished state [17], to establish an exact correspondence with the
call-by-value reduction in the λ-calculus [18], and to build a uniform model of strong normalization
[1]. Similar forms of additional reductions are also known to appear in the call-by-value λ-calculus,
which allow to reach more normal forms [19, 20], and to achieve completeness with respect to the
continuation-passing style transformation [21]. The fact that a ςv is applied to the top coterm of a
command once the term-side is a value corresponds to a left-to-right evaluation order in the call-by-
value λ-calculus, where the argument of an application is evaluated after the function is.

Call-by-name

The dual of call-by-value is call-by-name, whose operational semantics is given in Figure 7. Instead
of values, call-by-name reduction uses to the notion of covalue (written En) that is either a covariable
or a call-stack v · En of an argument and another covalue. Call-by-name reduction gives priority to
the µ̃n-redexes since a µn only substitutes covalues and a µ̃-abstraction is never a covalue in call-by-
name. And since a µ̃n rule can substitute any term, the fundamental dilemma is resolved in favor of µ̃.
The duality between call-by-name and call-by-value is also seen in the rules for functions. The βn rule
only applies when the result of the function call is needed (as expressed by the restriction that the call
stack has the form v ·En). Call-by-name also has a dual form of ς reduction which lifts out a non-strict,
non-covalue coterm e buried in a call-stack v · e. The call-by-name ς rule results in demand-driven
computation, where the attention of a command is refocused first onto the calling context of every
function call, so that functions are delayed until demanded by their caller. As a result, a command
of the form 〈x || e〉 is only finished in call-by-name if e is a covalue; in other words, computation
continues until x is finally demanded by e.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1011

cfn ::= 〈vfn || efn〉 vfn ::= x | µα.cfn | λx.vfn efn ::= Efn | µ̃x.cfn Efn ::= α | vfn · Efn

Judgement 3 H,J ::= (Γ ` vfn : A | ∆) | (Γ | efn : A ` ∆) | (Γ ; Efn : A ` ∆) | cfn : (Γ ` ∆)

Γ ; α : A ` α : A,∆
VarL

Γ ` vfn : A | ∆ Γ ; Efn : B ` ∆

Γ ; vfn · Efn : A→ B ` ∆
→L

Γ ; Efn : A ` ∆

Γ | Efn : A ` ∆
FL

Plus the Cut , VarR, ActR, ActL, and→I rules from Figure 5 (replacing c, v, and e with cfn, vfn,
and efn, respectively).

Figure 8: Focused syntax and types of call-by-name λµµ̃.

Focusing in Call-by-name and Call-by-value

The ς reduction rules have the ability to refocus the attention of a command, spurring computation
forward in certain execution states. As it turns out, these ς reductions can be done entirely in advance,
as a “compile-time” pre-process, instead of waiting until the last possible moment, as a “run-time”
step. Because of this equivalence between ς at compile-time and run-time [17], the impact of ς
reduction corresponds to focusing in logic [22, 23]. So for our purposes, focusing is equivalent to
ς -normalization, and since ς reduction is different for call-by-value and call-by-name, it follows that
there are different notions of focusing in the sequent calculus.

The result of focusing is a language that appears to be closer to a conventional abstract machine,
and can be understood in the grammar of a specialized sub-syntax of λµµ̃. The call-by-name focused
sub-syntax of λµµ̃ is given in Figure 8. In other words, call-by-name focused coterms are either
a µ̃-abstraction (corresponding to a let-binding in the λ-calculus), or a call-stack of the form v1 ·
v2 · . . . vn · α (corresponding to the application � v1 v2 . . . vn). In particular, a coterm of the form
v · µ̃x.c is not allowed in the call-by-name focused sub-syntax. The impact of focusing can be seen
as part of type system as well, through an additional judgement for typing call-by-name covalues,
Γ ; Efn : A ` ∆. The new symbol (;) called the stoup [24] signifies that we are typing a covalue
in focus rather than a general coterm. With this new form of judgement, the type system can express
restrictions on the typing rules, along with the new rule FL for placing focus on a covalue, as described
in Figure 8. Note that the focus on call-by-name covalues is hereditary, because the premise of the
→L typing rule keeps the covalue in the stoup.

Dually, the grammar of the call-by-value focused sub-syntax of λµµ̃ is given in Figure 9. In other
words, in call-by-value, focused coterms can only push a value onto a call-stack. From the perspective
of typing, call-by-value gives a different form of focused judgement, Γ ` Vfv : A ; ∆, wherein a
call-by-value value appears in the stoup. With this new form of judgement, the call-by-value type
system can express the restricted typing rules, along with the new rule FR for placing focus on a
value, as given in Figure 9. Notice that the premise of →R is not in focus (that is, it uses the other
form of judgement for general terms) because the body of a λ-abstraction need not be a value for the
λ-abstraction itself to be a value. Additionally, focus is gained in the premise of the→L rule which

1012 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

cfv ::= 〈vfv || efv〉 Vfv ::= x | λx.vfv vfv ::= Vfv | µα.cfv efv ::= α | µ̃x.cfv | Vfv · efv

Judgement 3 H,J ::= (Γ ` vfv : A | ∆) | (Γ ` Vfv : A ; ∆) | (Γ | efv : A ` ∆) | cfv : (Γ ` ∆)

Γ, x : A ` x : A ; ∆
VarR

Γ, x : A ` vfv : B | ∆
Γ ` λx.vfv : A→ B ; ∆

→R
Γ ` Vfv : A ; ∆ Γ | efv : B ` ∆

Γ | Vfv · efv : A→ B ` ∆
→L

Γ ` Vfv : A ; ∆

Γ ` Vfv : A | ∆ FR

Plus the Cut , VarR, ActR, and ActL rules from Figure 5 (replacing c, v, and e with cfv, vfv, and
efv, respectively).

Figure 9: Focused syntax and type system for call-by-value λµµ̃.

Valuev 3 Vv ::= x | λx.v Valuen 3 Vn ::= v Valueu 3 Vu ::= v

CoValuev 3 Ev ::= e CoValuen 3 En ::= α | v · En CoValueu 3 Eu ::= e

Figure 10: The call-by-value (v), call-by-name (n), and non-deterministic (u) disciplines.

type checks the argument, since only values can be pushed onto a focused call-by-value call stack.

3.2. Disciplined computation

So far we have presented three operational semantics for λµµ̃: non-deterministic, call-by-value, and
call-by-name. Because of focusing and ς reduction, there is no “biggest” system encompassing both
call-by-value and call-by-name reduction, so they each must be considered by their own merit. How-
ever, we do not need to study each one independently: they can all be united by a common notion that
distills their differences. We now show how these different systems can be uniformly characterized by
the dual notions of value and covalue, which already arose in call-by-value and call-by-name above.
We refer to the specification of what is substitutable as a discipline [25, 1].

Definition 3.1. (Discipline)
A discipline d is a subset of terms called d-values (denoted by the metavariable Vd) along with a
subset of coterms called d-covalues (denoted by the metavariable Ed). As shorthand, we denote a
d-non-value (i.e., a term which is not a d-value) by the metavariable wd and a d-non-covalue (i.e., a
coterm which is not a d-covalue) by the metavariable fd. When the discipline can be inferred from
context, we may refer to d-values and d-covalues as just values and covalues, respectively.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1013

FinalCommandd 3 cfind ::= 〈x ||α〉 | 〈λx.v ||α〉 | 〈x ||Vd · Ed〉

〈µα.c ||Ed〉 7→µd c [Ed/α]

〈Vd || µ̃x.c〉 7→µ̃d c [Vd/x]

〈λx.v ||Vd · Ed〉 7→βd
〈v [Vd/x] ||Ed〉

wd · e 7→ςd
µ̃y. 〈wd || µ̃x. 〈y ||x · e〉〉

Vd · fd 7→ςd
µ̃y. 〈µα. 〈y ||Vd · α〉 || fd〉

e 7→ςd
e′

〈Vd || e〉 7→ςd
〈Vd || e′〉

Figure 11: Operational semantics for the disciplined λµµ̃∩∪d-calculus, for the discipline d.

The definition of the call-by-value (v), call-by-name (n), and non-deterministic (u) disciplines is
given in Figure 10. Once a choice of discipline is made, there is a disciplined operational semantics
to go along with it, given in Figure 11. This captures the common ground between each of the three
evaluation strategies, where the unifying idea in disciplined reduction rules is that only values are
substituted for variables and only covalues are substituted for covariables. In particular, note that the
specific instances of the µd, µ̃d, βd, and ςd rules when d is u, v, and n are exactly the rules given
in Figures 4, 6, and 7, respectively. In particular, the restrictions on values and covalues—as well
as on non-values and non-covalues in the case of ςd—match what is done by the non-deterministic,
call-by-value, and call-by-name operational semantics.

Due to the ς rules, the operational semantics is enough to compute the result of a program by
getting a finished command of the form 〈x ||α〉, 〈x ||Vd · Ed〉, or 〈λx.v ||α〉 when d is any of the three
disciplines v, n, and u discussed here. However, note that the ς rules never apply for non-deterministic
reduction (since every term is a u-value and every coterm is a u-covalue). It is also for this reason
that, once focusing by ς reduction is taken into account, non-deterministic reduction is not the “all-
encompassing” system. Instead, none of the call-by-value (v), call-by-name (n), or non-deterministic
(u) reduction systems are subsets of the others. This means that we cannot just, say, reduce the study
of call-by-name and call-by-value reduction to be special cases of non-deterministic reduction without
losing crucial steps.

Disciplined focusing

The notion of discipline also unifies the different focusing regimes in terms of ς reduction.

Definition 3.2. (Focused)
The d-focused sub-syntax for a discipline d is exactly the ςd-normal forms. In other words, call-stack
coterms are restricted to the form Vd · Ed.

Notice that the special instances for n-focused and v-focused sub-syntaxes given by Definition 3.2
are exactly the same as the definitions for call-by-name and call-by-value focusing given previously
in Section 3.1. In stark contrast, the u-focused sub-syntax for the non-deterministic discipline u is

1014 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

exactly the full syntax (Figure 4) and the full typing system (Figure 12). In other words, choosing the
non-deterministic u reduction discipline corresponds to the completely unfocused typing discipline.

Admissible disciplines

Our uniform treatment of the (co)value restriction works by not committing to a specific discipline,
like call-by-value or -name, as is usually done. Instead, we characterize the necessary properties of
the discipline which control substitution in reduction rules, which are the only facts that need to be
known about values and covalues. The first such property is the admissibility of the discipline, which
says that enough terms and coterms are admitted as values and covalues (focusing) and that the status
of values and covalues are not changed by certain actions (stability).

Definition 3.3. (Admissibility)
A discipline d is

• focusing if (i) x is a d-value and α is a d-covalue, (ii) λx.v is an d-value, and (iii) for any d-value
Vd and d-covalue Ed, Vd · Ed is a d-covalue,

• stable if the set of d-values and d-covalues are invariant under (i) reduction (i.e., for all v → v′,
v is a d-value if and only if v′ is, and dually for coterms), and (ii) substitution of d-values for
variables and d-covalues for covariables (i.e., v [Vd/x] is a d-value if and only if v is, etc.), and

• admissible if it is both focusing and stable.

Proposition 3.4. The v, n, and u disciplines are all admissible.

The second property which is useful to highlight is determinism (or lack thereof) of a discipline.

Definition 3.5. (Deterministic Discipline)
A discipline is deterministic if the 7→ relation is deterministic.

Proposition 3.6. The v and n disciplines are both deterministic, but the u discipline is not.

4. Intersection and Union Types in the Sequent Calculus

In order to get an intuition of what intersection and union types look like in the symmetric setting
of the sequent calculus, we will first look at the unrestricted system. Afterward, we consider how to
apply some additional discipline to this naı̈ve system to restore desirable properties like type safety,
subject reduction, and strong normalization.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1015

Type 3 A,B,C,D ::= p | A→ B | A ∩B | A ∪B

Γ ` v : A | ∆ Γ ` v : B | ∆
Γ ` v : A ∩B | ∆ ∩R

Γ | e : Ai ` ∆

Γ | e : A1 ∩A2 ` ∆
∩L

Γ ` v : A1 ∩A2 | ∆
Γ ` v : Ai | ∆

∩E

Γ ` v : Ai | ∆
Γ ` v : A1 ∪A2 | ∆

∪R
Γ | e : A ` ∆ Γ | e : B ` ∆

Γ | e : A ∪B ` ∆
∪L

Γ | e : A1 ∪A2 ` ∆

Γ | e : Ai ` ∆
∪E

In the rules ∩L, ∩E, ∪R, and ∪E, the index i ranges over 1 or 2.

Figure 12: λµµ̃∩∪— Full intersection and union types in the λµµ̃ sequent calculus.

4.1. The starting point — Full intersection and union types

Our first attempt at a type system for intersection and union types in the λµµ̃ sequent calculus is
given in Figure 12, which extends Figure 5. Following the pattern of the simple λµµ̃ type system,
λµµ̃∩∪ has both right (∩R and ∪R) and left (∩L and ∪L) inference rules for introducing intersection
and union types on terms and coterms. λµµ̃∩∪ also includes the rule ∩E from λ∩ for eliminating
intersection types of terms, as well as the dual ∪E for eliminating union types of coterms. These
symmetric eliminations are useful for the study of completeness (Section 5).

Since λµµ̃ is a calculus that offers first-class control effects, both union and intersection types are
required for typing arbitrary normal forms, unlike the purely functional lambda calculus.

Example 4.1. Intersection types make it possible to use the same variable in many different contexts.
The normal form representing self-application is typable due to the ∩L and ∩E rules. The derivation
of λx.µα. 〈x ||x · α〉 : A ∩ (A→ B)→ B proceeds as follows, where Γ = x : A ∩ (A→ B)

Γ ` x : A ∩ (A→ B) | α : B
VarR

Γ ` x : A ∩ (A→ B) | α : B
VarR

Γ ` x : A | α : B
∩E

Γ | α : B ` α : B
VarL

Γ | x · α : A→ B ` α : B
→L

Γ | x · α : A ∩ (A→ B) ` α : B
∩L

〈x ||x · α〉 : (Γ ` α : B)
Cut

Γ ` µα. 〈x ||x · α〉 : B | ActR

` λx.µα. 〈x ||x · α〉 : A ∩ (A→ B)→ B |
→R

Example 4.2. Union types make it possible to use the same covariable in many different contexts. The
following normal form is typable due to the∪R and∪E rules. The derivation of µα. 〈λx.µβ. 〈x ||α〉 ||α〉 :

1016 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

A ∪ (A→ B) proceeds as follows, where ∆ = α : A ∪ (A→ B)

x : A ` x : A | β : B,∆
VarR

x : A | α : A ∪ (A→ B) ` β : B,∆
VarL

x : A | α : A ` β : B,∆
∪E

〈x ||α〉 : (x : A ` β : B,∆)
Cut

x : A ` µβ. 〈x ||α〉 : B | ∆ ActR

` λx.µβ. 〈x ||α〉 : A→ B | ∆
→R

` λx.µβ. 〈x ||α〉 : A ∪ (A→ B) | ∆
∪R

| α : A ∪ (A→ B) ` ∆
VarL

〈λx.µβ. 〈x ||α〉 ||α〉 : (` ∆)
Cut

` µα. 〈λx.µβ. 〈x ||α〉 ||α〉 : A ∪ (A→ B) | ActR

This normal form is not typable without union types. Therefore, in λµµ̃ both intersection and union
types are needed to type all normal forms. Remember that in the intuitionistic case, i.e., in lambda cal-
culus, intersection types were sufficient to type all normal forms [9]. Adding union to lambda calculus
with intersection types did not enlarge the set of typable terms. In contrast, in the symmetric classical
case, union types—as the dual to intersection types—in fact allow us to type more expressions.

