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Abstract6

The duality between “true” and “false” is a hallmark feature of logic. We show how this duality7

can be put to use in the theory and practice of programming languages and their implementations,8

too. Starting from a foundation of constructive logic as dialogues, we illustrate how it describes a9

symmetric language for computation, and survey several applications of the dualities found therein.10
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1 Introduction16

Mathematical logic, through the Curry-Howard correspondence [25], has undoubtably proved17

its usefulness in the theory of computation and programming languages. It gave us tools18

to reason effectively about the behavior of programs, and serves as the backbone for proof19

assistants that let us formally specify and verify program correctness. We’ve found that20

the same correspondence with logic provides a valuable inspiration for the implementation21

of programming languages, too. The entire computer industry is based on the difference22

between the ability to know something versus actually knowing it, and the fact that real23

resources are needed to go from one to the other. In other words, the cost of an answer is24

just as important as its correctness. Thankfully, logic provides solutions for both.25

We start with a story on the nature of “truth” (Section 2), and investigate different logical26

foundations with increasing nuance. The classical view of ultimate truth is quite different27

from constructive truth, embodied by intuitionistic logic, requiring that proofs be backed28

with evidence. However, the intuitionistic view of truth sadly discards many of the pleasant29

dualities of classical logic. Instead, we can preserve duality in constructivity by re-imagining30

logic not as a solitary exercise, but as a dialogue between two disagreeing characters: the31

optimistic Sage who argues in favor, and the doubtful Skeptic who argues against. Symmetry32

is restored—still backed by evidence—when both sides can enter the debate.33

This dialogic notion of constructive classical logic can be seen as a symmetric language34

for describing computation (Section 3). The Sage and Skeptic correspond to producers35

and consumers of information; their debate corresponds to interaction in a program. The36

two-sided viewpoint brings up many dualities that are otherwise hidden implicitly in today’s37

programming languages: questions versus answers, programs versus contexts, construction38

versus destruction, and so on. But more than this, the symmetric calculus allows us to39

express more types—and more relationships between them—than possible in the conventional40

programming languages used today.41

From there, we survey several applications of computational duality (Section 4) across42

both theoretical and practical concerns. The theory of the untyped λ-calculus can be43
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1:2 Duality in Action

improved by viewing functions as codata (Section 4.1). Duality can help us design and44

analyze different forms of loops found in programs and proofs (Section 4.2). Compilers use45

intermediate languages to help generate code and perform optimizations, and logic can be put46

to action at this middle stage in the life of a program (Section 4.3). To bring it all together, a47

general-purpose method based on orthogonality provides a framework for developing models48

of safety that let us prove that well-typed programs do what we want (Section 4.4).49

2 Logic as Dialogues50

One of the most iconic principles of classical logic is the law of the excluded middle, A ∨ ¬A:51

everything is either true or false. This principle conjures ideas of an omniscient notion of52

truth. That once all is said and done, every claim must fall within one of these two cases.53

While undoubtedly useful for proving theorems, the issue with the law of the excluded middle54

is that we as mortals are not omniscient: we cannot decide for everything, a priori, which55

case it is. As a consequence, reckless use of the excluded middle means that even if we know56

something must be true, we might not know exactly why it is true.57

Consider this classic proof about irrational power [20].58

▶ Theorem 1. There exist two irrational numbers, x and y, such that xy is rational.59

Proof. Since
√

2 is irrational, consider
√

2
√

2. This exponent is either rational or not.60

If
√

2
√

2 rational, then x = y =
√

2 are two irrational numbers (coincidentally the same)61

whose exponent is rational (by assumption).62

Otherwise,
√

2
√

2 must be irrational. In this case, observe that the exponent (
√

2
√

2)
√

2
63

simplifies down to just 2, because
√

22 = 2, like so: (
√

2
√

2)
√

2 =
√

2
√

22

=
√

22 = 2.64

Therefore, the two chosen irrational numbers are x =
√

2
√

2 and y =
√

2 whose exponent65

is the rational number 2. ◀66

On the one hand, this proof shows Theorem 1 is true in the sense that appropriate values67

for x and y cannot fail to exist. On the other hand, this proof fails to actually demonstrate68

which values of x and y satisfy the required conditions; it only presents two options without69

definitively concluding which one is correct. The root problem is in the assertion that the70

“exponent is either rational or not.” If we had an effective procedure to decide which of the71

two options is correct, we could simply choose the correct branch to pursue. But alas, we do72

not. Depending on an undecidable choice results in a failure to provide a concrete example73

verifying the truth of the theorem. Can we do better?74

2.1 Constructive truth75

In contrast to the proof of Theorem 1, constructive logic demands that proofs construct real76

evidence to back up the truth of a claim. The most popular constructive logic is intuitionistic77

logic, wherein a proposition A is only considered true when a proof produces specific evidence78

that verifies the truth of A [3, 24]. As such, the basic logical connectives are interpreted79

intuitionistically in terms of the shape of the evidence needed to verify them.80

Conjunction Evidence for A ∧B consists of both evidence for A and evidence for B.81

Disjunction Evidence for A ∨B can be either evidence for A or evidence for B.82

Existence Evidence for ∃x:D.P (x) consists of a specific example value n ∈ D (e.g., a concrete83

number when the domain of objects D is N) along with evidence for P (n).84
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Universal Evidence for ∀x:D.P (x) is an algorithm that, applied to any possible value n in85

the domain D, provides evidence for P (n).86

Negation Evidence for ¬A is a demonstration that evidence for A generates a contradiction.87

The most iconic form of evidence is for the existential quantifier ∃x:D.P (x). Intuitionist-88

ically, we must provide a real example for x such that P (x) holds. Instead, classically we are89

not obligated to provide any example, but only need to demonstrate that one cannot fail to90

exist, as in Theorem 1. This is why intuitionistic logic rejects the law of the excluded middle91

as a principle that holds uniformly for every proposition. Without knowing more about the92

details of A, we have no way to know how to construct evidence for A or for ¬A. But still,93

A ∨ ¬A is never false; intuitionistic logic admits there may be things not yet known.94

Intuitionistic logic is famous for its connection with computation, the λ-calculus, and95

functional programming [25]. Constructivity also gives us a more nuanced lens to study96

logics. For example, one way of understanding and comparing different logics is through97

the propositions they prove true. In this sense, intuitionistic and classical logic are different98

because classical logic accepts that A ∨ ¬A is true in general for any A, but intuitionistic99

logic does not. But this reduces logics to be merely nothing more than the set of their true100

propositions, irrespective of the reason why they are true. In a world in which we care about101

evidence, this reductive view ignores all evidence. Instead, we can go a step further to also102

compare the informational content of evidence provided by different logics.103

In this sense, intuitionistic logic does very well in describing why propositions are104

true, especially compared to classical logic. The evidence supporting the truth of different105

connectives (like conjunction and disjunction) and quantifiers (like existential and universal)106

are tailor-made to fit the situation. But the evidence demonstrating falsehood is another107

story. Indeed, intuitionistic logic does not speak directly about what it means to be false.108

Rather, it instead says indirectly that “not A is true,” i.e., ¬A. In this case, the evidence of109

falsehood is rather poor, and always cast in the same form as a hypothetical: truth would110

be contradictory. For example, concrete evidence that ∀x:N. x + 1 = 3 is false should be111

a specific counterexample for which the property fails; the same informational content as112

the evidence needed to prove ∃x:N.x + 1 = 3 is true. For example, choosing 2 for x leads113

to 2 + 1 = 3, which is obviously wrong. Yet, an intuitionistic proof of ¬∀x:N.x + 1 = 3 is114

under no such obligation to provide a specific counterexample, it only needs to show that a115

counterexample cannot fail to exist. The intuitionistic treatment of falsehood sounds awfully116

similar to the noncommittal vagueness of classical truth. Can we do better?117

2.2 Constructive dialogues118

The famous asymmetry of intuitionism is reflected by its biased treatment of the two basic119

truth values: it demands concretely constructed evidence of truth, but leaves falsehood as120

the mere shadow left behind from the absence of truth. This models the scenario of a solitary121

Sage building evidence to support a grand theorem. When the wise Sage delivers a claim we122

can be sure it is true—and verify the evidence for ourselves—but what if the Sage is silent?123

Is that passive evidence of falsehood, or just merely an artifact that work takes time? What124

is missing is a devil’s advocate to actively argue the other side.125

In reality, the uncharted frontier on the edge of current knowledge is occupied by126

contentious debate. Before something is fully known, there is a space where multiple people127

can honestly hold different, conflicting claims, even though they are all ultimately interested128

in discovering the same shared truth. There is no need to be confined to the isolated work129

of cloistered ivory towers. Instead, there can be a dialogue between disagreeing parties,130

FSCD 2021



1:4 Duality in Action

who influence one another and poke holes in questionable lines of reasoning. The search131

for truth is then found inside the dialogue of debate, of (at least) two sides exchanging132

probing questions and rebutting answers, where the victorious side defeats their opponent by133

eventually constructing the complete body of evidence that finally proves their position.134

To keep things simple, let’s assume the proposition A is under dispute by only two people:135

the Sage and the Skeptic. Whereas the Sage is optimistically trying to prove A is true, as136

before, the Skeptic is doubtful and asserts A is false. The dispute over A is resolved by the137

process of dialogue between the Sage and the Skeptic. But who is responsible for providing138

the first piece of evidence supporting their claim? Whoever has the burden of proof.139

A positive burden of proof is when the Sage must provide evidence supporting that A is140

true. The shape of evidence for A’s truth follows the shape of the disputed proposition A,141

and shares similarities with the evidence of truth for the same intuitionistic logical concepts.142

Conjunction Evidence for A⊗B is both evidence for A and evidence for B.143

Disjunction Evidence for A⊕B is either evidence for A or evidence for B.144

Existence Evidence for ∃x:D.P (x) is an example value n ∈ D along with evidence for P (n).145

Negation Evidence for ⊖A is the same as evidence against A.146

Notice that new symbols are used for the connectives, and the evidence for negation is147

completely different. Both changes are due to the fact that there are other logical concepts148

that demand evidence of falsehood, rather than truth. These involve a negative burden of149

proof, where the Skeptic must provide evidence supporting that A is false. Just like the150

positive burden of proof (and contrary to intuitionistic logic), the shape of the evidence151

against A depends on the shape of A.152

Conjunction Evidence against A & B is either evidence against A or evidence against B.153

Disjunction Evidence against A

&

B is both evidence against A and evidence against B.154

Universal Evidence against ∀x:D.P (x) is a counterexample value n ∈ D (e.g., a concrete155

number when D is N) along with evidence against P (n).156

Negation Evidence against ¬A is the same as evidence for A.157

Now we can see that the new symbols for conjunction and disjunction disambiguate158

between the positive and negative burdens of proof, which carry complementary forms of159

evidence. In contrast, the two quantifiers ∃ and ∀ are not duplicated, but rather arranged to160

prioritize “finite” evidence (one specific example or counter example in the domain) instead161

of “infinite” hypothetical evidence (a general algorithm for generating evidence based on162

any object in the domain). Furthermore, there are two different notions of negation, the163

positive ⊖A and negative ¬A, internalizing the duality between evidence for and against.164

The construction of evidence for or against each connectives is captured by these inference165

rules with two judgments: A true directly verifies A’s truth and A false directly refutes it.166

A true B true
A⊗B true

A true
A⊕B true

B true
A⊕B true

n ∈ D P (n) true
∃x:D.P (x) true

A false
⊖A true167

A false B false
A

&

B false
A false

A & B false
B false

A & B false
n ∈ D P (n) false
∀x:D.P (x) false

A true
¬A false168

169

What does the other party without the burden of proof do? While they can wait to170

rebut the specific evidence they are given, it may take a long time (perhaps forever) for that171

evidence to be constructed. And absence of evidence does not imply the evidence of absence.172

For example, the Skeptic may doubt a universal conjecture, but cannot come up with a173
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counterexample that shows it false yet; this alone does not prove the conjecture true. Instead,174

in the face of negative burden of proof, the Sage can prove truth with a hypothetical argument175

that no such evidence against exists: systematically consider all possible evidence for the176

falsehood of A and show that each one leads to a contradiction. Dually, the Skeptic—waiting177

for the positive burden of proof to be fulfilled—can prove falsehood by hypothetically refuting178

all evidence of truth, showing all possible evidence for the truth of A leads to a contradiction.179

These proofs by contradiction are captured by the following inference rules for a proposition180

A (having positive burden of truth) and B (having negative burden of proof) using a third181

and final judgment contra representing a logical contradiction.182

A true....
contra
A false

B false....
contra
B true183

184

We can now see that the evidence for ¬A’s truth hasn’t changed from Section 2.1. To185

show ¬A true via proof by contradiction, we assume evidence that ¬A is false—the same as186

assuming evidence A is true—and derive a contradiction. In contrast, ⊖A is entirely new.187

