
Beyond Polarity: Towards A Multi-Discipline
Intermediate Language with Sharing
Paul Downen
University of Oregon [Eugene, OR, USA]
pdownen@cs.uoregon.edu

Zena M. Ariola
University of Oregon [Eugene, OR, USA]
ariola@cs.uoregon.edu

Abstract
The study of polarity in computation has revealed that an “ideal” programming language com-
bines both call-by-value and call-by-name evaluation; the two calling conventions are each ideal
for half the types in a programming language. But this binary choice leaves out call-by-need
which is used in practice to implement lazy-by-default languages like Haskell. We show how the
notion of polarity can be extended beyond the value/name dichotomy to include call-by-need
by only adding a mechanism for sharing and the extra polarity shifts to connect them, which is
enough to compile a Haskell-like functional language with user-defined types.

2012 ACM Subject Classification Theory of computation → Type structures

Keywords and phrases call-by-need, polarity, call-by-push-value, control

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.20

Funding This work is supported by the National Science Foundation under grants CCF-1719158
and CCF-1423617.

1 Introduction

Finding a universal intermediate language suitable for compiling and optimizing both strict
and lazy functional programs has been a long-sought holy grail for compiler writers. First
there was continuation-passing style (CPS) [21, 2], which hard-codes the evaluation strategy
into the program itself. In CPS, all the specifics of evaluation strategy can be understood
just by looking at the syntax of the program. Second there were monadic languages [14, 18],
that abstract away from the concrete continuation-passing into a general monadic sequencing
operation. Besides moving away from continuations, making them an optional rather than
mandatory part of sequencing, they make it easier to incorporate other computational effects
by picking the appropriate monad for those effects. Third there were adjunctive languages
[11, 26, 15], as seen in polarized logic and call-by-push-value λ-calculus, that mix both call-by-
name and -value evaluation inside a single program. Like the monadic approach, adjunctive
languages make evaluation order explicit within the terms and types of a program, and
can easily accommodate effects. However, adjunctive languages also enable more reasoning
principles, by keeping the advantages of inductive call-by-value data types, as seen in their
denotational semantics. For example, the denotation of a list is just a list of values, not a
list of values interspersed with computations that might diverge or cause side effects.

Each of these developments have focused only on call-by-value and -name evaluation,
but there are other evaluation strategies out there. For example, to efficiently implement
laziness, the Glasgow Haskell Compiler (GHC) uses a core intermediate language which is

© Paul Downen and Zena M. Ariola;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 20; pp. 20:1–20:60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pdownen@cs.uoregon.edu
mailto:ariola@cs.uoregon.edu
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Beyond Polarity

call-by-need [4] instead of call-by-name: the computation of named expressions is shared
throughout the lifetime of their result, so that they need not be re-evaluated again. This may
be seen as merely an optimization of call-by-name, but it is one that has a profound impact
on the other optimizations the compiler can do. For example, full extensionality of functions
(i.e., the η law) does not apply in general, due to issues involving divergence and evaluation
order. Furthermore, call-by-need is not just a mere optimization but a full-fledged language
choice when effects are introduced [3]: call-by-need and -name are observationally different.
This difference may not matter for pure functional programs, but even there, effects become
important during compilation. For example, it is beneficial to use join points [13], which is a
limited form of jump or goto statement, to optimize pure functional programs.

So it seems like the quest for a universal intermediate language is still ongoing. To
handle all the issues involving evaluation order in modern functional compilers, the following
questions, which have been unanswered so far, should also be addressed:

(Section 3) How do you extend polarity with sharing (i.e., call-by-need)? For example,
how do you model the Glasgow Haskell Compiler (GHC) which mixes both call-by-need
for ordinary Haskell programs and call-by-value for unboxed [19] machine primitives?
(Section 4) What does a core language need to serve as a compile target for a general
functional programming language with user-defined types? What are the shifts you need
to convert between all three calling conventions? While encoding data types is routine,
what do you need to fully encode co-data types [9]?
(Section 5) How do you compile that general functional language to the core intermediate
sub-language? And how do you know that it is robust when effects are added?

This paper answers each of these questions. To test the robustness of this idea, we extend it
in several directions in the appendix. We generalize to a dual sequent calculus framework that
incorporates more calling conventions (specifically, the dual to call-by-need) and connectives
not found in functional languages (Appendices C and D). We formally relate our intermediate
language with polarity and call-by-push-value (Appendices B and F). Finally, full proofs of
correctness and standard meta-theoretic properties are provided (Appendices E and G to I).

2 Polarity, data, and co-data

To begin, let’s start with a basic language which is the λ-calculus extended with sums, as
expressed by the following types and terms:

A,B,C ::= X | A→ B | A⊕B
M,N,P ::= x | λx.M |M N | ι1M | ι2M | caseM of{ι1x.N | ι2y.P}

As usual, an abstraction λx.M is a term of a function type A→ B and an injection ιiM is a
term of a sum type A⊕B. Terms of function and sum types are used via application (M N)
and case analysis, respectively. Variables x can be of any type, even an atomic type X.

To make this a programming language, we would need to explain how to run programs
(say, closed terms of a sum type) to get results. But what should the calling convention be?
We could choose to use call-by-value evaluation, wherein a function application (λx.M) N is
reduced by first evaluating N and then plugging its value in for x, or call-by-name evaluation,
wherein the same application is reduced by immediately substituting N for x without further
evaluation. We might think that this choice just impacts efficiency, trading off the cost of
evaluating an unneeded argument in call-by-value for the potential cost of re-evaluating the
same argument many times in call-by-name. However, the choice of calling convention also
impacts the properties of the language, and can affect our ability to reason about programs.

P. Downen and Z.M. Ariola 20:3

Functions are a co-data type [7], so the extensionality law for functions, known as η,
expands function terms into trivial λ-abstractions as follows:

(η→) M : A→ B = λx.M x (x /∈ FV (M))

But once we allow for any computational effects in the language, this law only makes sense
with respect to call-by-name evaluation. For example, suppose that we have a non-terminating
term Ω (perhaps caused by general recursion) which never returns a value. Then the η→
law stipulates that Ω = λx.Ω x. This equality is fine—it does not change the observable
behavior of any program—in call-by-name, but in call-by-value, (λz.5) Ω loops forever and
(λz.5) (λx.Ω x) returns 5. So the full η→ breaks in call-by-value.

In contrast, sums are a data type, so one sensible extensionality law for sums, which
corresponds to reasoning by induction on the possible cases of a free variable, is expressed by
the following law stating that if x has type A⊕B then it does no harm to case on x first:

(η⊕) M = casexof{ι1y.M [ι1y/x] | ι2z.M [ι2z/x]} (x : A⊕B)

Unfortunately, this law only makes sense with respect to call-by-value evaluation once we have
effects. For example, consider the instance where M is ι1x. In call-by-value, variables stand
for values which are already evaluated because that is all that they might be substituted for.
So in either case, when we plug in something like ιi5 for x, we get the result ι1(ιi5) after
evaluating the right-hand side. But in call-by-name, variables range over all terms which
might induce arbitrary computation. If we substitute Ω for x, then the left-hand side results
in ι1Ω but the right-hand side forces evaluation of Ω with a case, and loops forever.

How can we resolve this conflict, where one language feature “wants” call-by-name
evaluation and the other “wants” call-by-value? We just could pick one or the other as the
default of the language, to the detriment of either functions or sums. Or instead we could
integrate the two to get the best of both worlds, and polarize the language so that functions
are evaluated according to call-by-name, and sums according to call-by-value. That way,
both of them have their best properties in the same language, even when effects come into
play. Since functions and sums are already distinguished by types, we can leverage the type
system to make the call-by-value and -name distinction for us. That is to say, a type A might
classify either a call-by-value term, denoted by A+, or a call-by-name term, denoted by A−.
Put it all together, we get the following polarized typing rules for our basic λ-calculus:

A,B,C ::= A+ | A− A−, B− ::= X− | A+ → B− A+, B+ ::= X+ | A+ ⊕B+

Γ, x : A ` x : A Var
Γ, x : A+ `M : B−

Γ ` λx.M : A+ → B−
→I

Γ `M : A+ → B− Γ ` N : A+

Γ `M N : B−
→E

Γ `M : A+

Γ ` ι1M : A+ ⊕B+
⊕I1

Γ `M : B+

Γ ` ι2M : A+ ⊕B+
⊕I2

Γ `M : A+ ⊕B+ Γ, x : A+ ` N : C Γ, y : B+ ` P : C
Γ ` caseM of{ι1x.N | ι2y.P} : C ⊕E

Note that, with this polarization, injections are treated as call-by-value, in ιiM the term M

is evaluated before the tagged value is returned. More interestingly, the function call M N

has two parts: the argument N is evaluated before the function is called as in call-by-value,
but this only happens once the result is demanded as in call-by-name.

But there’s a problem, just dividing up the language into two has severely restricted
the ways we can compose types and terms. We can no longer inject a function into a sum,
because a function is negative but a sum can only contain positive parts. Even more extreme,
the identity function λx.x : A → A no longer makes sense: the input must be a positive
type and the output a negative type, and A cannot be both positive and negative at once.
To get around this restriction, we need the ability to shift polarity between positive and

CSL 2018

20:4 Beyond Polarity

negative. That way, we can still compose types and terms any way we want, just like before,
and have the freedom of making the choice between call-by-name or -value instead of having
the language impose one everywhere.

If we continue the data and co-data distinction that we had between sums and functions
above, there are different ways of arranging the two shifts in the literature, depending on the
viewpoint. In Levy’s call-by-push-value [11] the shift from positive to negative ⇑ (therein
called F) can be interpreted as a data type, where the sequencing operation is subsumed
by the usual notion of a case on values of that data type, and the reverse shift ⇓ (therein
called U) can be interpreted as co-data type:1

A−, B− ::= . . . | ⇑A+

A+, B+ ::= . . . | ⇓A−

Γ `M : A+

Γ ` valM : ⇑A+
⇑I

Γ `M : ⇑A+ Γ, x : A+ ` N : C
Γ ` caseM of{val x.N} : C

⇑E

Γ `M : A−
Γ ` λenter.M : ⇓A−

⇓I
Γ `M : ⇓A−

Γ `M.enter : A−
⇓E

M.enter can be seen as sending the request enter to M , and λenter.M as waiting for that
request. In contrast, Zeilberger’s calculus of unity [25] takes the opposite view, where the
shift ↑ from positive to negative is co-data and the opposite shift ↓ is data:

A−, B− ::= . . . | ↑A+

A+, B+ ::= . . . | ↓A−

Γ `M : A+

Γ ` λeval.M : ↑A+
↑I

Γ `M : ↑A+

Γ `M.eval : A+
↑E

Γ `M : A−
Γ ` box M : ↓A−

↓I
Γ `M : ↓A− Γ, x : A− ` N : C

Γ ` caseM of{box x.N} : C
↓E

Here, we do not favor one form over the other and allow both forms to coexist. In turns out
that with only call-by-value and -name evaluation, the two pairs of shifts amount to the
same thing (more formally, we will see in Section 5 that they are isomorphic). But we will
see next in Section 3 how extending this basic language calls both styles of shifts into play.

With the polarity shifts between positive and negative types, we can express every
program that we could have in the original unpolarized language. The difference is that
now since both call-by-value and -name evaluation is denoted by different types, the types
themselves signify the calling convention. For call-by-name, this encoding is:

JXK− = X− JA→ BK− = (↓JAK−)→ JBK− JA⊕BK− = ⇑((↓JAK−)⊕ (↓JBK−))

JxK− = x

JM NK− = JMK−(box JNK−) Jλx.MK− = λy. case y of{box x.JMK−}

JιiMK− = val(ιi(box JMK−)) JcaseM of{ιixi.Ni}K− = case JMK− of{val(ιi(box xi)).JNiK−}

where the nested pattern val(ιi(box xi)) is expanded in the obvious way. It converts every
type into a negative one, and amounts to boxing up the arguments of injections and function
calls. The call-by-value encoding is:

JXK+ = X+ JA→ BK+ = ⇓(JAK+ → (↑JBK+)) JA⊕BK+ = JAK+ ⊕ JBK+

JxK+ = x

JM NK+ = ((JMK+.enter) JNK+).eval Jλx.MK+ = λenter.λx.λeval.JMK+

JιiMK+ = ιiJMK+ JcaseM of{ιixi.Ni}K+ = case JMK+ of{ιixi.JNiK+}

1 Note that this ⇑E rule is an extension of the elimination rule for F in call-by-push-value [11], which
restricts C to be only a negative type. The impact is that, unlike call-by-push-value, this language
allows for non-value terms of positive types, similar to SML. The extension is conservative, because
the interpretation of A+ values is identical to call-by-push-value, whereas the interpretation of a
non-value term of type A+ would be shifted in call-by-push-value as the computation type ⇑A+. This
interpretation also illustrates how to compile the extended calculus to the lower-level call-by-push-value
by ⇑-shifting following the standard encoding of call-by-value, where positive non-value terms have an
explicit val wherever they may return a value. More details can be found in Appendices B and F.

P. Downen and Z.M. Ariola 20:5

It converts every type into a positive one. As such, sum types do not have to change (because,
like SML, we have not restricted positive types to only classifying values as in [15]). Instead,
the shifts appear in function types: to call a function, we must first enter the abstraction,
perform the call, then evaluate the result.

At a basic level, these two encodings make sense from the perspective of typability
(corresponding to provability in logic)—by inspection, all of the types line up with their
newly-assigned polarities. But programs are meant to be run, so we care about more than
just typability. At a deeper level, the encodings are sound with respect to equality of terms:
if two terms are equal, then their encodings are also equal. We have not yet formally defined
equality, so we will return to this question later in Section 5.1.

3 Polarity and sharing

So far we have considered only call-by-value and -name calculi. What about call-by-need,
which models sharing and memoization for lazy computation; what would it take to add
that, too? The shifts we have are no longer enough: to complete the picture we also require
shifts between call-by-need and the other polarities. We need to be able to shift into and
out of the positive polarity in order for call-by-need to access data like the sum type. And
we also need to be able to shift into and out of the negative polarity for call-by-need to be
able to access co-data like the function type. That is a total of four more shifts to connect
the ordinary polarized language to the call-by-need world. The question is, how do we align
the four different shifts that we saw previously? Since call-by-need only needs access to the
positive world for representing data types, we use the data forms of shifts between those two.
Dually, since call-by-need only needs access to the negative world for representing co-data
types, we use the co-data forms of shifts between those two. We will also need a mechanism
for representing sharing. The traditional representation [4] is with let-bindings, and so we
will do the same. In all, we have:

A,B,C ::= A+ | A− | A? A−, B− ::= X− | A+ → B− | ⇑A+ | ↑A+ | ↑?A?
A?, B? ::= X? | ?⇑A+ | ?⇓A− A+, B+ ::= X+ | A+ ⊕B+ | ⇓A− | ↓A− | ↓?A?

Γ `M : A?
Γ ` λeval?.M : ↑?A?

↑I
Γ `M : ↑?A?