Lack of subject reduction

Even though intersection and union types allow for the same variable or covariable to appear in many
contexts (which is essential for the completeness property that every strongly normalizing expression
is well-typed), the typing system from Figure 12 falls short of other desirable properties. For example,
it does not enjoy subject reduction, similar to λ∩∪ which has a troublesome elimination rule for union
types. However, note that for the symmetric λµµ̃ which more fully expresses the duality of types
and programs, both intersection and union types, and specifically the ∩R and ∪L typing rules, can be
responsible for breaking subject reduction.

Example 4.3. Consider the following typing derivation

Γ ` x : A1 ∪A2 | ∆
VarR

.... D1

Γ | µ̃y. 〈z || y · y · α〉 : A1 ` ∆

.... D2

Γ | µ̃y. 〈z || y · y · α〉 : A2 ` ∆

Γ | µ̃y. 〈z || y · y · α〉 : A1 ∪A2 ` ∆
∪L

〈x || µ̃y. 〈z || y · y · α〉〉 : (Γ ` ∆)
Cut

given the environments

Γ = z : (A1 → A1 → B) ∩ (A2 → A2 → B), x : A1 ∪A2 ∆ = α : B

and the similar sub-derivationsD1 andD2 are instances of the following (with i = 1, 2, respectively):

Γ, y : Ai ` z : (A1 → A1 → B) ∩ (A2 → A2 → B) | ∆ VarR

Γ, y : Ai ` z : Ai → Ai → B | ∆
∩E

....
Γ, y : Ai | y · y · α : Ai → Ai → B ` ∆

〈z || y · y · α〉 : (Γ, y : Ai ` ∆)
Cut

Γ | µ̃y. 〈z || y · y · α〉 : Ai ` ∆
ActL

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1017

After a single reduction step, we have

〈x || µ̃y. 〈z || y · y · α〉〉 →µ̃ 〈z ||x · x · α〉

but there is no derivation of 〈z ||x · x · α〉 : (Γ ` ∆) in λµµ̃∩∪. In other words, unfortunate applica-
tions of ∪L can break subject reduction.

Example 4.4. Consider the following typing derivation
.... D1

〈x ||λy.µδ. 〈y ||β〉 · β〉 : (Γ ` ∆1)

Γ ` µβ. 〈x ||λy.µδ. 〈y ||β〉 · β〉 : A1 | ∆
ActR

.... D2

〈x ||λy.µδ. 〈y ||β〉 · β〉 : (Γ ` ∆2)

Γ ` µβ. 〈x ||λy.µδ. 〈y ||β〉 · β〉 : A2 | ∆
ActR

Γ ` µβ. 〈x ||λy.µδ. 〈y ||β〉 · β〉 : A1 ∩A2 | ∆
∩R

Γ | α : A1 ∩A2 ` ∆
VarL

〈µβ. 〈x ||λy.µδ. 〈y ||β〉 · β〉 ||α〉 : (Γ ` ∆)
Cut

given the environments

Γ = x : ((A1 → B)→ A1) ∩ ((A2 → B)→ A2) ∆ = α : A1 ∩A2 ∆i = β : Ai,∆

and the similar sub-derivationsD1 andD2 are instances of the following (with i = 1, 2, respectively):

Γ ` x : (Ai → B)→ Ai | ∆i

∩E,VarR

〈y ||β〉 : (Γ, y : Ai ` δ : B,∆i)
Cut ,VarR,VarL

Γ, y : Ai ` µδ. 〈y ||β〉 : B | ∆i
ActR

Γ ` λy.µδ. 〈y ||β〉 : Ai → B | ∆i
→R

Γ | β : Ai ` ∆i
VarL

Γ | λy.µδ. 〈y ||β〉 · β : (Ai → B)→ Ai ` ∆i
→L

〈x ||λy.µδ. 〈y ||β〉 · β〉 : (Γ ` ∆i)
Cut

After a single reduction step, we have

〈µβ. 〈x ||λy.µδ. 〈y ||β〉 · β〉 ||α〉 →µ 〈x ||λy.µδ. 〈y ||α〉 · α〉

but there is no derivation of 〈x ||λy.µδ. 〈y ||α〉 · α〉 : (Γ ` ∆) in λµµ̃∩∪. In other words, unfortunate
applications of ∩R can break subject reduction. Note that in this example, intersection types alone are
enough to break subject reduction in terms which can duplicate their continuation; foregoing union
types would not help correct this counterexample.

Since we are not willing to just give up on type safety and subject reduction for the sake of
completeness, we must do something to repair the system without losing completeness. As it turns
out, the solution to ensuring both subject reduction and soundness (the fact that every well-typed
expression is strongly normalizing), is closely connected with the solution to the fundamental dilemma
of computation in the classical sequent calculus, as discussed in the previous section.

4.2. Call-by-value and call-by-name intersection and union types

Recall from Section 2 that a naı̈ve definition of intersection and union types can easily break desirable
properties of the type system, including subject reduction and type safety. At least part of the issue

1018 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Γ ` Vv : A | ∆ Γ ` Vv : B | ∆
Γ ` Vv : A ∩B | ∆ ∩R

Γ | e : Ai ` ∆

Γ | e : A1 ∩A2 ` ∆
∩L

Γ ` v : A1 ∩A2 | ∆
Γ ` v : Ai | ∆

∩E

Γ ` v : Ai | ∆
Γ ` v : A1 ∪A2 | ∆

∪R
Γ | e : A ` ∆ Γ | e : B ` ∆

Γ | e : A ∪B ` ∆
∪L

Γ | e : A1 ∪A2 ` ∆

Γ | e : Ai ` ∆
∪E

c : (Γ, x : A ` ∆) c : (Γ, x : B ` ∆)

c : (Γ, x : A ∪B ` ∆)
∪x

In the rules ∩L, ∩E, ∪R, and ∪E, the index i ranges over 1 or 2.

Figure 13: λµµ̃∩∪v — Call-by-value intersection and union types, restricting ∩R to values.

happens when inappropriately generalizing (via either polymorphism or intersections) the type of an
effectful term. Since the classical sequent calculus has a built-in notion of control effect due to µ-
abstractions, the full type system from Figure 12 is not type safe. A simple way to address the type
safety problem in practice is with an ML-like value restriction. As we have seen in the previous
section, call-by-value and call-by-name have different notions of values; they require a different, and
dual, restriction in their typing rules.

Call-by-value

The call-by-value typing system with intersection and union types, λµµ̃∩∪v, is given in Figure 13
as an extension of Figure 5. It uses a value restriction for intersection types. Similar to ML’s value
restriction, which limits polymorphism to syntactic values, λµµ̃∩∪v limits the introduction of inter-
section types to values. The impact of this restriction is seen in the ∩R rule (which only applies to
syntactic values of form Vv). As we will see later (in Section 6 and Section 7), this typing restric-
tion is crucial for ensuring type safety and soundness, but is still permissive enough to allow for the
completeness of typing all strongly-normalizing call-by-value expressions (Section 5).

In addition, there is an alternative version of the ∪L rule, called ∪x, that introduces a union type
to a free variable of a command. One of our goals is to study of subject reduction and type safety
(Section 6), which is the motivation for considering this extra rule. ∪x helps to expose the µ̃-binder at
the conclusion of a typing derivation. For example, we can reduce the following application of the ∪L
rule to ∪x by pushing the µ̃-binder introduced with ActL down into the conclusion of the derivation:

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
ActL

c : (Γ, x : B ` ∆)

Γ | µ̃x.c : B ` ∆
ActL

Γ | µ̃x.c : A ∪B ` ∆
∪L ⇒

c : (Γ, x : A ` ∆) c : (Γ, x : B ` ∆)

c : (Γ, x : A ∪B ` ∆)
∪x

Γ | µ̃x.c : A ∪B ` ∆
ActL

As a result of this fact, we can circumvent the counter-example to subject reduction in Example 4.3

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1019

Γ ` v : A | ∆ Γ ` v : B | ∆
Γ ` v : A ∩B | ∆ ∩R

Γ | e : Ai ` ∆

Γ | e : A1 ∩A2 ` ∆
∩L

Γ ` v : A1 ∩A2 | ∆
Γ ` v : Ai | ∆

∩E

c : (Γ ` α : A,∆) c : (Γ ` α : B,∆)

c : (Γ ` α : A ∩B,∆)
∩α

Γ ` v : Ai | ∆
Γ ` v : A1 ∪A2 | ∆

∪R
Γ | En : A ` ∆ Γ | En : B ` ∆

Γ | En : A ∪B ` ∆
∪L

Γ | e : A1 ∪A2 ` ∆

Γ | e : Ai ` ∆
∪E

In the rules ∩L, ∩E, ∪R, and ∪E, the index i ranges over 1 or 2.

Figure 14: λµµ̃∩∪n — Call-by-name intersection and union types, restricting ∪L to covalues.

by typing the result of reduction, 〈z ||x · x · α〉, as follows:

.... D1

〈z ||x · x · α〉 : (Γ′, x : A1 |` ∆)

.... D2

〈z ||x · x · α〉 : (Γ′, x : A2 |` ∆)

〈z ||x · x · α〉 : (Γ ` ∆)
∪x

given the same environments

Γ = Γ′, x : A1 ∪A2 Γ′ = z : (A1 → A1 → B) ∩ (A2 → A2 → B) ∆ = α : B

and the similar sub-derivationsD1 andD2 are instances of the following (with i = 1, 2, respectively):

Γ′, x : Ai ` z : (A1 → A1 → B) ∩ (A2 → A2 → B) | ∆ VarR

Γ′, x : Ai ` z : Ai → Ai → B | ∆
∩E

....
Γ′, x : Ai | x · x · α : Ai → Ai → B ` ∆

〈z ||x · x · α〉 : (Γ′, x : Ai ` ∆)
Cut

Call-by-name

The call-by-name typing system, named λµµ̃∩∪n, is given in Figure 14 as an extension of Figure 5.
It is dual to λµµ̃∩∪v, and imposes a covalue restriction on union types. This limits the introduction
of union types to covalues instead of general coterms, as seen in the ∪L rule (which only applies to
syntactic covalues of the form En). Additionally, there is an ∩α rule (dual to the ∪x rule of λµµ̃∩∪v)
which is an alternative to ∩R for introducing an intersection type to a free covariable of a command,
which circumvents the counter-example to subject reduction in Example 4.4. Similar to the λµµ̃∩∪v,
the call-by-name λµµ̃∩∪n strikes another compromise that achieves each of soundness, completeness,
and type safety.

1020 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Γ ` Vd : A | ∆ Γ ` Vd : B | ∆
Γ ` Vd : A ∩B | ∆ ∩R

Γ | e : Ai ` ∆

Γ | e : A1 ∩A2 ` ∆
∩L

Γ ` v : A1 ∩A2 | ∆
Γ ` v : Ai | ∆

∩E

c : (Γ ` α : A,∆) c : (Γ ` α : B,∆) (µα.c ∈ Valued)

c : (Γ ` α : A ∩B,∆)
∩α

Γ ` v : Ai | ∆
Γ ` v : A1 ∪A2 | ∆

∪R
Γ | Ed : A ` ∆ Γ | Ed : B ` ∆

Γ | Ed : A ∪B ` ∆
∪L

Γ | e : A1 ∪A2 ` ∆

Γ | e : Ai ` ∆
∪E

c : (Γ, x : A ` ∆) c : (Γ, x : B ` ∆) (µ̃x.c ∈ CoValued)

c : (Γ, x : A ∪B ` ∆)
∪x

In the rules ∩L, ∩E, ∪R, and ∪E, the index i ranges over 1 or 2.

Figure 15: λµµ̃∩∪d — The disciplined intersection and union type system, with the (co)value restric-
tion given by the discipline d.

Focused call-by-name and call-by-value type systems

Focusing is relevant for intersection and union types, since both completeness (Section 5) and sound-
ness (Section 7) rely on focusing. We extend the call-by-name typing system of Figure 8 with the
typing rule:

Γ ; Efn : A ` ∆ Γ ; Efn : B ` ∆

Γ ; Efn : A ∪B ` ∆
∪L

Notice that the premises of the ∪L typing rule keep the covalue in the stoup. Dually, the call-by-value
typing system of Figure 9 is extended with the typing rule:

Γ ` Vfv : A ; ∆ Γ ` Vfv : B ; ∆

Γ ` Vfv : A ∪B ; ∆
∩R

Notice that the premises of the ∩R typing rule keeps the value in the stoup.

4.3. Disciplined intersection and union types

Just like the notion of discipline unifies call-by-value and call-by-name computation, it also unifies the
call-by-value and call-by-name typing restrictions for intersection and union types. The common type
system that subsumes λµµ̃∩∪, λµµ̃∩∪v, and λµµ̃∩∪n is shown in Figure 15, which extends Figure 5.
This parametric presentation shows that the sequent calculus analog of the value restriction is dual: a
(co)value restriction limits certain typing rules to only apply to a value or covalue as appropriate. The
(co)value restriction only appears in two places: the introduction of an intersection type on the right
(∩R and ∩α) and the introduction of a union type on the left (∪L and ∪x). Thankfully, this generic
characterization of the value restriction in terms of values and covalues gives a single description

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1021

SimpleValue ::= x | λx.v SimpleCoValue ::= α | Vd · Ed

Γ ` x : A | ∆ Γ ` x : B | ∆
Γ ` x : A ∩B | ∆ ∩Rx

Γ ` λx.v : A | ∆ Γ ` λx.v : B | ∆
Γ ` λx.v : A ∩B | ∆ ∩Rλ

Γ ` v : A1 ∩A2 | ∆
Γ ` v : Ai | ∆

∩E
Γ | e : Ai ` ∆

Γ | e : A1 ∩A2 ` ∆
∩L

Γ ` v : Ai | ∆
Γ ` v : A1 ∪A2 | ∆

∪R
Γ | e : A1 ∪A2 ` ∆

Γ | e : Ai ` ∆
∪E

Γ | α : A ` ∆ Γ | α : B ` ∆

Γ | α : A ∪B ` ∆
∪Lα

Γ | Vd · Ed : A ` ∆ Γ | Vd · Ed : B ` ∆

Γ | Vd · Ed : A ∪B ` ∆
∪L·

In the ∩L, ∩E, ∪R, and ∪E rules, the index i ranges over 1 or 2.

Figure 16: λµµ̃∩∪−d — The simplified intersection and union type system, further restricting ∩R and
∪L rules.

of the safe type system for certain (deterministic) disciplines d, in the sense of both type safety (in
Section 6) and strong normalization (in Section 7). The restrictions on intersections and unions depend
on the chosen discipline: in call-by-value ∩R is restricted to v-values and ∩α is missing (exactly as in
Figure 13), in call-by-name ∪L is restricted to n-covalues and ∪x is missing (exactly as in Figure 14),
and there are no restrictions to ∩R and ∪L with non-deterministic u reduction (as in Figure 12).
Furthermore, the λµµ̃∩∪u type system extends λµµ̃∩∪ from Figure 12 with the ∩α and ∪x rules.

As we will see later in Section 7, deterministic disciplines d guarantee that all well-typed λµµ̃∩∪d
are strongly normalizing, whereas non-deterministic disciplines like u require even more constraints
than the (co)value restriction, which we will now consider.

4.4. Simplified intersection and union types

From the perspective of both disciplined typing (Section 4.3) and focusing (Section 3.2), the non-
deterministic discipline u, which represents unrestricted classical reduction à la Gentzen’s original
cut elimination procedure, is indistinguishable from the full system of intersection and union types
(Section 4.1). However, as we saw, the full system does not enjoy all the properties that we would
want, like subject reduction. If we want a system of non-deterministic reduction which has these
properties, we need to go further than just the (co)value restriction.