2.3 The duality of constructive evidence188

Viewing logic as a dialogue between an advocate and adversary—rather than just a lone189

advocate building constructions by themself—already improves the evidence of falsehood by190

giving the adversary a voice. Moreover, it improves some pleasant symmetries of truth with191

a more nuanced library of logical connectives expressing the full range of burden of proof.192

For example, consider the classical law of double-negation elimination, ¬¬A =⇒ A193

(where =⇒ stands for implication): if A cannot be untrue, then A is true. Intuitionists reject194

this law because the evidence for ¬¬A is much weaker than for A. For example, the evidence195

for ¬¬∃x:N.∃y:N. x2 = y is a hypothetical argument that only says that it is contradictory196

for ∃x:N.∃y:N. x2 = y to lead to a contradiction. In contrast, one example of direct evidence197

for ∃x:N.∃y:N. x2 = y is the witness that for x = 3 and y = 9, we have 32 = 9. One possible198

conclusion, taken by intuitionists, is that double-negation elimination is just incompatible199

with constructive evidence. But another conclusion is that the wrong negation has been200

used. Instead, consider the shape evidence for ⊖¬∃x:N.∃y:N. x2 = y given by the more201

refined, dual definitions of ⊖ and ¬ in Section 2.2: evidence proving ⊖¬∃x:N.∃y:N. x2 = y202

true consists of evidence proving ¬∃x:N.∃y:N. x2 = y false, which in turn is the same as just203

evidence proving ∃x:N.∃y:N. x2 = y true. So while ¬¬A =⇒ A for a generic A might not204

be considered constructive, ⊖¬A =⇒ A definitively is.205

More generally, we can look at how negation interacts with the other logical connectives.206

In classical logic, the de Morgan laws describe how negation distributes over dual connectives,207

converting between conjunction (∧) and disjunction (∨) as well as existential (∃) and universal208

(∀) quantifiers, like so (where ⇐⇒ means “if and only if”):209

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B) ¬(∃x:D.P (x)) ⇐⇒ ∀x:D.¬P (x)210

¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B) ¬(∀x:D.P (x)) ⇐⇒ ∃x:D.¬P (x)211
212

However, not all of these laws hold intuitionistically. In particular, ¬(A∧B) ≠⇒ (¬A)∨(¬B)213

because knowing that the combination of A and B is contradictory is not enough to show214

definitively which of A or B are contradictory. Likewise, ¬(∀x:D.P (x)) ≠⇒ ∃x:D.¬P (x)215

because, as we have seen before, knowing that it is contradictory for P (x) to be universally216

true does not point out the specific element of D where P fails.217

FSCD 2021



1:6 Duality in Action

Figure 1 Law of excluded middle A⊕ ¬A as a miraculous feat of time travel.

Figure 2 Law of excluded middle A

&

¬A as a mundane contradiction of falsehood.

Again, this problem with the asymmetry of the De Morgan laws can be seen as the218

classical logician being too vague about the burden of proof in their connectives. Rephrasing,219

we get the following symmetric versions of the De Morgan laws in terms of ¬ and ⊖ that are220

nonetheless constructive:221

¬(A⊕B) ⇐⇒ (¬A) & (¬B) ⊖(A & B) ⇐⇒ (⊖A)⊕ (⊖B)222

¬(A⊗B) ⇐⇒ (¬A) &(¬B) ⊖(A &

B) ⇐⇒ (⊖A)⊗ (⊖B)223

¬(∃x:D.P (x)) ⇐⇒ ∀x:D.¬P (x) ⊖(∀x:D.P (x)) ⇐⇒ ∃x:D.⊖ P (x)224
225

Note the new meanings of the previously offensive directions. On the one hand, evidence for226

⊖(A & B) consists of evidence against A & B that boils down to either evidence against A or227

evidence against B; exactly the same as the evidence for (⊖A)⊕ (⊖B). On the other hand,228

evidence against ¬(A ⊗ B) is the same as evidence for A ⊗ B which consists of evidence229

for both A and B simultaneously; exactly the same as the evidence against (¬A) &(¬B).230

Similarly, evidence for ⊖(∀x:D.P (x)) is a specific counterexample n in D such that P (n) is231

false, which is exactly the same evidence needed to prove ∃x:D.⊖ P (x) true.232

Finally, let’s return to the troublesome law of the excluded middle, A∨¬A that we started233

with. Now equipped with two different versions of disjunction, we can understand this law234

constructively in two very different ways. The first understanding is based on the connection235

of classical logic with control [23], which represents the excluded middle as the seemingly236

impossible choice A⊕¬A. This proposition is true through a cunning act of bait and switch237

as shown in Figure 1. First, the Sage (in the blue academic square cap) baselessly asserts238

that ¬A is true hoping that this is ignored. Later the Skeptic (in the Sherlock Holmesian239

brown deerstalker) can call the Sage’s bluff by providing evidence that A is in fact true.240

In response, the Sage miraculously turns back the clock and changes their claim, instead241

asserting that A is true by using the Skeptic’s own evidence against them. Now, the use of242
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time travel to change answers might seem a bit excessive, but luckily there is a much more243

mundane understanding based on the more modest A

&

¬A. This proposition is true, almost244

trivially, as a basic contradiction shown in Figure 2, based on the fact that evidence for A245

is identical to evidence against ¬A. Here, the Sage merely asserts that A cannot be both246

true and false at the same time, to which the Skeptic has no retort. Thus, restoring the247

balance between true and false does a better job of explaining the constructive evidence of248

both classical and intuitionistic logic.249

3 Computing with Duality250

What does a calculus for writing logical dialogues look like? In order to prepare for repres-251

enting hypothetical arguments, we will use a logical device called a sequent written:252

A1, A2, . . . , An ⊢ B1, B2, . . . , Bm253
254

that groups together multiple propositions into a single package revolving around a central255

entailment denoted by the turnstyle (⊢). This sequent can be read as “if A1, A2, . . . , An256

are all true, then something among B1, B2, . . . , Bm must be true,” or more simply “the257

conjunction of the left (A1, . . . , An) implies the disjunction of the right (B1, . . . , Bm).” In258

order to understand the practical meaning of the compound sequent, it can help to look at259

special cases where it contains at most one proposition, forcing either the left or the right260

side of entailment to be empty (denoted by •).261

True The sequent • ⊢ A means that A is true. The assumption is trivial because the262

conjunction of nothing is true (asserting everything in an empty set passes some test is a263

vacuously true statement). Since A is the only option on the right, A must be true.264

False The sequent A ⊢ • means that A is false. The conclusion is impossible because the265

disjunction of nothing is false (asserting that a true element is found among an empty set266

is immediately false). Since assuming A is true implies falsehood, A must be false.267

Contradiction The sequent • ⊢ • denotes a contradiction. Following the reasoning above,268

• ⊢ • means “true implies false,” which is just plainly impossible.269

Thus far, this is just rephrasing the basic judgments we had discussed in Section 2.2270

(therein written A true, A false, and contra, respectively). What is more interesting is271

how these forms of logical judgments can be reinterpreted as analogous forms of expressions272

in a calculus for representing computation as interaction.273

Production The typing judgment • ⊢ v : A | means that the term v produces information of274

type A. By analogy with Section 2.2, v represents the Sage who is trying to prove that A275

is true, and the value returned by v represents the evidence (of type A) that verifies the276

veracity of their claim.277

Consumption The typing judgment | e : A ⊢ • means that the coterm (a.k.a continuation) e278

consumes information of type A. The coterm e is analogous to the Skeptic who is trying279

to prove that A is false. In this sense, the covalue returned by e represents the evidence280

of a counter argument (of type A), which refutes values of type A.281

Computation The typing judgment c : (• ⊢ •) means that the command c is an executable282

statement. Commands are the computational unit of the language where all reductions283

happen; each step of reduction corresponds to the back-and-forth dialogue between the284

Sage and the Skeptic. The fundamental form of commands is an interaction ⟨v||e⟩ between285

a term v and a coterm e. The command ⟨v||e⟩ means that the value returned by v is286

given to e as input, or dually the covalue constructed by e inspects v’s output.287
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1:8 Duality in Action

Note that, whereas terms • ⊢ v : A | produce output (i.e., provide answers) and coterms288

| e : A ⊢ • consume input (i.e., ask questions), the command c : (• ⊢ •) does not produce or289

consume anything itself, and acts as an isolated computation. To interact with a command,290

it is necessary to provide for free variables x which stand for places to read inputs and free291

covariables α standing for places to send outputs. Open commands with free (co)variables292

have the more general typing judgment293

c : (x1 : A1, x2 : A2, . . . , xn : An ⊢ α1 : B1, α2 : B2, . . . , αm : Bm)294
295

As shorthand, we use Γ to denote a list of inputs x1 : A1, . . . , xn : An and ∆ to denote a list296

of outputs α1 : B1, . . . , αm : Bm. Similar to open commands of type c : (Γ ⊢ ∆), we also297

have open terms Γ ⊢ v : A | ∆ and open coterms Γ | e : A ⊢ ∆ which might also use free298

(co)variables in Γ and ∆. Reference to these free (co)variables looks like this:1299

Γ, x : A ⊢ x : A | ∆ V arR Γ | α : A ⊢ α : A, ∆ V arL
300
301

As another example, the typing rule for safe interactions in a command ⟨v||e⟩ corresponds to302

the Cut rule, which only connects together a producer and consumer that agree on a shared303

type A of information being exchanged:304

Γ ⊢ v : A | ∆ Γ | e : A ⊢ ∆
⟨v||e⟩ : (Γ ⊢ ∆) Cut

305
306

The exciting part of this language is the way it renders the many dualities in logic directly307

in its syntax. We know that true is dual to false, and for the same reason things on the left308

of a sequent (i.e., to the left of ⊢) are dual to things on the right. In this sense, the turnstyle309

⊢ serves as an axis of duality in logic. The same axis exists in the form of commands ⟨v||e⟩,310

where the left and right components are dual to one another. The most direct way to see this311

duality is in the exchange of answers and questions between the two sides of a command.312

⟨v||e⟩

Answers

Questions

313

314

However, there are many other dualities besides the answer-question dichotomy to explore315

along this same axis. While we imagine that information flows left-to-right, it turns out316

that control flows right-to-left. There is the construction-destruction dynamic between317

the creation of concrete evidence and the inspection of it, which can be arranged in either318

direction. Likewise, abstraction over types and hidden information gives rise to dual notions of319

generics (à la parametric polymorphism in functional languages and Java generics) which hide320

information in the consumer/client and modules (à la the SML module system) which hide321

information in the producer/server. So now let’s consider how each of these computational322

dualities manifest themselves in the logical foundation of this language.323

3.1 Positive burden of proof as data324

In the constructive dialogues of Section 2.2, consider the case where the Sage has the positive325

burden of truth, and is responsible for constructing a concrete piece of evidence that backs up326

1 The rules are named with an R and L because their conclusion below the horizontal line of inference
introduces a new term on the Right of the turnstyle (⊢) and a new coterm on the Left, respectively.
This naming convention comes from the sequent calculus, which we will follow throughout the paper.
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their claim that some proposition is true. The shape of the Sage’s evidence depends on the327

proposition in question, and will contain enough information to fully justify truth in a way328

the Skeptic can examine. In computational terms, constructing this positive form of evidence329

corresponds to constructing values of a data type. In this sense, the Sage constructing330

evidence of A’s truth is analogous to a producer v which constructs a value of type A.331

For example, consider the basic cases for positive evidence of conjunction (A⊗B) and332

disjunction (A⊕B). The evidence of the conjunction A⊗B is made up of a combination of333

evidence v of A along with evidence w of B. In other words, it is a pair (v, w) of the tuple334

type A⊗B. In contrast, the evidence of the disjunction A⊕B is a choice of either evidence335

v for A or evidence w for B. In other words, it is one of the two tagged values ι1v or ι2w of336

the sum type A⊕B. These constructions are captured by the following typing rules, which337

resemble the inference rules for A⊗B true and A⊕B true in Section 2.2:338

Γ ⊢ v : A | ∆ Γ ⊢ w : B | ∆
Γ ⊢ (v, w) : A⊗B | ∆ ⊗R

Γ ⊢ v : A | ∆
Γ ⊢ ι1v : A⊕B | ∆ ⊕R1

Γ ⊢ w : B | ∆
Γ ⊢ ι2w : A⊕B | ∆ ⊕R2

339
340

How, then, might the Skeptic respond to the evidence contained in these values? In341

general, the Skeptic is only obligated to show that evidence following these rules cannot342

be constructed, because their existence would lead to a contradiction. This corresponds343

to pattern matching or deconstructing on the shape of all possible values of a data type.344