Γ `M.eval? : A?
↑E

Γ `M : A?
Γ ` box?M : ↓?A?

↓I
Γ `M : ↓?A? Γ, x : A? ` N : C

Γ ` caseM of{box? x.N} : C
↓E

Γ `M : A+

Γ ` val?M : ?⇑A+
⇑I

Γ `M : ?⇑A Γ, x : A+ ` N : C
Γ ` caseM of{val? x.N} : C

⇑E

Γ `M : A−
Γ ` λenter?.M : ?⇓A−

⇓I
Γ `M : ?⇓A−

Γ `M.enter? : A−
⇓E

Γ `M : A Γ, x : A ` N : C
Γ ` letx = M inN : C Let

Now, how can a call-by-need λ-calculus with functions and sums be encoded into this
polarized setting? We effectively combine both the call-by-name and -value encodings, where
a shift is used for call-by-need whenever one is used for either of the other two.

JXK? = X? JA→ BK? = ?⇓((↓?JAK?)→ (↑? JBK?)) JA⊕BK? = ?⇑((↓?JAK?)⊕ (↓?JBK?))
JxK? = x

JM NK? = ((JMK?. enter?) (box? JNK?)). eval?
Jλx.MK? = λenter?.λy. case y of{box? x.λeval?.JMK?}

JιiMK? = val?(ιi(box? JMK?))
JcaseM of{ιixi.Ni}K? = case JMK? of{val?(ιi(box? xi)).JNiK?}

CSL 2018

20:6 Beyond Polarity

The key thing to notice here is what is shared and what is not, to ensure that the encoding
correctly aligns with call-by-need evaluation. Both the shifts into ?, the data type ?⇑A+
and co-data type ?⇓A−, result in terms that can be shared by a let. But the shifts out of ?
are different: the content M of box?M : ↓?A? is still shared, like a data structure, but the
content M of λeval?.M : ↑?A? is not, like a λ-abstraction. Therefore, the encoding of an
injection JιiMK? shares the computation of JMK? throughout the lifetime of the returned
value, as for the argument of a function call:

Jcase ιiM of{ιixi.Ni}K? = letxi = JMK? in JNiK
? J(λx.M)NK? = letx = JNK? in JMK?

Whereas, the encoding of a function Jλx.MK?, being a value, re-computes JMK? every time
the function is used, which is formalized by the equational theory in Section 4.4.

4 A multi-discipline intermediate language

So far, we have only considered how sharing interacts with polarity in a small language with
functions and sums, but programming languages generally have more than just those two
types. For example, both SML and Haskell have pairs so we should include those, too, but
when do we have enough of a “representative” basis of types that serves as the core kernel
language for the general source language? To define our core intermediate language, we will
follow the standard practice (as in CPS) of first defining a more general source language,
and then identifying the core sub-language that the entire source can be translated into.

The biggest issue is that faithfully encoding types of various disciplines into a core set of
primitives is more subtle than it may at first seem. For example, using Haskell’s algebraic
data type declaration mechanism, we can define both a binary and ternary sum:

data Either a bwhere

Left : a→ Either a b
Right : b→ Either a b

data Either3 a b cwhere

Choice1 : a→ Either3 a b c
Choice2 : b→ Either3 a b c
Choice3 : c→ Either3 a b c

But Either a (Either b c) does not faithfully represent Either3 a b c in Haskell, even though it
does in SML. The two types are convertible:

nest(Choice1x) = Leftx
nest(Choice2 y) = Right(Left y)
nest(Choice3 z) = Right(Right z)

unnest(Leftx) = Choice1x
unnest(Right(Left y)) = Choice2 y
unnest(Right(Right z)) = Choice3 z

but they do not describe the same values. Either a (Either b c) types both the observably dis-
tinct terms Ω and Right Ω—which can be distinguished by pattern matching—but conversion
to Either3 a b c collapses them both to Ω. This is not just an issue of needing nary tuples
and sums, the same issue arises when pairs and sums are nested with each other.

To ensure that we model a general enough source language, we will consider one that is
extensible (i.e., allows for user-defined types encompassing many types found in functional
languages) and multi-discipline (i.e., allows for programs that mix call-by-value, -name, and
-need evaluation). These two features interact with one another: user-defined types can
combine parts with different calling conventions. But even though users can define many
different types, there is still a fixed core set of types, F , capable of representing them all.
For example, an extensible and multi-discipline calculus encompasses both the source and
target of the three encodings showed previously in Sections 2 and 3. We now look at the full
core intermediate language F , and how to translate general source programs into the core F .

P. Downen and Z.M. Ariola 20:7

Simple (co-)data types
data (X:+)⊕ (Y :+) : + where

ι1 : (X:+ ` X ⊕ Y)
ι2 : (Y :+ ` X ⊕ Y)

data (X:+)⊗ (Y :+) : + where
(,) : (X:+, Y :+ ` X ⊗ Y)

data 0 : + where

data 1 : + where () : (` 1)

codata (X:−) & (Y :−) : −where

π1 : (| X & Y ` X:−)
π2 : (| X & Y ` Y :−)

codata> : −where codata (X:+)→ (Y :−) : −where
call : (X:+ | X → Y ` Y :−)

Quantifier (co-)data types

data ∃k(X:k→+) : + where

pack : (X Y :+ `Y :k ∃kX)

codata ∀k(X:k→−) : −where

spec : (| ∀kX `Y :kX Y :−)

Polarity shift (co-)data types

data ↓S(X:S) : + where
boxS : (X:S ` ↓SX)

data S⇑(X:+) : Swhere
valS : (X:+ ` S⇑X)

codata ↑S (X:S) : −where
evalS : (| ↑SX ` X:S)

codata S⇓(X:−) : Swhere
enterS : (| S⇓X ` X:−)

Figure 1 The F functional core set of (co-)data declarations.

4.1 The functional core intermediate language: F

Our language allows for user-defined data and co-data types. A data type introduces a
number of constructors for building values of the type, a co-data type introduces a number
of observers for observing or interacting with values of the type. Figure 1 presents some
important examples that define a core set of types, F . The calculus instantiated with just the
F types serves as our core intermediate language, as it contains all the needed functionality.

The data and codata declarations for ⊕ and → correspond to the polarized sum and
function types from Section 2, with a slight change of notation: we write X : + instead of
X+. The data declaration of ⊕ defines its two constructors ι1 and ι2, and dually the co-data
declaration for → defines its one observer call. The terms of the resulting sum type are
exactly as they were presented in Section 2. The function type uses a slightly more verbose
notation than the λ-calculus for the sake of regularity: instead of λx.M we have λ{callx.M}
and instead of M N we have M.callN . That is, dual to a case matching on the pattern of a
data structure, a λ-abstraction matches on the co-pattern of a co-data observation like callx.
Besides changing notation, the meaning is the same [7].

There are some points to notice about these two declarations. First, disciplines can be
mixed within a single declaration, which is used to define the polarized → function space
that accepts a call-by-value (+) input and returns a call-by-name (−) result, but other
combinations are also possible. Second, instead of the function type arrow notation to assign
a type to the constructors and observers, we use the turnstyle (`) of a typing judgement.
This avoids the issue that a function type arrow already dictates the disciplines for the
argument and result, limiting our freedom of choice.

The rest of the core F types exercise all the functionality of our declaration mechanism.
The nullary version of sums (0) has no constructors and an empty caseM of{}. We have
binary and nullary tuples (⊗, 1), which have terms of the form (M,N) and () and are used by
caseM of{(x, y).M} and caseM of{().M}, respectively. We also have binary and nullary
products (&, >), with two and zero observers, respectively. The terms of binary products
have the form λ{π1.M |π2.N} and can be observed as M.πi, and the nullary product has the
term λ{} which cannot be observed in any way. The shifts are also generalized to operate
generically over the choice of call-by-name (−), call-by-value (+), and call-by-need (?), which

CSL 2018

20:8 Beyond Polarity

A,B,C ::= X | F | λX.A | A B X ::= X:k k, l ::= S | k → l R,S, T ::= + | − | ?

decl ::= data F(X:k).. : Swhere K : (A:T .. `X.. FX..)..

| codata G(X:k).. : Swhere O : (A:T .. | GX.. `X.. B:R)..
p ::= KX..y.. q ::= OX..y.. x,y, z ::= x:A

M,N ::= x | letx = M inN |M.OB..N.. | KB..M.. | λ{qi.Mi
i..} | caseM of{pi.Mi

i..}

Figure 2 Syntax of a total, pure functional calculus with (co-)data.

we denote by S. The pair of shifts between + (↓S , S⇑) and − (↑S , S⇓) for each S has the
same form as in Section 3, where we omit the annotation S when it is clear from the context.

The last piece of functionality is the ability to introduce locally quantified types in a
constructor or observer. These quantified type variables are listed as a superscript to the
turnstyle, and allow user-defined types to perform type abstraction and polymorphism.
Two important examples of type abstraction shown in Figure 1 are the universal (∀k) and
existential (∃k) quantifiers, which apply to a type function λX:k.A. We will use the shorthand
∀X:k.A for ∀k(λX:k.A) and ∃X:k.A for ∃k(λX:k.A). The treatment of quantified types is
analogous to System Fω, where types appear in terms as parameters. For example, the
term λ{specY :k.M} : ∀Y :k.A abstracts over the type variable Y in M , and a polymorphic
M : ∀Y :k.A can be observed via specialization as M.specB : A[B/Y]. Dually, the term
packB M : ∃Y :k.A hides the type B in the termM : A[B/Y], and an existentialM : ∃Y :k.A
can be unpacked by pattern matching as caseM of{pack (Y :k) (x:A).N}.

4.2 Syntax
The syntax of our extensible and multi-discipline λ-calculus is given in Figure 2. We refer
to each of the three kinds of types (+, − and ?) as a discipline which is denoted by the
meta-variables R, S, and T . A data declaration has the general form

data F(X1:k1)..(Xn:kn) : Swhere K1 : (A11 : T11..A1n : T1n ` FX1..Xn)
..
Km : (Am1 : Tm1..Amn : Tmn ` FX1..Xn)

which declares a new type constructor F and value constructors K1 . . .Km. The dual co-data
declaration combines the concepts of functions and products, having the general form

codata G(X1:k1)..(Xn:kn) : Swhere O1 : (A11 : T11..A1n : T1n | GX1..Xn ` B1 : R1)
..
Om : (Am1 : Tm1..Amn : Tmn | GX1..Xn ` Bm : Rm)

Since an observer is dual to a constructor, the signature is flipped around: the signature for
O1 above can be read as “given parameters of types A11 to A1n, O1 can observe a value of
type GX1..Xn to obtain a result of type B1.”2

Notice that we can also declare types corresponding to purely call-by-value, -name, and

2 Both of these notions of data and co-data correspond to finitary types, since declarations allow for a
finite number of constructors or observers for all data and co-data types, respectively. We could just
as well generalize declarations with an infinite number of constructors or observers to also capture
infinitary types at the usual cost of having infinite branching in cases and λs. Since this generalization
is entirely mechanical and does not enhance the main argument, we leave it out of the presentation.

P. Downen and Z.M. Ariola 20:9

Θ, X : k `G A : l
Θ `G λX:k.A : k → l

Θ `G A : k → l Θ `G B : k
Θ `G A B : l Θ, X : k `G X : k

(Θ `G A : T)..
(x : A : T .. `Θ

G) ctx
(Γ `Θ

G) ctx Θ `G A : S
Γ, x : A : S `Θ

G x : A : S
Γ `Θ
G M : A : S Γ, x : A : S `Θ

G N : C : R
Γ `Θ
G letx:A = M inN : C : R

Γ `Θ
G M : A : S A =βη B

Γ `Θ
G M : B : S

Given data F(X:k).. : Swhere Ki : (Aij : Tij j.. `Yij :lij
j.. F(X..)) i.. ∈ G, we have the rules:

Θ `G F : k → ..S

(Γ `Θ
G) ctx Θ `G FC.. : S (Θ `G Bj : lij)j.. (Γ `Θ

G Mj : Aij [C/X.., Bj/Yij j..] : Tij)j..
Γ `Θ
G KiBj j.. Mj

j.. : FC.. : S
FIi

Θ `G C : R Γ `Θ
G M : FB.. : S (Γ, xij : Aij [B/X..] : Tij j.. `

Θ,Yij :lij j..
G Ni : C : R) i..

Γ `Θ
G caseM of{(Ki Yij :lij j.. xij :Aij j..).Ni i..} : C : R

FE

Given codata G(X:k).. : Swhere Oi : (Aij : Tij j.. | G(X..) `Yij :lij
j.. Bi : Ri) i.. ∈ G, we have the rules:

Θ `G G : k → ..S

Γ `Θ
G M : GC′.. : S (Θ `G Cj : lij)j.. (Γ `Θ

G Nj : Aij [C′/X.., Cj/Yij j..] : Tij)j..
Γ `Θ
G M.Oi Cj j.. Nj j.. : Bi : Ri

GEi

(Γ `Θ
G) ctx Θ `G GC.. : S (Γ, xij : Aij [C/X..] : Tij j.. `

Θ,Yij :lij j..
G Ni : Bi : Ri) i..

Γ `Θ
G λ
{

(Oi Yij :lij j.. xij :Aij j..).Ni i..
}

: GC.. : S
GI

Figure 3 Type system for the pure functional calculus.

-need versions of sums and functions by instantiating S with +, −, and ?, respectively:

data (X:S)⊕S (Y :S) : Swhere
ιS1 : (X:S ` X ⊕ Y)
ιS2 : (Y :S ` X ⊕ Y)

codata (X:S) S→ (Y :S) : Swhere
callS: (X:S | X S→ Y ` Y :S)

So the extensible language subsumes all the languages shown in Sections 2 and 3.

4.3 Type System
The kind and type system is given in Figure 3. In the style of system Fω, the kind
system is just the simply-typed λ-calculus at the level of types—so type variables, functions,
and applications—where each connective is a constant of the kind declared in the global
environment G. It also includes the judgement (Γ `Θ

F) ctx for checking that a typing context
is well-formed, meaning that each variable in Γ is assigned a well-kinded type with respect
to the type variables in Θ and global environment G.

The typing judgement for terms is Γ `Θ
G M : A : S, where G is a list of declarations,

Θ = X : k.. assigns kinds to type variables, and Γ = x : A : S.. assigns explicitly-kinded
types to value variables. The interesting feature of the type system is the use of the two-level
judgement M : A : S, which has the intended interpretation that “M is of type A and A is of
kind S.” The purpose of this compound statement is to ensure that the introduction rules do
not create ill-kinded types by mistake. This maintains the invariant that if Γ `Θ

G M : A : S
is derivable then so is (Γ `Θ

G) ctx and Θ `G A : S.
For example, in the F environment from Figure 1, a type like A⊗B requires that both

A and B are of kind +, so the ⊗ introduction rule for closed pairs of closed types is:
`F M : A : + `F N : A : +
`F (M,N) : A⊗B : + ⊗I

CSL 2018

20:10 Beyond Polarity

V ::= VS :A :S V+ ::= x | KB..V .. | λ{qi.Mi | i..} V− ::= M V? ::= V+

F ::= �.OB..V .. | case�of{pi.Mi
i..} | letx:A:+ = � inM | letx:A:? = � inH[E[x]]

E ::= � | F [E] U ::= letx:A:? = M in� H ::= � | U [H]
T ::= letx = M in� | caseM of{pi.� | i..}

(βlet) letx = V inM ∼M [V/x]
(βO) λ{..|(OY ..x..).M |..}.OB.. N.. ∼ letx = N.. inM [B/Y ..]
(βK) case KB..N..of{..|(KY ..x..).M |..} ∼ letx = N.. inM [B/Y ..]