The type system can be further restricted beyond just the (co)value restriction by placing even
more limitations on the tricky ∩R and ∪L rules, as shown in Figure 16. This simplified type system
is called λµµ̃∩∪−d , and is a sub-system of λµµ̃∩∪d for any admissible discipline d. In λµµ̃∩∪−d , the
∩R rule for introducing an intersection on the right only applies to simple terms of the form x or
λx.v, and the ∪L for introducing a union on the left only applies to simple coterms of the form α or

1022 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Vd ·Ed. This rules out the possibility of applying ∩R to a complex µ-abstraction or ∪L to a complex µ̃-
abstraction, even if they happen to be considered (co)values. The difference is that complex (co)terms
(µµ̃-abstractions or non-covalue call stacks) have the ability to take over control of execution on their
own, without regard to their partner in a command, so they might be responsible for introducing non-
determinism when given the opportunity. In contract, simple (co)terms ((co)variables, λ-abstractions,
and covalue call stacks) never participate in a critical pair, and so they always form deterministic
commands regardless of who they are paired with.

As a result, well-typed expressions in λµµ̃∩∪−d enjoy both strong normalization and subject re-
duction, as seen later in Sections 6 and 7, even for classical non-deterministic reduction. But to be
sure, this does not subsume the strong normalization and subject reduction results λµµ̃∩∪d, since nei-
ther is more general than the other: λµµ̃∩∪−d can admit more disciplines d, but λµµ̃∩∪d types more
expressions. Therefore, there is a trade-off between flexibility of typing (for which λµµ̃∩∪d is more
general) and flexibility of computation (for which λµµ̃∩∪−d is more general).

4.5. Intermezzo — Subtyping

As it happens, we do not use subtyping for the purpose of establishing the syntactic properties of sub-
ject reduction (Section 6) and completeness (Section 5). However, subtyping is closely connected with
intersection and union types, and the two features quite naturally arise in concert with one another.
Furthermore, a semantic version of subtyping implicitly appears anyway in our study of soundness
(Section 7). So while we do not formally use subtyping in the following sections, it is worth mention-
ing how subtyping could be integrated with intersection and union types in the sequent calculus.

The only new typing rules needed to add subtyping to the system are for subsumption. Since λµµ̃
has two dual typed entities—terms on the right and coterms on the left—there are two matching dual
subsumption rules:

Γ ` v : A | ∆ A <: B

Γ ` v : B | ∆ SubR
A <: B Γ | e : B ` ∆

Γ | e : A ` ∆
SubL

The premise A <: B denotes that A is a subtype of B, and we will write the reverse B :> A as an
alternative notation forA <: B andA :=: B to mean that bothA <: B andA :> B are derivable. The
intuitive idea of a subtyping relation A <: B is that every term of type A can be used in a context (i.e.,
coterm) expecting a type B, or vice versa, every coterm of type B can be accept every term of type
A. These two subsumption rules SubR and SubL apply this intuition by composing an established
subtyping fact A <: B in the appropriate direction with the type of a term or coterm.

Subsumption is only as useful as the subtyping relation provides, so the remainder of extending the
system with subtyping lies in deciding which subtyping rules to allow. Of course, standard reflexivity
and transitivity of subtyping are a given:

A <: A
Refl

A <: B B <: C
A <: C

Trans

The more interesting subtyping rules involve the connectives. For intersection and union types, the

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1023

following subtyping rules can be derived from the standard lattice properties:

Ai <: C (i = 1, 2)

A1 ∩A2 <: C
∩Low

C <: A C <: B
C <: A ∩B ∩Up

C <: Ai (i = 1, 2)

C <: A1 ∪A2
∪Up

A <: C B <: C
A ∪B <: C

∪Low

These rules imply that intersections are the greatest (∩Up) lower bound (∩Low) and that unions are
the least (∪Low) upper bound (∪Up) of two types.1 Note that the generality of the ∩Up and ∪Low
rules (captured by the generic lower and upper bound C) implies that intersection and union types are
idempotent (i.e., that A ∩ A :=: A :=: A ∪ A); to achieve a system of non-idempotent intersection
and union types these two rules would have to be weakened or omitted. Also notice that with these
subtyping rules, the ∩E, ∩L, ∪E, and ∪R rules become special cases of subsumption. For example,
the derivation of the ∪R and ∪E rules is

Γ ` v : Ai | ∆
Ai <: Ai

Refl

Ai <: A1 ∪A2
∪Up

Γ ` v : A1 ∪A2 | ∆
SubR

Ai <: Ai
Refl

Ai <: A1 ∪A2
∪Up

Γ ` e : A1 ∪A2 ` ∆

Γ | e : Ai ` ∆
SubL

and the other ones are dual.
The only other connective that we have considered is the function arrow, A → B. Functions can

be integrated into the subtyping system via the standard rule

A :> A′ B <: B′

A→ B <: A′ → B′
→Sub

which states that subtyping distributes over a function arrow: covariantly in the result and contravari-
antly in the input. Combining the subtyping rule for functions along with the ones for intersections
and unions allows for the derivation of some more complex, interesting subtyping relations. For ex-
ample, the subtyping relation (A1 ∪ A2) → (B1 ∩ B2) <: (A1 → B1) ∩ (A2 → B2)—stating that
an intersection of two different function types is a supertype of functions from the union of possible
input to an intersection of possible output—can be derived from the above rules as

.... D1

(A1 ∪A2)→ (B1 ∩B2) <: A1 → B1

.... D2

(A1 ∪A2)→ (B1 ∩B2) <: A2 → B2

(A1 ∪A2)→ (B1 ∩B2) <: (A1 → B1) ∩ (A2 → B2)
∩Up

where the similar sub-derivations D1 and D2 are (for i = 1, 2, respectively):

Ai :> Ai
Refl

A1 ∪A2 :> Ai
∪Up

Bi <: Bi
Refl

B1 ∩B2 <: Bi
∩Low

(A1 ∪A2)→ (B1 ∩B2) <: Ai → Bi
→Sub

1Note that the ∩Low and ∪Up subtyping rules mimic the ordinary left-hand conjunction introduction and right-hand
disjunction introduction rules of the sequent calculus. As a consequence, these subtyping rules enjoy transitivity elimination
that is analogous to cut elimination in the sequent calculus: every derivable subtyping relation can be inferred without use of
the Trans rule. Just takingA1∩A2 <: Ai andAi <: A1∪A2 as axioms would be sound, but break transitivity elimination.

1024 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Dually, the relation (A1 → B1) ∪ (A2 → B2) <: (A1 ∩ A2) → (B1 ∪ B2)—stating that a union
of two different function types is a subtype of functions from the intersection of possible input to the
union of possible output—is also derivable from the above inference rules.

The above two subtyping relations don’t make sense in general when reversed, but some special
cases do. Namely when the input types (A1 and A2) or output types (B1 and B2) are the same. In
these special cases, the reverse of the above derivations may be sensibly taken as additional axioms to
the subtyping system:

• (A1 → B) ∩ (A2 → B) <: (A1 ∪A2)→ B

• (A→ B1) ∩ (A→ B2) <: A→ (B1 ∩B2)

• (A1 ∩A2)→ B <: (A1 → B) ∪ (A2 → B)

• A→ (B1 ∪B2) <: (A→ B1) ∪ (A→ B2)

Note that since the reverse directions of each of these are derivable from the above inference rules,
assuming any of these subtyping relations as an additional subtyping axiom is the same as assuming
it as a symmetric type equality (up to subtyping). For example, the particular subtyping relation
(A1 → B) ∩ (A2 → B) :> (A1 ∩ A2) → B is already derivable from the above standard rules for
subtyping of function, intersection, and union types, so in the context of the other inference rules, the
first axiom above is equivalent to the assumption that (A1 → B) ∩ (A2 → B) :=: (A1 ∩A2)→ B.

5. Strongly Normalizing Expressions are Typable — Completeness

Like in the simply typed λ-calculus, not all normal forms in the simply typed λµµ̃ are typable, e.g.,
the term λx.µα. 〈x ||x · α〉. Even though polymorphism can type many more terms, as in system F,
some strongly normalizing terms are still not typable [26]. For example, the “monster” term, given in
[27], is not typable in Fω but is typable with intersection types. This shortcoming is overcome in the
disciplined λµµ̃∩∪d type system wherein all strongly normalizing terms are typable.

The reason that completeness is even possible is due to the following two unusual properties about
intersection and union types that do not normally hold in a simply-typed calculus:

• Generalized weakening (Proposition 5.2): every typing derivation can be weakened by a type
assignment for a (co)variable whether or not it already appears in the environment. If the
(co)variable does not already appear, then the assignment can be added as an unused free
(co)variable as normal. But if the (co)variable is already being used, then the assignment can be
added as an unused intersection type on a variable (i.e., x : A to x : A ∩B) or an unused union
type on a covariable (i.e., α : A to α : A ∪B).

• Anti-substitution (Proposition 5.6): if the result of substituting a (co)value into an expression is
typable, then there is some type for that (co)value such that the original expression is typable.

These two properties allow us to prove the following two main lemmas:

• Every final normal form is typable (Proposition 5.4).

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1025

• Non-erasable subject expansion (Proposition 5.7): if an expression reduces to a typed expression
by a step which does not erase any sub-expression, then the starting expression has the same
type as the result of the reduction.

From here, the proof that every strongly normalizing and focused expression is typable follows by
expanding out from a chosen reduction path to a normal form. Note that, since the reduction rules
will only ever attempt to substitute a value for a variable or a covalue for a covariable (as defined by
the chosen discipline), there is only ever a need to perform anti-substitution on values and covalues.
As a result, the (co)value restriction in λµµ̃∩∪d that only allows us to introduce intersection types on
values and introduce union types on covalues is never an obstacle for establishing the completeness
of typability for strongly normalizing expressions. In contrast, the smaller type system λµµ̃∩∪−d only
allows intersection and union types to be introduced on a subset of values and covalues, which makes
it incomplete.

Definition 5.1. The generalized extension of environments, which combines together two environ-
ments as usual (where they are different) or with intersection and union types (where they overlap), is
defined as follows:

Γ ∩ Γ′ = {x : A ∩B | x:A ∈ Γ and x:B ∈ Γ′}
∪ {x : A | x:A ∈ Γ and x /∈ Dom(Γ′)}
∪ {x : B | x /∈ Dom(Γ) and x:B ∈ Γ′}

∆ ∪∆′ = {α : A ∪B | α:A ∈ ∆ and α:B ∈ ∆′}
∪ {α : A | α:A ∈ ∆ and α /∈ Dom(∆′)}
∪ {α : B | α /∈ Dom(∆) and α:B ∈ ∆′}

Proposition 5.2. (Generalized Weakening)
For every discipline d, in both the λµµ̃∩∪d and λµµ̃∩∪−d type systems:

(i) If c : (Γ ` ∆) is derivable then so are c′ : (Γ ∩ Γ′ ` ∆ ∪∆′) and c′ : (Γ′ ∩ Γ ` ∆′ ∪∆) for
some c′ =α c.

(ii) If Γ ` v : A | ∆ is derivable then so are Γ ∩ Γ′ ` v′ : A | ∆ ∪∆′ and Γ′ ∩ Γ ` v′ : A | ∆′ ∪∆
for some v′ =α v.

(iii) If Γ | e : A ` ∆ is derivable then so are Γ ∩ Γ′ | e′ : A ` ∆ ∪∆′ and Γ′ ∩ Γ | e′ : A ` ∆′ ∪∆
for some e′ =α e.

Proof:
By mutual induction on the given typing derivation.

• In the base cases where the derivation is just

Γ, x : A ` x : A | ∆ VarR
Γ | α : A ` α : A,∆

VarL

then there are two possibilities (where, weakening the VarL rule follows dually):

– If x /∈ Dom(Γ′) then (Γ, x : A)∩Γ′ = (Γ∩Γ′), x : A and Γ′∩(Γ, x : A) = (Γ′∩Γ), x : A,
so the same inference rule applies in the weakened environment.

1026 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

– Otherwise, we have the two weakenings (Γ, x : A) ∩ (Γ′, x : B) = (Γ ∩ Γ′), x : A ∩ B
and (Γ′, x : B) ∩ (Γ, x : A) = (Γ′ ∩ Γ), x : B ∩A so

(Γ ∩ Γ′), x : A ∩B ` x : A ∩B | ∆ ∪∆′
VarR

(Γ ∩ Γ′), x : A ∩B ` x : A | ∆ ∪∆′
∩E

(Γ′ ∩ Γ), x : B ∩A ` x : B ∩A | ∆′ ∪∆
VarR

(Γ′ ∩ Γ), x : B ∩A ` x : A | ∆′ ∪∆
∩E

• The cases for binding rules ActR, ActL, and→R require renaming. For example, suppose we
have a derivation ending in

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
ActL

If it happens that x ∈ Dom(Γ′), then rename the bound x to some other y /∈ Dom(Γ′). From
this point, both weakenings follow directly from the inductive hypothesis. The case for ActR is
dual to ActL, and→R is analogous to ActL.

• The cases for the remaining rules Cut ,→L, etc., follow directly from the inductive hypothesis.
ut

Definition 5.3. A normal form for the discipline d is any expression (command, term, or coterm)
such that no µd, µ̃d, βd, or ςd reduction applies anywhere in the expression, and moreover a final
normal form is one in which every sub-command is final. Equivalently, the final normal forms of any
discipline d are generated by the following syntax:

cnf d ::= 〈vpnf d ||α〉 | 〈x || epnf d〉
vnf d ::= vpnf d | µα.cnf d vpnf d ::= x | λx.vnf d

enf d ::= epnf d | µ̃x.cnf d epnf d ::= α | Vnf d · Enf d

Where Vnf d denotes the intersection of the set of values of d and the normal terms above, and Enf d

denotes the intersection of the set of covalues of d and the normal coterms above. Note that normal
terms vnf d are further refined as passive normal terms vpnf d which cannot be a µ-abstraction, which
prevents 〈vpnf d ||α〉 from being a µd-redex. Dually, normal coterms enf d are further refined as passive
normal coterms which cannot be a µ̃-abstraction, preventing 〈x || epnf d〉 from being a µ̃d-redex.

Proposition 5.4. For every discipline d, every final d-normal form is typable in both λµµ̃∩∪d and
λµµ̃∩∪−d .

Proof:
We show the following typing derivations that are valid in both λµµ̃∩∪d and λµµ̃∩∪−d by mutual
induction on the syntax of final normal forms in Definition 5.3:

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1027

(i) for every vnf d, there are environments Γ and ∆ and a type A such that Γ ` vnf d : A | ∆,

(ii) for every enf d, there are environments Γ and ∆ and a type A, such that Γ | enf d : A ` ∆, and

(iii) for every cnf d, there are environments Γ and ∆, such that cnf d : (Γ ` ∆).

• (Co)variables are typable as x : A ` x : A | and | α : A ` α : A by the VarR and VarL axioms
(respectively).

• For an abstraction µα.cnf d, we know by the inductive hypothesis that there is a derivation D
of cnf d : (Γ ` ∆) for some Γ and ∆. We may assume (by weakening via Proposition 5.2 if
necessary) that ∆ = α : A,∆′ for some type A. Therefore,

.... D
cnf d : (Γ ` α : A,∆′)

Γ ` µα.cnf d : A | ∆′ ActR

The typability of normal µ̃-abstractions is dual to the above.