A rebuttal of A ⊗ B is a process demonstrating a contradiction c given any generic pair345

(x, y) : A⊗B, i.e., in the context of two generic values x : A and y : B. Similarly, a rebuttal346

of A⊕B is a process that demonstrates two different contradictions: c1 which responds to a347

tagged value ι1x : A⊕B (i.e., in the context of a generic value x : A) and c2 which responds348

to a tagged value ι2y : A⊕B (i.e., in the context of y : B). The two rebuttals are captured349

by the deconstructing consumers µ̃(x, y).c and µ̃[ι1x.c1 | ι2y.c2] given by these typing rules:350

c : (Γ, x : A, y : B ⊢ ∆)
Γ | µ̃(x, y).c : A⊗B ⊢ ∆ ⊗L

c1 : (Γ, x : A ⊢ ∆) c2 : (Γ, y : B ⊢ ∆)
Γ | µ̃[ι1x.c1 | ι2y.c2] : A⊕B ⊢ ∆ ⊕L

351
352

Although more intricate, the evidence for or against an existential follows this same353

pattern of constructing values in the term and deconstructing them in the coterm. For354

simplicity, assume that the quantifiers’ domain ranges over other types. ∃X.B describes355

values of type B, which might reference a hidden type X. This kind of information hiding356

corresponds to modules in a program where the code implementing the module is written357

with full knowledge of a specific type X, but the client code using the module does not know358

which type was used for X. To be explicit about the module’s hidden choice for X, we can359

use the (Sage’s) constructor form (A, v) which means to produce the value v whose type360

depends on A. The client (Skeptic) side can unpack a generic value (evidence) of the form361

(X, y) to run a command (demonstrate a contradiction), which looks like µ̃(X, y).c. This362

pair of construction-deconstruction looks like:2363

Γ ⊢ v : B{A/x} | ∆
Γ ⊢ (A, v) : ∃X.B | ∆ ∃R

c : (Γ, y : B ⊢ ∆) X /∈ FV (Γ ⊢ ∆)
Γ | µ̃(X, y).c : ∃X.B ⊢ ∆ ∃L

364
365

2 The ∃L rule has the additional side condition X /∈ F V (Γ ⊢ ∆), meaning the type variable X is not
found among the free variables of environments Γ and ∆. The side condition makes sure that X stands
for a truly generic type parameter, which would be ruined if Γ and ∆ constrained X with additional
assumptions about it. Similar side conditions weren’t needed in ⊗L and ⊕L because ordinary variables
x, y cannot be referenced by types in Γ and ∆ without dependent types. Alternatively, we could have
also introduced yet another environment Θ = X, Y, Z, . . . for keeping track of the free type variables in
the sequent, as is often done in the type systems in polymorphic languages like System F [22].
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3.2 Negative burden of proof as codata366

If the positive burden of truth corresponds to constructing values of a data type, then what367

is the computational interpretation of the negative burden of proof? Applying syntactic368

duality of our symmetric calculus—that is, flipping the roles of producers v and consumers e369

in the command ⟨v||e⟩ to get the analogue of ⟨e||v⟩—leaves us only one answer: constructing370

covalues of a codata type, which are defined in terms of observations rather than values. This371

corresponds to the evidence constructed by the Skeptic within a negative burden of proof,372

which has a different shape depending on the proposition A being argued against. Thus, the373

Skeptic’s evidence can be represented by a consumer e of type A.374

Consider the basic cases for negative evidence against conjunctions (A & B) and disjunc-375

tions (A &

B). Contrary to before, the evidence against a conjunction comes in one of two376

forms: either evidence e against A or evidence f against B. In other words, it is a first377

projection π1e or second projection π2f out of a product type A & B. The evidence against378

a disjunction instead has just one form, containing both evidence e against A and evidence379

against B. Taken together, this is a pair [e, f ]—dual to a tuple of values—of the type A

&

B.380

These constructions of consumers are captured by the following typing rules, which resemble381

the inference rules for A & B false and A

&

B false from Section 2.2:382

Γ | e : A ⊢ ∆
Γ | π1e : A & B ⊢ ∆ &L1

Γ | f : B ⊢ ∆
Γ | π2f : A & B ⊢ ∆ &L2

Γ | e : A ⊢ ∆ Γ | f : B ⊢ ∆
Γ | [e, f ] : A

&

B ⊢ ∆

&

L
383
384

If the Skeptic is now constructing concrete evidence, then the Sage must be the one385

responding to it in some way. This proof of truth involves arguing that the Skeptic cannot386

possibly argue against the proposition: every potential piece of negative evidence that might387

be constructed leads to a contradiction. The computational interpretation of the Sage’s388

response corresponds to an object that defines a reaction to every possible observation on it,389

which can be written via copattern matching [1] which deconstructs the shape of its observer.390

A rebuttal in favor of A & B is a process that demonstrates two different contradictions:391

c1 which responds to a generic first projection π1α : A & B, and c2 which responds to a392

generic second projection π2β : A & B. Instead, a rebuttal in favor of A

&

B responds with393

just one contradiction c, given a generic [α, β] : A

&

B that combines both pieces of negative394

evidence (α against A and β against B). The two rebuttals in favor of A & B and A

&

B are395

captured by the copattern-matching producers µ(π1α.c1 | π2β.c2) and µ[α, β].c, respectively,396

given by these two typing rules:397

c1 : (Γ ⊢ α : A, ∆) c2 : (Γ ⊢ β : B, ∆)
Γ ⊢ µ(π1α.c1 | π2β.c2) : A & B | ∆ &R

c : (Γ ⊢ α : A, β : B, ∆)
Γ ⊢ µ[α, β].c : A

&

B | ∆

&

R
398
399

Universal quantification can be derived mechanically as the dual of existential quanti-400

fication, where the roles of information hiding have been flipped between the implementor401

and client. With the polymorphic type ∀X.B—describing values of type B that are generic402

in type X—it is now the clients using values of type ∀X.B that get to choose X. For403

example, consider the polymorphic function ∀X.X → X: the callers of this function get to404

choose the specific type for X—it could be integers, booleans, lists, etc.—before passing an405

argument of that type to receive a returned value of the same type. The implementor which406

produces a value of type ∀X.B must instead be generic in X: it cannot know which X was407

chosen because different clients might all choose different specializations for X. Thus, the408

implementation (Sage) side can unpack a generic covalue (evidence) of the form [X, β] to409

run a command (demonstrate a contradiction), which looks like µ[X, β].c corresponding to410
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System F’s ΛX.v [22]. These (de)constructors follow rules dual to ∃R and ∃L:411

Γ | e : B{A/X} ⊢ ∆
Γ | [A, e] : ∀X.B ⊢ ∆ ∀L

c : (Γ ⊢ β : B, ∆) X /∈ FV (Γ ⊢ ∆)
Γ ⊢ µ[A, β].c : ∀X.B | ∆ ∀R

412
413

3.3 The two dual negations414

Now that we have introduced the computational content of both the positive and negative415

burden of proof, we can finally examine the nature of negation which reverses these two roles.416

In Section 2.2, we had two different forms of negation: ⊖A is described by positive evidence417

in favor of it, whereas ¬A is described by negative evidence against it. Following our analogy,418

⊖A corresponds to a data type: the Sage’s evidence in favor of ⊖A, written (e), contains419

specific evidence e against A. The Skeptic then responds by showing why any construction420

of the form (α) : ⊖A leads to a contradiction c, as expressed by these typing rules:421

Γ | e : A ⊢ ∆
Γ ⊢ (e) : ⊖A | ∆ ⊖R

c : (Γ ⊢ α : A, ∆)
Γ | µ̃(α).c : ⊖A ⊢ ∆ ⊖L

422
423

The other negation ¬A is its dual codata type: the Skeptic’s evidence against ¬A, written [v],424

contains specific evidence v in favor (i.e., producing a value) of A. The Sage then responds425

by showing why any construction of the form [x] : ¬A leads to a contradiction c, as in:426

Γ ⊢ v : A | ∆
Γ | [v] : ¬A ⊢ ∆ ¬L

c : (Γ, x : A ⊢ ∆)
Γ ⊢ µ[x].c : ¬A | ∆ ¬R

427
428

3.4 Proof by contradiction as control429

We have talked about many different indirect proofs and (co)terms: those that show how430

potential constructions lead to a contradiction (i.e., command), rather than giving a concrete431

construction itself. These include all the coterms which pattern-match on specific values of432

data types, as well as all the terms which copattern-match on the specific covalues of codata433

types. But in practical programming languages, we aren’t forced to always match on the434

shape of a value. We can also just give any value a name, as in the expression let z = v in w435

found in many functional languages. What does this look like in our symmetric language?436

We could generalize coterms like µ̃(x, y).c to just the generic µ̃z.c which names their input437

before running a command c (just like let z = v in w names v before running w). The dual438

of the generic µ̃ is a generic µ: the term µα.c names its output before running a command439

c.3 The typing rules for these two dual abstractions correspond to the two forms of proof by440

contradiction from Section 2.2: if assuming A true leads to a contradiction, then A false;441

and dually if assuming A false leads to a contradiction, then A true.442

c : (Γ, x : A ⊢ ∆)
Γ | µ̃x.c : A ⊢ ∆ ActL

c : (Γ ⊢ α : A, ∆)
Γ ⊢ µα.c : A | ∆ ActR

443
444

Notice how these two rules can be seen as simplifications of matching rules on the left (⊗L,445

⊕L, ∃L) and right (&R, &

R, ∀R) to not depend on the structure of the abstracted type.446

Although generic µ and µ̃ might seem innocuous, they can have a serious impact on447

computational power. Whereas µ̃ corresponds to the pervasive (and relatively innocent)448

3 The term µα.c gets the simpler name because it came first in Parigot’s λµ-calculus [31] for classical
logic. The dual coterm µ̃x.c was derived after in the sequent calculus [4] for call-by-value computation.
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feature of value-naming as expressed by basic let-bindings, µ corresponds to a notion of449

control effect equivalent to Scheme’s call/cc operator [7]. In terms of a logic, µ can also450

increase the propositions that can be proven true.451

For example, consider the two different interpretations of the law of the excluded middle452

from Section 2.3. The negative version, A

&

¬A corresponds to the term µ[α, [x]].⟨x||α⟩453

written in terms of nested copatterns. Intuitively, this term is isomorphic to the identity454

function, λx.x : A→ A, and it’s typing derivation (i.e., proof) is given like so:455

x : A ⊢ x : A | α : A, β : ¬A
V arR

x : A | α : A ⊢ α : A, β : ¬A
V arL

⟨x||α⟩ : (x : A ⊢ α : A, β : ¬A) Cut

⊢ µ[x].⟨x||α⟩ : ¬A | α : A, β : ¬A
¬R | β : ¬A ⊢ α : A, β : ¬A

V arL

⟨µ[x].⟨x||α⟩||β⟩ : (⊢ α : A, β : ¬A) Cut

⊢ µ[α, β].⟨µ[x].⟨x||α⟩||β⟩ : A

&

¬A |

&

R
456
457

Notice how—in addition to the core Cut and V ar rules—we only use the type-specific458

matching rules for &and ¬ here. There is no need to resort to the generic ActR or ActL.459

In contrast, the positive law of the excluded middle, A⊕ ¬A, corresponds to the term460

µα.⟨ι2µ[x].⟨ι1x||α⟩||α⟩. Notice the use of the generic µα . . . , requiring the ActR rule in its461

typing derivation (omitting the names for V ar and Cut rules):462

x : A ⊢ x : A | α : A⊕ ¬A

x : A ⊢ ι1x : A⊕ ¬A | α : A⊕ ¬A
⊕R1

x : A | α : A⊕ ¬A ⊢ α : A⊕ ¬A

⟨ι1x||α⟩ : (x : A ⊢ α : A⊕ ¬A)
⊢ µ[x].⟨ι1x||α⟩ : ¬A | α : A⊕ ¬A

¬R

⊢ ι2µ[x].⟨ι1x||α⟩ : A⊕ ¬A | α : A⊕ ¬A
⊕R2 | α : A⊕ ¬A ⊢ α : A⊕ ¬A

⟨ι2µ[x].⟨ι1x||α⟩||α⟩ : (⊢ α : A⊕ ¬A)
⊢ µα.⟨ι2µ[x].⟨ι1x||α⟩||α⟩ : A⊕ ¬A | ActR

463
464

Whereas A

&

¬A is like the simple identity function, the term of type A⊕¬A invokes a serious465

manipulation of control flow. Intuitively, this term corresponds to the Scheme expression:466