(ηlet) letx:A = M inx ∼M
(ηG) λ{qi.(x.qi) | i..} ∼ x
(ηF) caseM of{pi.pi | i..} ∼M

(κF) F [T [Mi
i..]] ∼ T [F [Mi] i..]

(χS) let y:B:S = letx:A:S = M1 inM2 inN ∼ letx:A:S = M1 in let y:B:S = M2 inN
Γ `Θ
G M : A : S M ∼M ′ Γ `Θ

G M
′ : A : S

Γ `Θ
G M = M ′ : A : S

plus compatibility, reflexivity, symmetry, transitivity

Figure 4 Equational theory for the pure functional calculus.

The constraint that A : + and B : + in the premises to ⊗I ensures that A⊗B is indeed a
type of +. This idea is also extended to variables introduced by pattern matching at a specific
type by placing a two-level constraint on the variables. For example, the → introduction
rule for closed function abstractions is:

x : A : + `F M : B : −
`F λ{call(x:A).M} : A→ B : − →I

Notice how when the variable x is added to the environment, it has the type assignment
x : A : + because the declared argument type of → must be some call-by-value type. If the
premise of →I holds, then A : + and B : −, so A→ B is a well-formed type of −.

Finally, we also need to check that a global environment G is well-formed, written ` G,
which amounts to checking that each declaration is in turn like so:

(X : k.., Y : l.. `G A : T)..
G ` data F(X:k).. : Swhere K : (A : T .. `Y :l.. FX..)..

(X : k.., Y : l.. `G A : T).. (X : k.., Y : l.. `G B : R)..
G ` codata G(X:k).. : Swhere O : (A : T .. | GX.. `Y :l.. B : R)..

And we say that G′ extends G if it contains all declarations in G.

4.4 Equational Theory
The equational theory, given in Figure 4, equates two terms of the same type that behave the
same in any well-typed context.3 The axioms of equality are given by the relation ∼, and the
typed equality judgement is Γ `Θ

G M = N : A : S. Because of the multi-discipline nature of
terms, the main challenge is deciding when terms are substitutable, which controls when the

3 See Appendices E and I for the operational semantics and its relationship to equality.

P. Downen and Z.M. Ariola 20:11

βlet axiom can fire. For example, letx = M inN should immediately substitute M without
further evaluation if it is a call-by-name binding, but should evaluate M to a value first
before substitution if it is call-by-value. And we need the ability to reason about program
fragments (i.e., open terms of any type) wherein a variable x acts like a value in call-by-value
only if it stands for a value, i.e., we can only substitute values and not arbitrary terms for a
call-by-value variable. Thus, we link up the static and dynamic semantics of disciplines: each
base kind S is associated with a different set of substitutable terms VS called values. The set
of values for + is the most strict (including only variables, λ-abstractions, and constructions
p[ρ] built by plugging in values for the holes in a pattern), − is the most relaxed (admitting
every term as substitutable), and ? shares the same notion of value as +. A true value, then,
is a term VS belonging to a type of kind S, i.e., VS : A : S. This way, the calling convention
is aligned in both the static realm of types are and dynamic realm of evaluation.

The generic βlet axiom relies on the fact that the left-hand side of the axiom is well-typed
and every type belongs to (at most) one kind; given letx:A = V inM , then it must be that
A : S and V is of the form VS : A : S (both in the current environment). So if x : A&B : −,
then every well-typed binding is subject to substitution via βlet , but if x : A⊗B : + then only
a value V+ in the sense of call-by-value can be substituted. The corresponding extensionality
axiom ηlet eliminates a trivial let binding.

The βK and βO axioms match against a constructor K or observer O, respectively, by
selecting the matching response within a case or λ-abstraction and binding the parameters
via a let. Special cases of these axioms for a sum injection and function call are:

case ιiM of{ι1x1.N1 | ι2x2.N2} ∼βιiletxi = M inNi λ{callx.N}.callM ∼βcall
letx = M inN

The corresponding extensionality axioms ηG and ηF apply to each co-data type G and data
type F to eliminate a trivial λ and case, respectively, and again rely on the fact that the
left-hand side of the axiom is well-typed to be sensible. The special cases of these axioms for
the sum (⊕) and function (→) connectives of F are:

caseM of{ι1x:A.ι1x | ι2y:B.ι2y} ∼η⊕ M λ{call y:A.(x.call y)} ∼η→ x

The κF axiom implements commutative conversions which permute a frame F of an
evaluation context (E) with a tail context T , which brings together the frame with the
return result of a block-style expression like a let or case. Frames represent the building
blocks of contexts that demand a result from their hole �. The cases for frames are an
observation parameterized by values (�.OB..V ..), case analysis (case�of{. . . }), a call-by-
value binding (letx:A:+ = � inM), or a call-by-need binding which is needed in its body
(letx:A:? = � inH[E[x]]). As per call-by-need evaluation, variable x is needed when it
appears in the eye of an evaluation context E, in the context of a heap H of other call-by-need
bindings for different variables. Tail contexts point out where results are returned from
block-style expressions, so the body of any let (letx = M in�) or the branches of any case
(caseM of{p.�..}). Since a case can have zero or more branches, a tail context can have
zero or more holes.

Finally, the χS axiom re-associates nested let bindings, so long as the discipline of their
bindings match. The restriction to matching disciplines is because not all combinations are
actually associative [15]; namely the following two ways of nesting call-by-value and -name
lets are not necessarily the same when M1 causes an effect:

(let y:B:− = (letx:A:+ = M1 inM2) inN) 6= (letx:A:+ = M1 in let y:B:− = M2 inN)

In the above, the right-hand side evaluates M1 first, but the left-hand side first substitutes
letx:A:+ = M1 inM2 for y, potentially erasing or duplicating the effect of M1. For example,
when M1 is the infinite loop Ω and N is a constant result z which does not depend on y,

CSL 2018

20:12 Beyond Polarity

then the right-hand side loops forever, but the left-hand side just returns z. But when the
disciplines match, re-association is sound. In particular, notice that the χ− instance of the
axiom is derivable from βlet, and the χ+ instance of the axiom is derivable from κF . The
only truly novel instance of re-association is for call-by-need, which generalizes the special
case of κF when the outer variable y happens to be needed.

Some of the axioms of this theory may appear to be weak, but nonetheless they let us
derive some useful equalities. For example, the λ-calculus’ full η law for functions

Γ `Θ
F M : A→ B : − x /∈ Γ

Γ `Θ
F λ{callx:A.(M.callx)} = M : A→ B : −

is derivable from η→ and βlet . Furthermore, the sum extensionality law from Section 2, and
nullary version for the void type 0

Γ, x : A1 ⊕A2 : + `Θ
F M = casexof{ιi(yi:Ai).M [ιiyi/x] i..} : C : R

Γ, x : 0 : + `Θ
F M = casexof{} : C : R

are derived from the η⊕, η0, κF , and βlet axioms. So typed equality of this strongly-
normalizing calculus captures “strong sums” (à la [16]). Additionally, the laws of monadic
binding [14] (bind-and-return and bind reassociation) and the F functor of call-by-push-value
[11] are instances of the generic βηκ laws for the shift data type S⇑A:

Γ `Θ
F case boxS V of{boxS x.M} =β

S⇑
βlet

M [V/x] : C : R

Γ `Θ
F caseM of{boxS(x:A).boxS x} =ηp M : S⇑A : S

Γ `Θ
F case (caseM of{boxS x.N}) of{boxT y.N ′}

=κ
F

caseM of{boxS x.caseN of{boxT y.N ′}}
: C : R

Note that in the third equality, commuting conversions can reassociate S⇑A and T⇑B
bindings for any combination of S and T , including − and ?, because a case is always strict.

Note that, as usual, the equational theory collapses under certain environments and types
due to the nullary versions of some connectives: we saw above that with a free variable
x : 0 : + all terms are equal, and so too are any two terms of type > via η> (the nullary form
of product in F). Even still, there are many important cases where the equational theory is
coherent. One particular sanity check is that, in the absence of free variables, the two sum
injections ι1() and ι2() are not equal, inherited from contextual equivalence in Appendix I.

I Theorem 1 (Closed coherence). For any global environment ` G extending F , the equality
`G ι1() = ι2() : 1⊕ 1 : + is not derivable.

4.5 Adding effects
So far, we have considered only a pure functional calculus. However, one of the features
of polarity is its robustness in the face of computational effects, so let’s add some. Two
particular effects we can add are general recursion, in the form of fixed points, and control in
the form of µ-abstractions from Parigot’s λµ-calculus [17]. To do so, we extend the calculus
with the following syntax:

M,N ::= . . . | νx.M | µα.J J ::= 〈M ||α〉 α,β,γ ::= α:A

Fixed-point terms νx:A.M bind x to the result of M inside M itself. Because fixed points
must be unrolled before evaluating their underlying term, their type is restricted to A : −.
Control extends the calculus with co-variables α, β, . . . that bind to evaluation contexts
instead of values, letting programs abstract over and manipulate their control flow. The

P. Downen and Z.M. Ariola 20:13

evaluation context bound to a co-variable α of any type A can be invoked (any number of
times) with a term M : A via a jump 〈M ||α〉 that never returns a result, and the co-variable
α of type A can be bound with a µ-abstraction µα:A.J .

To go along with the new syntax, we have some additional type checking rules:

Γ, x : A : − `Θ
G M : A : − | ∆

Γ `Θ
G νx:A.M : A : − | ∆

J : (Γ `Θ
G α : A : S,∆)

Γ `Θ
G µα:A.J : A : S | ∆

Γ `Θ
G M : A : S | α : A : S,∆

〈M ||α〉 : (Γ `Θ
G α : A : S,∆)

The judgements in other typing rules from Figure 3 are all generalized to Γ `Θ
G M : A : S | ∆.

There is also a typing judgement for jumps of the form J : (Γ `Θ
F ∆), where Θ, Γ, and

∆ play the same roles; the only difference is that J is not given a type for its result.
Unlike terms, jumps never return. As in the λµ-calculus, the environment ∆ is placed
on the right because co-variables represent alternative return paths. For example, a term
x : X : −, y : Y : + `X:−,Y :+

F M : Y : − | β : Y : + could return an X via the main path, as
in M = x, or a Y via β by aborting the main path, as in M = µα:X.〈y||β〉.

And finally, the equational theory is also extended with the following equality axioms:

(ν) νx.M ∼M [νx.M/x]

(βαµ) 〈µα.J ||β〉 ∼ J [β/α] (βFµ) F [µα.J] : B ∼ µβ:B.J [〈F ||β〉/〈�||α〉]
(ηµ) µα:A.〈M ||α〉 ∼M (κµ) T [µα.〈Mi||β〉 i..] ∼ µα.〈T [Mi

i..]||β〉

The ν axiom unrolls a fixed point by one step. The two βµ axioms are standard generalizations
of the λµ-calculus: βαµ substitutes one co-variable for another, and βFµ captures a single
frame of a µ-abstraction’s evaluation context via a structural substitution that replaces one
context with another. The κµ is the commuting conversion that permutes a µ-abstraction
with a tail context T .

5 Encoding user-defined (co-)data types into F

Equipped with both the extensible source language and the fixed F target language, we
are now able to give an encoding of user-defined (co-)data types in terms of just the core
F connectives from Figure 1. Intuitively, each data type is converted to an existential ⊕-
sum-of-⊗-products and each co-data type is converted to a universal &-product-of-functions,
both annotated by the necessary shifts in and out of + and −, respectively. The encoding is
parameterized by a global environment G so that we know the overall shape of each declared
connective. Given that G contains the following data declaration of F, the encoding of F is:

Given data F(X:k).. : Swhere Ki : (Aij : Tij j.. `Yij :lij
j.. F(X..)) i.. ∈ G

JFKFG , λX:k...S⇑((∃Yij :lij . j..((↓TijAij)⊗ j..1))⊕ i..0)

Dually, given that G contains the following co-data declaration of G, the encoding of G is:

Given codata G(X:k).. : Swhere Oi : (Aij : Tij j.. | G(X..) `Yij :lij
j.. Bi : Ri) i.. ∈ G

JGKFG , λX:k...S⇓((∀Yij :lij . j..((↓TijAij)→ j..(↑Ri Bi))) & i..>)

However, the previous encodings for call-by-name, -value, and -need functions and sums
from Sections 2 and 3 are not exactly the same when we take the corresponding declarations
of functions and sums from Section 4; the call-by-name and -value encodings are missing
some of the shifts used by the generic encoding, and they all elide the terminators (0, 1, and
>). Does the difference matter? No, because the encoded types are still isomorphic.

CSL 2018

20:14 Beyond Polarity

I Definition 2 (Type Isomorphism). An isomorphism between two open types of kind k,
written Θ �G A ≈ B : k, is defined by induction on k:

Θ �G A ≈ B : k → l when Θ, X : k �G A X ≈ B X : l, and
Θ �G A ≈ B : S when, for any x and y, there are terms x : A : S `Θ

G N : B : S
and y : B : S `Θ

G M : A : S such that x:A:S `Θ
G (let y:B = N inM = x) : A : S and

y:B:S `Θ
G (letx:A = M inN = y) : B : S.

Notice that this is an open form of isomorphism: in the base case, an isomorphism between
types with free variables is witnessed uniformly by a single pair of terms. This uniformity in
the face of polymorphism is used to make type isomorphism compatible with the ∀ and ∃
quantifiers. With this notion of type isomorphism, we can formally state how some of the
specific shift connectives are redundant. In particular, within the positive (+) and negative
(−) subset, there are only two shifts of interest since the two different shifts between − and
+ are isomorphic, and the identity shifts on + and − are isomorphic to an identity on types.

I Theorem 3. The following isomorphisms hold (under �F) for all ` A : + and ` B : −

↑+A ≈ −⇑A ↓−B ≈ +⇓B ↓+A ≈ A ≈ +⇑A ↑−B ≈ B ≈ −⇓B

But clearly the shifts involving ? are not isomorphic, since none of them even share the
same kind. Recognizing that sometimes the generic encoding uses unnecessary identity shifts,
and given the algebraic properties of polarized types [6], the hand-crafted encodings JAK+,
JAK−, and JAK? are isomorphic to JAKF .

5.1 Correctness of encoding

Type isomorphisms give us a helpful assurance that the encoding of user-defined (co-)data
types into F is actually a faithful one. In every extension of F with user-defined (co-)data
types, all types are isomorphic to their encoding.

I Theorem 4. For all ` G extending F and Θ `G A : k, Θ �G A ≈ JAKFG : k.