• For an abstraction λx.vnf d, we know by the inductive hypothesis that there is a derivation D of
Γ ` vnf d : B | ∆ for some Γ, ∆, and B. We may assume (by weakening via Proposition 5.2 if
necessary) that Γ = Γ′, x : A for some type A. Therefore,

.... D
Γ′, x : A ` vnf d : B | ∆

Γ′ ` λx.vnf d : A→ B | ∆
→R

• For a call stack Vnf d · Enf d, we know by the inductive hypothesis that there is a derivation D
of Γ ` Vnf d : A | ∆ for some Γ,∆, A and a derivation E of Γ′ | Enf d : B ` ∆′ for some
Γ′,∆′, B. Therefore, we have by generalized weakening of Proposition 5.2

.... D
′

Γ ∩ Γ′ ` Vnf d : A | ∆ ∪∆′

.... E
′

Γ ∩ Γ′ | Enf d : B ` ∆ ∪∆′

Γ ∩ Γ′ | Vnf d · Enf d : A→ B ` ∆ ∪∆′
→L

• For a passive-term command 〈vpnf d ||α〉, we know by the inductive hypothesis that there is a
derivation D of Γ ` vpnf : A | ∆ for some Γ, ∆, and A. We therefore have one of the two
following cases via Proposition 5.2, depending on whether or not α already appears in ∆. If α
is not in the domain of ∆ then (α : A) ∪∆ = α : A,∆, so we can weaken D to D′ such that

.... D
′

Γ ` vpnf d : A | α : A,∆ Γ | α : A ` α : A,∆
VarL

〈vpnf d ||α〉 : (Γ ` α : A,∆)
Cut

1028 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Otherwise, if ∆ = α : B,∆′ (for some given type B), then (α : A) ∪∆ = α : A ∪ B,∆′, so
we can weaken D to D′ such that

.... D
′

Γ ` vpnf d : A | α : A ∪B,∆′
Γ | α : A ∪B ` α : A ∪B,∆′ VarL

Γ | α : A ` α : A ∪B,∆′
∪E

〈vpnf d ||α〉 : (Γ ` α : A ∪B,∆′) Cut

The typability of a passive-coterm command 〈x || epnf d〉 is dual to the above using intersection
types instead of union types.

ut
Definition 5.5. (Non-erasing)
In general, a reduction is non-erasing when every sub-expression on the left-hand side of the reduction
appears as a sub-expression on the right-hand side of reduction. In particular, the following applica-
tions of reduction rules are non-erasing:

• (µd) 〈µα.c ||Ed〉 7→ c [Ed/α] is non-erasing when α is a free (co)variable of c.

• (µ̃d) 〈Vd || µ̃x.c〉 7→ c [Vd/x] is non-erasing when x is a free variable of c.

• (βd) 〈λx.v ||Vd · Ed〉 7→ 〈v [Vd/x] ||Ed〉 is non-erasing when x is a free variable of v.

Note that non-erasing reduction is a congruence relation (e.g., if v → v′ is non-erasing then so is
C[v]→ C[v′] for any context C).

Proposition 5.6. (Anti-substitution)
For every admissible discipline d, in the λµµ̃∩∪d type system:

(i) If c [Vd/x] : (Γ ` ∆) and x ∈ FV (c) then there is a type A such that c : (Γ, x : A ` ∆) and
Γ ` Vd : A | ∆. Dually, if c [Ed/α] : (Γ ` ∆) and α ∈ FV (c) then there is a type A such that
c : (Γ ` α : A,∆) and Γ | Ed : A ` ∆.

(ii) If Γ ` v [Vd/x] : B | ∆ and x ∈ FV (v) then there is a type A such that Γ, x : A ` v : B | ∆
and Γ ` Vd : A | ∆. Dually, if Γ ` v [Ed/α] : B | ∆ and α ∈ FV (v) then there is a type A
such that Γ ` v : B | α : A,∆ and Γ | Ed : A ` ∆.

(iii) If Γ | e [Vd/x] : B ` ∆ and x ∈ FV (e) then there is a type A such that Γ, x : A | e : B ` ∆
and Γ ` Vd : A | ∆. Dually, if Γ | e [Ed/α] : B ` ∆ and α ∈ FV (e) then there is a type A
such that Γ | e : B ` α : A,∆ and Γ | Ed : A ` ∆.

Proof:
By induction on the given typing derivation. Substituting a value for a variable has the cases:

• The case for a typed variable Γ ` x [Vd/x] : A | ∆ is immediate.

• The cases for a typed abstraction of the form λy.v, µβ.c, and µ̃y.c follow directly from the
inductive hypothesis, the definition of substitution, and the stability of d (to ensure that if ∩R
and ∪L are used, they are still applicable before substitution has been done).

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1029

• The cases for a command typed by ∩α and ∪x rule follow from the inductive hypothesis.

• In the case for a command typed by a Cut rule

Γ ` v [Vd/x] : C | ∆ Γ | e [Vd/x] : C ` ∆

〈v || e〉 [Vd/x] : (Γ ` ∆)
Cut

there are the three following sub-cases depending on the reason why x ∈ FV (〈v || e〉):

– If x ∈ FV (v) and x /∈ FV (e), then we know that e [Vd/x] = e and by the inductive
hypothesis on v, there is a type A such that Γ, x : A ` v : C | ∆ and Γ ` Vd : A | ∆ are
both derivable. Therefore, by weakening (via Proposition 5.2) Γ | e : C ` ∆, we have

Γ, x : A ` v : C | ∆ Γ, x : A | e : C ` ∆

〈v || e〉 : (Γ, x : A ` ∆)
Cut

– If x /∈ FV (v) and x ∈ FV (e), then the result follows dually to the above case.

– If x ∈ FV (v) and x ∈ FV (e), then by the inductive hypothesis on both v and e there are
types A and B such that

∗ Γ, x : A ` v : C | ∆,
∗ Γ ` Vd : A | ∆,
∗ Γ, x : B | e : C ` ∆, and
∗ Γ ` Vd : B | ∆.

Since (Γ, x : A)∩(x : B) = Γ, x : A∩B and (x : A)∩(Γ, x : B) = Γ, x : A∩B, we also
have derivations of Γ, x : A∩B ` v : C | ∆ and Γ, x : A∩B | e : C ` ∆ by generalized
weakening (Proposition 5.2). Therefore, we have the following two derivations:

Γ, x : A ∩B ` v : C | ∆ Γ, x : A ∩B | e : C ` ∆

〈v || e〉 : (Γ, x : A ∩B ` ∆)
Cut

Γ ` Vd : A ` ∆ Γ ` Vd : B ` ∆

Γ ` Vd : A ∩B ` ∆
∩R

• The case for a call stack Γ | v · e [Vd/x] : A → B ` ∆ typed by an→L rule is similar to the
above case for a command typed by a Cut rule.

• The case for a call stack typed by a ∪L rule follows from the inductive hypothesis and the
stability of d to ensure that ∪L still applies.

The cases for the substitution of a covalue for a covariable are exactly dual to the above, making use
of union types rather than intersection types when the covalue is duplicated during substitution. ut

Proposition 5.7. (Non-erasing Subject Expansion)
For every admissible discipline d, in the λµµ̃∩∪d type system:

1030 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

(i) If c→µdµ̃dβd
c′ by a non-erasing reduction and c′ : (Γ ` ∆) then c : (Γ ` ∆).

(ii) If v →µdµ̃dβd
v′ by a non-erasing reduction and Γ ` v′ : A | ∆ then Γ ` v : A | ∆.

(iii) If e→µdµ̃dβd
e′ by a non-erasing reduction and Γ | e′ : A ` ∆ then Γ | e : A ` ∆.

Proof:
We begin by showing non-erasing subject expansion for any operational step c 7→µdµ̃dβd

c′. Consider
the non-erasing µd step 〈µα.c ||Ed〉 7→µd c [Ed/α] where α ∈ FV (c) and suppose that we have a
derivation of c [Ed/α] : (Γ ` ∆). By anti-substitution (Proposition 5.6) we have some type A and
derivations D and E such that:

.... D
c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆ ActR

.... E
Γ | Ed : A ` ∆

〈µα.c ||Ed〉 : (Γ ` ∆)
Cut

The cases for µ̃d and βd steps are similar to the above case for µd.
Finally, the fact that non-erasing subject expansion holds for any reduction, follows by induction

on the given typing derivation for the reduct. ut

Proposition 5.8. (Completeness)
For d ranging over v, n, and u, every strongly d-normalizing and d-focused command, term, and
coterm is typable in the λµµ̃∩∪d type system.

Proof:
By mutual induction on the length of the longest reduction sequence beginning with the given com-
mand, term, and coterm along with the following variant of Proposition 5.7:

(i) If c→µdµ̃dβd
c′, c is strongly normalizing, and c′ : (Γ ` ∆), then c : (Γ ` ∆).

(ii) If v →µdµ̃dβd
v′ v is strongly normalizing, and Γ ` v′ : A | ∆, then Γ ` v : A | ∆.

(iii) If e→µdµ̃dβd
e′, e is strongly normalizing, and Γ | e′ : A ` ∆, then Γ | e : A ` ∆.

Let the length of the longest reduction sequence starting from c, v or e be written as |c|, |v|, and |e|,
respectively.

First, note that the d-focused sub-syntax is closed under reduction for every d, so only µdµ̃dβd
reductions are possible. Furthermore, when d is one of the admissible v, n, or u, every d-normal form
is a final d-normal form. It follows that every strongly normalizing and focused c (or analogously v or
e) is typable because either

• c is a final d-normal which is typable by Proposition 5.4, or

• c →µdµ̃dβd
c′ for some |c′| < |c|, and by the inductive hypothesis we know that c′ is typable as

some c′ : (Γ ` ∆) so that c : (Γ ` ∆) is also derivable (by the expansion property (i)) above.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1031

Second, note that the expansion properties above are subsumed by Proposition 5.7 for any non-erasing
reductions, so it only remains to show expansion for erasing reductions. Consider the erasing reduction
〈µα.c ||Ed〉 7→µd c where α /∈ FV (c) and D is a derivation of c : (Γ ` ∆). We know that |Ed| <
| 〈µα.c ||Ed〉 |, and so by the inductive hypothesis there is a derivation E of Γ′ | Ed : A ` ∆′ for some
Γ′,∆′, A. By applying generalized weakening on these D and E , the following is derivable

.... D
′

c : (Γ ∩ (Γ′, α : A) ` ∆ ∪∆′)

Γ ∩ Γ′ ` µα.c : A | ∆ ∪∆′
ActR

.... E
′

Γ ∩ Γ′ | Ed : A ` ∆ ∪∆′

〈µα.c ||Ed〉 : (Γ ∩ Γ′ ` ∆ ∪∆′)
Cut

The cases for the operational µ̃d and βd steps is similar to µd above. Finally, the generalization to
general reductions follows by induction on the typing derivation given for the reduct and the fact
that the sets of values and covalues is closed under µdµ̃dβd expansion (for the cases of ∩R and ∪L
inference rules). ut

6. Subject Reduction and Type Safety

Type safety—the theorem that “well-typed programs cannot ‘go wrong”’ [28]—is often broken down
into two simpler syntactic properties about the operational semantics [29]:

• Progress says that every well-typed expression is either finished, or it can take a step, and

• Preservation says that if a well-typed expression takes a step, then its reduct is well-typed (at
the same type and environment as before).

Furthermore, the property of subject reduction goes even further than preservation as stated above and
ensures that types are preserved after any reduction, not just the steps of the operational semantics.
When considering intersection and union types, the progress half of type safety is relatively straight-
forward, following the usual procedure as a simply-typed language.

Proposition 6.1. (Progress)
For any d ranging over v, n, and u, if c : (Γ ` ∆) is derivable then either c is a final command (i.e., a
cfind as defined in Figure 11) or there is a c′ such that c 7→µdµ̃dβdςd

c′.

However, the preservation half of type safety is much more difficult for intersection and union
types. The first main problem was seen in Section 2, where the ∪E elimination rule for union types
in the λ-calculus performs a substitution in its conclusion. This kind of rule, which effectively unifies
on the result of a substitution, is very brittle under reduction. For example, the term x M M matches
the substitution (x y y) [M/y]. However, if M → M ′ then x M M → x M M ′, which doesn’t
match either (x y y) [M/y] or (x y y) [M ′/y], thereby breaking the unification. The sequent calculus
presentation of union types avoids this problem, since the rules for union types are perfectly dual to the
rules for intersection types. Instead of eliminating union types with substitution, the sequent calculus

1032 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

can eliminate union types with rules about coterms. As a result, the problem above simply does not
arise in the symmetric language of the sequent calculus.

The only remaining potential issue is that unions can be introduced on µ̃-abstractions which take
an input (and dually intersections can be introduced on µ-abstraction which give an output) which is
syntactically distinct from a command with a free variable or covariable representing some other side
input or output. This distinction is a real issue for subject reduction because the µ̃ and µ reduction
rules can eliminate the cut in which a union or intersection was introduced. In the special case of just
substituting one (co)variable for another

〈x || µ̃y.c〉 7→µ̃ c [x/y] 〈µβ.c ||α〉 7→µ c [α/β]

then we have to be sure that the result of reduction is still typable even if a union was introduced on
the µ̃-abstraction (which is possible in call-by-value) or dually an intersection was introduced on the
µ-abstraction (which is possible in call-by-name).

Recall Example 4.3, which begins with the following typing derivation under the initial environ-
ments are Γ = x : A1 ∪A2, z : (A1 → A1 → B) ∩ (A2 → A2 → B2) and ∆ = α : B,

Γ ` x : A1 ∪A2 | ∆
VarR

.... D1

〈z || y · y · α〉 : (Γ, y : A1 ` ∆)

Γ | µ̃y. 〈z || y · y · α〉 : A1 ` ∆
ActL

.... D2

〈z || y · y · α〉 : (Γ, y : A2 ` ∆)

Γ | µ̃y. 〈z || y · y · α〉 : A2 ` ∆
ActL

Γ | µ̃y. 〈z || y · y · α〉 : A1 ∪A2 ` ∆
∪L

〈x || µ̃y. 〈z || y · y · α〉〉 : (Γ ` ∆)
Cut

This derivation is only possible because of the convenient use of ∪L on the introduction of y to split
the remaining proof into two depending on whether y is instantiated with a value of type A1 or a value
of type A2, wherein both applications of z are well-typed (since both of its arguments must be of the
same type). But after one step

〈x || µ̃y. 〈z || y · y · α〉〉 7→µ̃v 〈z ||x · x · α〉

a typing derivation of 〈z ||x · x · α〉 : (Γ ` ∆) is not possible using the rules in Figure 15 alone,
because there is no covalue being used to consume x, so that there is no place to insert a similar
application ∪L. This is not just a problem with union types; the same issue can occur when a µ-
abstraction duplicates its bound covariable as was seen in Example 4.4. The fact that the µ and µ̃
reductions can rename one (co)variable for another is the reason that we need the additional rules for
introducing intersection and union types on free (co)variables to establish subject reduction.

The ∩α and ∪x rules are a necessary addition to prevent the basic renaming counterexamples to
subject reduction like the one above. However, they have the unfortunate consequence of making
the standard substitution lemma (that a (co)value can be substituted for a (co)variable of the same
type) which is usually straightforward into a surprisingly difficult process. If we are encountering a
substitution c [V /x] and we know that the type derivation of c has the form

.... D1

c : (Γ, x : A1 ` ∆)

.... D2

c : (Γ, x : A2 ` ∆)

c : (Γ, x : A1 ∪A2 ` ∆)
∪x

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1033

then it’s not necessarily obvious which of the sub-derivations D1 or D2 to choose in order to proceed.
Fortunately, call-by-value and call-by-name are particularly well-behaved disciplines, for which it is
still possible to show that substitution preserves types. That’s because v-values are so simple that,
given any Vv : A1 ∪ A2 which might be either an A1 or a A2, we can check the typing derivation to
see which one it actually is. This is not possible if we have an abstraction µα.c : A1 ∪ A2, since the
result might need to be computed before finding out which type it really belongs to. Dually, given any
En : A1 ∩ A2 which might want either an A1 or a A2 as input, we can check which one is actually
used. Due to these simplifications, it’s possible to determine the correct typing derivation from the
result of substitution even with rules that split the derivation on a free (co)variable.