(call/cc (lambda (alpha)467

(cons 2 (lambda (x) (alpha (cons 1 x)))))))468

Here, the “time travel” needed to implement the positive law of the excluded middle469

is expressed by the control operator call/cc. Before doing anything else, the current470

continuation is saved (in alpha), just in case we need to change our answer. Then, we471

first return the second option (represented by a numerically-labeled cons-cell (cons 2 ...))472

containing a function. If that function is ever called with a value x of type A, then we invoke473

the continuation alpha which rolls back the clock and lets us change our answer to the first474

option (cons 1 x): deftly giving back the value we were just given.475

3.5 A symmetric system of computation476

Thus far, we have only discussed how to build objects (producers and consumers) following477

this two-sided method of interaction. That alone does not tell us how to compute; we also478

need to know how the interaction unfolds over time.479

One of the simplest ways of viewing the computation of interaction is through the axioms480

which characterize the equality of expressions. These axioms, given in Figure 3, come in two481
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(β⊗) ⟨(v, w)||µ̃(x, y).c⟩ = ⟨v||µ̃x.⟨w||µ̃y.c⟩⟩ (η⊗) µ̃(x, y).⟨(x, y)||α⟩ = α (α : A⊗B)
(β⊕) ⟨ιiv||µ̃[ιixi.ci]⟩ = ⟨v||µ̃xi.ci⟩ (η⊕) µ̃[ιixi.⟨ιixi||α⟩] = α (α : A⊕B)
(β∃) ⟨(A, v)||µ̃(X, y).c⟩ = ⟨v||µ̃y.c{A/X}⟩ (η∃) µ̃(X, y).⟨(X, y)||α⟩ = α (α : ∃X.B)
(β⊖) ⟨(e)||µ̃(α).c⟩ = ⟨µα.c||e⟩ (η⊖) µ̃(β).⟨(β)||α⟩ = α (α : ⊖A)
(β&) ⟨µ(πiαi.ci)||πie⟩ = ⟨µαi.ci||e⟩ (η&) µ(πiαi.⟨x||πiαi⟩) = x (x : A & B)
(β &) ⟨µ[α, β].c||[e, f ]⟩ = ⟨µα.⟨µβ.c||f⟩||e⟩ (η &) µ[α, β].⟨x||[α, β]⟩ = x (x : A

&

B)
(β∀) ⟨µ[X, β].c||[A, e]⟩ = ⟨µβ.c{A/x}||e⟩ (η∀) µ[X, β].⟨x||[X, β]⟩ = x (x : ∀X.B)
(β¬) ⟨µ[x].c||[v]⟩ = ⟨v||µ̃x.c⟩ (η¬) µ[y].⟨x||[y]⟩ = x (x : ¬A)

Plus compatibility, symmetry, reflexivity, and transitivity.

Figure 3 Equational reasoning for (co)pattern matching in the dual core sequent calculus.

Call-by-value definition of values (V+) and covalues (E+):

Value+ ∋ V+, W+ ::= x | (V+, W+) | ι1V+ | ι2V+ | (A, V+) | (E+)
| µ(π1α.c1 | π2β.c2) | µ[α, β].c | µ[X, β].c | µ[x].c

CoValue+ ∋ E+, F+ ::= e

Call-by-name definition of values (V−) and covalues (E−):

Value− ∋ V−, W− ::= v

CoValue− ∋ E−, F− ::= α | [E−, F−] | π1E− | π2E− | [A, E−] | [V−]
| µ̃[ι1x.c1 | ι2y.c2] | µ̃[x, y].c | µ̃(X, y).c | µ̃(α).c

Reduction rules for call-by-value (s = +) and call-by-name (s = −) evaluation.

(βs
⊗) ⟨(Vs, Ws)||µ̃(x, y).c⟩ 7→ c{Vs/x, Ws/y} (ςs

⊗) ⟨(v, w)||Es⟩ 7→ ⟨v||µ̃x.⟨w||µ̃y.⟨(x, y)||Es⟩⟩⟩
(βs

⊕) ⟨ιiVs||µ̃[ιixi.ci]⟩ 7→ ci{Vs/xi} (ςs
⊕) ⟨ιiv||Es⟩ 7→ ⟨v||µ̃x.⟨ιix||Es⟩⟩

(βs
∃) ⟨(A, Vs)||µ̃(X, y).c⟩ 7→ c{A/X, Vs/y} (ςs

∃) ⟨(A, v)||Es⟩ 7→ ⟨v||µ̃x.⟨(A, x)||Es⟩⟩
(βs

⊖) ⟨(Es)||µ̃(α).c⟩ 7→ c{Es/α} (ςs
⊖) ⟨(e)||Es⟩ 7→ ⟨µα.⟨(α)||Es⟩||e⟩

(βs
&) ⟨µ(πiαi.ci)||πiEs⟩ 7→ ci{Es/αi} (ςs

&) ⟨Vs||πie⟩ 7→ ⟨µα.⟨Vs||πiα⟩||e⟩
(βs &) ⟨µ[α, β].c||[Es, Fs]⟩ 7→ c{Es/α, Fs/β} (ςs &) ⟨Vs||[e, f ]⟩ 7→ ⟨µα.⟨µβ.⟨Vs||[α, β]⟩||f⟩||e⟩
(βs

∀) ⟨µ[X, β].c||[A, Es]⟩ 7→ c{A/x, Es/β} (ςs
∀) ⟨Vs||[A, e]⟩ 7→ ⟨µα.⟨Vs||[A, α]⟩||e⟩

(βs
¬) ⟨µ[x].c||[Vs]⟩ 7→ c{Vs/x} (ςs

¬) ⟨Vs||[v]⟩ 7→ ⟨v||µ̃x.⟨Vs||[x]⟩⟩

In each of the ςs rules, assume that (v, w), ιiv, (A, v), and (e) are not in Values,
respectively, and πie, [e, f ], [A, e], and [v] are not in CoValues, respectively.

Figure 4 Operational semantics for (co)pattern matching in the dual core sequent calculus.
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main forms. The β family of laws say what happens when a matching term and coterm of a482

type meet up in a command. For example, when the tuple construction (v, w) meets up with483

a tuple deconstruction µ̃(x, y).c, the interaction can be simplified with β⊗ by matching the484

structure of (v, w) with the pattern (x, y), and bind v to x and w to y (with the help of the485

generic µ̃). When there is a choice like in the sum type A⊕B, then the appropriate response486

is selected by β⊕. When the right construction ι2v meets up with the sum deconstruction487

µ̃[ι1x.c1 | ι2y.c2], then the result is c2 with v bound to y from the matching pattern ι2y. The488

same kind of matching happens for the codata types, but with the roles reversed. Instead, it489

is the coterm side that is constructed, like the second projection π2e of a product type A & B,490

and the term side selects a response, like the term µ(π1α.c1 | π2β.c2) which matches with491

π2e by binding e to β and running c2 as per β&. Note that the β rules for both negations492

(⊖ and ¬) end up swapping the two sides of a command.493

The other family of laws are the η axioms, which give us a notion of extensionality. In494

each case, the η axioms say that deconstructing a structure and reconstructing it exactly495

as it was before does nothing. The side where this simplification applies depends on the496

type of the structure in question. For data types, the consumer does the deconstructing,497

so the η⊗, η⊕, η∃, and η⊖ axioms apply to a generic unknown coterm—represented by498

the covariable α—waiting to receive its input. Whereas for codata types, the producer499

does the deconstructing, so the η&, η &, η∀, and η¬ axioms apply to a generic unknown500

term—represented by the variable x—waiting to receive an output request.501

But equational axioms are quite a far way from a real implementation in a machine.502

They give the ultimate freedom of choice on where the rules can apply (in any context,503

due to compatibility) and in which direction (due to symmetry). In reality, a machine504

implementation will make a (deterministic) choice on the next step to take, and always505

move forward. This is modeled by the operational semantics given in Figure 4, where each506

step c 7→ c′ applies exactly to the top of the command itself. The happy coincidence of a507

dual calculus based on the sequent calculus is that its operational semantics is an abstract508

machine [10], since there is never a search for the next redex which is always found at the509

top. Thus, this style of calculus is a good framework for studying the low-level details of510

computation needed to implement languages in real machines.511

The difference between the β rules in the operational semantics (Figure 4) from the512

ones in the equational theory (Figure 3) is that the operational rules completely resolve513

the matching in one step. Rather than forming new bindings with generic µs and µ̃s, the514

components of the construction (on either side) are substituted directly for the (co)pattern515

variables. To do so, we need to use a notion of evaluation strategy which informs us which516

terms can be substituted for variables (we call these values) and which coterms can be517

substituted for covariables (we call these covalues, which represent evaluation contexts).518

Call-by-value evaluation simplifies terms first before substituting them for variables, so it519

has a quite restrictive notion of value (V+) for constructed values like (V+, W+) and ιiV+,520

but all coterms represent call-by-value evaluation contexts (hence every e is substitutable).521

Dually, call-by-name evaluation will substitute any term for a variable (hence a value V−522

could be any v), but only certain coterms represent evaluation contexts: for example, the523

projection π1E− only represents an evaluation context because E− does, but π1e does not524

when e does not need its input yet.525

The other cases of reduction are handled by the ς rules, which say what to do when526

a construction isn’t a (co)value yet. In a call-by-value language like OCaml, the term527

(1+2, 3+4) first evaluates the two components before returning the pair value (3, 7). This528

scenario is handled by the ς+
⊗ step, which lifts the two computations in the tuple to the top529
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Equational axioms for µµ̃ in both call-by-value (s = +) and call-by-name (s = −) reduction:

(βs
µ) ⟨µα.c||Es⟩ = c{Es/α} (ηµ) µα⟨v||α⟩ = v (α /∈ FV (v))

(βs
µ̃) ⟨Vs||µ̃x.c⟩ = c{Vs/x} (ηµ̃) µ̃x.⟨x||e⟩ = e (x /∈ FV (e))

Operational semantics for µµ̃ in both call-by-value (s = +) and call-by-name (s = −):

(βs
µ) ⟨µα.c||Es⟩ 7→ c{Es/α} (βs

µ̃) ⟨Vs||µ̃x.c⟩ 7→ c{Vs/x}

Figure 5 Rules for data flow and control flow in the dual core sequent calculus.

data A⊕B where
ι1 : A ⊢ A⊕B |
ι2 : B ⊢ A⊕B |

data A⊗B where
(_, _) : A, B ⊢ A⊗B |

data⊖A where
(_) : ⊢ ⊖A | A

data ∃F where
(_, _) : F A ⊢ ∃F |

codata A & B where
π1 : | A & B ⊢ A

π2 : | A & B ⊢ B

codata A

&

B where
[_, _] : | A &

B ⊢ A, B

codata¬A where
[_] : A | ¬A ⊢

codata ∀F where
[_, _] : | ∀F ⊢ F A

Figure 6 (Co)Data declarations of the core connectives and quantifiers.

of the command, replacing ⟨(1 + 2, 3 + 4)||α⟩ with ⟨1 + 2||µ̃x.⟨3 + 4||µ̃y.⟨(x, y)||α⟩⟩⟩; now we530

know that the next step is to simplify 1 + 2 before binding it to x.531

The last piece of the puzzle is what to do with the generic µs and µ̃s. Fortunately, these532

are simpler than the individual rules for the various connectives and quantifiers. A coterm533

µ̃x.c binds its partner to x wholesale, without inspecting it further, and likewise µα.c binds534

its entire partner to α. These two actions are captured by βs
µ̃ and βs

µ in Figure 5 which,535

like the rules in Figure 4, are careful to only substitute values and covalues. This careful536

consideration of substitutability prevents the fundamental critical pair between µ and µ̃:537

c1{µ̃x.c2/α} ←[β+
µ
⟨µα.c1||µ̃x.c2⟩ 7→β−

µ̃
c2{µα.c1/x}538

539

This restriction is necessary for both the equational axioms as well as the operational reduction540

steps (which are identical in name and result). These restrictions ensure that the operational541

semantics is deterministic and the equational theory is consistent (i.e., not all commands542

are equated). Similarly, the η axioms for µ and µ̃ say that binding a (co)variable just to543

use it immediately does nothing. While the η laws in Figures 3 and 5 are not themselves544

necessary for computation, they do give us a hint on how to keep going when we might get545

stuck. Specifically, the ς rules from Figure 4 can be derived from βη equality, showing that546

these two families of axioms are complete for specifying computation [8].547

▶ Observation 2. If c 7→βς c′ then c =βη c′.548

3.6 (Co)Data in the wild549

The connectives from Sections 3.1 and 3.2 originally arose from the field of logic, but that550

doesn’t mean they are disconnected from programming. Indeed, the concept of data and551
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codata they embody can be found to some degree in programming languages that are already552

in wide use today, although not in their full generality.553

First, we can imagine a mechanism for declaring new connectives as (co)data types which554

list their patterns of construction. For example, all the connectives we have seen so far are555

given declarations in Figure 6. Each (term or coterm) constructor is given a type signature556

in the form of a sequent: input parameters are to the left of ⊢, and output parameters are to557

the right. For data types, constructors build a value returned as output, whose type is given558

in a special position to the right of the turnstyle between it and the vertical bar (i.e., the A559

in · · · ⊢ A | . . . ). Dually for codata types, constructors build a covalue that takes an input,560

whose type is given in the special position on the left between the turnstyle and the vertical561

bar (i.e., the A in · · · | A ⊢ . . . ).562

This notion of data type corresponds to algebraic data types in typed functional languages.563