Note that this isomorphism is witnessed by terms in the totally pure calculus (without
fixed points or µ-abstractions); the encoding works in spite of recursion and control, not
because of it. Because of the type isomorphism, we can extract a two-way embedding
between terms of type A and terms of the encoded type JAKFG from the witnesses of the type
isomorphism. By the properties of isomorphisms, this embedding respects equalities between
terms; specifically it is a certain kind of adjunction called an equational correspondence [22].

I Theorem 5. For all isomorphic types Θ �G A ≈ B : S, the terms of type A (i.e., Γ `Θ
G M :

A : S | ∆) are in equational correspondence with terms of type B (i.e., Γ `Θ
G N : B : S | ∆).

This means is that, in the context of a larger program, a single sub-term can be encoded
into the core F connectives without the rest of the program being able to tell the difference.
This is useful in optimizing compilers for functional languages which change the interface of
particular functions to improve performance, without hampering further optimizations.

The possible application of this encoding in a compiler is as an intermediate language:
rather than encoding just one sub-term, exhaustively encoding the whole term translates
from a source language with user-defined (co-)data types into the core F connectives. The

P. Downen and Z.M. Ariola 20:15

essence of this translation is seen in the way patterns and co-patterns are transformed; given
the same generic (co-)data declarations listed in Figure 3, the encodings of (co-)patterns are:

JKi Y .. x..KFG , valS
(
ιi2 (ι1 (packY .. (boxT x, ..())))

)
JOi Y .. x..K

F
G , enterS .πi2.π1.specY ...callx...evalRi

where ιi2 denotes i applications of the ι2 constructor, and πi2 denotes i projections of the π2
observer. Using this encoding of (co-)patterns, we can encode (co-)pattern-matching as:

JcaseM of{pi.Ni i..}KFG , case JMKG of{JpiKG .JNiKG i..} Jλ{qi.Mi
i..}KFG , λ

{
JqiKG .JMiKG i..

}
as well as data structures and co-data observations:

Jp[B/Y ..,M/x..]KFG , JpKFG [JBKFG /Y .., JMKFG /x..]

JM.(q[B/Y .., N/x..])KFG , JMKFG .(JqK
F
G [JBKFG /Y .., JNKFG /x..])

Note that in the above translation, arbitrary terms are substituted instead of just values as
usual. This encoding of terms with user-defined (co-)data types G into the core F types is
sound with respect to the equational theory (where Γ and ∆ are encoded pointwise).

I Theorem 6. If the global environment ` G extends F and Γ `Θ
G M = N : A | ∆ then

JΓKFG `Θ
F JMKFG = JNKFG : JAKFG | J∆KFG .

Since the extensible, multi-discipline language is general enough to capture call-by-value,
-name, and -need functional languages—or any combination thereof—this encoding establishes
a uniform translation from both ML-like and Haskell-like languages into a common core
intermediate language: the polarized F .

6 Conclusion

We have showed here how the idea of polarity can be extended with other calling conventions
like call-by-need, which opens up its applicability to the implementation of practical functional
languages. In particular, we would like to extend GHC’s already multi-discipline intermediate
language with the core types in F . Since it already has unboxed types [19] corresponding to
positive types, what remains are the fully extensional negative types. Crucially, we believe
that negative function types would lift the idea of call arity—the number of arguments a
function takes before “work” is done—from the level of terms to the level of types. Call
arity is used to optimize curried function calls, since passing multiple arguments at once
is more efficient that computing intermediate closures as each argument is passed one at a
time. No work is done in a negative type until receiving an eval request or unpacking a val,
so polarized types compositionally specify multi-argument calling conventions.

For example, a binary function on integers would have the type Int→ Int→ ↑ Int, which
only computes when both arguments are given, versus the type Int→ ↑? ?⇓(Int→ ↑ Int) which
specifies work is done after the first argument, breaking the call into two steps since a closure
must be evaluated and followed. This generalizes the existing treatment of function closures
in call-by-push-value to call-by-need closures. The advantage of lifting this information into
types is so that call arity can be taken advantage of in higher order functions. For example,
the zipWith function takes a binary function to combine two lists, pointwise, and has the
type ∀X:?.∀Y :?.∀Z:?.(X → Y → Z) → [X] → [Y] → [Z] The body of zipWith does not
know the call arity of the function it’s given, but in the polarized type built with negative
functions: ∀X:?.∀Y :?.∀Z:?.⇓(↓X → ↓Y → ↑Z)→ ↓[X]→ ↓[Y]→ ↑[Z] the interface in the
type spells out that the higher-order function uses the faster two-argument calling convention.

CSL 2018

20:16 Beyond Polarity

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992. URL: http://dx.doi.org/10.1093/logcom/
2.3.297, doi:10.1093/logcom/2.3.297.

2 Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New York,
NY, USA, 1992.

3 Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. Classical call-by-need and duality. In
Typed Lambda Calculi and Applications: 10th International Conference, TLCA’11, pages
27–44, Berlin, Heidelberg, June 2011. Springer Berlin Heidelberg. URL: http://dx.doi.
org/10.1007/978-3-642-21691-6_6, doi:10.1007/978-3-642-21691-6_6.

4 Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler.
A call-by-need lambda calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages 233–246, New York,
NY, USA, 1995. ACM. URL: http://doi.acm.org/10.1145/199448.199507, doi:10.
1145/199448.199507.

5 Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP ’00,
pages 233–243, New York, NY, USA, 2000. ACM. URL: http://doi.acm.org/10.1145/
351240.351262, doi:10.1145/351240.351262.

6 Paul Downen. Sequent Calculus: A Logic and a Language for Computation and Duality.
PhD thesis, University of Oregon, 2017.

7 Paul Downen and Zena M. Ariola. The duality of construction. In Zhong Shao, editor,
Programming Languages and Systems: 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, volume 8410 of Lecture Notes in Computer Science, pages 249–269. Springer
Berlin Heidelberg, Berlin, Heidelberg, April 2014. URL: http://dx.doi.org/10.1007/
978-3-642-54833-8_14, doi:10.1007/978-3-642-54833-8_14.

8 Paul Downen and Zena M. Ariola. A tutorial on computational classical logic and
the sequent calculus. Journal of Functional Programming, 28:e3, 2018. doi:10.1017/
S0956796818000023.

9 Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In David H.
Pitt, Axel Poigné, and David E. Rydeheard, editors, Category Theory and Computer Sci-
ence, pages 140–157, Berlin, Heidelberg, September 1987. Springer Berlin Heidelberg. URL:
http://dx.doi.org/10.1007/3-540-18508-9_24, doi:10.1007/3-540-18508-9_24.

10 Philip Johnson-Freyd, Paul Downen, and Zena M. Ariola. Call-by-name extensionality and
confluence. Journal of Functional Programming, 27:e12, 2017. URL: http://dx.doi.org/
10.1017/S095679681700003X, doi:10.1017/S095679681700003X.

11 Paul Blain Levy. Call-By-Push-Value. PhD thesis, Queen Mary and Westfield College,
University of London, 2001.

12 Paul Blain Levy. Jumbo λ-Calculus, pages 444–455. Springer Berlin Heidelberg, Berlin,
Heidelberg, July 2006. URL: http://dx.doi.org/10.1007/11787006_38, doi:10.1007/
11787006_38.

13 Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. Compiling without
continuations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’17, pages 482–494, New York, NY, USA,
June 2017. ACM. URL: http://dx.doi.org/10.1145/3062341.3062380, doi:10.1145/
3062341.3062380.

14 Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, pages 14–23, Piscataway, NJ, USA, 1989.
IEEE Press. URL: http://dl.acm.org/citation.cfm?id=77350.77353.

http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1007/978-3-642-21691-6_6
http://dx.doi.org/10.1007/978-3-642-21691-6_6
http://dx.doi.org/10.1007/978-3-642-21691-6_6
http://doi.acm.org/10.1145/199448.199507
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1145/199448.199507
http://doi.acm.org/10.1145/351240.351262
http://doi.acm.org/10.1145/351240.351262
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1007/978-3-642-54833-8_14
http://dx.doi.org/10.1007/978-3-642-54833-8_14
http://dx.doi.org/10.1007/978-3-642-54833-8_14
http://dx.doi.org/10.1017/S0956796818000023
http://dx.doi.org/10.1017/S0956796818000023
http://dx.doi.org/10.1007/3-540-18508-9_24
http://dx.doi.org/10.1007/3-540-18508-9_24
http://dx.doi.org/10.1017/S095679681700003X
http://dx.doi.org/10.1017/S095679681700003X
http://dx.doi.org/10.1017/S095679681700003X
http://dx.doi.org/10.1007/11787006_38
http://dx.doi.org/10.1007/11787006_38
http://dx.doi.org/10.1007/11787006_38
http://dx.doi.org/10.1145/3062341.3062380
http://dx.doi.org/10.1145/3062341.3062380
http://dx.doi.org/10.1145/3062341.3062380
http://dl.acm.org/citation.cfm?id=77350.77353

P. Downen and Z.M. Ariola 20:17

15 Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative Composition of
Programs and Proofs. PhD thesis, Université Paris Diderot, 2013.

16 Guillaume Munch-Maccagnoni and Gabriel Scherer. Polarised intermediate representation
of lambda calculus with sums. In 30th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2015, pages 127–140. IEEE, July 2015. URL: http://dx.doi.org/10.
1109/LICS.2015.22, doi:10.1109/LICS.2015.22.

17 Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction.
In Andrei Voronkov, editor, Logic Programming and Automated Reasoning: International
Conference, LPAR ’92, pages 190–201, Berlin, Heidelberg, July 1992. Springer Berlin Hei-
delberg. URL: http://dx.doi.org/10.1007/BFb0013061, doi:10.1007/BFb0013061.

18 Simon Peyton Jones and Erik Meijer. Henk: a typed intermediate language. In Proceedings
of the First International Workshop on Types in Compilation, 1997.

19 Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-
strict functional language. In John Hughes, editor, Functional Programming Languages and
Computer Architecture: 5th ACM Conference, pages 636–666, Berlin, Heidelberg, August
1991. Springer Berlin Heidelberg. URL: http://dx.doi.org/10.1007/3540543961_30,
doi:10.1007/3540543961_30.

20 Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science, 10(3):321–359, June 2000. URL: http://dx.doi.org/10.
1017/S0960129500003066, doi:10.1017/S0960129500003066.

21 Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975. URL: http://dx.doi.org/10.1016/0304-3975(75)90017-1,
doi:10.1016/0304-3975(75)90017-1.

22 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3-4):289–360, November 1993. URL: http://dx.
doi.org/10.1007/BF01019462, doi:10.1007/BF01019462.

23 Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Transactions on
Programming Languages and Systems (TOPLAS), 19(6):916–941, November 1997. URL:
http://doi.acm.org/10.1145/267959.269968, doi:10.1145/267959.269968.

24 Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM
SIGPLAN International Conference on Functional Programming, pages 189–201, New York,
NY, USA, 2003. ACM. URL: http://doi.acm.org/10.1145/944705.944723, doi:10.
1145/944705.944723.

25 Noam Zeilberger. On the unity of duality. Annals of Pure and Applied Logic, 153(1):660–96,
2008. URL: http://dx.doi.org/10.1016/j.apal.2008.01.001, doi:10.1016/j.apal.
2008.01.001.

26 Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis,
Carnegie Mellon University, 2009.

CSL 2018

http://dx.doi.org/10.1109/LICS.2015.22
http://dx.doi.org/10.1109/LICS.2015.22
http://dx.doi.org/10.1109/LICS.2015.22
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/3540543961_30
http://dx.doi.org/10.1007/3540543961_30
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.1017/S0960129500003066
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1007/BF01019462
http://dx.doi.org/10.1007/BF01019462
http://dx.doi.org/10.1007/BF01019462
http://doi.acm.org/10.1145/267959.269968
http://dx.doi.org/10.1145/267959.269968
http://doi.acm.org/10.1145/944705.944723
http://dx.doi.org/10.1145/944705.944723
http://dx.doi.org/10.1145/944705.944723
http://dx.doi.org/10.1016/j.apal.2008.01.001
http://dx.doi.org/10.1016/j.apal.2008.01.001
http://dx.doi.org/10.1016/j.apal.2008.01.001

20:18 Beyond Polarity

A Appendix outline

In this appendix, we give supporting material in the form of an alternative language based on
the classical sequent calculus, additional details on the operational semantics and CPS-like
kernels of the two calculi, and proofs of the stated theorems. More specifically, the appendix
contains the following parts:

Appendix B gives a summary of the related work, and a high-level overview of how
the presentation given here corresponds to other multi-discipline calculi (specifically,
call-by-push-value and polarized calculi) in the literature.
Appendices C and D give a fully dual generalization of Sections 4 and 5 based on the
classical sequent calculus. This generalization includes a dual core D basis of (co-)data
types that serves as the target of encoding as well as the dual of call-by-need evaluation.
The encoding admits the same correctness criteria as for the encoding into F .
Appendix E gives an untyped operational semantics for both the functional and sequent
calculi. These operational semantics enjoy standard properties like determinism and type
safety.
Appendix F illustrates the core F and D intermediate languages in isolation. These
two core languages can be viewed independently of the data and co-data declaration
mechanism, which are expressive enough to represent all the other declarable types of
their respective systems. We also illustrate the focused sub-syntax of the F and D
calculi, which is calculated as the normal forms with respect to the ς reductions of the
operational semantics, and show in detail how the focused sub-syntax corresponds to
call-by-push-value and polarized calculi in the literature.
Appendix G shows the equational correspondence between both the extensible functional
calculus and the a subset of the sequent calculus. As a consequence, the correctness
criteria of encodings in those two calculi are the same.
Appendix H shows that types are isomorphic to their encodings, and that the encoding
of terms is sound with respect to the equational theory of the extensible source language
and the target D or F .
Appendix I shows the soundness of the equational theory with respect to a contextual
equivalence based on the above operational semantics. The untyped reductions of the
equational theory are shown to have the standard rewriting theory properties of confluence
(i.e., Church-Rosser) and standardization, which gives soundness of the untyped portion
of the equational theory. The typed extensionality axioms are then justified by a logical
relation based on an orthogonality model of types.

B Related Work

There have been several polarized languages [11, 26, 15], each with subtly different and
incompatible restrictions on which programs are allowed to be written. The most common
such restriction corresponds to focusing in logic [1]; in the terms used here, focusing means
that the parameters to constructors and observers must be values. Rather than impose a
static focusing restriction on the syntax of programs, we instead imply a dynamic focusing
behavior—which evaluates the parameters of constructors and observers before (co-)pattern
matching—during execution. Both static and dynamic notions of focusing are two sides of
the same coin, and amount to the same end [8].