Proposition 6.2. (Substitution)
For every admissible discipline d, in the λµµ̃∩∪−d type system, given any Γ ` Vd : A | ∆,

(i) if c : (Γ, x : A ` ∆) is derivable then so is c [Vd/x] : (Γ ` ∆),

(ii) if Γ, x : A ` v : B | ∆ is derivable then so is Γ ` v [Vd/x] : B | ∆, and

(iii) if Γ, x : A | e : B ` ∆ is derivable then so is Γ | e [Vd/x] : B ` ∆.

Dually, given any Γ | Ed : A ` ∆,

(i) if c : (Γ ` α : A,∆) is derivable then so is c [Ed/α] : (Γ ` ∆),

(ii) if Γ ` v : B | α : A,∆ is derivable then so is Γ ` v [Ed/α] : B | ∆, and

(iii) if Γ | e : B ` α : A,∆ is derivable then so is Γ | e [Ed/α] : B ` ∆.

Likewise, the same properties hold in the λµµ̃∩∪d type system when d is n or v.

Proof:
When just considering the simplified λµµ̃∩∪−d type system, the substitution properties all follow
by the standard mutual induction on the given derivation of the command, term, or coterm being
substituted into. The stability of d comes into play for the ∩R and ∪L rules, to ensure they still apply
after substitution. The only challenge arises with the ∩α and ∪x typing rules of the more general
λµµ̃∩∪d type system when d is n or v.

Consider the call-by-value case where d = v (the call-by-name case is symmetric to this one).
Given a derivation E of a typed value Γ ` Vv : A | ∆ and a derivation D of the main judgement,
the substitution operation D [E/x] is defined by lexicographic induction on E and D (with E of higher
significance). The interesting case of substitution is when D ends in a ∪x inference, since the ∩α
inference rule is never allowed when d = v (because µα.c is never a v-value).

First, given that the derivation D of the main judgement is

D =

.... D1

c : (Γ, x : A1 ` ∆)

.... D2

c : (Γ, x : A2 ` ∆)

c : (Γ, x : A1 ∪A2 ` ∆)
∪x

1034 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

then the substitution D [E/x] proceeds as follows by inversion on the possible last inference of E :

D


.... E
′

Γ ` Vv : Ai | ∆
Γ ` Vv : A1 ∪A2 | ∆

∪R

/
x

 , Di [E ′/x]

D
[
Γ ` y : A1 ∪A2 | ∆

VarR
/
x

]
,

.... D1 [E1/x]

c [y/x] : (Γ′, y : A1 ` ∆)

.... D2 [E1/x]

c [y/x] : (Γ′, y : A2 ` ∆)

c [y/x] : (Γ′, y : A1∪A2 ` ∆)
∪y

where Γ = Γ′, y : A1 ∪A2

and Ei = Γ′, y : Ai ` y : Ai | ∆
VarR

D


.... E
′

Γ ` Vv : C | ∆
Γ ` Vv : A1 ∪A2 | ∆

∩E

/
x

 , (.... D
′

c : (Γ, x : C ` ∆)

)[
E ′
/
x
]

where C = (A1 ∪A2) ∩B or C = B ∩ (A1 ∪A2)

and D′ is the weakening of D by Proposition 5.2

Note that in the ∪R case both D and E decrease, in the VarR case D decreases and E stays the same
(modulo changing the type of the free variable), and in the ∩E case D increases but E decreases.
Also note that the cases where E ends with→R or ∩R is impossible (because types don’t match) as
is ActR (because a µ-abstraction is not a value in call-by-value). Substitution therefore follows by
lexicographic induction on E and D, where the remaining cases for defining substitution are standard,
and follow by propagating the substitution up the derivation of the main judgement by induction and
putting back together the same inference rules (except for VarR which might be replaced). Addition-
ally, the fact that the set of values and covalues is closed under substitution is used when the main
derivation ends with a ∩R or ∪L inference (so that the (co)value restriction is still met after substitu-
tion occurs). ut

With the substitution property above for both call-by-value and call-by-name disciplines of sub-
stitution, it is now possible to show that the ActR and ActL typing rules for µ- and µ̃-abstractions are
invertible, which gives us the standard preservation and subject reduction properties for call-by-value
and -name intersection and union types.

Proposition 6.3. (Typing Inversion)
For every discipline d, in both the λµµ̃∩∪d and λµµ̃∩∪−d type systems:

(i) if Γ ` µα.c : A | ∆ is derivable then so is c : (Γ ` α : A,∆), and

(ii) if Γ | µ̃x.c : A ` ∆ is derivable then so is c : (Γ, x : A ` ∆).

Proof:
Inversion is immediate by definition in the λµµ̃∩∪−d type system, and follows by induction on the

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1035

given typing derivation in the λµµ̃∩∪d type system. For inversion on a typed µ-abstraction, we have
the following cases on the last inference of the derivation (inversion on a typed µ̃-abstraction is dual):

• ActR: Is given immediately from the premise.

• ∪R: Follows from generalized weakening (Proposition 5.2).

• ∩R: Can be rewritten into ∩α as follows:

.... D
Γ ` µα.c : A | ∆

.... E
Γ ` µα.c : B | ∆

Γ ` µα.c : A ∩B | ∆ ∩R ⇒

.... DIH
c : (Γ ` α : A,∆)

.... EIH
c : (Γ ` α : B,∆)

c : (Γ ` α : A ∩B,∆)
∩α

Γ ` µα.c : A ∩B | ∆ ActR

ut

Proposition 6.4. (Preservation)
For every admissible discipline d, in the λµµ̃∩∪−d type system:

(i) If c 7→µdµ̃dβdςd
c′ and c : (Γ ` ∆) is derivable, then so is c′ : (Γ ` ∆).

(ii) If e 7→ςd
e′ and Γ | e : A ` ∆ is derivable, then so is Γ | e′ : A ` ∆.

Likewise, the same properties hold in the λµµ̃∩∪d type system when d is n or v.

Proof:
By cases on the rewriting rule applied. For a command c : (Γ ` ∆), type preservation follows by
induction on the given derivation. For a derivation ending in any non-Cut inference rule (∪x and ∩x
in call-by-value or ∩α and ∪α in call-by-name), this follows directly from the inductive hypothesis.
The base case, where the derivation ends with a Cut between a term and coterm of type A, has the
following sub-cases:

• 〈µα.c ||Ed〉 7→µd : By inversion on the typing derivation of the µ-abstraction (Proposition 6.3),
we know that c : (Γ ` α : A,∆), so c [Ed/α] : (Γ ` ∆) by substitution (Proposition 6.2).

• 〈Vd || µ̃x.c〉 7→µ̃d : Dual to the µd case above.

• 〈λx.v ||Vd · Ed〉 7→βd
: The derivation must conclude with a Cut followed by a chain of ∩α

and ∪x inferences. So rewrite the bottom-most Cut the sub-derivation by induction on the
derivations of Γ ` λx.v : A | ∆ and Γ | Vd · Ed : A ` ∆ as follows (using Proposition 6.2 in
the base case→R −→L):

– →R −→L:
.... D

Γ, x : B ` v : C | ∆
Γ ` λx.v : B → C | ∆

.... E1
Γ ` Vd : B | ∆

.... E2
Γ | Ed : C ` ∆

Γ | Vd · Ed : B → C | ∆
〈λx.v ||Vd · Ed〉 : (Γ ` ∆) ⇒

.... D [E1/x]

Γ ` v [Vd/x] : C | ∆

.... E2
Γ | Ed : C ` ∆

〈v [Vd/x] ||Ed〉 : (Γ ` ∆)

1036 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

– ∩R − ∩L:
.... Di

Γ ` λx.v : Bi | ∆
Γ ` λx.v : B1 ∩B2 | ∆

.... E
Γ | Vd · Ed : Bi ` ∆

Γ | Vd · Ed : B1 ∩B2 ` ∆

〈λx.v ||Vd · Ed〉 : (Γ ` ∆) ⇒

.... Di

Γ ` λx.v : Bi | ∆

.... E
Γ | Vd · Ed : Bi ` ∆

〈λx.v ||Vd · Ed〉 : (Γ ` ∆)

– ∪R − ∪L: Dual to the ∩R − ∩L case above.
– ∩E − Any:

.... D
Γ ` λx.v : B1 ∩B2 | ∆

Γ ` λx.v : Bi | ∆

.... E
Γ | Vd · Ed : Bi ` ∆

〈λx.v ||Vd · Ed〉 : (Γ ` ∆) ⇒

.... D
Γ ` λx.v : B1 ∩B2 | ∆

.... E
Γ | Vd · Ed : Bi ` ∆

Γ | Vd · Ed : B1 ∩B2 ` ∆

〈λx.v ||Vd · Ed〉 : (Γ ` ∆)

– Any− ∪E: Dual to the ∩E − Any case above.

Notice that in each case, either the result of rewriting the derivation is the right-hand side of
the rule (in →R −→L) or is a cut of the same term and coterm at a different type where the
derivation and type is smaller (in→R −→L, ∩R − ∩L, or ∪R − ∪L) the derivation has one
fewer elimination rule (in ∩E−Any and Any−∪E). So this process must eventually terminate.

For a coterm Γ | e : A ` ∆, type preservation of the only step e 7→ςd
e′ proceeds by induction

on the given typing derivation. If the derivation ends in →L, then the right-hand side can be typed
by additionally using the ActL, ActR, VarR, VarL, and Cut rules. Otherwise, the derivation ends
with either ∩L, ∪L, or ∪E: each follows from the inductive hypothesis, using the fact that the set of
covalues is closed under reduction (for ∪L). ut

Proposition 6.5. (Subject Reduction)
For every admissible discipline d, in the λµµ̃∩∪−d type system:

(i) If c→µdµ̃dβdςd
c′ and c : (Γ ` ∆) is derivable, then so is c′ : (Γ ` ∆).

(ii) If v →µdµ̃dβdςd
v′ and Γ ` v : A | ∆ is derivable, then so is Γ ` v′ : A | ∆.

(iii) If e→µdµ̃dβdςd
e′ and Γ | e : A ` ∆ is derivable, then so is Γ | e : A ` ∆.

Likewise, the same properties hold in the λµµ̃∩∪d type system when d is n or v.

Proof:
By induction on the given derivation, using Proposition 6.4 in the base case where an operational rule
(7→) is applied. Note that in each other case, where a reduction is applied to a sub-expression, the
same inference rule still applies to the rewritten expression because (a) the set of values and covalues
are closed under reduction, and (b) no inference rule performs a substitution in its conclusion. For
example, in the ∪x rule for call-by-value, if the command c in the conclusion reduces as c→ c′, then
the inductive hypothesis applies to both premises so that ∪x infers the same type for c′. ut

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1037

7. Uniform Proof of Strong Normalization — Soundness

In order to show that well-typed commands, terms, and coterms are strongly normalizing, we will
extend the uniform proof of strong normalization from [1] to also account for intersection and union
types. Interestingly, even though this previous work did not account for union and intersection types
within the typed language, the proof technique for strong normalization relied on a model of types
that was built on top of a notion of subtyping with corresponding union and intersections. There,
the purpose of subtyping was for establishing a measure to construct the model of individual types
as the fixed-point solution to a (monotonic) operation. Here, the corresponding model of union and
intersections play an even more prominent role, since they are the basis for representing the syntactic
union and intersection types in the language. In the end, we will find that the disciplined call-by-
value and call-by-name type systems are sound with respect to strong normalization, whereas the type
system for non-deterministic reduction needs further restrictions on where intersection types can be
introduced on the right and where union types can be introduced on the left.

The proof that follows is parameterized by a choice of discipline, d. At first, the initial discussion
of pre-candidates in Section 7.1 is not affected by the choice of d. But in the following Sections 7.2,
7.3, and 7.4, we assume that d is a deterministic admissible discipline (like v or n) in order to prove
that well-typed expressions of λµµ̃∩∪d are strongly normalizing. Then in Section 7.5, 7.6, and 7.7,
we generalize to allow for d to be non-deterministic, but still admissible, disciplines (like u). As it
turns out, the ∩R and ∪L rules are too strong for the non-deterministic u-reduction rules even with the
(co)value restriction (which is trivialized by u), but the further restrictions imposed λµµ̃∩∪−u recover
soundness in the face of non-determinism.

7.1. Pre-candidates

By now, a standard approach to proving strong normalization is with some variant of the reducibility
candidates method, wherein first a domain of well-behaved candidate objects is established which
fully encompasses the interpretation of types into their semantic meaning. Since we will be discussing
multiple versions of candidates, it’s useful to begin one step earlier at the domain of pre-candidates,
which outlines the overall shape of candidates but stops short of enforcing the crucial properties that
ensure they are well-behaved. Before getting into proper candidates, we can already explore some
useful general properties about the domain of pre-candidates as a whole.

In the λ-calculus, types only describe terms. But in the λµµ̃ sequent calculus, types describe both
terms and coterms. For this reason, pre-candidates are dual objects containing both a term side and a
coterm side, which is expressive enough to encompass both roles of types in the sequent calculus.

Definition 7.1. (Pre-candidate)
A pre-candidate is a pair A = (A+,A−) of a set of strongly normalizing terms (A+) and a set of
strongly normalizing coterms (A−). As notation on a pre-candidate A, we write A+ for the first
component of A (the set of terms), A− for the second component of A (the set of coterms), v ∈ A
as shorthand for v ∈ A+ and e ∈ A as shorthand for e ∈ A−. Two important pre-candidates the
biggest pre-candidate W of all strongly normalizing terms and coterms, and the pre-candidate V of

1038 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

only strongly normalizing values and covalues.

W , ({v | v is strongly normalizing}, {e | e is strongly normalizing})
V , ({v ∈W | v is a d-value}, {e ∈W | e is a d-covalue})

The λµµ̃ sequent calculus has more than just terms and coterms; it also has commands which
represent execution states. What role do they play in the domain of pre-candidates? They are the
key variable in the most fundamental operation on pre-candidates: orthogonality. The idea behind or-
thogonality is to take a set of especially well-behaved commands—for example, the set of all strongly
normalizing commands—and use those commands as a test for generating well-behaved partners. That
is, given some coterms as a set of observations, orthogonality can give back all terms that are strongly
normalizing under each of those observations. Or dually, given some terms as a set of results, we can
give back all coterms that are strongly normalizing when given each those results.

Definition 7.2. (Orthogonality)
Given any set of commands P, the orthogonality operation is defined on any set of terms (A+) and set
of coterms (A−) as:

A+P , {e ∈W | ∀v ∈ A+, 〈v || e〉 ∈ P} A−P , {v ∈W | ∀e ∈ A−, 〈v || e〉 ∈ P}

Orthogonality is lifted to operate on pre-candidates A by flipping its two sides as follows:

(A+,A−)P , (A−P,A+P)

The most important application of orthogonality is with respect to the set of all strongly normalizing
commands, which we write as ‚:

‚ , {c | c is strongly normalizing}

The use of orthogonality with the above set of strongly normalizing commands is written A‚.