For example, the declarations for A ⊕ B and A ⊗ B correspond to the following Haskell564

declarations for sum (Either) and pair (Both) types:565

data Either a b where566

Left :: a -> Either a b567

Right :: b -> Either a b568

data Both a b where569

Pair :: a -> b -> Both a b570

Even the existential quantifier corresponds to a Haskell data type, whose constructor571

introduces a new generic type variable a not found in the return type Exists f.572

data Exists f where Pack :: f a -> Exists f573

However, the negation ⊖A does not correspond to any data type in Haskell. That’s because574

⊖A’s constructor requires two outputs (notice the two types to the right of the turnstyle: the575

main ⊖X plus the additional output parameter X). This requires some form of continuations576

or control effects, which is not available in a pure functional language like Haskell.577

The dual notion of codata type corresponds to interfaces in typed object-oriented lan-578

guages. For example, the declaration for A & B corresponds to the following Java interface579

for a generic Product:580

interface Product<A,B> { A first(); B second(); }581

Java’s type system is not strong enough to capture quantifiers.4 However, if its type system582

were extended so that generic types could range over other parameterized generic types, we583

could declare a Forall interface corresponding to the ∀ quantifier:584

interface Forall<F> { F<A> specialize<A>(); }585

Unfortunately, the types A

&

B and ¬A suffer the same fate as ⊖A; their constructors require586

a number of outputs different from 1: [α, β] has two outputs (both α and β), and [x] has587

no outputs (x is an input, not an output). So they cannot be represented in Java without588

added support for juggling multiple continuations.589

The possibilities for modeling additional information in the constructions of the type—590

representing pre- and post-conditions in a program—become much more interesting when591

we look at indexed (co)data types. For a long time, functional languages have been using592

4 Unlike Haskell, Java does not support generic type variables with higher kinds. The Haskell declaration
of Exists f relies on the fact that the type variable f has the kind * -> *, i.e., f stands for a function
that turns one type into another.
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generalized algebraic data types (GADTs), also known as indexed data types, that allow each593

constructor return a value with a more constrained version of that type. The classic example594

of indexed data types is representing expression trees with additional typing information.595

For example, here is a data type representing a simple expression language with literal values,596

plus and minus operations on numbers, an “is zero” test, and an if-then-else expression:597

data Expr X where
Literal : X ⊢ Expr X |

Plus : Expr Int, Expr Int ⊢ Expr Int |
Minus : Expr Int, Expr Int ⊢ Expr Int |

IsZero : Expr Int ⊢ Expr Bool |
IfThenElse : Expr Bool, Expr X, Expr X ⊢ Expr X |

598

599

The type parameter X acts as an index, and it lets us constrain the types of values an600

expression can represent. For example, IsZero expects an integer and returns a boolean.601

This lets us write a typed evaluation function eval : Expr X → X, and not worry about602

mistyped edge cases because the type system rules out poorly-constructed expressions.603

The dual of indexed data types are indexed codata types, which let us constrain each604

observation of the codata type to only accept certain inputs which model another form of pre-605

and post-conditions [18]. For example, we can embed a basic socket protocol—for sending606

and receiving information along an address—inside this indexed codata type:607

codata Socket X where
Bind : String | Socket Raw ⊢ Socket Bound

Connect : | Socket Bound ⊢ Socket Live
Send : String | Socket Live ⊢ ()

Receive : | Socket Live ⊢ String
Close : | Socket Live ⊢ ()

608

609

A new Socket starts out as Raw. We can Bind a Socket Raw to an address, after which it is610

Bound and can be Connected to make it Live. A Socket Live represents a connection we611

can use to Send and Receive messages, and is discarded by a Close.5612

4 Applications of Duality613

So a constructive view of symmetric classical logic gives us a dual language for expressing614

computation as interaction. Does this form of duality have any application in the broader615

scope of programs? Yes! Let’s look at a few examples where computational duality can be616

put into action for solving problems in programming.617

4.1 Functions as Codata618

There is a delicate trilemma in the theory of the untyped λ-calculus: one cannot combine non-619

strict weak-head reduction, function extensionality, and computational effects. The specific620

reduction we are referring to follows two properties: “non-strict” means that functions are621

called without evaluating their arguments first, and “weak-head” means that evaluation stops622

5 This interface can be further improved by linear types, which ensure that outdated states of the Socket
cannot be used, and forces the programmer to properly Close a Socket instead of leaving it hanging.

FSCD 2021



1:18 Duality in Action

at a λ-abstraction. Function extensionality is captured by the η law—λx. f x = f—from623

the foundation of the λ-calculus. And finally effects could be anything—from mutable state624

to exceptions—but for our purposes, non-termination introduced by general recursion is625

enough. That is to say, the infinite loop Ω = (λx.x x) (λx.x x) already expressible in the626

“pure” untyped λ-calculus counts as an effect.627

So what is the problem when all three are combined in the same calculus? The conflict628

arises when we observe a λ-abstraction as the final result of evaluation. Because of weak-629

head reduction, any λ-abstraction counts as a final result, including λx.Ωx. Because of630

extensionality, the η law says that λx.Ωx is equivalent to Ω. Taken together, this means that631

a program that ends immediately is the same as one that loops forever: an inconsistency.632

4.1.1 Efficient head reduction633

One way to fix the trilemma is to change from weak-head reduction to head reduction. With634

head reduction, evaluation no longer stops at a λ-abstraction. Instead, head reduction looks635

inside of λs to keep going until a head-normal form of the shape λx1 . . . λxn.xi M1 . . . Mm is636

found. But going inside λs means that evaluation has to deal with open terms, i.e., terms637

with free variables in them. How can we perform head reduction efficiently, when virtually638

all efficient implementations assume that evaluation only handles closed terms?639

Our idea is to look at functions as yet another form of codata, just like A

&

B and A & B.640

Following the other declarations in Figure 6, the type of functions can be defined as:641

codata A→ B where _ ·_ : A | A→ B ⊢ B642
643

This says that the coterm which observes a function of type A→ B has the form of a call644

stack v · e, where v is the argument (of type A), and e represents a kind of “return pointer”645

(expecting the returned B). The stack-like nature can be seen in the way a chain of function646

arrows requires a stack of arguments; for instance a coterm of type Int→ Int→ Int→ Int647

has the stack shape 1 · 2 · 3 · α, where α is a place to put the result.648

Rather than the usual λ-abstraction, the codata view suggests that we can instead write649

functions in terms of copattern matching: µ[x · β].c is a function of type A→ B where c is650

the command to run in the scope of the (co)variables x : A and β : B. Both forms of writing651

functions are equivalent to one another (via general µ):652

µ[x · β].c = λx.µβ.c λx.v = µ[x · β].⟨v||β⟩ (β /∈ FV (v))653
654

This way, the main rule for reducing a call-by-name function call is to match on the structure655

of a call stack (recall from Section 3.5 that call-by-name covalues are restricted to E−, so656

covalue call stacks have the form v · E− in call-by-name) like so:657

⟨µ[x · β].c||v · E−⟩ 7→ c{v/x, E−/β}658
659

But what happens when we encounter a function at the top-level? This is represented660

by the command ⟨µ[x · β].c||tp⟩ where tp is a constant standing in for the empty, top-level661

context. Normally, we would be stuck, so instead lets look at functions from the other side.662

A call stack v · E− is similar to a pair (v, w). In some programming languages, we access663

a pair by matching on its structure (analogous to µ̃(x, y).c). But in other languages, we664

are given primitive projections for accessing its fields. We can make the same change with665

functions: rather than matching on the structure of a call (with µ[x · β].c or λx.v), we can666

instead project out of a call stack [26]. The projection arg[v · E−] gives us the argument v667
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and ret[v ·E−] gives us the return pointer E−. These two projections let us keep going when668

a function reaches the top level, by projecting the argument and return pointer out of tp:669

⟨µ[x · β].c||tp⟩ 7→ c{arg tp /x, ret tp /β}670
671

This goes “inside” the function, and yet there are no free variables in sight. Instead, the672

would-be free x is replaced with the placeholder arg tp, and we get a new “top-level” context673

ret tp, which stands for the context expecting the result of an implicit call with arg tp.674

As we keep going, we may return another function to ret tp, and the process continues675

with the new placeholder argument arg[ret tp] and the next top-level ret[ret tp]. Rewriting676

these rules in terms of the more familiar λ-abstractions, we get the following small abstract677

machine for closed head reduction, which says what to do when a function is called (with678

w · E−) or returned to any of the series of “top-level” contexts (retn E−):679

⟨v w||E−⟩ 7→ ⟨v||w · E−⟩680

⟨λx.v||w · E−⟩ 7→ ⟨v{w/x}||E−⟩681

⟨λx.v||retn tp⟩ 7→ ⟨v{arg[retn tp]/x}||retn+1 tp⟩682
683

For example, the η-expansion of the infinite loop Ω also loops forever, instead of stopping:684

⟨λx.Ωx||tp⟩ 7→ ⟨Ω (arg tp)||ret tp⟩ 7→ ⟨Ω||arg tp · ret tp⟩ 7→→ ⟨Ω||arg tp · ret tp⟩ . . .685
686

4.1.2 Effective confluence687

A similar issue arises when we consider confluence of the reduction theory. In particular, the688

call-by-name version of η for functions can be expressed as simplifying the deconstruction-689

reconstruction detour µ[x ·β].⟨v||x · β⟩ →η−
→

v, similar to Figure 3.6 We might expect that βη690

reduction is now confluent like it is in the λ-calculus. Unfortunately, it is not, due to a critical691

pair between function extensionality and a general µ (_ stands for an unused (co)variable):7692

µ_.c←η−
→

µ[x · β].⟨µ_.c||x · β⟩ →β−
µ

µ[x · β].c693
694

Can we restore confluence of function extensionality in the face of control effects? Yes! The695

key to eliminating this critical pair is to replace the η−
→ rule with an alternative extensionality696

rule provided by viewing functions as codata types, equipped with projections out of their697

constructed call stacks. Under this view, every function is equivalent to a µα.c, where arg α698

replaces the argument, and ret α replaces the return continuation. Written as a reduction699

that replaces copatterns with projections, we have:700

µ[x · β].c→µ→ µα.c{arg α/x, ret α/β}701
702

Analogously, the µ→ rule can be understood in terms of the ordinary λ-abstraction as703

λx.v → µα.⟨v{arg α/x}||ret α⟩. If all functions immediately reduce to a general µ, then how704

can we execute function calls? The steps of separating the argument and the result are done705

by the rules for projection, which have their own form of β-reduction along with a different706

extensionality rule surj→ capturing the surjective pair property of call stacks:707

arg[v · E−]→βarg v ret[v · E−]→βret E− [arg E−] · [ret E−]→surj→ E−708
709

6 This is the call-by-name version of µ[x · β].⟨y||x · β⟩ →η→ y because we have substituted a call-by-name
value v ∈ Value− for the variable y.