The other restrictions vary between different frameworks, however. First, we might ask
where computation can happen. In Levy’s call-by-push-value [11], value types (correspond-

P. Downen and Z.M. Ariola 20:19

ing to positive types) can only be ascribed to values and computation can only occur at
computation types (corresponding to negative types), but in Munch-Maccagnoni’s system L
[15] computation can occur at any type. Zeilberger’s calculus of unity [25], which is based
on the classical sequent calculus, isolates computation in a separate syntactic category of
statements which do not have a return type, but is essentially the same as call-by-push-value
in this regard as both frameworks only deal with substitutable entities, to the exclusion of
named computations which may not be duplicated or deleted. Second, we might ask what
are the allowable types for variables and, when applicable, co-variables. In call-by-push-value,
variables always have positive types, but in the calculus of unity variables have negative
types or positive atomic types (and dually co-variables have positive types or negative atomic
types). These restrictions explain why the two frameworks chose their favored shifts: ⇑
introduces a positive variable and ↓ introduces a negative one, and in the setting of the
sequent calculus ⇓ introduces a negative co-variable and ↑ introduces a positive one. They
also explain the calculus of unity’s pattern matching: if there cannot be positive variables,
then pattern matching must continue until it reaches something non-decomposable like a
λ-abstraction. In contrast, system L has no restrictions on the types of (co-)variables.

In both of these ways, the language presented here is spiritually closest to system L. A
motivation for this choice is that call-by-need forces more generality into the system: if there
is no computation and no variables of call-by-need types, then the entire point of sharing
work is missed. However, the call-by-value and -name sub-language can still be reduced down
to the more restrictive style of call-by-push-value and the calculus of unity. We showed here
that the two styles of positive and negative shifts are isomorphic, so the brunt of the work
is to reduce to the appropriate normal form. In particular, normalization of the dynamic
focusing reductions—originally named ς [24]—along with commuting conversions (κ) and let
substitution (βlet) can be applied to exhaustion to a term of negative type (and a shift can
be applied for positive terms) as a transformation into the more restricted form (for more
details, see Appendix F). Additionally, negative variables x : A : − can be eliminated by
substituting y.enter for x where y : ⇓A : +. Alternatively, the (co-)variables by the calculus
of unity can be eliminated by type-directed η-expansion into nested (co-)patterns.

The data and co-data mechanism used here extends the “jumbo” connectives of Levy’s
jumbo λ-calculus [12] to include a treatment of call-by-need as well the move from mono-
discipline to multi-discipline. Our notion of (co-)data is also similar to Zeilberger’s [26]
definition of types via (co-)patterns, which is fully dual, extended with sharing. The
corresponding fully dual notion of data and co-data is shown in Appendix C.

C A dual multi-discipline sequent calculus

So far, we have seen how the extensible functional calculus enables multi-discipline pro-
gramming and can represent many user-defined types with mixed disciplines via encodings.
The advantage of this calculus is that it’s close to an ordinary core calculus for functional
programs, but the disadvantage is its incomplete symmetries. Most F types have a dual
counterpart (& and ⊕, ∀ and ∃, etc.,) but types like ⊗ and → do not. The disciplines + and
− represent opposite calling conventions, but the opposite of call-by-need (?) is missing. To
complete the picture, we now consider a fully dual calculus, which is based on the symmetric
setting of the classical sequent calculus.

CSL 2018

20:20 Beyond Polarity

Simple (co-)data types
data (X:+)⊕ (Y :+) : + where

ι1 : (X:+ ` X ⊕ Y)
ι2 : (Y :+ ` X ⊕ Y)

data 0 : + where

data (X:+)⊗ (Y :+) : + where
(,) : (X:+, Y :+ ` X ⊗ Y)

data 1 : + where
() : (` 1)

codata (X:−) & (Y :−) : −where
π1 : (| X & Y ` X:−)
π2 : (| X & Y ` Y :−)

codata> : −where

codata (X:−) ` (Y :−) : −where
[,] : (| X ` Y ` X : −, Y : −)

codata⊥ : −where
[] : (| ⊥ `)

data	(X:−) : + where
cont : (` 	X | X : −)

codata¬(X:+) : −where
throw : (X : + | ¬X `)

Quantifier (co-)data types
data ∃k(X:k→+) : + where

pack : (X Y :+ `Y :k ∃kX)
codata ∀k(X:k→−) : −where

spec : (| ∀kX `Y :kX Y :−)

Polarity shift (co-)data types
data ↓S(X:S) : + where

boxS : (X:S ` ↓SX)
data S⇑(X:+) : Swhere

valS : (X:+ ` S⇑X)

codata ↑S (X:S) : −where
evalS : (| ↑SX ` X:S)

codata S⇓(X:−) : Swhere
enterS : (| S⇓X ` X:−)

Figure 5 The D dual core set of (co-)data declarations.

C.1 The dual core intermediate language: D

In contrast with functional (co-)data declarations, dual calculus allows for symmetric data
and co-data type declarations that are properly dual to one another: they can have multiple
inputs to the left (of `) and multiple outputs to the right (of `). This dual notion of (co-)data
is strictly more expressive, and lets us declare the new connectives like so:

codata (X:−) ` (Y :−) : −where
[,] : (| X ` Y ` X : −, Y : −)

codata⊥ : −where
[] : (| ⊥ `)

data	(X:−) : + where
cont : (` 	X | X : −)

codata¬(X:+) : −where
throw : (X : + | ¬X `)

Note how these types rely on the newfound flexibility of having zero outputs (for ⊥ and ¬)
and more than one output (for ` and). These four types generalize F , and decompose
function types into the more primitive negative disjunction and negation types, analogous to
the encoding of functions in classical logic: A→ B ≈ (¬A) `B. The full set of dual core D
connectives is given in Figure 5.

P. Downen and Z.M. Ariola 20:21

A,B,C ::= X | F | λX.A | A B X,Y ,Z ::= X:k k, l ::= S | k → l R,S, T ::= + | − | ?? | ?

decl ::= data FX:k.. : Swhere K : (A : T .. `Y .. FX.. | B : R..)

| codata GX:k.. : Swhere O : (A : T .. | GX.. `Y .. B : R..)
c ::= 〈v||e〉
v ::= x | µα.c | νx.v | λ{qi.ci | i..} | KA..e..v.. p ::= KY ..α..x.. x,y, z ::= x:A

e ::= α | µ̃x.c | ν̃α.e | λ̃{pi.ci | i..} | OA..v..e.. q ::= OY ..x..α.. α,β, δ ::= α:A

Figure 6 Syntax of the dual calculus.

C.2 Syntax
The syntax of the dual calculus is given in Figure 6. At the level of programs, the syntax is
split in two: dual to terms (v) which give an answer are co-terms (e) which ask a question.
Therefore, each of the features from the functional language are divided into one of two
camps. Variables x, µ-abstractions µα.c, fixed points νx.v, objects of co-data types λ{. . .},
and data structures like ιiv are all terms. In contrast, co-variables α, µ̃-abstractions µ̃x.c
(analogous to let and dual to µ), co-fixed points ν̃α.e, case analysis of data structures λ̃{. . .}
(dual to co-data objects) and co-data observations like πie (dual to data structures) are all
co-terms. A command c is analogous to a F jump, and puts together an answer (a term v)
with a question (a co-term e). In this way, the dual calculus can be seen as inverting the
elimination functional terms to the other side of a jump 〈M ||α〉, expanding the role reserved
for α. By giving a body to observations themselves, co-patterns q introduce names for all
sub-components of observations dual to patterns p: for example, the co-pattern of a projection
πi[α:Ai] : A1 &A2 is perfectly symmetric to the pattern of an injection ιi(x:Ai) : A1 ⊕A2.

At the level of types, there is a dual set of connectives and disciplines. The base kind
?? signifies the dual to call-by-need (?), which shares delayed control effects the same way
call-by-need shares delayed results. For example, the negative co-data type constructors
` and ⊥ of D are dual to the positive connectives ⊗ and 1, respectively: they introduce
co-pairs [e, e′] : A ` B, which is a pair of co-terms e : A and e′ : B accepting inputs of
type A and B, and the co-unit [] : ⊥. Objects of co-data types respond to observations
by inverting their entire structure and then running a command. For & this looks like
λ{π1[α:A].c1 | π2[β:B].c2} : A&B and for ` this looks like λ{[x:A, β:B].c} : A`B. In lieu
of the non-symmetric function type, we instead have two dual negation connectives: the data
type constructor 	 : − → + and the co-data type constructor ¬ : +→ − which introduce
the (co-)patterns cont(α:A) : 	A and throw[x:A] : ¬A. These particular forms of negation
are chosen because they are involutive up to isomorphism (as defined next in Appendix D);
their two compositions are identities on types:

λX:+.	 (¬X) ≈ λX:+.X λX:−.¬(X) ≈ λX:−.X

Function types can instead be represented as A→ B ≈ (¬A) `B.

C.3 Type system
The type system of D is given in Figure 7. One major change from the functional calculus’
type system is the use of the traditional single-level typing judgement v : A instead of the
two-level M : A : S. This is possible because of the sequent calculus’ sub-formula property—
Cut is the only inference rule that introduces arbitrary new types in the premises. By just

CSL 2018

20:22 Beyond Polarity

Γ ::= x : A.. ∆ ::= α : A.. Θ ::= A : S.. G ::= decl..

Θ, X : k `G A : l
Θ `G λX:k.A : k → l

Θ `G A : k → l Θ `G B : k
Θ `G A B : l Θ, X : k `G X : k

(Θ `G A : T).. (Θ `G B : R)..
(x : A.. `Θ

G β : B..) ctx

Γ `Θ
D v : A | ∆ Θ ` A : S Γ | e : A `Θ

D ∆
〈v||e〉 : (Γ `Θ

D ∆)
Cut

c : (Γ `Θ
D α : A,∆)

Γ `Θ
D µα:A.c : A | ∆

AR
c : (Γ, x : A `Θ

D ∆)
Γ | µ̃x:A.c : A `Θ

D ∆
AL

Γ, x : A `Θ
D x : A | ∆

VR
Γ `Θ
D α : A | α : A,∆

VL

Γ, x : A `Θ
D v : A | ∆ Θ `D A : −

Γ `Θ
D νx:A.v : A | ∆

RR
Γ | e : A `Θ

D α : A,∆ Θ `D A : +
Γ | ν̃α:A.e : A `Θ

D ∆
RL

Γ | e : A `Θ
D ∆ Θ `D A=βηB : S
Γ | e : B `Θ

D ∆
TCR

Γ `Θ
D v : A | ∆ Θ `D A=βηB : S

Γ `Θ
D v : B | ∆

TCL

Given data F(X:k).. : Swhere Ki : (Aij :Tij j.. `Yij :lij
j.. F(X..) | Bij :Rij j..) i.. ∈ G, we have the rules:

Θ `G F : k..→ S
(Θ `G Cj : lij)j.. (Γ | ej : Bij [C′/X.., Cj/Yij j..] `Θ

G ∆)j.. (Γ `Θ
G vj : Aij [C′/X.., Cj/Yij j..] | ∆)j..

Γ `Θ
G Ki Cj j.. ej j.. vj j.. : FC′.. | ∆

FRi

ci : (Γ, xij : Aij [C/X..]j.. `
Θ,Yij :lij j..
G αij : Bij [C/X..]j..,∆) i..

Γ | λ̃
{

(Ki Yij :lij j.. xij :Aij j.. xij :Aij j..).ci i..
}

: FC.. `Θ
G ∆

FL

Given codata G(X:k).. : Swhere Oi : (Aij : Tij j.. | G(X..) `Yij :lij
j.. Bij : Rij j..) i.. ∈ G, we have the rules:

Θ `G G : k..→ S
(Θ `G Cj : lij)j.. (Γ `Θ

G vj : Aij [C′/X.., Cj/Yij j..] | ∆)j.. (Γ | ej : Bij [C′/X.., Cj/Yij j..] `Θ
G ∆)j..

Γ | Oi Cj j.. vj j.. ej j.. : FC′.. `Θ
G ∆

GLi

ci : (Γ, xij : Aij [C/X..]j.. `
Θ,Yij :lij j..
G αij : Bij [C/X..]j..,∆) i..

Γ `Θ
G λ
{

[Oi Yij :lij j.. xij :Aij j.. αij :Bij j..].ci i..
}

: GC.. | ∆
GR

Figure 7 Type system for the dual calculus.

checking that the type of a Cut makes sense in the current environment, well-formedness can
be separated from typing: if the conclusion of a derivation is well-formed (i.e., (Γ `Θ

D ∆) ctx),
then every judgement in the derivation is too. The other major change is that there is a
typing judgement for the new syntactic category of co-terms; Γ | e : A `Θ

D ∆ means that e
works with a term of type A in the environments Θ, Γ, ∆.

C.4 Equational theory

Lastly, we have the equational theory in Figure 8. The dualities of evaluation—between
variable and co-variable bindings, data and co-data, values (answers) and evaluation contexts

P. Downen and Z.M. Ariola 20:23

V+ ::= x | KB..E..V .. | λ{q.c..} E− ::= α | OB..V ..E.. | λ̃{p.c..}
V?? ::= V+ | µα.H[〈V?? ||α〉] E? ::= E− | µ̃x.H[〈x||E?〉]
V− ::= v V? ::= V+ E+ ::= e E?? ::= E−

H ::= � | 〈v||µ̃x:A:?.H〉 | 〈µα:A:?? .H||e〉

(βµ) 〈µα.c||E〉 ∼ c[E/α] (βµ̃) 〈V ||µ̃x.c〉 ∼ c[V/x]
(ηµ) µα:A.〈v||α〉 ∼ v (ηµ̃) µ̃x:A.〈x||e〉 ∼ e
(ηG) λ{qi.〈x||qi〉 i..} ∼ x (ηF) λ̃{pi.〈pi||α〉 i..} ∼ α
(βO) 〈λ{.. | [OY ..x..α..].c | ..} ||OB..v..e..〉 ∼ 〈v..||µ̃x...〈µα...c[B/Y ..]||e..〉〉
(βK) 〈OB..e..v..||λ̃{.. | (OY ..α..x..).c | ..}〉 ∼ 〈µα...〈v..||µ̃x...c[B/Y ..]〉||e..〉
(χ?) 〈µα:A:?.〈v||µ̃y:B:?.c〉||e〉 ∼ 〈v||µ̃y:B:?.〈µα:A:?.c||e〉〉
(χ??) 〈v||µ̃y:B:?? .〈µα:A:?? .c||e〉〉 ∼ 〈µα:A:?? .〈v||µ̃y:B:?? .c〉||e〉
(ν) νx.v ∼ v[νx.v/x] (ν̃) ν̃α.e ∼ e[να.e/α]

c : (Γ `Θ
D ∆) c ∼ c′ c′ : (Γ `Θ

D ∆)
c = c′ : (Γ `Θ

D ∆)
Γ `Θ
D v : A | ∆ v ∼ v′ Γ `Θ

D v
′ : A | ∆

Γ `Θ
D v = v′ : A | ∆

Γ `Θ
D e : A | ∆ e ∼ e′ Γ `Θ

D e
′ : A | ∆

Γ | e = e′ : A `Θ
D ∆

plus compatibility, reflexivity, symmetry, transitivity

Figure 8 Equational theory for the dual calculus.