Since pre-candidates are effectively two-sided objects, there is more than one way to relate them
compared with just a single set, since the two sides can be either in agreement or opposed to one
another. The first relation is just straightforward containment where both sides are treated the same
which we call refinement, which corresponds to the ordinary subset relation. The second relation has
the two sides contrary to one another which we call subtyping, since it corresponds to the notion of
behavioral subtyping on candidates. The idea behind subtyping A <: B is that every value of A is also
a valid value of B, but also dually every observation of B can be used on values of A.

Definition 7.3. (Subtyping and Refinement)
The refinement (v) and subtyping (≤) orders on pre-candidates A = (A+,A−) and B = (B+,B−) is:

A v B , (A+ ⊆ B+) ∧ (A− ⊆ B−)

A ≤ B , (A+ ⊆ B+) ∧ (A− ⊇ B−)

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1039

When A v B we say “A refines B” (dually, “B extends A”) and when A ≤ B we say that “A is a
subtype of B” (dually, “B is a supertype of A”). Note that refinement between pre-candidates says
that one is wholly contained within the other, whereas subtyping order is inverted on negative side of
pre-candidates. Both orders form separate lattices which come with their own notions of union and
intersections (written t and u for refinement and ∨ and ∧ for subtyping), defined as:

A t B , (A+ ∪ B+,A− ∪ B−) A u B , (A+ ∩ B+,A− ∩ B−)

A ∨ B , (A+ ∪ B+,A− ∩ B−) A ∧ B , (A+ ∩ B+,A− ∪ B−)

Besides the obvious connection between subtyping of pre-candidates and subtyping of types,
which is an important aspect of intersection and union types in practice, one reason motivating the
two separate orderings is that they each have a very different relationship with the fundamental or-
thogonality operation. In particular, refinement order exhibits the following usual standard properties
that arise in the study of biorthogonality, whereas subtyping order is stable under orthogonality.

Proposition 7.4. The following standard ordering properties of orthogonality hold:

(i) Double orthogonal introduction: A v A‚‚

(ii) Triple orthogonal elimination: A‚‚‚ = A‚

(iii) Contrapositive (a.k.a antitonicity): If A v B then B‚ v A‚

(iv) Monotonicity: If A ≤ B then A‚ ≤ B‚

Furthermore, the following standard De Morgan properties hold:

(i) (A t B)‚ = A‚ u B‚

(ii) (A u B)‚ w A‚ t B‚

Note that, on the one hand, the refinement properties of orthogonality above all correspond exactly
to properties of negation in intuitionistic logic. On the other hand, orthogonality is a monotonic
operation with respect to subtyping (in contrast with the antitone behavior of refinement). This fact
about monotonicity is crucial to the uniform model of strong normalization [1], which generalizes the
symmetric candidates methodology [15] by revealing its hidden use of subtyping.

7.2. Reducibility candidates

For our first, simpler, approach to candidate semantics for types, we will look to the reducibility
candidates and biorthogonality methods which are appropriate for deterministic evaluation (e.g., like
the call-by-value v and call-by-name n disciplines). The main key of any reducibility candidates
proof is a form of expansion lemma, which says that things which step to something good must have
been good to begin with (i.e., “goodness” is closed under 7→ expansion). For our specific setting,
this expansion lemma takes the following form, which holds under the assumption that the chosen
discipline d is deterministic.

1040 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Proposition 7.5. (Expansion)
For all deterministic d, (co)terms v, e ∈ W (i.e., v and e are strongly normalizing), and commands
c, c′, if c 7→µdµ̃dβdςd

c′ ∈‚ (i.e., c steps to c′ which is strongly normalizing) then c ∈‚.

However, disciplined reduction has a serious consequence on this form of expansion. For example,
consider the challenge of justifying in the call-by-value v discipline that a µ̃-abstraction µ̃x.c is a
coterm of some A. We would like to argue behaviorally about how µ̃x.c behaves when paired with
terms of A. That is, we might know that for any Vv ∈ A,

〈Vv || µ̃x.c〉 7→µ̃v c [Vv/x] ∈‚
or in other words, µ̃x.c forms a strongly-normalizing command after one step when paired with any
v-value of A. But not every term is a v-value, so we can’t use µ̃v-reduction to say anything about the
other terms of A! For this reason, we need to consider the (co)value restriction as part of the definition
of reducibility candidates.

Definition 7.6. ((Co)value Restriction)
The (co)value restriction on a pre-candidate A is defined as: Av , A u V. Note that Av v A.

Definition 7.7. (Reducibility Candidate)
A reducibility candidate is a pre-candidate A such that Av‚ v A v A‚. In other words, a reducibility
candidate A is any pre-candidate such that the following two properties hold:

(i) Soundness (A v A‚): For all v, e ∈ A, the command 〈v || e〉 is strongly normalizing.

(ii) Completeness (Av‚ v A): If v is strongly normalizing as well as 〈v ||E〉 for all E ∈ A, then
v ∈ A. Dually, if e is strongly normalizing as well as 〈V || e〉 for all V ∈ A, then e ∈ A.

Intuitively, the soundness property of reducibility candidates ensures that they don’t have too many
(co)terms, which justifies that the Cut rule is sound, whereas the completeness property ensures that
there are enough (co)terms, which justifies the generic ActR and ActL rules of every type along with
type-specific inference rules. The fact that the completeness requirement of reducibility candidates
(Av‚ v A) only requires checking potential members against the values or covalues of that candidate
means that the operational semantics is enough to justify membership of complex computations by
expansion. Returning back to the above example, if we know that A is a reducibility candidate and
c [V /x] ∈‚ for any V ∈ A, then we can conclude from expansion (Proposition 7.5) and completeness
(Definition 7.7) that µ̃x.c ∈ A.

It turns out there is another equivalent definition of reducibility candidates, based on the standard
properties of orthogonality from Proposition 7.4: reducibility candidates are exactly the fixed points
of (co)value-restricted orthogonality. Fixed points play a prominent role later in Section 7.5.

Proposition 7.8. A is a reducibility candidate if and only if A = Av‚.

So far, we have said what reducibility candidates are, but not yet how to make one of them.
Here are two dual ways (one Positively-oriented and the other Negatively-oriented) to construct a

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1041

reducibility candidate from a set of values (C) or covalues (O), along with a common operationR(−)
for generating a complete reducibility candidate from a sound pre-candidate A of (co)values.

Pos(C) , (C,C‚v)‚v Neg(O) , (O‚v, O)‚v R(A) , A‚

Proposition 7.9. For any set of values C, covalues O, and pre-candidate A = A‚v,

(i) Pos(C) = Pos(C)‚v and C ⊆ Pos(C)+,

(ii) Neg(O) = Neg(O)‚v and O ⊆ Neg(O)−, and

(iii) R(A) is a reducibility candidate such thatR(A)v = A.

7.3. Intersection and union candidates

Now that we have reducibility candidates which are capable of modeling potential types, we also need
to determine what is the intersection and union of two reducibility candidates. A good place to start
are the corresponding operations ∧ and ∨ in the subtyping lattice. However, these two operations are
not good enough: since ∧ and ∨ are defined on pre-candidates, they are capable of combining any two
reducibility candidates, but we only get pre-candidate back without any additional assurances. With
intersections, the intersection A ∧ B between two reducibility candidates A and B may not be another
reducibility candidate, but there may be some other suitable reducibility candidate C ≤ A ∧ B which
has fewer terms and more coterms than A ∧ B.

For example, let E and O be the reducibility candidates corresponding to even and odd numbers,
respectively. The subtyping intersection E ∧O will then contain all the terms which behave like both
an even and an odd number, and all the coterms which are capable of accepting either an even or an
odd number. But being both an even and an odd number is vacuous! So it would be safe to include
many other sensible (i.e., strongly normalizing) coterms which expect other inputs, like strings, since
there is no way for the term to return any result at all. This is a case where just E ∧O is not complete
enough to be a reducibility candidate, because it is missing some extra coterms that do not come from
either E or O.

So the true intersection and union operations for reducibility candidates is based on ∧ and ∨,
but needs to do some extra work to complete the definition and include everything that’s safe given
that some options may be eliminated. A second place to look is to the Pos and Neg construction of
candidates from the previous section. As it turns out, either will do: intersection and union candidates
can be seen as either positively- or negatively-oriented, both of which are equivalent to the completion
of the base ∧ and ∨ operations of the subtyping lattice.

Proposition 7.10. For all reducibility candidates A and B,

A ∧ B v (A ∧ B)‚ (A ∧ B)v v (A ∧ B)v‚v = Neg((A ∧ B)v−) = Pos((A ∧ B)v+)

A ∨ B v (A ∨ B)‚ (A ∨ B)v v (A ∨ B)v‚v = Pos((A ∨ B)v+) = Neg((A ∨ B)v−)

1042 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Proof:
First, note that A ∧ B v (A ∧ B)‚ by the term and coterm components of the De Morgan Laws
(Proposition 7.4) and the fact that A and B are fixed points of −‚ (Proposition 7.8) as follows:

(A ∧ B)+ = A+ ∩ B+ = A‚+ ∩ B‚+ = A−‚ ∩ B−‚ = (A− ∪ B−)‚ = (A ∧ B)‚

(A ∧ B)− = A− ∪ B− = A‚− ∩ B‚− = A+‚ ∩ B+‚ ⊆ (A+ ∪ B+)‚ = (A ∧ B)‚

Next, observe that (A ∧ B)v‚v = Neg((A ∧ B)v−) = Pos((A ∧ B)v+) from the additional facts that
and B are fixed points of both −v‚ (Proposition 7.8), and Pos(C) and Neg(O) are fixed points of
−‚v (Proposition 7.9), like so:

(A ∧ B)v‚v = ((A− ∪ B−)v‚v, (A+ ∩ B+)v‚v) = ((A− ∪ B−)v‚v, (A−v‚ ∩ B−v‚)v‚v)

= ((Av− ∪ Bv−)‚v, (Av− ∪ Bv−)‚v‚v) = Neg((A ∧ B)v−)

Neg((A ∧ B)v−) = Neg((A ∧ B)v−)‚v = ((Av− ∪ Bv−)‚v, (Av− ∪ Bv−)‚v‚v)‚v

= (Av‚v+ ∩ Bv‚v+, (Av‚v+ ∩ Bv‚v+)‚v)‚v = (Av+ ∩ Bv+, (Av+ ∩ Bv+)‚v)‚v

= ((Av+ ∩ Bv+)‚v‚v, (Av+ ∩ Bv+)‚v) = Pos((A ∧ B)v+)

The calculations for unions are dual to the above. ut

Now we have the core pre-candidate of (co)values that describe the intersection and union of two
candidates, including all newly-valid responses that ignore options which were eliminated. We can
complete them in the usual way by applying a final orthogonal operation, which includes any safe and
sensible non-(co)values based on that core.

Proposition 7.11. For all reducibility candidates A and B, with respect to ≤ order,

(i) (A ∧ B)v‚v‚ is the greatest reducibility candidate lower bound of A and B, and

(ii) (A ∨ B)v‚v‚ is the least reducibility candidate upper bound of A and B.

Proof:
First, note that (A ∧ B)v‚v‚ = R((A ∧ B)v‚v) is indeed a reducibility candidate due to Proposi-
tions 7.10 and 7.9. Second, by monotonicity (Proposition 7.4) and the fact that A and B are fixed
points of −v‚ (Proposition 7.8), we have from A ∧ B ≤ A and A ∧ B ≤ B:

(A ∧ B)v‚v‚ ≤ Av‚v‚ = A (A ∧ B)v‚v‚ ≤ Bv‚v‚ = B

so that (A ∧ B)v‚v‚ ≤ A ∧ B, since A ∧ B is the greatest lower bound of A and B. Third, suppose
that there is some other reducibility candidate C that is also a lower bound of A and B. It follows that
C ≤ A ∧ B, and thus

C = Cv‚v‚ ≤ (A ∧ B)v‚v‚

by monotonicity again. Therefore, (A ∧ B)v‚v‚ must be the greatest lower bound of A and B that is
also a reducibility candidate (i.e., a fixed point of −v‚).

The fact that (A∨B)v‚v‚ is the least reducibility candidate upper bound of A and B is symmetric
to the above fact about intersections. ut

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1043

7.4. A uniform model of deterministic types

We now have established enough of a framework to interpret syntactic types as reducibility candidates
and typing judgements as logical statements. At this point, these following definitions are standard,
as per the approaches of logical relations and biorthogonality. The interpretation of types (which is
parameterized by a mapping ρ from atomic propositions p to candidates) is defined as:

A · B , {Vd · Ed | Vd ∈ A, Ed ∈ B}

JpKρ , ρ(p) JA→ BKρ , R(Neg(JAKρ · JBKρ))

JA ∩BKρ , (JAKρ ∧ JBKρ)
v‚v‚ JA ∪BKρ , (JAKρ ∨ JBKρ)

v‚v‚

Typing judgements are then interpreted as a statement about membership of a command, term, or
coterm in the candidate corresponding to a type. To handle the environments Γ and ∆, we quantify
over all suitable substitutions of values and covalues for the free variables and covariables. In par-
ticular, we make use of a simultaneous substitution V1/x1, . . . Vn/xn, E1/α1, . . . Em/αm which we
range over with the metavariable σ, and write c[σ], etc., , to denote the application of the substitution
σ to c. Subst is the set of all such simultaneous substitutions σ.

JΓ ` ∆Kρ , {σ ∈ Subst | ∀x:A ∈ Γ, x [σ] ∈ JAKρ}
∩ {σ ∈ Subst | ∀α:A ∈ ∆, α [σ] ∈ JAKρ}

Jc : (Γ ` ∆)Kρ , ∀σ ∈ JΓ ` ∆Kρ.c [σ] ∈‚
JΓ ` v : A | ∆Kρ , ∀σ ∈ JΓ ` ∆Kρ.v [σ] ∈ JAKρ
JΓ | e : A ` ∆Kρ , ∀σ ∈ JΓ ` ∆Kρ.e [σ] ∈ JAKρ

Proposition 7.12. (Deterministic Soundness)
For every admissible deterministic discipline d, if a judgement J is derivable in λµµ̃∩∪d, then JJKρ
is true for any ρ.

Proposition 7.13. (Deterministic Strong Normalization)
For every admissible deterministic discipline d, every well-typed command, term, and coterm of
λµµ̃∩∪d is strongly normalizing.

7.5. Symmetric candidates

So far in the previous three sections, we have only considered the possibility where d is a deterministic
discipline. This assumption showed up in the key expansion property (Proposition 7.5), which only
works for a deterministic operational semantics. But in the non-deterministic case, we could have a
critical pair of steps c1 ←[〈v || e〉 7→ c2 where just because we know that c2 is strongly normalizing,
that doesn’t mean that c1 must also be strongly normalizing. Since the expansion property is not
guaranteed for non-deterministic reduction (like when d = u), we need another approach. Instead of
reducibility candidates, here we will consider a strictly more general notion of symmetric candidates.

1044 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

The first step on the road to symmetric candidates is to generalize the orthogonality operation,
referred to here as pre-orthogonality. Originally in Definition 7.2, orthogonality applied the same
predicate represented by the set P of commands to both the term and coterm sides of a pre-candidate.
This is a symmetric sort of operation which treats both sides the same. However, the key insight into
building a symmetric candidate is, oddly enough, to be non-symmetric in the treatment of the two
sides with two different predicates P and Q. Only at the very end will the symmetry be restored.

Definition 7.14. (Pre-orthogonality)
Since pre-candidates are two-sided objects, we can generalize this operation to pre-orthogonality on
pre-candidates, we use two different sets of commands (P and Q) for each side as follows:

(A+,A−)(P,Q) , (A−P,A+Q)

So that orthogonality on pre-candidates, AP, is the thing same as symmetric pre-orthogonality, A(P,P).