7 Note, this is not just a problem with copatterns; the same issue arises in Parigot’s λµ-calculus with
ordinary λ-abstractions and η law: µ_.c← λx.(µ_.c) x→ λx.µ_.c.
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The advantage of these rules is that they are confluent in the presence control effects [27].710

Even though surjective pairs can cause non-confluence troubles in general [28], the coarse711

distinction between terms and coterms is enough to resolve the problem for call-by-name call712

stacks. Moreover, these rules are strong enough to simulate the λ-calculus’ βη laws:713

(λx.v) w = µα.⟨µ[x · β].⟨v||β⟩||w · α⟩ →µ→ µα.⟨µγ.⟨v{arg γ/x}||ret γ⟩||w · α⟩714

→β−
µ

µα.⟨v{arg[w · α]/x}||ret[w · α]⟩ →→βretβarg µα.⟨v{w/x}||α⟩ →ηµ v{w/x}715

λx.(v x) = µ[x · β].⟨v||x · β⟩ →µ→ µα.⟨v||[arg α] · [ret α]⟩ →surj→ µα.⟨v||α⟩ →ηµ v716
717

4.2 Loops in Types, Programs, and Proofs718

Thus far, we’ve only talked about finite types of information: putting together a fixed number719

of things. However, real programs are full of loops. Many useful types are self-referential,720

letting them model information whose size is bounded but arbitrarily large (like lists and721

trees), or whose size is completely unbounded (like infinite streams). Programs using these722

types need to be able to loop over arbitrarily large data sets, and generate infinite objects723

in streams. Once those loops are introduced, reasoning about programs becomes much724

harder. Let’s look at how duality can help us understand the least understood loops in types,725

programs, and proofs.726

4.2.1 (Co)Recursion727

Lists and trees—which cover structures that could be any size, as long as they’re finite—are728

modeled by the familiar concept of inductive data types found in all mainstream, typed729

functional programming languages. The dual of these are coinductive codata types, which is a730

relatively newer feature that is finding its way into more practical languages for programming731

and proving. We already saw instances of both of these as Expr and Socket from Section 3.6.732

The canonical examples of (co)inductive (co)data are the types for natural numbers and733

infinite streams, which are defined like so:734

data Nat where
Zero : ⊢ Nat |
Succ : Nat ⊢ Nat |

codata Stream X where
Head : | Stream X ⊢ X

Tail : | Stream X ⊢ Stream X

735

736

The recursive nature of these two types are in the fact that they have constructors that take737

parameters of the type being declared: Succ takes a Nat as input before building a new Nat,738

whereas Tail consumes a Stream X to produce a new Stream X as output.739

To program with inductive types, functional languages allow programmers to write740

recursive functions that match on the structure of its argument. For example, here is a741

definition of the addition function plus:742

plus Zero x = x plus (Succ y) x = plus y (Succ x)743
744

We know that this function is well-founded—that is, it always terminates on any input—745

because it’s structurally recursive: the first argument shown in red shrinks on each recursive746

call, where Succ y is replaced with the smaller y. The second argument in blue doesn’t747

matter; it can grow from x to Succ x since we already have a termination condition.748

Translating this example into the dual language reveals that the same notion of structural749

recursion covers both induction and coinduction [16]. Instead of defining plus as matching750

on just its arguments, we can define it as matching on the structure of its entire call stack751
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α in the command ⟨plus||α⟩. Generalizing to the entire call stack lets us write coinductive752

definitions using the same technique. For example, here is the definition of plus in the dual753

language alongside count which corecursively produces a stream of numbers from a given754

starting point (i.e., count x = x, x + 1, x + 2, x + 3, . . . ):755

⟨plus||Zero · x · α⟩ = ⟨x||α⟩ ⟨plus||Succ y · x · α⟩ = ⟨plus||y · Succ x · α⟩756

⟨count||x · Head α⟩ = ⟨x||α⟩ ⟨count||x · Tail α⟩ = ⟨count||Succ x · α⟩757
758

Both definitions are well-founded because they are structurally recursive, but the difference759

is the structure they are focused on within the call stack. Whereas the value Succ y shrinks760

to y in the recursive call to plus, it’s the covalue Tail α that shrinks to α in the corecursive761

call to count. In both, the growth in blue doesn’t matter, since the red always shrinks.762

Here are two more streams defined by structural recursion on the shape of the stream763

projection Head α or Tail α. iterate repeats the same function over and over on some starting764

value (i.e., iterate f x = x, f x, f(f x), f(f(f x)), . . . ) and maps modifies an infinite stream765

by applying a function to every element (i.e., maps f (x1, x2, x3 . . . ) = f x1, f x2, f x3, . . . ):766

⟨iterate||f · x · Head α⟩ = ⟨f ||x · α⟩767

⟨iterate||f · x · Tail α⟩ = ⟨iterate||f · µβ.⟨f ||x · β⟩ · α⟩768

⟨maps||f · xs · Head α⟩ = ⟨f ||µβ.⟨xs||Head β⟩ · α⟩769

⟨maps||f · xs · Tail α⟩ = ⟨maps||f · µβ.⟨xs||Tail β⟩ · α⟩770
771

4.2.2 (Co)Induction772

Examining the structure of (co)values isn’t just good for programming; it’s good for proving,773

too. For example, if we want to prove some property Φ about values of type A ⊕ B, it’s774

enough to show it holds for the (exhaustive) cases of ι1x1 : A⊕B and ι1x2 : A⊕B like so:775

Φ(ι1x1) : (Γ, x1 : A ⊢ ∆) Φ(ι2x2) : (Γ, x2 : B ⊢ ∆)
Φ(x) : (Γ, x : A⊕B ⊢ ∆) ⊕Induction

776
777

Exhaustiveness is key to ensure that all cases are covered and no possible value was left778

out. This becomes difficult to do directly for recursive types like Nat, because it represents779

an infinite number of cases (0, 1, 2, 3, . . . ). Instead, we can prove a property Φ indirectly780

through the familiar notion of structural induction: prove Φ(Zero) specifically and prove781

that the inductive hypothesis Φ(y) implies Φ(Succ y) as expressed by this inference rule782

Φ(Zero) : (Γ ⊢ ∆)

Φ(y) : (Γ, y : Nat ⊢ ∆) IH
....

Φ(Succ y) : (Γ, y : Nat ⊢ ∆)
Φ(x) : (Γ, x : Nat ⊢ ∆) NatInduction

783
784

But how can we deal with coinductive codata types? There are also an infinite number785

of cases to consider, but the values don’t follow the same, predictable patterns. Here is a786

conventional but questionable form of coinduction that takes the entire goal Φ(x) to be the787

coinductive hypothesis, as in:788

Φ(x) : (Γ, x : Stream A ⊢ ∆) CoIH
.... ???

Φ(x) : (Γ, x : Stream A ⊢ ∆)
Φ(x) : (Γ, x : Stream A ⊢ ∆)

Questionable CoInduction
789
790
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But this rule obviously has serious problems: CoIH could just be used immediately, leading791

to a viciously circular proof. To combat this clear flaw, other secondary, external checks792

and guards have to be put into place that go beyond the rule itself, and instead analyze the793

context in which CoIH is used to prevent circular proofs. As a result, a prover can build a794

coinductive proof that follows all the rules, but run into a nasty surprise in the end when the795

proof is rejected because it fails some implicit guard. Can we do better?796

Just like the way structural induction looks at the shape of values, structural coinduction797

looks at the shape of covalues which represent contexts [12]. For example, here is the798

coinductive rule dual to ⊕Induction for concluding that a property Φ holds for any output799

of A & B by checking the (exhaustive) cases π1α1 : A & B and π2α2 : A & B:800

Φ(π1α1) : (Γ ⊢ α1 : A, ∆) Φ(π2α2) : (Γ ⊢ α2 : A, ∆)
Φ(α) : (Γ ⊢ α : A & B, ∆) &CoInduction

801
802

Just like Nat, streams have too many cases (Head β, Tail[Head β], Tail[Tail[Head β]], . . . ) to803

exhaustively check directly. So instead, here is the dual form of proof as NatInduction for804

proving Φ for any observation α of type Stream A: it proves the base case Φ(Head β) directly,805

and then shows that the coinductive hypothesis Φ(γ) implies the next step Φ(Tail γ), like so:806

Φ(Head β) : (Γ ⊢ β : A, ∆)

Φ(γ) : (Γ ⊢ γ : Stream A, ∆) CoIH
....

Φ(Tail γ) : (Γ ⊢ γ : Stream A, ∆)
Φ(α) : (Γ ⊢ α : Stream A, ∆) StreamCoInduction

807
808

Notice the similarities between this rule and the one for Nat induction. In the latter, even809

though the inductive hypothesis Φ(y) is assumed for a generic y, then there is no need810

for external checks because we are forced to provide Φ(Succ y) for the very same y. The811

information flow between the introduction of y in IH and its use in the final conclusion812

of Φ(Succ y) prevents viciously circular proofs. In the same way, the coinductive rule here813

assumes Φ(γ) for a generic γ, but we are forced to prove Φ(Tail γ) for the very same γ. In814

this case, there is an implicit control flow between the introduction of γ in CoIH and its use815

in the final conclusion Φ(Tail γ). Thus, CoIH can be used in any place it fits, without any816

secondary guards or checks after the proof is built; StreamCoInduction is sound as-is.817

How can this form of coinduction be used to reason about corecursive programs? Con-818

sider this interaction between maps and iterate: maps f (iterate f x) = iterate f (f x).819

Written in the dual language, this property translates to an equality between commands:820

⟨maps||f · µβ.⟨iterate||f · x · β⟩ · α⟩ = ⟨iterate||f · µβ.⟨f ||x · β⟩ · α⟩. We can prove this property821

(for any starting value x) using coinduction with these two cases:822

α = Head α′ The base case follows by direct calculation with the definitions.823

⟨maps||f · µβ.⟨iterate||f · x · β⟩ · Head α′⟩ = ⟨f ||µβ.⟨iterate||f · x · Head β⟩ · α′⟩ (maps, βµ)824

= ⟨f ||µβ.⟨f ||x · β⟩ · α′⟩ (iterate)825

= ⟨iterate||f · µβ.⟨f ||x · β⟩ · Head α′⟩ (iterate)826827

α = Tail α′ First, assume the coinductive hypothesis (CoIH) which is generic in the value of828

the initial x: for all x, ⟨maps||f · µβ.⟨iterate||f · x · β⟩ · α′⟩ = ⟨iterate||f · µβ.⟨f ||x · β⟩ · α′⟩.829
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The two sides are equated by applying CoIH with an updated value for x:830

⟨maps||f · µβ.⟨iterate||f · x · β⟩ · Tail α′⟩831

= ⟨maps||f · µβ.⟨iterate||f · x · Tail β⟩ · α′⟩ (maps, βµ)832

= ⟨maps||f · µβ.⟨iterate||f · µγ.⟨f ||x · γ⟩ · β⟩ · α′⟩ (iterate)833

= ⟨iterate||f · µβ.⟨f ||µγ.⟨f ||x · γ⟩ · β⟩ · α′⟩ (CoIH{µγ.⟨f ||x · γ⟩/x})834

= ⟨iterate||f · µγ.⟨f ||x · γ⟩ · Tail α′⟩ (iterate)835
836

4.3 Compilation and Intermediate Languages837

In Section 3, we saw how a symmetric language based on the sequent calculus closely resembles838

the structure of an abstract machine, which helps to reveal the details of how programs are839

really implemented. This resemblance raises the question: does a language based on the840

sequent calculus be a good intermediate language (IL) used to compile programs to machine841

code? The λ-calculus’ syntax structure buries the most relevant part of an expression. For842

example, applying f to four arguments is written as ((((f 1) 2) 3) 4); we are forced to search843

for the next step—f 1—found at the bottom of the tree. Instead, the syntax of the dual844

calculus raises up the next step of a program to the top; the same application is written as845

⟨f ||1 · (2 · (3 · (4 · α)))⟩, where calling f with 1 is the first part of the command.846

We have found that the sequent calculus can in fact be used as an intermediate language847

of a compiler [17]. The feature of bringing out the most relevant expression to the top of a848

program is shared by other commonly-used representations like continuation-passing style849

(CPS) [2] and static single assignment (SSA) [5]. However, the sequent calculus is uniquely850

flexible. Unlike SSA which is an inherently imperative representation, the sequent calculus is851

a good fit for both purely functional and effectful languages. And unlike CPS, the sequent852

calculus preserves enough of the original structure of the program to enable high-level rewrite853

rules expressed in terms of the source, as done by the Glasgow Haskell Compiler (GHC).854

Besides these advantages, our experience with a sequent calculus IL has led the following855

new techniques, which apply more broadly to other compiler ILs, too.856

4.3.1 Join points in control flow857

Join points are places where separate lines of control flow come back together. They are as858

pervasive as the branching structures in a program. For example, the statement859

if x > 100: print "x is large"860

else: print "x is small"861

print "goodbye"862

splits off in two different directions to print a different statement depending on the value863

of x. But in either case, both branches of control flow will rejoin at the shared third line864

to print "goodbye". Compilers need to represent these join points for code generation and865

optimization, in a way that is efficient in both time and space. Ideally, we want to generate866

code to jump to the join point in as few instructions as possible. And it’s not acceptable to867

copy the common code into each branch; this leads to a space inefficiency that can cause an868

exponential blowup in the size of the generated code.869

In the past, GHC represented these join points as ordinary functions bound by a let-870

expression. For example, the function j in let j x = . . . x . . . in if z then j 10 else j 20 serves871

as the join point for both branches of the if-expression. Of course, this is space efficient,872
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since it avoids duplicating code of j. But a full-fledged function call is much less efficient873

than a simple jump. Fortunately, the local function j has some special properties: it is874

always used in tail-call position and never escapes the scope of the let . These properties875

let GHC compile the calls j 10 and j 20 as efficient jumps. Unfortunately, the necessary876

properties for optimization aren’t stable under other useful optimizations. For example, it877

usually helps to push (strict) evaluation contexts inside of an if-then-else or case-expression.878

While semantically correct, this can break the tail-call property of join points like here:879