(questions)—are more readily apparent than F . In particular, the notion of substitution
discipline for S is now fully dual as in [7]: a subset of terms (values VS) and a subset of
co-terms (co-values ES) which are substitutable. Furthermore, the known dualities between
call-by-value (+) and -name (−) [5], as well as between ? and ?? [3], are syntactic dualities
between values and co-values. The appearance of the χ axioms now reassociate variable and
co-variable bindings, and the important cases are for both ? (corresponding to χ? of lets in
the functional calculus) and ?? . Also note the lack of commuting conversions κ; these follow
from the µ axioms.

D Encoding fully dual (co-)data types into D

Now let’s looks at the fully dual version of the functional encoding from Section 5. Thanks
to the generic notion of shifts, the encoding of dual (co-)data into the core D connectives is
similar to the functional encoding, except that in place of the function type A→ B we use
the classical representation (A) `B. For the generic (co-)data declarations in Figure 7, we
have the following definition:

JFKDG,λX...S⇑((∃Y ij . j..(((↑Rij Bij))⊗ j..((↓TijAij)⊗ j..1)))⊕ i..0)

JGKDG,λX...S⇓((∀Y ij . j..((¬(↓TijAij)) ` j..((↑Rij Bij) ` j..⊥))) & i..>)

CSL 2018

20:24 Beyond Polarity

The encoding of multi-output data types places a 	-negates every additional output of
a constructor, and the encoding of multi-output co-data is now exactly dual to the data
encoding. The encodings of (co-)patterns, (co-)pattern-matching objects, and (co-)data
structures follow the above type encoding like so:

JKi Y .. α.. x..KDG , valS
(
ιi2 (ι1 (packY .. (cont[evalRα], .. (boxT x, ..()))))

)
JOi Y .. x.. α..K

D
G , enterS

[
πi2 [π1 [specY .. [throw[boxT x], .. [evalRα, ..[]]]]]

]
Jλ{qi.ci i..}KDG , λ{JqiK

D
G .JciK

D
G
i..}

Jλ̃{pi.ci i..}KDG , λ̃{JpiK
D
G .JciK

D
G
i..}

Jp[C/Y .., e/α.., v/x..]KDG = JpKDG [JCKDG /Y .., JeK
D
G /α.., JvK

D
G /x..]

Jq[C/Y .., v/x..], e/α..KDG = JqKDG [JCKDG /Y .., JvK
D
G /x.., JeK

D
G /α..]

We also have an analogous notion of type isomorphism. The case for higher kinds is the
same, and base isomorphism Θ �G A ≈ B : S is witnessed by a pair of inverse commands

c : (x : A `Θ
G β : B) c′ : (y : B `Θ

G α : A)

such that both compositions are identities:

〈µβ:B.c||µ̃y:B.c′〉 = 〈x||α〉 : (x : A `Θ
G α : A)

〈µα:A.c′||µ̃x:A.c〉 = 〈y||β〉 : (y : B `Θ
G β : B)

With this generalized notion of type isomorphism in D, the analogous local and global
encodings are sound for fully dual data and co-data types utilizing any combination of +, −,
?, and ?? evaluation.

I Theorem 7. For all ` G extending D and Θ `G A : k, Θ �G A ≈ JAKDG : k.

I Theorem 8. For all ` G extending D, (co-)terms of type A are in equational correspondence
with (co-)terms of type JAKDG , respectively.

I Theorem 9. If ` G extends D and c = c′ : (Γ `Θ
G ∆) then JcKDG = Jc′KDG : (JΓKDG `Θ

F J∆KDG).

E Operational semantics

E.1 The disciplined sub-syntax
We do not need full type checking to run commands of the sequent calculus, but we still
need to be able to decide the disciplines of terms in order to determine whether or not they
are substitutable. Although disciplines are similar to types (e.g., each term and co-term
belongs to a discipline, and there is a discipline for each statically bound (co-)variable
that matches with its use, etc.,) they are not as strict. Zeilberger [25] generalized the
notion of “unityped”—that untyped terms can be seen as terms in a language with only one
type—to “bityped” in the polarized setting where call-by-name and -value terms must still
be distinguished from each other even when types aren’t check. Here we further generalize
“bityped” to “disciplined” since there can be more than two calling conventions that need
distinguishing. For us, a discipline is one of +, −, ?, and ?? , so in our case it corresponds to
a language with only four different types of (co-)terms.

To define the well-disciplined (or just “disciplined” for short) terms, co-terms, and
commands, we can leverage the existing type system by weakening it with an additional

P. Downen and Z.M. Ariola 20:25

c ::= 〈vS ||eS〉 v ::= vS e ::= eS m ::= c | v | e
vS ::= x:S | µα:S.c | vGS eS ::= α:S | µ̃x:S.c | eGS
vGS = {vF | (F : k..→S) ∈ G} eGS = {eF | (F : k..→S) ∈ G}

If data F(X : k).. : Swhere Ki : (Ai : Ti.. `Y :l.. FX.. | Bi : Ri..) i.. ∈ G then:

vF ::= Ki(eRi .., vTi ..) | i.. eF ::= λ̃{
»

Ki(α:Ri.., x:Ti..).ci
i
}

If codata G(X : k).. : Swhere Oi : (Ai : Ti.. | GX.. `Y :l.. Bi : Ri..) i.. ∈ G then:

vG ::= λ{
»

Oi[x:Ti.., α:Ri..].ci
i
} eG ::= Oi[# »vTi ,

»eRi] | i..

Figure 9 Disciplined sub-syntax of the untyped sequent calculus under a global environment G.

V+ ::= x:+ | V G+ E+ ::= e+ V− ::= v− E− ::= α:− | EG−
V? ::= x:? | V G? E? ::= α:? | µ̃x:?.H[〈x:?||E?〉] | EG?
E?? ::= α:?? | EG?? V?? ::= x:?? | µα:?? .H[〈V?? ||α:?? 〉] | V G??
H ::= � | 〈v?||µ̃x:?.H〉 | 〈µα:?? .H||e?? 〉
V GS = {V F | (F : k..→S)∈G} EGS = {EF | (F : k..→S)∈G}

If data F(X : k).. : Swhere Ki : (Ai : Ti.. `Y :l.. FX.. | Bi : Ri..) i.. ∈ G then:

V F ::= Ki(ERi .., VTi ..) | i.. EF ::= eF

If codata G(X : k).. : Swhere Oi : (Ai : Ti.. | GX.. `Y :l.. Bi : Ri..) i.. ∈ G then:

V G ::= vG EG ::= Oi[
»

VTi ,
»

ERi] | i..

Figure 10 (Co-)Values in the disciplined sub-syntax.

axiom Θ `G A = B : S that collapses all types at a base kind S. We refer to this weakened
type system as the discipline system. The collapse of types means that, for example, positive
pairs can be used when positive sums are expected, or that self-application is now possible,
allowing for fixed-point combinators that are the signature of untyped terms. Because there
are a finite number of disciplines, the well-disciplined sub-syntax of the sequent calculus can
also be defined for a given global environment G by a grammar as given in Figure 9. Since
there is effectively only one type of every kind, we use the kind S itself as the annotation on
bound (co-)variables. Note that the use of variables and co-variables are now also annotated,
which means that the environments Γ and ∆ are also no longer necessary, since the discipline
of a free (co-)variable is now self-evident. This grammar is equivalent to discipline-checking:
for every derivation c : (x : A : T .. `Θ

G β : B : R..) there is a corresponding command in the
disciplined sub-syntax with x:T substituted for each x and β:R substituted for each β, and
similarly for (co-)terms. When we need to explicitly refer to this type erasure conversion, we
will denoted it by Erase().

We can also give the untyped, but disciplined, definitions of values and co-values as a

CSL 2018

20:26 Beyond Polarity

D ::= � | 〈�||e+〉 | 〈V+||�〉 | 〈�||e?? 〉 | 〈V?? ||�〉 | 〈v−||�〉 | 〈�||E−〉 | 〈v?||�〉 | 〈�||E?〉
| µα:?? .D | µ̃x:?.D

ρ ::= A:k/X:k.., VT /x:T .., ER/α:R..
WS = {VS} − {x:S} FS = {ES} − {α:S}
wS = {vS} − {VS} fS = {eS} − {ES}
P ::= KB..E.. � e..v.. | KB..E..V .. � v..

Q ::= OB..V .. � v..e.. | OB..V ..E.. � e..

m 7→ m′

D[m] 7→ D[m′]
m 7→ m′

m 7→→ m′
m 7→→ m′ m′ 7→→ m′′

m 7→→ m′′ m 7→→ m

(β±?µ) 〈µα:S.c||ES〉 7→ c[ES/α:S] (S ∈ {+,−, ?})
(β±??µ̃) 〈VS ||µ̃x:S.c〉 7→ c[VS/x:S] (S ∈ {+,−, ??})

(φ??µ) 〈µα:?? .H[〈V?? ||α:?? 〉]||F?? 〉 7→ H[〈V?? ||α:?? 〉][F?? /α:??]
(φ?µ̃) 〈W?||µ̃x:?.H[〈x:?||E?〉]〉 7→ H[〈x:?||E?〉][W?/x:?]
(βp) 〈p[ρ]||λ̃{pi.ci i..}〉 7→ ci[ρ] (p = pi)
(βq) 〈λ{qi.ci i..} ||q[ρ]〉 7→ ci[ρ] (q = qi)
(ςp) P [wT] : S 7→ µα:S.〈wT ||µ̃y:T .〈P [y:T]||α:S〉〉
(ςp) P [fR] : S 7→ µα:S.〈µβ:R.〈P [β:R]||α:S〉||fR〉
(ςq) Q[fR] : S 7→ µ̃x:S.〈µβ:R.〈x:S||Q[β:R]〉||fR〉
(ςq) Q[wT] : S 7→ µ̃x:S.〈wT ||µ̃y:T .〈x:S||Q[y:T]〉〉
(ν) νx:−.v− 7→ v−[νx:−.v−/x:−]
(ν̃) ν̃α:+.e+ 7→ e+[ν̃α:+.e+/α:+]

Figure 11 An untyped operational semantics for the extensible dual calculus under a global
environment G.

grammar as shown in Figure 10. Note that there is a (co-)variable capture caveat in the
definition of call-by-need co-values E? and call-by-co-need values V?? , where µ̃x:?.H[〈x:?||E?〉]
is a co-value only if H does not bind the variable x:? and µα:?? .H[〈V?? ||α:?? 〉] is a value only if
H does not bind the co-variable α:?? .

E.2 Untyped rewriting and operational semantics

The untyped, multi-disciplined semantics are given in three forms: an operational syntax
(in Figure 11), rewriting theory (in Figure 12), and equational theory (in Figure 13). Each
form of semantics builds on the previous one by relating more program fragments with
additional rules and closure properties (i.e., full compatibility and symmetry). Note that the
reflexive-transitive closure of a single operational step (7→), a single reduction (→), and a
single conversion (↔) is written as 7→→, →→, and =, respectively.

P. Downen and Z.M. Ariola 20:27

m 7→ m′

m→ m′
m→ m′

C[m]→ C[m′]
m→ m′

m→→ m′ m→→ m

m→→ m′ m′ →→ m′′

m→→ m′′

(β??µ) 〈µα:?? .c||E?? 〉 → c[E?? /α:??]
(β?µ̃) 〈V?||µ̃x:?.c〉 → c[V?/x:?]
(ηSµ) µα:S.〈vS ||α:S〉 → vS (α:S /∈ FV (vS))
(ηSµ̃) µ̃x:S.〈x:S||eS〉 → eS (x:S /∈ FV (eS))
(δ??) 〈µα:?? .c||e?? 〉 → c (α:?? /∈ FV (c))
(δ?) 〈v?||µ̃x:?.c〉 → c (x:? /∈ FV (c))

Figure 12 An untyped rewriting theory for multi-discipline sequent calculus under a global
environment G.

m→ m′

m↔ m′
m↔ m′

C[m]↔ C[m′]
m↔ m′

m′ ↔ m

m↔ m′

m = m′ m = m

m = m′ m = m′′

m = m′′

(χ?) 〈µα:A:?.〈v||µ̃y:B:?.c〉||e〉 ↔ 〈v||µ̃y:B:?.〈µα:A:?.c||e〉〉
(χ??) 〈v||µ̃y:B:?? .〈µα:A:?? .c||e〉〉 ↔ 〈µα:A:?? .〈v||µ̃y:B:?? .c〉||e〉

Figure 13 An untyped equational theory for multi-discipline sequent calculus for a global
environment G.

E.3 Properties of the operational semantics
The design of the above operational semantics is done with an eye certain properties, like
determinism (each command has at most one step), as well as compatibility with evaluation
contexts D. This leads to a notion of type safety, in the usual form of progress and
preservation.

I Property E.1. For all G, S, values VS , and co-values ES ,

a) for all substitutions ρ, VS [ρ] is a value and ES [ρ] is a co-value,
b) if VS → vS then vS is a value and if ES → eS then eS is a co-value, and
c) VS 67→ and ES 67→.

Proof. By induction on the definition of values and co-values for every S. J

I Property E.2. For all G and S,

a) for all substitutions ρ, if c 7→ c′ then c[ρ] 7→ c′[ρ],
b) for all D, c 7→ c′ if and only if D[c] 7→ D[c′], and
c) if c 7→ c′ and c 7→ c′′ then c′ =α c

′′.

and similarly for terms and co-terms.

Proof. By Property E.1 and induction on the definition of 7→. J

CSL 2018

20:28 Beyond Polarity

I Definition 10. For any G, a command c is inside of c′ when there is a context H such
that H[c] = c′, is the center of c′ when c is inside any other command inside c, and is atomic
when the only command inside c is c itself.

I Lemma 11 (Unique decomposition). Every command c has a unique center, denoted by
center(c), that is atomic. Furthermore, center(H[c]) = center(c) and center(center(c)) =
center(c).

Proof. The center of c can be found by decomposing c as H1[c1], where H1 is the longest
prefix of ? µ̃-bindings and ?? µ-bindings starting from the top of c.

To show this center is unique, suppose there is another center c2 such that H2[c2] = c.
Because both c1 and c2 must be inside each other, there must be delayed contexts H ′1
and H ′2 such that H ′1[c1] = c2 and H ′2[c2] = c1. The only possibilities are that H ′1 and
H ′2 are both the empty context since H ′1[H ′2[c2]] = c2 and H ′2[H ′1[c1]] = c1, meaning that
H ′1[c1] = c1 = c2 = H ′2[c2].

Now for any c, center(H[c]) = center(c) by uniqueness and composition of contexts,
and center(center(c)) = center(c) follows from the fact that H[center(c)] = c for some H
and the previous fact. Atomicity of center(c) means the same thing as center(center(c)) =
center(c). J

I Definition 12 (Need). The set of needed (co-)variables of an expression is defined as:

x:S ∈ NV(m) ⇐⇒ ∃D.x:S /∈ BV (D) ∧D[x:S] =α m 67→
α:S ∈ NV(m) ⇐⇒ ∃D.α:S /∈ BV (D) ∧D[α:S] =α m 67→

I Property E.3. a) NV(c) ⊆ FV (c), NV(vS) ⊆ FV (vS), and NV(eS) ⊆ FV (eS).
b) NV(vS) and NV(eS) contain at most one variable and co-variable (of discipline S),

respectively, and NV(c) contains at most one variable and at most one co-variable (of the
same discipline when there is one of each).

c) µα:?? .c is a value if and only if α:?? ∈ NV(c) and µ̃x:?.c is a co-value if and only if
x:? ∈ NV(c).

d) If c =α c′, vS =α v′S , and eS =α e′S then NV(c) = NV(c′), NV(vS) = NV(v′S), and
NV(eS) = NV(e′S), respectively.

e) If NV(c), NV(vS), and NV(eS) are non-empty then c 67→, vS 67→, and eS 67→, respectively.