Since pre-orthogonality is a strict generalization of plain orthogonality not all of the standard prop-
erties (namely, double orthogonal introduction and triple orthogonal elimination) necessarily hold.
However, many of them carry over to the more general setting, including the important antitonicity
and monotonicity relationship with refinement and subtyping.

Proposition 7.15. Pre-orthogonality maintains the following orders:

(i) Antitonicity: If A v B then B(P,Q) v A(P,Q).

(ii) Monotonicity: If A ≤ B then A(P,Q) ≤ B(P,Q).

Furthermore, pre-orthogonality satisfies the following De Morgan properties:

(i) (A t B)(P,Q) = A(P,Q) u B(P,Q)

(ii) (A u B)(P,Q) w A(P,Q) t B(P,Q)

Using the more general notion of pre-orthogonality, we can define a saturation operation which
ensures that all the necessary (co)terms are in a pre-candidate as dictated by the typing rules, but
which may be overaggressive and include too many (co)terms with non-sound (i.e., non-normalizing)
interactions with one another.

Definition 7.16. (Saturation)
We can generalize the set of strongly normalizing commands (‚) to include potentially strongly nor-
malizing commands as follows:

‚R? ,‚ ∪ {c | (∃c′.c 7→ c′ ∈‚) ∧ (6 ∃c.c 7→R c
′ /∈‚)}

In addition to commands that must be normalizing now, ‚R? also includes commands which (1)
are normalizing after one R-step and (2) cannot step to a non-normalizing command. Note that by
choosing a different R, we can stipulate that only positive, negative or neutral steps are allowed to be
used, or any combination thereof.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1045

The Saturation operation on any pre-candidate A is then defined as As , Av(‚µd?,‚µ̃dςd?). Ex-
panding the definitions, the saturation of a pre-candidate A is:

As+ , {v ∈W | ∀E ∈ A, 〈v ||E〉 ∈‚ ∨ (〈v ||E〉 7→ c ∈‚ ∧ (〈v ||E〉 7→µd c
′ =⇒ c′ ∈‚))}

As− , {e ∈W | ∀V ∈ A, 〈V || e〉 ∈‚ ∨ (〈V || e〉 7→ c ∈‚ ∧ (〈V || e〉 7→µ̃dςd
c′ =⇒ c′ ∈‚))}

The notion of saturation lets us give an alternative definition for candidate which has a more
generous lower bound. That is, As extends Av‚, which means that it is easier to show that a (co)term
is in As than in Av‚. The difference is that with saturation, we only need to justify a (co)term by
its own behavior, and can ignore the behavior of its partner. For example, it is enough to know that
〈V || µ̃x.c〉 7→µ̃d c [V /x] ∈‚ even if it’s possible that 〈V || µ̃x.c〉 7→µd c

′ /∈‚ as well.

Definition 7.17. (Symmetric Candidate)
A symmetric candidate is any pre-candidate A such that As v A v A‚. In other words, a symmetric
candidate A is a pre-candidate satisfying the following three properties:

(i) Soundness (A v A‚): For all v, e ∈ A, the command 〈v || e〉 is strongly normalizing.

(ii) Completeness (As v A): If v is strongly normalizing and for any E ∈ A, there is a strongly
normalizing c such that 〈v ||E〉 7→?

µdβd
c, then v ∈ A. Dually, if e is strongly normalizing and

for any V ∈ A, there is a strongly normalizing c such that 〈V || e〉 7→?
µ̃dςdβd

c, then e ∈ A.

As with reducibility candidates, symmetric candidates can also be equivalently rephrased as the
fixed point of their completeness operation −s.

Proposition 7.18. A is a symmetric candidate if and only if A = As.

However, due to the potential for nondeterminacy and the extra leniency of saturation, symmetric
candidates are much more difficult to construct. The first step in the construction is to isolate the terms
and coterms which still behave deterministically with respect to strong normalization (‚). Terms like
λx.v and V · E can only participate in at most one operational step, so they can serve as part of the
initial core of (co)values that determine a candidate.

Definition 7.19. (Deterministic Normalization)
The set of commands for whom head reduction deterministically results in only normalizing or only
non-normalizing commands is:

‚d , {c | ∀c1, c2.(c 7→ c1, c2) =⇒ (c1 ∈‚ ⇐⇒ c2 ∈‚)}

The pre-candidate D of deterministically normalizing terms and coterms is then W‚d
. Expanding the

definitions, D consists of the following set of terms and coterms:

D+ , {v ∈W+ | ∀e ∈W−, (〈v || e〉 7→ c1, c2) =⇒ (c1 ∈‚ ⇐⇒ c2 ∈‚)}
D− , {e ∈W− | ∀v ∈W+, (〈v || e〉 7→ c1, c2) =⇒ (c1 ∈‚ ⇐⇒ c2 ∈‚)}

We write Ad as shorthand for A u D.

1046 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

The positively- and negatively-oriented constructions must be further refined to only include deter-
ministically normalizing (co)values. The bigger challenge is to complete the candidate to include all
sensible terms and coterms. Just applying a final orthogonal, as in R(−), is no longer enough, since
that doesn’t yield a fixed point of saturation. Instead, we can rely on the Knaster-Tarsky fixed point
theorem to provide such a solution, since saturation is monotonic with respect to subtyping. Since we
are dealing with a complete lattice of subtyping, we are guaranteed both a largest and a smallest such
solution with respect to subtyping. Note that this means the smallest solution contains the least terms
and the most coterms, and dually for the largest. These definitions are given as follows:

Posd(C) , (C,C‚dv)‚dv S⊥(C) ,
∧
{A | A ≥ C t As}

Negd(O) , (O‚dv, O)‚dv S>(C) ,
∨
{A | A ≤ C t As}

Proposition 7.20. For any set of values C, set of covalues O, and pre-candidate A = A‚dv:

(i) Posd(C) = Posd(C)‚dv and C ⊆ Posd(C)+,

(ii) Negd(O) = Negd(O)‚dv and O ⊆ Negd(O)−, and

(iii) there exists at least one symmetric candidate extending A, where S⊥(A) is the smallest one and
S>(A) is the largest one (with respect to ≤).

Proof:
Parts (i) and (ii) are analogous to Proposition 7.9, and part (iii) follows from Proposition 7.18 and the
fact that C = C‚dv and A = C t As implies A = As. ut

We’ve alluded to the fact that symmetric candidates “generalize” reducibility candidates. This is
well-known to be true in the weak sense that symmetric candidates are powerful enough to capture
fundamentally non-deterministic operational semantics, whereas reducibility candidates and biorthog-
onality only apply to a deterministic system. However, it is also true in the much stronger sense that
the notions of symmetric candidate and reducibility candidate are the same for deterministic systems,
such that the two constructions are exactly equal.

Proposition 7.21. Every symmetric candidate is a reducibility candidate. Furthermore, for any deter-
ministic discipline d, every reducibility candidate is a symmetric candidate and, for any C = C‚dv,
S⊥(C) = S>(C) = R(C) is the unique reducibility candidate extending C.

7.6. The symmetric lattice of subtyping

Symmetric candidates are more powerful, in that they allow us to model the strong normalization
of non-deterministic systems. However, the consequence of this power is that they are much more
difficult to pin down; in contrast to the definite construction of reducibility candidates, symmetric
candidates are built as merely the solution to some recursive equation, and allow for some arbitrary
choice of which solution to use. This has a serious impact on the status of intersections and unions
of symmetric candidates: we cannot just give a definite description in terms of simpler operations.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1047

Even still, because we are just dealing with a monotonic operation (saturation) on a complete lattice
(subtyping), they are still guaranteed to exist.

Proposition 7.22. The set of symmetric candidates forms a lattice with respect to subtyping, i.e.,
every two symmetric candidates A and B has a least upper bound supertype, written A g B, and a
greatest lower bound subtype, written Af B, which are both symmetric candidates.

Proof:
Symmetric candidates are exactly the fixed points of the saturation operation −s on pre-candidates
(Proposition 7.18), which is monotonic with respect to the subtyping order of pre-candidates [30]. ut

Note that (by Proposition 7.21), if the chosen discipline d is deterministic then

Af B = (A ∧ B)v‚v‚ Ag B = (A ∨ B)v‚v‚

Even though we have a less specific definition of intersection and union of symmetric candidates,
we can still give a useful bound on how far away from the naı̈ve ∧ and ∨ they can be.

Proposition 7.23. For all symmetric candidates A and B,

S⊥(Adv ∧ Bdv) ≤ Af B Ag B ≥ S>(Adv ∨ Bdv)

Proof:
First, note that because A = As and B = Bs,

(Adv u Bdv) t As = A v (Adv t Bdv) t As (Adv u Bdv) t Bs = B v (Adv t Bdv) t Bs

(Adv ∧ Bdv) t As ≤ A ≤ (Adv ∨ Bdv) t As (Adv ∧ Bdv) t Bs ≤ B ≤ (Adv ∨ Bdv) t Bs

and so by the definition of S⊥(−) and S>(−),

S⊥(Adv ∧ Bdv) ≤ A ≤ S>(Adv ∨ Bdv) S⊥(Adv ∧ Bdv) ≤ B ≤ S>(Adv ∨ Bdv)
S⊥(Adv ∧ Bdv) ≤ A ∧ B A ∨ B ≤ S>(Adv ∨ Bdv)

Therefore, because both S>(Adv ∨Bdv) and S>(Adv ∨Bdv) are fixed points of−s, and because AfB
is defined to be the largest such fixed point subtype of A ∧ B and Ag B the smallest such fixed point
supertype of A ∨ B, it must be that S⊥(Adv ∧ Bdv) ≤ Af B and Ag B ≤ S>(Adv ∨ Bdv). ut

As a result, it must be the case that every deterministic value in Adv+ ∩ Bdv+ is included in A f B,
and every deterministic covalue in Adv− ∩ Bdv− is included in Ag B.

1048 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

7.7. A uniform model of non-deterministic types

We can now alternatively interpret syntactic types as symmetric candidates to handle non-deterministic
operational semantics. This is a small variation on the previous model given in Section 7.4. The
interpretation of types as symmetric candidates is:

JpKρ , ρ(p) JA→ BKρ , S>(Neg(JAKρ · JBKρ))

JA ∩BKρ , JAKρ f JBKρ JA ∪BKρ , JAKρ g JBKρ

And the interpretation of typing judgements are the same as before. Note that, since reducibility
candidates are the same thing as symmetric candidates for deterministic disciplines like v and n,
the above definition is identical to the one in Section 7.4 in this special case. However, for a non-
deterministic discipline like u, the two models are quite different. In particular, this model allows us
to prove soundness for non-deterministic substitution disciplines, but the cost of this extra generality is
that it only covers the smaller typing system λµµ̃∩∪−d . In this sense, symmetric candidates subsumes
reducibility candidates, in the sense that the more informative reducibility candidate model can be
fully recovered. But the deterministic model based on reducibility candidates is still vital for reasoning
about more expressive type systems like λµµ̃∩∪d when d happens to be deterministic.

Proposition 7.24. (Non-Deterministic Soundness)
For every admissible discipline d (even non-deterministic ones), if the judgement J is derivable in
λµµ̃∩∪−d , then JJKρ is true for any ρ.

Proposition 7.25. (Non-Deterministic Strong Normalization)
For every admissible discipline d (even non-deterministic ones), every well-typed command, term,
and coterm of λµµ̃∩∪−d is strongly normalizing.

8. Related Work

Intersection types were introduced in the λ-calculus in the late 1970s in the work of Coppo and
Dezani [4], Pottinger [5], and Sallé [6], in order to overcome the limitations of the simply typed
lambda calculus. In the following years, they became a powerful tool for completely characterizing
strong normalization and other kinds of normalization properties at a syntactic level. As a conse-
quence, typability with intersection types is undecidable. The question of inhabitation with intersec-
tion types was open for a long time untill it was proven to be undecidable by Urzyczyn [31]. However,
the inhabitation problem becomes decidable for non-idempotent intersection types, as shown by Buc-
carelli et al. [32]. In semantics, filter models based on intersection types, by Barendregt et al. [33],
provide completeness of type assignment. In programming languages, intersection types were pro-
moted by Reynolds [34] and Pierce [35]. Later, call-by-value languages with intersection and union
types were developed by Dunfield and Pfenning [36, 37]. In logic, it is well-known that intersection
types do not correspond to intuitionistic conjunction, as shown by Hindley [38]. As opposed to proof-
theoretic connectives, intersection types have been interpreted as a proof-functional connective a.k.a

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1049

strong conjunction by Pottinger [5], Lopez-Escobar [39] and Mints [40]. An extensive survey on the
theory of intersection types is given by Barendregt et al. [41].

Union types came into the picture in the 1990s from MacQueen et al., Pierce [8] and Barbanera
et al. [9]. They were meant to be a straightforward extension of intersection type systems, since the
combination of intersection and union types together preserve the completeness properties regarding
strong normalization and filter models. However, it turned out that subject reduction failed in the
proposed type system with both intersection and union types, i.e., types are not preserved under re-
duction. The question of the logical meaning of intersection and union types has spurred on the study
of many interesting topics including relevance of intersection and union types by Dezani et al. [42],
intersection logic with parallel derivations by Ronchi Della Rocca and Roversi [43] and intersection
types à la Church by Liquori and Ronchi Della Rocca [44], among others. Recently, intersection and
union types à la Church were used with relevant implication and dependent types in order to build a
prototype theorem prover with ad hoc—instead of parametric—polymorphism by Honsell et al. [11].

In the classical setting, intersection and union types were introduced in sequent calculi based on
Curien and Herbelin’s [14] (Herbelin [45]) λµµ̃ by Dougherty et al. [46, 47], and van Bakel [48]. The
failure of subject reduction was originally present in the early works and was investigated later on. The
systemM∩ of Dougherty et al. [47], equipped with subtyping, is closely related to the λµµ̃∩∪n and
λµµ̃∩∪−n systems presented in this paper when extended with subtyping (as shown in Section 4.5).
Intersection types were introduced to Parigot’s [49] classical natural deduction λµ-calculus by van
Bakel et al. [50] and further developed by de Liguoro [51] for the approximation theorem of the Λµ-
calculus, a variant of λµ-calculus. A translation of intersection and union types in λµ-calculus was
given by Kikuchi and Sakurai [52].

Non-idempotent intersection types in λ-calculus, wherein the type A is distinct from A ∩A, were
introduced by Bernadet and Lengrand [53] as a suitable way to prove termination directly instead
of employing the usual reducibility method. Kesner and Vial [54] then built on this approach in the
classical λµ-calculus.

More recent investigations of intersection types were done in the lambda calculus with records by
Bessai et al. [55] and in a polarized calculus by Tsukada and Nakazawa [56], among others, giving
good evidence that intersection and union types have been a perennial source of insight for theory and
practice for more than half a century.

9. Conclusion

We showed how duality helps bring out the expressiveness of intersection and union types, and how
discipline helps tame them. We looked at the connection between computation (the dynamic behavior
of a program) and typing (the static specification of a program) for implicit types like intersections
and unions, and how the harmony between these dynamic and static facets gives us a calculus with
desirable properties. The harmony is most resounding for the dual call-by-value and call-by-name dis-
ciplines, which achieve two perfectly dual typed calculi of intersection and union types, λµµ̃∩∪v and
λµµ̃∩∪n, which are sound, complete, and type safe. When considering the classical non-deterministic
calculus, we end up with two different type systems of interest: the full type system λµµ̃∩∪u which
is complete, and the simplified type system λµµ̃∩∪−u which is sound and type safe.