3 + let j y = 10 + (y + y)
in case x of

ι1z1 → j z1
ι2z2 → j (−z2)

→

let j y = 10 + (y + y)
in case x of

ι1z1 → 3 + (j z1)
ι2z2 → 3 + (j (−z2))

880

881

Before, j could be compiled as a join point, but after it is used in non-tail-call positions882

3 + (j z1) and 3 + (j (−z2)). To combat this issue, we developed a λ-calculus with purely-883

functional join points [29]. While this calculus ostensibly contains labels and jumps—which884

are indeed compiled to jumps into assembly code—from the outside there is no observable885

effect. Instead, this calculus gives rules for optimizing around join points while ensuring they886

are still compiled efficiently. The example above is rewritten like so, where the context 3 +□887

is now pushed into the code of the join point, rather than inside of the case-expression:888

3 + join j y = 10 + (y + y)
in case x of

ι1z1 → jump j z1
ι2z2 → jump j (−z2)

→

join j y = 3 + 10 + (y + y)
in case x of

ι1z1 → jump j z1
ι2z2 → jump j (−z2)

→

join j y = 13 + (y + y)
in case x of

ι1z1 → jump j z1
ι2z2 → jump j (−z2)

889

890

Besides preserving the efficiency of j itself, this new form of code movement enables new891

optimizations. In this case, we can perform some additional constant folding of 3 + 10, and892

other optimizations such as loop fusion can be expressed in this way as well.893

4.3.2 Polarized primitive types894

Another key feature found in the duality of logic is the polarization of different propositions.895

In terms of computation [33, 30], polarization is the combination of an “ideal” evaluation896

strategy based on the structure of types. Consider the η laws expressing extensionality of897

the various types in Figure 3. All the η laws for data types (e.g., built with ⊗, ⊕, ⊖, and ∃)898

are about expanding covalues α. These laws are the strongest in the call-by-value strategy,899

which maximizes the number of covalues. Dually, the η laws for codata types (e.g., built900

with &, &, ¬, and ∀) are about expanding values x. These are the strongest in call-by-name.901

Usually, we think of picking one evaluation strategy for a language. But this means that902

in either case, we are necessarily weakening extensionality of data or codata types (or both,903

if we choose something other than call-by-value or call-by-name). Instead, we can use a904

polarized language which improves η laws for all types by combining both strategies. This905

involves separating types into two different camps—the positive Type+ and the negative906

Type−—following our analogy of the burden of proof from Section 2.2 like so:907

Sign ∋ s ::= + | −908

Type+ ∋ A+, B+ ::= X+ | A+ ⊕B+ | A+ ⊗B+ | ∃Xs.A+ | ⊖A− | ´A−909

Type− ∋ A−, B− ::= X− | A− & B− | A−

&

B− | ∀Xs.A− | ¬A+ | ˆA+910
911
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By separating types in two, we also have to add the polarity shifts ´A− and ˆA+ so they can912

still refer to one another. For example, the plain A⊕ (B & C) becomes A+ ⊕ ´(B− & C−).913

Once this separation of types has occurred, we can bring them back together and914

intermingle both within a single language. The distinction can be made explicit in a refined915

Cut rule, which is the only rule which creates computation, so that the type (and its sign)916

becomes part of the program:917

Γ ⊢ v : A | ∆ A : s Γ | e : A ⊢ ∆
⟨v|A:s|e⟩ : (Γ ⊢ ∆) Cut

918
919

Since there is no longer one global evaluation strategy, we instead use types to determine the920

order. The additional annotation in commands let us drive computation with more nuance,921

referring to the sign s of the command to determine the priorities of µ and µ̃ computations:922

(βs
µ) ⟨µα.c|A:s|Es⟩ = c{Es/α} (βs

µ̃) ⟨Vs|A:s|µ̃x.c⟩ = c{Vs/x}923
924

The advantage of this more nuanced form of computation is that the types of the language925

express the nice properties that usually only hold up in an idealized, pure theory; however,926

now they hold up in the pragmatic practice that combines all manner of computational927

effects like control flow, state, and general recursion. For example, we might think that928

curried and uncurried functions—A→ (B → C) versus (A⊗B)→ C—are exactly the same.929

In both Haskell and OCaml, they are not, due to interactions with non-termination or side930

effects. But in a polarized language, they are the same, even with side effects.931

These ideal properties of polarized types let us encode a vast array of user-defined932

data and codata types into a small number of basic primitives. We can choose a perfectly933

symmetric basis of connectives found in Section 3 [11] or an asymmetric alternative that934

is suited for purely functional programs [9]. The ideal properties provided by polarization935

can be understood in terms of the dualities of evidence in Section 2.3. For example, the936

equivalence between the propositions ⊖¬A and A corresponds to an isomorphism between937

the polarized types ⊖¬A+ and A+ (and dually ¬ ⊖ A− and A−). Intuitively, the only938

(closed) values of type ⊖¬A have exactly the form ([Vv]), which is in bijection with the plain939

values Vv. And coterms of those two types are also in bijection due to the optimized η laws.940

All the de Morgan equivalences in Section 2.3 correspond to type isomorphisms, too. For941

example, the only (closed) values of ⊖∀Xs.B− have the form ([As, E−]), which is in bijection942

with ∃Xs. ⊖ B−’s (closed) values of the form (As, (E−)). In contrast, the other negation943

¬´∀Xs.B− includes abstract values of the form µ[x].c, which are not isomorphic to the more944

concrete values (As, µ[x].c) of ∃Xs.¬´B− that witness their chosen As. Thus, constructivity,945

computation, and full de Morgan symmetry depend on both polarized negations.946

Polarization itself only accounts for call-by-value and call-by-name evaluation. However,947

other evaluation strategies are sometimes used in practice for pragmatic reasons. For948

example, implementations of Haskell use call-by-need evaluation, which can lead to better949

asymptotic performance than call-by-name. How do other evaluation strategies fit? We can950

add additional signs—besides − and +—that stand in for other strategies like call-by-need.951

But do we need to duplicate the basic primitives? No! We only need additional shifts that952

convert between the new sign(s) with the original + and −, four in total:953

data ´s(X : s) : + where
Boxs : X : s ⊢ ´sX : + |

data ⇑s(X : +) : s where
Returns : X : + ⊢ ⇑sX : s |

954

codata ˆs(X : s) : −where
Evals : | ˆsX : − ⊢ X : s

codata ⇓s(X : −) : s where
Enters : | ⇓sX : s ⊢ X : −

955

956
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4.3.3 Static calling conventions957

Systems languages like C give the programmer fine-grained control over low-level represent-958

ations and calling conventions. When defining a structure, the programmer can choose if959

values are stored directly or indirectly (i.e., boxed) as a pointer into the heap. When calling960

a function, the programmer can choose how many arguments are passed at once, and if961

they are passed directly in the call stack, or indirectly by reference. High-level functional962

languages save programmers from these details, but at the cost of using less efficient—but963

more uniform—representations and calling conventions. Is there a way to reconcile both964

high-level ease and low-level control?965

It turns out that polarization also provides a logical foundation for efficient representations966

and calling conventions, too. Decades ago [32], Haskell implementors designed a way to add967

unboxed representations into the compiler IL, making it possible to more efficiently pass968

values directly in registers. However, doing so required extending the language, because969

unboxed values must be call-by-value, and the types of unboxed values are different from the970

other, ordinary Haskell types. This sounds awfully similar to polarization: unboxed values971

correspond to positive data types, which have a different polarity from Haskell’s types.972

With this inspiration, we considered the dual problem: what do negative types correspond973

to? If an unboxed pair (V+, W+) is described by the positive type A+ ⊗B+, then does an974

unboxed call stack V+ · E− correspond to the negative function type A+ → B−? In [19], we975

found that negative functions correspond to a more primitive type of functions found in976

the machine, where the power of the polarized η law lets us express the arity of functions977

statically in the type. Static arity is important for optimizing higher-order functions. In978

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]979

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs980

zipWith f _ _ = []981

we cannot compile f a b as a simple binary function call even though f’s type suggests so.982

It might be that f only expects one argument, then computes a closure expecting the next.983

Instead, using negative functions, which are fully extensional, lets us statically optimize984

zipWith to pass both arguments to f at once.985

However, this approach runs into some snags in practice, due to polymorphism. In order986

to be able to statically compile code, we sometimes need to know the representation of a987

type (to move its values around) or the calling convention of a type (to jump to its code in988

the correct environment). But if a type is unknown—because it’s some polymorphic type989

variable—then that runtime information is unknown at compile time. A solution to this990

problem is given in [21], which introduces the idea of storing the runtime representation of991

values in the kind of their type. So even when a type is not known statically, their kind is.992

Following this idea, we combined the kind-based approach with function arity by storing993

both representations and calling conventions in kinds [14].994

This can be seen as a refinement on the course-grained polarization from Section 4.3.2.995

Rather than just a basic sign—such as − or +—types are described by a pair of both a996

representation and a calling convention. Positive types like A ⊗ B can have interesting997

representations (their values can be tuples, tagged unions, or machine primitives) but have998

a plain convention (their terms are always just evaluated to get the resulting value). In999

contrast, negative types like A → B can have interesting conventions (they can be called1000

with several arguments, which can have their own representations by value or reference) but1001

have a plain representation (they are just stored as pointers). This approach lets us integrate1002

efficient calling conventions in a higher-level language with polymorphism, and also lets us1003
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be polymorphic in representations and calling conventions themselves, introducing new forms1004

of statically-compilable code re-use.1005

4.4 Orthogonal Models of Safety1006

We’ve looked at several applications based on the dual calculus in Section 3, but how do1007

we know the calculus is safe? That is, what sorts of safety properties do the typing rules1008

provide? For example, in certain applications, we might want to know for sure that well-typed1009

programs, like the ones in Section 4.2, always terminate. We also might want a guarantee1010

that the βη equational theory in Section 3.5 is actually consistent. To reason about the1011

impact of types, we must identify the safety property we’re interested in. This is done with a1012

chosen set of commands ‚ called the pole which contains only those commands we deem as1013

“safe.” Despite being tailor-made to classify different notions of safety, there are shockingly1014

few requirements of ‚. In fact, the only requirement is that the pole must be closed under1015

expansion: c 7→ c′ ∈‚ implies c ∈‚. Any set of commands closed under expansion can be1016

used for ‚. This gives the general framework for modeling type safety a large amount of1017

flexibility to capture different properties, types, and language features. So in the following,1018

assume only that ‚ is an arbitrary set closed under expansion, and the sign s can stand for1019

either + (call-by-value) or − (call-by-name) throughout.1020

4.4.1 Orthogonality and intuitionistic negation1021

The central concept in these family of models is orthogonality given in terms of the chosen1022

pole ‚. At an individual level, a term and coterm are orthogonal to one another, written1023

v ‚ e, if they form a command in the pole: ⟨v||e⟩ ∈ ‚. Generalizing to groups, a set of1024

terms A+ and a set of coterms A− are orthogonal, written A+ ‚ A−, if every combination1025

drawn from the two sets is orthogonal: v ‚ e for all v ∈ A+ and e ∈ A−. Working with sets1026

has the benefit that we can always find the biggest set orthogonal to another. That is, for1027

any set of terms A+, there is a largest set of coterms called A+‚ such that A+ ‚ A+‚ (and1028

vice versa for any coterm set A−, there is a largest A−‚ ‚ A−), defined as:1029

e ∈ A+‚ ⇐⇒ ∀v ∈ A+.⟨v||e⟩ ∈‚ v ∈ A−‚ ⇐⇒ ∀e ∈ A−.⟨v||e⟩ ∈‚1030
1031

The fascinating thing about this notion of orthogonality is that—despite the fact that it was1032

designed for symmetric and classical systems—it so closely mimics the properties of negation1033

from the asymmetric intuitionistic logic. For example, it enjoys the properties analogous to1034

double negation introduction (A =⇒ ¬¬A) and triple negation elimination (¬¬¬A ⇐⇒ A)1035

where A±‚ corresponds to the negation of A± (which could be either a set of terms or a set1036

of coterms) and set inclusion A± ⊆ B± corresponds to implication.1037

▶ Lemma 3 (Orthogonal Introduction/Elimination). A± ⊆ A±‚‚ and A±‚‚‚ = A±‚.1038

However, the classical principle of double negation elimination (¬¬A =⇒ A) does not1039

hold for orthogonality: in general, A±‚‚ ⊈ A±. This connection is not just a single1040

coincidence. Orthogonality also has properties corresponding to the contrapositive (A =⇒ B1041

implies ¬B =⇒ ¬A) as well as all the intuitionistic directions of the de Morgan laws from1042

Section 2.3—where set union (A±∪B±) denotes disjunction and intersection (A±∩B±) denotes1043

conjunction—but, again, not the classical-only directions like ¬(A ∧B) =⇒ (¬A) ∨ (¬B).1044