I Definition 13. A command c is in progress when c 7→ c′ for some c′, finished when NV(c)
is non-empty, and stuck when c is neither finished nor in progress.

Note that if c is finished then c 67→, so that every command is exactly one of (1) finished,
(2) stuck, or (3) in progress. We write c ⇓ c′ to mean that c 7→→ c′ and c′ is finished, and c ⇑
to mean that there is an infinite standard reduction sequence c 7→ c1 7→ c2 7→

I Lemma 14. For all G, Θ, and substitutions ρ such that BV (Θ) ∩BV (ρ) = ∅,

a) if c : (Γ `Θ
G ∆) then c[ρ] : (Γ[ρ] `Θ

G ∆[ρ]),
b) if Γ `Θ

G v : A | ∆ then Γ[ρ] `Θ
G v[ρ] : A[ρ] | ∆[ρ], and

c) if Γ | e : A `Θ
G ∆ then Γ[ρ] | e[ρ] : A[ρ] `Θ

G ∆[ρ].

Proof. By induction on the given typing derivation. J

I Lemma 15 (Subject reduction).

P. Downen and Z.M. Ariola 20:29

a) If c : (Γ `Θ
G ∆) and Erase(c : (Γ `Θ

G ∆))→ c′ then there is some c′′ : (Γ `Θ
G ∆) such that

Erase(c′′ : (Γ `Θ
G ∆)) = c′,

b) if Γ `Θ
G v : A | ∆ and Erase(Γ `Θ

G v : A | ∆) → v′ then there is some Γ `Θ
G v
′′ : A | ∆

such that Erase(Γ `Θ
G v
′′ : A | ∆) = v′, and

c) if Γ | e : A `Θ
G ∆ and Erase(Γ | e : A `Θ

G ∆)→ e′ then there is some Γ | e′ : A `Θ
G ∆ such

that Erase(Γ | e′ : A `Θ
G ∆) = e′.

Proof. By Theorem 14 and induction on the given typing derivation, and then cases on the
reduction when a rule is applied. J

I Property E.4. For all G,

a) if c 7→ c′ then c→ c′, and
b) if c : (Γ `Θ

G ∆) and Erase(c : (Γ `Θ
G ∆))→ c′ then there is some Erase(c′′ : (Γ `Θ

G ∆)) = c′

such that c = c′′ : (Γ `Θ
G ∆),

and similarly for terms and co-terms.

Proof. Part (a) is immediate by definition. Part (b) follows from Theorem 15 and the fact
that the untyped, and discipline-specific βς reduction rules are derivable from the typed βη
equality axioms with the help of βµβµ̃ηµηµ̃ [7]. J

I Theorem 16 (Type safety). a) Progress: Every typed command is either finished or in
progress, after type erasure.

b) Preservation: If c 7→ c′ and c is the erasure of some typed command then so is c′.
It follows that c ⇓ c′ if and only if c 7→→ c′ 67→ for every c that is the erasure of some typed

command.

Proof. Part (a) follows by induction on the typing derivation of the command. Part (b) is a
corollary of Theorem 15 and Property E.4. The final statement follows from parts (a) and
(b) and determinism of standard reduction by induction on the standard reduction sequence
c 7→→ c′. J

E.4 The functional λ-calculus
The untyped operational semantics the multi-discipline λ-calculus is given in Figure 14. It
operates over the multi-discipline sub-syntax of the λ-calculus; as before, this is defined by
the extension of the type system with the axiom Θ `G A = B : S which collapses all types
at a base kind S. We again use the convention that MS denotes a term M : A : S.

The generic β±let rule, where ± denotes one of + or −, implements call-by-value and -name
substitution, whereas the more restricted φ?let rule implements call-by-need. The βp and βq
rules match against a pattern p or co-pattern q, respectively. Special cases of this rule are
the βp rule for a sum pattern and βq for a function co-pattern as follows:

case ιiV+ of{ι1(x1:+).N1 | ι2(x2:+).N2} 7→βp
Ni[V+/xi:+]

λ{call(x:+).M}.callV+ 7→βq
M [V+/x:+]

The ς rules work toward enabling the β pattern-matching rules by giving names to non-value
components (denoted by RS for the discipline S) of data structures (i.e., pairs and tagged
terms) and arguments of observations (i.e., function calls). Naming has two advantages
compared with just evaluating non-values in-place: it makes evaluation contexts more regular
by converting them into generic let-expressions, and it correctly implements sharing with ?

CSL 2018

20:30 Beyond Polarity

V ::= VS :A :S V+ ::= x | KB..V .. | λ{qi.Mi | i..} V− ::= M V? ::= V+

WS = {VS} − {x:S} RS = {M :A :S} − {VS}
F ::= �.OB..V .. | case�of{pi.Mi

i..} | letx:+ = � inM | letx:? = � inH[E[x]]
E ::= � | F [E] U ::= letx:? = M in� H ::= � | U [H]
P ::= KB..V .. � M.. Q ::= OB..V .. � M..

ρ ::= A:k/X:k.. V :B/x:B..

M 7→ N

E[M] 7→ E[N]
M 7→ N

H[M] 7→ H[N]
M 7→ N

〈M ||α〉 7→ 〈N ||α〉

Operational rules for totally pure functional programs:

(β±let) letx:S = VS inM 7→ M [VS/x:S] (S ∈ {+,−})
(φ?let) letx:? = W? inH[E[x:?]] 7→ (H[E[x:?]])[W?/x:?]
(βp) case p[ρ] of{pi.Mi | i..} 7→ Mi[ρ] (p = pi)
(βq) λ{qi.Mi | i..}.(q[ρ]) 7→ Mi[ρ] (q = qi)
(ςp) P [RT] 7→ let y:T = RT inP [y:T]
(ςq) MS .(Q[RT]) 7→ letx:S = MS in

lety:T = RT inx:S.Q[y:T]
(κ?F) F [T [H[V]]] 7→ T [F [H[V]]]

Operational rules for recursion and control:

(ν) νx:−.M 7→ M [νx:−.M/x:−]
(βαµ) 〈µα:S.J ||β:S〉 7→ J [β:S/α:S]
(βFµ) F [µα:S.J] : R 7→ µβ:R.J [〈F ||β:R〉/〈�||α:S〉]
(κ?µ) T [µα:S.〈M ||β:T 〉] 7→ µα:S.〈T [M]||β:T 〉

Figure 14 An untyped operational semantics for multi-discipline λ-calculus under a global
environment G.

components. Specifically, box?R? is not a value because R? is not a value, but R? should
not be evaluated yet until it is needed. Therefore, the correct move is to give some name x
to R? and proceed with the (open) value box?(x:?).

Call-by-need computation uses the φ?let and κ?F rules. For the sake of determinism, φ?let
is a call-by-need version of the β±let rule that is restricted in two ways: the substitution of
x only occurs when the x is needed (as in the context H[E[x]]), and when the right-hand
side is not another variable. The first restriction prevents non-determinism in terms like
letx:? = V? in let y:? = V ′? inN (only one of x or y could be needed) and the second in terms
like letx:? = M? in let y:? = x:? in y:? (only M? can step). The κ?F rule keeps computation
moving forward when a value (V) is returned in the context of a heap (H) by commuting a
frame (F) of evaluation with a thunk (T) allocation. For example, we have the following

P. Downen and Z.M. Ariola 20:31

A,B,C ::= X | F | λX.A | A B X,Y ,X ::= X:k k, l ::= S | k → l R,S, T ::= + | − | ?
F,G ::= & |→| > | ⊕ | ⊗ | 0 | 1 | ∀k | ∃k | ↓S | ↑S | S⇑ | S⇓
p ::= ι1x | ι2x | (x,y) | () | packX y | boxS x | valS x x,y, z ::= x:A
q ::= π1 | π2 | callx | specX | evalS | enterS

M,N ::= x | letx = M inN | λ{qi.Mi | i..} | caseM of{pi.Mi | i..}
|M.π1 |M.π2 |M.callN |M.specA | ι1M | ι2M | (M,N) | () | packA M

| boxSM | valSM |M.evalS |M.enterS

Figure 15 Syntax of F : a core, multi-discipline λ-calculus.

MS , NS ::= VS | letx = MT inNS |M−.evalS
| caseM+ of{ι1x.NS | ι2x.N ′S} | caseM+ of{}
| caseM+ of{(x,y).NS} | caseM+ of{().NS}
| caseM+ of{(packY x).NS}
| caseM+ of{boxT x.NS} | caseMT of{valT x.NS}

V− ::= x |M− |M−.π1 |M−.callV+ |M−.π2 |M−.specA
| λ{π1.M− | π2.N−} | λ{} | λ(callx).M− | λ(specY).M−
| val− V+ | λenter−.M− |MS .enterS | λevalS .MS

V+ ::= x | ι1V+ | ι2V+ | (V+, V
′
+) | () | packA V+ | boxS VS | val+ V+ | λenter+.M−

V? ::= x | val? V+ | λenter?.M−

Figure 16 The focused sub-syntax of F .

computation using κ?F :

case box?R? of{box?(x:?).M}
7→ς

P
case (let y:? = R? in box?(y:?)) of{box?(x:?).M}

7→κ?
F

let y:? = R? in case box?(y:?) of{box?(x:?).M}
7→βp

let y:? = R? inM [y:?/x:?]

which will proceed from here by evaluating M [y:?/x:A] in the context of the shared binding
y:? = R?.

F Core F and D calculi

Here we illustrate the F instance of the extensible functional λ-calculus and the D instance of
the extensible dual sequent calculus, by inlining the respective (co-)data declarations into the
syntax and typing rules. These two special instances serve as distinguished core calculi that
can represent all the other extensions via the encodings shown in Section 5 and Appendix D.

F.1 The core F functional λ-calculus
The syntax of the core F calculus is given in Figure 15, the focused sub-syntax of the F
calculus is given in Figure 16, and the specific typing rules for the F connectives are given in
Figure 17.

CSL 2018

20:32 Beyond Polarity

& : − → − → − → : +→ −→ − > : −
⊕ : +→ +→ + ⊗ : +→ +→ + 0 : + 1 : +
∀k : (k → −)→ − ↓S : S → + S⇑ : +→ S
∃k : (k → +)→ + ↑S : S → − S⇓ : − → S

Γ, x : A : + `Θ
F M : B : −

Γ `Θ
F λcall(x:A).M : A→ B : −

→I
Γ `Θ
F M : A→ B : − Γ `Θ

F N : A : +
Γ `Θ
F M.callN : B : −

→E

Γ `Θ
F M : A : − Γ `Θ

F N : B : −
Γ `Θ
F λ{π1.M | π2.N} : A&B : −

&I
Γ `Θ
F M : A1 &A2 : −

Γ `Θ
F M.πi : Ai : −

&Ei
(Γ `Θ

F) ctx
Γ `Θ
F λ{} : > : −

>I

Γ `Θ
F M : Ai : +

Γ `Θ
F ιiM : A1 ⊕A2 : +

⊕Ii

Γ `Θ
F M : A⊕B : + Γ, x : A : + `Θ

F N1 : C : R Γ, y : B : + `Θ
F N2 : C : R

Γ `Θ
F caseM of{ι1(x:A).N1 | ι2(y:A).N2} : C : R

⊕E

Γ `Θ
F M : A : + Γ `Θ

F N : B : +
Γ `Θ
F (M,N) : A⊗B : +

⊗I
Γ `Θ
F M : A⊗B : + Γ, x : A : +, y : B : + `Θ

F N : C : R
Γ `Θ
F caseM of{(x:A, y:B).N} : C : R

⊗E

Γ `Θ
F M : 0 : + Θ ` C : R (Γ `Θ

F) ctx
Γ `Θ
F caseM of{} : C : R

0E

(Γ `Θ
F) ctx

Γ `Θ
F () : 1 : +

1I
Γ `Θ
F M : 1 : + Γ `Θ

F N : C : R
Γ `Θ
F caseM.{().N} : C : R

1E

Γ `Θ,X:k
F M : A X : −

Γ `Θ
F λspec(X:k).M : ∀kA : −

∀Ik
Γ `Θ
F M : ∀kA : − Θ ` B : k

Γ `Θ
F M.specB : A B : −

∀Ek

Θ ` B : k Γ `Θ
F M : A B : +

Γ `Θ
F packk B M : ∃kA : +

∃Ik

Γ `Θ
F M : ∃kA : + Γ, y : A X : + `Θ,X:k

F N : C : R Θ ` C : R
Γ `Θ
F caseM of{pack(X:k)(y:A).N} : C : R

∃Ek

Γ `Θ
F M : A : S

Γ `Θ
F boxSM : ↓SA : +

Γ `Θ
F M : ↓SA : + Γ, x : A : S `Θ

F N : C : R
Γ `Θ
F caseM of{boxS(x:A).N} : C : R

Γ `Θ
F M : A : −

Γ `Θ
F λenterS .M : S⇓A : S

Γ `Θ
F M : S⇓A : S

Γ `Θ
F M.enterS : A : −

Γ `Θ
F M : A : S

Γ `Θ
F λevalS .M : ↑S A : −

Γ `Θ
F M : ↑S A : −

Γ `Θ
F M.evalS : A : S

Γ `Θ
F M : A : +

Γ `Θ
F valSM : S⇑A : S

Γ `Θ
F M : S⇑A : S Γ, x : A : + `Θ

F N : C : R
Γ `Θ
F caseM of{valS(x:A).N} : C : R

Figure 17 Typing rules of F connectives.

The focused sub-syntax of F defined by the normal forms of F with respect to the ς rules
from the operational semantics. Since these normal forms are closed under further reduction,
the focused sub-syntax is a calculus in its own right. Focusing has the effect of restricting
the place where non-values may occur: the parameters to constructors and observers must
always be values. For this reason, the focused sub-syntax is split according to the three
different disciplines +, −, ?, since the definition of syntactically valid terms is intertwined
with the discipline-dependent definition of values. The first thing to note is that all the
potential non-values MS are defined generically for each S: these consist of case analysis,
let-bindings, as well as the observation M?.evalS which forces the evaluation of the negative

P. Downen and Z.M. Ariola 20:33

term M? : ↑S A to get a result of type A : S. For example, when M?.eval+ is a + non-value;
in fact, the only non-value which is not a let or case.