1050 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

Evaluation impacts the substitution principle of the calculus. In the same way, evaluation also
impacts implicit types like intersections and unions. In the setting of the sequent calculus, the disci-
plined type system can be expressed in a generic way, which is the same for every evaluation strategy,
by only depending on a (co)value restriction determined by that evaluation strategy. This (co)value re-
striction is essential for scaling up the foundational sequent or lambda calculus to a more full-fledged
programming language, in which there are both intersection and union types, as well as the potential
for computational effects like recursion and exceptions.

Acknowledgment We would like to thank the reviewers for detailed comments and suggestions.

References

[1] Downen P, Johnson-Freyd P, Ariola ZM. Uniform Strong Normalization for Multi-Discipline Calculi. In:
Rewriting Logic and its Applications. 2018 pp. 205–225. doi:10.1007/978-3-319-99840-4 12.

[2] Church A. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 1940. 5:56–68.
doi:10.2307/2266170.

[3] Barendregt H. Introduction to generalized type systems. Journal of Functional Programming, 1991.
1(2):125–154.

[4] Coppo M, Dezani-Ciancaglini M. A new type assignment for λ-terms. Arch. Math. Log., 1978. 19(1):139–
156. doi:10.1007/BF02011875.

[5] Pottinger G. A type assignment for the strongly normalizable λ-terms. In: Seldin JP, Hindley JR (eds.),
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 561–577. Academic
Press, London, 1980.

[6] Sallé P. Une extension de la théorie des types en lambda-calcul. In: Ausiello G, Böhm C (eds.), Fifth
International Conference on Automata, Languages and Programming, volume 62 of Lecture Notes in
Computer Science. Springer-Verlag, 1978 pp. 398–410.

[7] MacQueen DB, Plotkin GD, Sethi R. An Ideal Model for Recursive Polymorphic Types. Information and
Control, 1986. 71(1/2):95–130. doi:10.1016/S0019-9958(86)80019-5.

[8] Pierce BC. Programming with Intersection Types, Union Types, and Polymorphism. Technical Report
CMU-CS-91-106, Carnegie Mellon University, 1991.

[9] Barbanera F, Dezani-Ciancaglini M, de’Liguoro U. Intersection and Union Types: Syntax and Semantics.
Inf. Comput., 1995. 119(2):202–230. doi:10.1006/inco.1995.1086.

[10] Liquori L, Stolze C. Personal communication, 2019.

[11] Honsell F, Liquori L, Stolze C, Scagnetto I. The Delta-Framework. In: 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December
11-13, 2018, Ahmedabad, India. 2018 pp. 37:1–37:21. doi:10.4230/LIPIcs.FSTTCS.2018.37.

[12] Tofte M. Type Inference for Polymorphic References. Inf. Comput., 1990. 89(1):1–34. doi:10.1016/
0890-5401(90)90018-D.

[13] Harper R, Lillibridge M. ML with callcc is unsound. Message to the TYPES mailing list, July 1991.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1051

[14] Curien PL, Herbelin H. The duality of computation. In: Odersky M, Wadler P (eds.), Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal,
Canada, September 18-21, 2000. ACM. ISBN 1-58113-202-6, 2000 pp. 233–243. doi:10.1145/351240.
351262.

[15] Barbanera F, Berardi S. A Symmetric Lambda Calculus for “Classical” Program Extraction. In: Proceed-
ings of the International Conference on Theoretical Aspects of Computer Software, TACS ’94. Springer-
Verlag, London, UK, UK. ISBN 3-540-57887-0, 1994 pp. 495–515.

[16] Wadler P. Call-by-value is dual to call-by-name. SIGPLAN Notices, 2003. 38(9):189–201. doi:10.1145/
944746.944723.

[17] Downen P, Ariola ZM. A tutorial on computational classical logic and the sequent calculus. J. Funct.
Program., 2018. 28:e3. doi:10.1017/S0956796818000023.

[18] Downen P. Sequent Calculus: A Logic and a Language for Computation and Duality. Ph.D. thesis,
University of Oregon, 2017.

[19] Herbelin H, Zimmermann S. An Operational Account of Call-By-Value Minimal and Classical λ-Calculus
in “Natural Deduction” Form. In: Curien PL (ed.), Typed Lambda Calculi and Applications: 9th Interna-
tional Conference, TLCA 2009. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-02273-
9, 2009 pp. 142–156. doi:10.1007/978-3-642-02273-9 12.

[20] Carraro A, Guerrieri G. A Semantical and Operational Account of Call-by-Value Solvability. In: Founda-
tions of Software Science and Computation Structures - 17th International Conference, FOSSACS 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014, Proceedings. 2014 pp. 103–118. doi:10.1007/978-3-642-54830-7\ 7.

[21] Sabry A, Felleisen M. Reasoning About Programs in Continuation-Passing Style. Lisp and Symbolic
Computation, 1993. 6(3-4):289–360. doi:10.1007/BF01019462.

[22] Andreoli J. Logic Programming with Focusing Proofs in Linear Logic. J. Log. Comput., 1992. 2(3):297–
347. doi:10.1093/logcom/2.3.297.

[23] Laurent O. Étude de la polarisation en logique. Thèse de doctorat, Université de la Méditerranée - Aix-
Marseille II, 2002.

[24] Girard J. A New Constructive Logic: Classical Logic. Mathematical Structures in Computer Science,
1991. 1(3):255–296. doi:10.1017/S0960129500001328.

[25] Downen P, Ariola ZM. The Duality of Construction. In: Shao Z (ed.), Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings, volume 8410 of Lecture Notes in Computer Science. Springer. ISBN 978-3-642-54832-1,
2014 pp. 249–269. doi:10.1007/978-3-642-54833-8 14.

[26] Giannini P, Ronchi Della Rocca S. Characterization of typings in polymorphic type discipline. In:
Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh,
Scotland, UK, July 5-8, 1988. IEEE Computer Society. ISBN 0-8186-0853-6, 1988 pp. 61–70. doi:
10.1109/LICS.1988.5101.

[27] Urzyczyn P. Type Reconstruction in Fω . Mathematical Structures in Computer Science, 1997. 7(4):329–
358. doi:10.1017/S0960129597002302.

[28] Milner R. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci., 1978. 17(3):348–375.
doi:10.1016/0022-0000(78)90014-4.

1052 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

[29] Wright AK, Felleisen M. A Syntactic Approach to Type Soundness. Inf. Comput., 1994. 115(1):38–94.
doi:10.1006/inco.1994.1093.

[30] Johnson-Freyd P. Properties of Sequent-Calculus-Based Languages. Ph.D. thesis, University of Oregon,
2018.

[31] Urzyczyn P. The Emptiness Problem for Intersection Types. In: Proceedings of the Ninth Annual Sym-
posium on Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994. IEEE Computer Society.
ISBN 0-8186-6310-3, 1994 pp. 300–309. doi:10.1109/LICS.1994.316059.

[32] Bucciarelli A, Kesner D, Ronchi Della Rocca S. Inhabitation for Non-idempotent Intersection Types.
Logical Methods in Computer Science, 2018. 14(3). doi:10.23638/LMCS-14(3:7)2018.

[33] Barendregt HP, Coppo M, Dezani-Ciancaglini M. A filter lambda model and the completeness of type
assignment. Journal of Symbolic Logic, 1983. 48(4):931–940 (1984).

[34] Reynolds JC. Design of the Programming Language Forsythe. Report CMU–CS–96–146, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, 1996.

[35] Pierce BC. Intersection Types and Bounded Polymorphism. In: Bezem M, Groote JF (eds.), Typed
Lambda Calculi and Applications, International Conference on Typed Lambda Calculi and Applications,
TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings, volume 664 of Lecture Notes in
Computer Science. Springer. ISBN 3-540-56517-5, 1993 pp. 346–360. doi:10.1007/BFb0037117.

[36] Dunfield J, Pfenning F. Type Assignment for Intersections and Unions in Call-by-Value Languages. In:
Gordon AD (ed.), Foundations of Software Science and Computational Structures, 6th International Con-
ference, FOSSACS 2003 Held as Part of the Joint European Conference on Theory and Practice of Soft-
ware, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2620 of Lecture Notes in
Computer Science. Springer. ISBN 3-540-00897-7, 2003 pp. 250–266. doi:10.1007/3-540-36576-1\ 16.

[37] Dunfield J. Elaborating intersection and union types. In: Thiemann P, Findler RB (eds.), ACM SIGPLAN
International Conference on Functional Programming, ICFP’12, Copenhagen, Denmark, September 9-15,
2012. ACM. ISBN 978-1-4503-1054-3, 2012 pp. 17–28. doi:10.1145/2364527.2364534.

[38] Hindley JR. Coppo-Dezani Types do not Correspond to Propositional Logic. Theor. Comput. Sci., 1984.
28:235–236. doi:10.1016/0304-3975(83)90074-9.

[39] Lopez-Escobar EGK. Proof functional connectives. In: Di Prisco CA (ed.), Methods in Mathematical
Logic, volume 1130 of Lecture Notes in Mathematics. Springer-Verlag, 1985 p. 208–221.

[40] Mints G. The Completeness of Provable Realizability. Notre Dame Journal of Formal Logic, 1989.
30(3):420–441. doi:10.1305/ndjfl/1093635158.

[41] Barendregt HP, Dekkers W, Statman R. Lambda Calculus with Types. Perspectives in logic. Cambridge
University Press, 2013. ISBN 978-0-521-76614-2. URL http://www.cambridge.org/de/academic/

subjects/mathematics/logic-categories-and-sets/lambda-calculus-types.

[42] Dezani-Ciancaglini M, Ghilezan S, Venneri B. The ”Relevance” of Intersection and Union Types. Notre
Dame Journal of Formal Logic, 1997. 38(2):246–269. doi:10.1305/ndjfl/1039724889.

[43] Ronchi Della Rocca S, Roversi L. Intersection Logic. In: Fribourg L (ed.), Computer Science Logic,
15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, volume 2142 of Lecture
Notes in Computer Science. Springer, 2001 pp. 414–428. doi:10.1007/3-540-44802-0\ 29.

[44] Liquori L, Ronchi Della Rocca S. Intersection-types à la Church. Inf. Comput., 2007. 205(9):1371–1386.
doi:10.1016/j.ic.2007.03.005.

P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types 1053

[45] Herbelin H. C’est maitenant q’on calcul, au coer de la dualité. Habilitation. Habilitation à diriger les
reserches, Université Paris 11, 2005. URL http://pauillac.inria.fr/~herbelin/habilitation/

memoire.ps.

[46] Dougherty DJ, Ghilezan S, Lescanne P. Characterizing strong normalization in a language with control
operators. In: Moggi E, Warren DS (eds.), Proceedings of the 6th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, 24-26 August 2004, Verona, Italy. ACM.
ISBN 1-58113-819-9, 2004 pp. 155–166. doi:10.1145/1013963.1013982.

[47] Dougherty DJ, Ghilezan S, Lescanne P. Characterizing strong normalization in the Curien-Herbelin sym-
metric lambda calculus: Extending the Coppo-Dezani heritage. Theor. Comput. Sci., 2008. 398(1-3):114–
128. doi:10.1016/j.tcs.2008.01.022.

[48] van Bakel S. Completeness and partial soundness results for intersection and union typing for λµµ̃. Ann.
Pure Appl. Logic, 2010. 161(11):1400–1430. doi:10.1016/j.apal.2010.04.010.

[49] Parigot M. Strong Normalization for Second Order Classical Natural Deduction. In: Proceedings of the
Eighth Annual Symposium on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23,
1993. IEEE Computer Society. ISBN 0-8186-3140-6, 1993 pp. 39–46. doi:10.1109/LICS.1993.287602.

[50] van Bakel S, Barbanera F, de’Liguoro U. Intersection Types for the lambda-mu Calculus. Logical Methods
in Computer Science, 2018. 14(1). doi:10.23638/LMCS-14(1:2)2018.

[51] de’Liguoro U. The approximation theorem for the Λµ-calculus. Mathematical Structures in Computer
Science, 2017. 27(5):560–580. doi:10.1017/S0960129515000286.

[52] Kikuchi K, Sakurai T. A Translation of Intersection and Union Types for the λµ-Calculus. In: Gar-
rigue J (ed.), Programming Languages and Systems - 12th Asian Symposium, APLAS 2014, Singapore,
November 17-19, 2014, Proceedings, volume 8858 of Lecture Notes in Computer Science. Springer. ISBN
978-3-319-12735-4, 2014 pp. 120–139. doi:10.1007/978-3-319-12736-1\ 7.

[53] Bernadet A, Lengrand S. Non-idempotent intersection types and strong normalisation. Logical Methods
in Computer Science, 2013. 9(4). doi:10.2168/LMCS-9(4:3)2013.

[54] Kesner D, Vial P. Types as Resources for Classical Natural Deduction. Submitted, University Paris
Diderot, 2018.

[55] Bessai J, Chen T, Dudenhefner A, Düdder B, de’Liguoro U, Rehof J. Mixin Composition Synthesis based
on Intersection Types. CoRR, 2017. abs/1712.06906. 1712.06906.

[56] Tsukada T, Nakazawa K. Intersection and Union Type Assignment and Polarised λµµ̃. Draft, University
of Tokyo, 2018.

A. Binding and Substitution

The standard definition of free (FV) and bound (BV) variables and covariables for λµµ̃ are as follows:

FV (〈v || e〉) = FV (v) ∪ FV (e)

FV (x) = {x} FV (α) = {α}
FV (µα.c) = FV (c)− {α} FV (µ̃x.c) = FV (c)− {x}
FV (λx.v) = FV (v)− {x} FV (v · e) = FV (v) ∪ FV (e)

1054 P. Downen, Z.M. Ariola, S. Ghilezan / The Duality of Classical Intersection and Union Types

BV (〈v || e〉) = BV (v) ∪ BV (e)

BV (x) = {} BV (α) = {}
BV (µα.c) = BV (c) ∪ {α} BV (µ̃x.c) = BV (c) ∪ {x}
BV (λx.v) = BV (v) ∪ {x} BV (v · e) = BV (v) ∪ BV (e)

The standard definition of capture-avoiding substitution of terms for variables and coterms for covari-
ables is: 〈

v′
∣∣∣∣ e′〉 [v/x] =

〈
v′ [v/x]

∣∣∣∣ e′ [v/x]
〉

x [v/x] = v

y [v/x] = y (if x 6= y)

(µβ.c) [v/x] = µβ.(c [v/x]) (if β /∈ FV (v))

(λy.v′) [v/x] = λy.(v′ [v/x]) (if y /∈ FV (v), x 6= y)

β [v/x] = β

(µ̃y.c) [v/x] = µ̃y.(c [v/x]) (if y /∈ FV (v), x 6= y)

(v′ · e′) [v/x] = (v′ [v/x]) · (e′ [v/x])

〈
v′
∣∣∣∣ e′〉 [e/α] =

〈
v′ [e/α]

∣∣∣∣ e′ [e/α]
〉

x [e/α] = x

(µβ.c) [e/α] = µβ.(c [e/α]) (if β /∈ FV (e), α 6= β)

(λy.v′) [e/α] = λy.(v′ [e/x]) (if y /∈ FV (e))

α [e/α] = e

β [e/α] = β (if α 6= β)

(µ̃y.c) [e/α] = µ̃y.(c [e/α]) (if y /∈ FV (e))

(v′ · e′) [e/α] = (v′ [e/α]) · (e′ [e/α])

The standard definition of α-equivalence in the λµµ̃-calculus includes the following axioms:

µα.c = µβ.(c [β/α]) (if β /∈ FV (c))

µ̃x.c = µ̃y.(c [y/x]) (if y /∈ FV (c))

λx.v = λy.(v [y/x]) (if y /∈ FV (v))

along with rules for compatibility (i.e., for any context C, if v =α v
′ then C[v] =α C[v′], and similar

for coterms and commands).