Where does ‚’s closure under expansion come into play? It lets us reason about sets1045

of the form A±‚, and argue that they must contain certain elements by virtue of the way1046

they behave with elements of the underlying A±, rather than the way they were built. For1047
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example, we can show that general µs and µ̃s belong to orthogonally-defined sets, as long as1048

their commands are safe under any possible substitution.1049

▶ Observation 4. For any set of values A+, if c{Vs/x} ∈‚ for all Vs ∈ A+ then µ̃x.c ∈ A+‚.1050

For any set of covalues A−, if c{Es/α} ∈‚ for all Es ∈ A− then µα.c ∈ A−‚.1051

Proof. For all values, Vs ∈ A+, observe that ⟨Vs||µ̃x.c⟩ 7→βs
µ̃

c{Vs/x} ∈‚. Thus, ⟨Vs||µ̃x.c⟩ ∈1052

‚ by closure under expansion, so µ̃x.c ∈ A+‚ by definition. The other case is dual. ◁1053

Note the fact that Observation 4 starts with only a set of values or covalues, rather than1054

general (co)terms. This (co)value restriction is necessary to ensure that the βs
µ̃ and βs

µ rules1055

can fire, which triggers the closure-under-expansion result. Formally, we write this restriction1056

as A±V to denote the subset of A± containing only (co)values, which is built into the very1057

notion of candidates that model safety of individual types.1058

▶ Definition 5 (Candidates). A reducibility candidate, A ∈ RC, is a pair A = (A+,A−) of a1059

set of terms (A+) and set of coterms (A−) that is:1060

Sound For all v ∈ A+ and e ∈ A−, ⟨v||e⟩ ∈‚ (i.e., A+ ‚ A−).1061

Complete If ⟨v||Es⟩ ∈‚ for all covalues Es ∈ A− then v ∈ A+ (i.e., A−V‚ ⊆ A+).1062

If ⟨Vs||e⟩ ∈‚ for all values Vs ∈ A+, then e ∈ A− (i.e., A+V‚ ⊆ A−).1063

We write v ∈ A as shorthand for v ∈ A+ and e ∈ A for e ∈ A−.1064

There are two distinct ways of defining specific reducibility candidates. We could begin1065

with a set A+ of terms, and build the rest of the candidate around the values of A+, or we1066

can start with a set A− of coterms, and build the rest around the covalues of A−. These are1067

the positive (Pos(A+)) and negative (Neg(A−)) construction of candidates, defined as:1068

Pos(A+) = (A+V‚V‚,A+V‚V‚V‚) Neg(A−) = (A−V‚V‚V‚,A−V‚V‚)1069
1070

Importantly, these constructions are indeed reducibility candidates, meaning they are both1071

sound and complete. But why are three applications of orthogonality needed instead of just1072

two (like some other models in this family)? The extra orthogonality is needed because of the1073

(co)value restriction A±V interleaved with orthogonality A±‚. Taken together, (co)value-1074

restricted orthogonality has similar introduction and elimination properties as the general1075

one (Lemma 3), but restricted to just (co)values rather than general (co)terms.1076

▶ Lemma 6. A±V ⊆ A±V‚V‚V and A±V‚V‚V‚V = A±V‚V.1077

Thus, the final application of orthogonality takes these (co)values and soundly completes the1078

rest of the candidate.81079

4.4.2 An orthogonal view of types1080

With the positive and negative construction of candidates, we can define operations that1081

are analogous to the positive and negative burden of proof from Section 2.2. Here, terms1082

8 In fact, the simpler double-orthogonal constructions are valid, but only in certain evaluation strategies.
In call-by-value, where A−V = A− because every coterm is a covalue, the positive construction simplifies
to just the usual Pos(A+) = (A+‚‚,A+‚) when A+ contains only values. Dually in call-by-name, the
negative construction simplifies to just Neg(A−) = (A−‚,A−‚‚) when A− contains only covalues.
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represent evidence of truth, and coterms represent evidence of falsehood, so the various1083

connectives are built like so:1084

A⊗ B = Pos{(v, w) | v ∈ A, w ∈ B}
A⊕ B = Pos({ι1v | v ∈ A} ∪ {ι2w | w ∈ B})
⊖A = Pos{(e) | e ∈ A}

A

&

B = Neg{[e, v] | e ∈ A, f ∈ B}
A & B = Neg({π1e | e ∈ A} ∪ {π2f | f ∈ B})
¬A = Neg{[v] | v ∈ A}

1085

1086

Similarly, evidence for or against the existential and universal quantifiers can be defined as1087

operations taking a function F : RC → RC over reducibility candidates, and producing a1088

specific reducibility candidate that quantifies over all possible instances of F(B).91089

∃F = Pos{(A, v) | B ∈ RC, v ∈ F(B)} ∀F = Neg{[A, e] | B ∈ RC, e ∈ F(B)}1090
1091

With a semantic version of the connectives, we have a direct way to translate each1092

syntactic type to a reducibility candidate. The translation JAKθ is aided by a map θ from1093

type variables to reducibility candidates, and the cases of translation are now by the numbers:1094

JXKθ = θ(X) JA⊗BKθ = JAKθ ⊗ JBKθ . . . J∀X.BKθ = ∀(λA:RC.JBKθ{A/X})1095
1096

Going further, we can translate typing judgments to logical statements.1097

Jc : (Γ ⊢ ∆)Kθ = ∀σ ∈ JΓ ⊢ ∆Kθ. c{σ} ∈‚1098

JΓ ⊢ v : A | ∆Kθ = ∀σ ∈ JΓ ⊢ ∆Kθ. v{σ} ∈ JAKθ1099

JΓ | e : A ⊢ ∆Kθ = ∀σ ∈ JΓ ⊢ ∆Kθ. e{σ} ∈ JAKθ1100
1101

Each judgment is based on a translation of the environment, σ ∈ JΓ ⊢ ∆Kθ, which says that1102

σ is a syntactic substitution of (co)values for (co)variables such that x{σ} ∈ JAKθ if x : A is1103

in Γ, and similarly for α : A in ∆. The main result is that typing derivations imply the truth1104

of their concluding judgment, which follows by induction on the derivation.1105

▶ Theorem 7 (Adequacy). c : (Γ ⊢ ∆) implies Jc : (Γ ⊢ ∆)Kθ (and similar for (co)terms).1106

4.4.3 Applications of adequacy1107

Adequacy (Theorem 7) may not seem like a special property, but the generality of the model1108

means that it has many serious implications. We get different results by plugging in a1109

different notion of safety for ‚. The most basic corollary of adequacy is given by the most1110

trivial pole: ‚ = {} is vacuously closed under expansion since it is empty to start with.1111

By instantiating adequacy with ‚ = {}, we get a notion of logical consistency, there is no1112

derivation of a closed contradiction c : (• ⊢ •) since Jc : (• ⊢ •)K means that c ∈ {}.1113

▶ Corollary 8 (Logical Consistency). There is no well-typed c : (• ⊢ •).1114

However, the most interesting results come from instances where ‚ is not empty. For1115

example, the set of terminating commands, {c | c 7→→ c′ ̸7→}, is also closed under expansion.1116

Defining ‚ as this set ensures that all well-typed commands are terminating.1117

▶ Corollary 9 (Termination). If c : (Γ ⊢ ∆) then c 7→→βς c′ ̸7→.1118

9 Note that there is no connection between the syntactic type A used in (A, v) and [A, e] and the actual
reducibility candidate used in F(B) that classifies v and e. Just like System F’s model of impredicativity
[22], we can get away with this bald-faced lie because of parametricity of ∀ and ∃: the (co)term that
unpacks (A, v) or [A, e] is not allowed to react any differently based on the choice for A.
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But perhaps the most relevant application to discuss here is how constructivity from1119

Section 2 is reconciled with computation in Section 3. The notion of positive constructive1120

evidence of A⊕ B (Section 2.2) corresponds directly with the two value constructors: we1121

have ι1V1 : A1 ⊕A2 and ι2V2 : A1 ⊕A2 for any value Vi : Ai. Similarly, the evidence in favor1122

of ∃X.B corresponds directly with the constructed value (A, V ) : ∃X.B where V : B[A/X].1123

But both of these types also have the general µ abstractions µα.c : A⊕B and µβ.c′ : ∃X.B,1124

which do not directly correspond with either. How do we know that both of these µs will1125

compute and eventually produce the required evidence? We can instantiate ‚ with only the1126

commands that do so. For A⊕B we can set ‚ = {c | c 7→→ ⟨ιiV ||α⟩}, and for ∃X.B we can1127

set ‚ = {c | c 7→→ ⟨(A, V )||α⟩}; both of these definitions are closed under expansion, which is1128

all we need to apply adequacy to compute the construction matching the type.1129

▶ Corollary 10 (Positive Evidence). If • ⊢ v : A1 ⊕A2 | then ⟨v||α⟩ 7→→βsςs ⟨ιiVs||α⟩ such that1130

Vs ∈ JAiK. If • ⊢ v : ∃X.B | then ⟨v||α⟩ 7→→βsςs ⟨(A, Vs)||α⟩ such that Vs ∈ JBK{JAK/X}.1131

Dually, we can design similar poles which characterize the computation of negative evidence.1132

For example, types like A1 & A2 and ∀X.B include general µ̃ abstractions of the form µ̃x.c in1133

addition to the constructed covalues π1E1 : A1, π2E2 : A2, and [A, E] : ∀X.B that correspond1134

to the negative evidence of these connectives. Luckily, we can set the global ‚ to either1135

{c | c 7→→ ⟨x||πiE⟩} or {c | c 7→→ ⟨x||[A, E]⟩} to ensure that general µ̃s compute the correct1136

concrete evidence for these negative types.1137

▶ Corollary 11 (Negative Evidence). If | e : A1 & A2 ⊢ • then ⟨x||e⟩ 7→→βsςs ⟨x||πiEs⟩ such1138

that Es ∈ JAiK. If | e : ∀X.B ⊢ • then ⟨x||e⟩ 7→→βsςs ⟨x||[A, Es]⟩ such that Es ∈ JBK{JAK/X}.1139

This model is extensible with other language features, too, without fundamentally1140

changing the shape of adequacy (Theorem 7). For example, because reducibility candidates1141

are two-sided objects, there are two different ways to order them:1142

A ⊑ B ⇐⇒ A+ ⊆ B+ and A− ⊆ B− A ≤ B ⇐⇒ A+ ⊆ B+ and A− ⊇ B−
1143
1144

The first order A ⊑ B where both sides are in the same direction is analogous to ordinary set1145

containment. However, the second order A ≤ B where the two sides are opposite instead1146

denotes subtyping [15]. Besides modeling subtyping as a language feature itself, this idea is1147

the backbone of several other type features, including (co)inductive types [12], intersection1148

and union types [13], and indexed (co)data types [16]. It also lets us model non-determinism1149

[15], where the critical pair between µ and µ̃ is allowed.1150

We can also generalize the form of our model, to capture properties that are binary relations1151

rather than unary predicates. This only requires that we make each of the fundamental1152

components binary, without changing their overall structure. For example, the pole ‚ is1153

generalized from a set to a relation between commands that is closed under expansion:1154

c1 7→→ c′
1 ‚ c′

2 ←←[ c2 implies c1 ‚ c2. From there, reducibility candidates become a pair of1155

term relation v A+ v and coterm relation e A− e′, where soundness and completeness can be1156

derived from the generalized notion of orthogonality between relations:1157

A+ ‚ A− ⇐⇒ ∀(v A+ v′), (e A− e′). ⟨v||e⟩‚ ⟨v′||e′⟩1158
1159

This lets us represent equalities between commands and (co)terms in the orthogonality model,1160

and prove that the equational theory is consistent with contextual equivalence [6], i.e., equal1161

expressions produce the same result in any context. As a consequence, (co)values built with1162

distinct constructors—such as ι1 and ι2 or π1 and π2—are never equal.1163

▶ Corollary 12 (Equational Consistency). The equalities Γ ⊢ ι1Vs = ι2V ′
s : A ⊕ B | ∆ and1164

Γ | π1Es = π2E′
s : A & B ⊢ ∆ are not derivable.1165
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5 Conclusion1166

Duality is not just an important idea in logic; it is also a useful tool to study and implement1167

programs. By re-imagining constructive logic as a fair debate between multiple competing1168

viewpoints, we derive a symmetric calculus that lets us transfer the logical idea of duality to1169

computation. This modest idea has serious ramifications, and leads to several applications in1170

both the theory and practice of programming languages. Moreover, it reveals new ideas and1171

new relationships that are not expressible in today’s languages. We hope the next generation1172

of programming languages puts the full force of duality into programmers’ hands.1173
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