The definition of values varies widely depending on types available at each discipline. For
example, there are few ? values because there are only two ? types, ?⇑A and ?⇓A. The +
values includes the usual pairs and sums, as well as a boxSMS : ↓SA containing a value
of another discipline S and a thunk λenter+.M− : +⇓A containing a − computation. The
negative values also contains functions, products, their observations, and the terms for shifts
into −. The shifts consist of the ones common to every discipline (valS VS and λenterS .M−)
as well as the observation MS .evalS which allows a (potential non-value) term MS to appear
as a − value.

Note that since everything is substitutable in call-by-name evaluation, the − set of values
also contains within it all the − terms; M− and V− is synonymous. This is one reason
why in call-by-push-value [11], which is a calculus consisting of only substitutable terms,
all computation must happen in negative types; it is the only place where computation is
substitutable. In this way, F can be seen as a conservative extension of call-by-push-value. If
we eliminate the call-by-need part, and encode the ↓ shifts and ↑ shifts in terms of ⇓ and ⇑
as per the isomorphism, then we can further simplify the sub-calculus via βletκ normalization,
which entirely eliminates let-bindings form the syntax and restricts the discriminant of
a case to be a value. Further, by converting a positive computation M+ into a negative
value val−M+, this same normalization also eliminates postive non-values, yielding a smaller
sub-calculus in the style of call-by-push-value.

I Definition 17. The call-by-push-value sub-calculus of F is the restriction of the focused
sub-syntax of F to only values, only the kinds +, and −, all F connectives except for the
shifts ↓ and ↑, and only variables of positive types.

I Theorem 18. There exists a typed translation from the +/− restriction of the F calculus
to the call-by-push-value sub-calculus of F with the following types:

The interesting cases of JAK are defined as J↑K , ⇑ and J↓K , ⇓, and JAK is defined
homomorphically otherwise,
For all x:A:+ ∈ Γ and y:B:− ∈ Γ, there is x:JAK:+ ∈ JΓK and y:⇓JBK:+ ∈ JΓK,
If Γ ` VS : A : S then JΓK ` JVSK : JAK : S,
If Γ `M− : A : − then JΓK ` JM−K : JAK : −, and
If Γ `M+ : A : + then JΓK ` JM+K : ⇑JAK : −.

This translation forms an equational correspondence between F and its call-by-push-value
sub-calculus.

Proof. The translation follows the same procedure described above.

1. Convert all uses of the ↓ and ↑ shifts to ⇓ and ⇑ shifts, according to the isomorphism
between those connectives shown in Theorem 3.

2. Replace all negative free and bound variables y:B:− ∈ Γ with positive ones y:⇓B:+ ∈ Γ
by substituting y.enter for y.

3. Reduce the term to the focused sub-syntax of F by normalizing with respect to the ς
reductions (ς reduction is strongly normalizing).

4. Eliminate all lets and all cases with a non-value discriminant by normalizing with respect
to the κ and βlet reductions (κβlet reduction is strongly normalizing).

5. Shift each positive non-value M : A : + as valM : ⇑A : −, and propagate the val
constructor into M to the possible return values via the κ reductions.

CSL 2018

20:34 Beyond Polarity

A,B,C ::= X | F | λX.A | A B X,Y ,Z ::= X:k k, l ::= S | k → l R,S, T ::= + | − | ?? | ?
F,G ::= & | ` | > | ⊥ | ⊕ | ⊗ | 0 | 1 | ¬ | 	 | ∀k | ∃k | ↓S | ↑S | S⇑ | S⇓

p ::= ι1x | ι2x | (x,y) | () | contα | packX y | boxS x | valS x x,y, z ::= x:A
q ::= π1α | π2α | [α,β] | [] | throwx | specXα | evalS α | enterS α α,β, δ ::= α:A
c ::= 〈v||e〉
v ::= x | µα.c | νx.v | λ{qi.ci | i..} | ι1v | ι2v | (v, v′) | () | cont e | packA v | boxS v | valS v
e ::= α | µ̃x.c | ν̃α.e | λ̃{pi.ci | i..} | π1e | π2e | [e, e′] | [] | throw v | specA e | evalS e | enterS e

Figure 18 Syntax of D: a multi-discipline sequent calculus.

c ::= 〈v||e〉 vS ::= VS | µα:A:S.c eS ::= ES | µ̃x:A:S.c
V+ ::= x | ι1V+ | ι2V+

| (V+, V
′
+) | ()

| contE− | packA V+

| boxS VS | val+ V+

| λ{eval+α.c}

E− ::= α | π1E− | π2E−

| [E−, E′−] | []
| throw V− | specA E−

| evalS ES | enter−E−
| λ̃{box− x.c}

V? ::= x | val? V+ | λ{enter?α.c}
E?? ::= α | enter?? E− | λ̃{val?? x.c}

E+ ::= x | µ̃x:A:+.c | ν̃α.E+

| λ̃{ι1x.c1 | ι2y.c2} | λ̃{}
| λ̃{(x,y).c} | λ̃{().c}
| λ̃{contα.c} | λ̃{packY x.c}
| λ̃{boxS x.c} | λ̃{val+ x.c}
| eval+E+

V− ::= x | µα:A:−.c | νx.V−
| λ{π1α.c1 | π2β.c2} | λ{}
| λ{[α,β].c} | λ{[].c}
| λ{throwx.c} | λ{specY α.c}
| λ{enter−α.c} | λ{evalS α.c}
| val− V+

E? ::= α | µ̃x:A:?.H[〈x||E?〉] | λ̃{val? x.c} | enter?E−
V?? ::= x | µα:A:?? .H[〈V?? ||α〉] | λ{enter?? α.c} | val?? V+

Figure 19 The focused sub-syntax of D.

Each of these steps follows by induction on the typing derivation. Since each of these
transformation steps is itself an equational correspondence (where the reverse transformation
is just syntactic inclusion into the larger calculus), the composition of entire procedure is an
equational correspondence. J

F.2 The core D dual sequent calculus
The syntax of the core dual calculus is given in Figure 18, the focused sub-syntax of the D
calculus is given in Figure 19, and the specific typing rules for the D connectives are given in
Figure 20.

The definition of focusing is the same in D as it was in F : the normalization with respect
to ς reduction. Because D is a symmetric language, this has the effect of carving out the
values and co-values of every discipline. Thanks to the symmetry between data and co-data
abstractions, the definition of (potential) non-value terms and non-co-value co-terms is much
more regular: for every discipline S, a general term is either a S value or a S µ-abstraction,
and dually a general co-term is either a S co-value or a S µ̃-abstraction.

P. Downen and Z.M. Ariola 20:35

& : − → − → − ` : − → − → − > : − ⊥ : − ¬ : +→ −
⊕ : +→ +→ + ⊗ : +→ +→ + 0 : + 1 : + 	 : − → +
∀k : (k → −)→ − ↑S : S → − S⇓ : − → S
∃k : (k → +)→ + ↓S : S → + S⇑ : +→ S

Γ`Θ
Dv :Ai |∆

Γ`Θ
Dιiv :A1 ⊕A2 |∆

⊕Ri
c1 : (Γ, x :A`Θ

D∆) c2 : (Γ, y :B `Θ
D∆)

Γ | λ̃{ι1(x:A).c1|π2(y:B).c2} :A⊕B `Θ
D∆

⊕L

Γ | e :Ai `Θ
D∆

Γ |πie :A1 &A2 `Θ
D∆

&Li
c1 : (Γ`Θ

Dα :A,∆) c2 : (Γ`Θ
Dβ :B,∆)

Γ`Θ
Dλ{π1[α:A].c1|π2[β:B].c2} :A&B |∆

&R

Γ`Θ
Dv1 :A |∆ Γ`Θ

Dv2 :B |∆
Γ`Θ
D(v1, v2) :A⊗B |∆

⊗R
c : (Γ, x :A, y :B `Θ

D∆)
Γ | λ̃{(x:A, y:B).c} :A⊗B `Θ

D∆
⊗L

Γ | e1 :A`Θ
D∆ Γ | e2 :B `Θ

D∆
Γ | [e1, e2] :A`B `Θ

D∆
`L

c : (Γ`Θ
Dα :A, β :B,∆)

Γ`Θ
Dλ{[α:A, β:B].c} :A`B |∆

`R

Γ | λ̃{} : 0`Θ
D∆

0L
Γ`Θ
D() : 1 |∆

1R
Γ | [] :⊥`Θ

D∆
⊥L

Γ`Θ
Dλ{} :> |∆

>R

Γ | e :A`Θ
D∆

Γ`Θ
Dcont e :	A |∆

	R
c : (Γ`Θ

Dα :A,∆)
Γ | λ̃{cont[α:A].c} :	A`Θ

D∆
	L

Γ`Θ
Dv :A |∆

Γ | throw v :¬A`Θ
D∆

¬L
c : (Γ, x :A`Θ

D∆)
Γ`Θ
Dλ{throw(x:A).c} :¬A |∆

¬R

Θ`DB : k Γ`Θ
Dv :A B |∆

Γ`Θ
DpackB v :∃kA |∆

∃R
c : (Γ, y :A X `Θ,X : k

D ∆)
Γ | λ̃{pack(X:k)(y:A).c} :∃kA`Θ

D∆
∃L

Θ`DB : k Γ | e :A B `Θ
D∆

Γ | specB e :∀kA`Θ
D∆

∀L
c : (Γ`Θ,X : k

D α :A X,∆)
Γ`Θ
Dλ{spec[X:k][α:A].c} :∀kA |∆

∀R

Γ`Θ
Dv :A |∆

Γ`Θ
DboxS v : ↓SA |∆

↓R
c : (Γ, x :A`Θ

D∆)
Γ | λ̃{boxS(x:A).c} : ↓SA`Θ

D∆
↓L

Γ | e :A`Θ
D∆

Γ | evalS e : ↑S A`Θ
D∆

↑L
c : (Γ`Θ

Dα :A,∆)
Γ`Θ
Dλ{evalS(α:A).c} : ↑S A |∆

↑R

Γ`Θ
Dv :A |∆

Γ`Θ
DvalS v : S⇑A |∆

⇑R
c : (Γ, x :A`Θ

D∆)
Γ | λ̃{valS(x:A).c} : ↓SA`Θ

D∆
⇑L

Γ | e :A`Θ
D∆

Γ | enterS e : S⇓A`Θ
D∆

⇓L
c : (Γ`Θ

Dα :A,∆)
Γ`Θ
Dλ{enterS(α:A).c} : S⇓A |∆

⇓R

Figure 20 Typing rules of D connectives.

Thanks to the symmetry of the D connectives, the definitions of values and co-values also
enjoy a similar symmetry. Positive values V+ are dual to negative co-values E−, and positive
co-values E− (which are synonymous with positive co-terms e−) are dual to negative values
V− (which are synonymous with negative terms v−). Likewise, ? values and co-values are
dual to ?? co-values and values, respectively.

Also note that, like before, ignoring call-by-need and its dual lets us eliminate the need to
consider terms and co-terms which are not substitutable value and co-values. In particular,

CSL 2018

20:36 Beyond Polarity

βµβµ̃ reduction is strongly normalizing, and µ- and µ̃-abstraction can only appear within a
cut. Since every + and − cut with at least one µ- or µ̃-abstraction can reduce by βµ either
or βµ̃, they can all be normalized away at the cost of duplication from substitution. By
eliminating µ and µ̃, we end up with a calculus in the style of the calculus of unity [25] where
everything is either a substitutable value or co-value, or a command which represents all
computation. Note that the only types which step outside the coupling of data types with
positive types, and co-data types with negative types, are the ⇓ and ⇑ shifts that introduce
a λ-abstraction in V+ and E−. But since these two shifts are isomorphic to ↓ and ↑, they
can be encoded away, leaving a calculus that corresponds to the calculus of unity. The final
translation into the full calculus of unity requires the use of nested patterns and co-patterns
to eliminate positive variables and negative co-variables of non-atomic types. With nested
(co-)patterns available, η-expansion can be performed until only the allowed variables and
co-variables remain.

I Definition 19. The flat unity sub-calculus of D is the restriction of the focused sub-syntax
of D to only values and co-values, no µ- or µ̃-abstractions, only the kinds + and −, all D
connectives except for the shifts ⇑ and ⇓. Note that this sub-calculus does not account for
nested (co-)pattern matching, as in the calculus of unity [25]. By extending D with nested
(co-)patterns, we then have the full unity sub-calculus of D with nested (co-)patterns, which
meets each of the flat unity sub-calculus restrictions as well as the additional restriction that
all variables have a negative type or an atomic positive type (X : +) and all co-variables
have a positive type or an atomic negative type (X : −).

I Theorem 20. There exists a typed translation from the +/− restriction of the D calculus
to the flat unity sub-calculus of D with the following types:

If c : (Γ ` ∆) then JcK : (JΓK ` J∆K),
If Γ ` VS : A : S | ∆ then JΓK ` JVSK : JAK : S | J∆K,
If Γ | ES : A : S ` ∆ then JΓK | JESK : JAK : S ` J∆K,
If Γ ` v+ : A : + | ∆ then JΓK ` Jv+K : ↑JAK : − | J∆K, and
If Γ | e− : A : − ` ∆ then JΓK | Je−K : ↓JAK : + ` J∆K.

Where the interesting cases of JAK are defined as J⇑K , J↑K and J⇓K , J↓K and all remaining
cases are defined homomorphically, and JΓK and J∆K are defined pointwise on the types of
bound (co-)variables. Furthermore, there exists a typed translation using nested (co-)patterns
from the flat unity sub-calculus of D to the full unity sub-calculus of D with the following
types, where Γ has no variables of non-atomic positive types and ∆ has no co-variables of
non-atomic negative types:

If c : (Γ ` ∆) then JcK : (Γ ` ∆),
If Γ ` V : A : S | ∆ then Γ ` JV K : A : S | ∆, and
If Γ | E : A : S ` ∆ then Γ | JEK : A : S ` ∆.

Both of these translations form an equational correspondence between each of dual, its flat
unity sub-calculus, and its full unity sub-calculus.

Proof. The translations follow the procedure outlined above. For the translation of D into
its flat unity sub-calculus:

1. Convert all uses of the ⇑ and ⇓ shifts to ↑ and ↓ shifts, according to the isomorphism
between those connectives shown in Theorem 3.

P. Downen and Z.M. Ariola 20:37

2. Reduce the expression (command, term, or co-term) to the focused sub-syntax of D by
normalizing with respect to the ς reductions (ς reduction is strongly normalizing).

3. Eliminate any internal positive µ-abstractions and negative µ̃-abstractions by normalizing
with respect to βµ and βµ̃ reductions (βµβµ̃ reduction is strongly normalizing). The
final top-level µ- or µ̃-abstraction can be eliminated by replacing it with the (co-)pattern
match for a shift type. That is, the positive non-value term Γ ` µα.c : A : + | ∆ becomes
Γ ` λ{eval α.c} : ↑A : − | ∆ and the negative non-co-value co-term Γ | µ̃x.c : A : − ` ∆
becomes Γ | λ̃{box x.c} : ↓A : + | ∆.

4. Eliminate any negative µ-abstractions and positive µ̃-abstractions by the η-expansion
appropriate for the type of the abstraction.

The translation from the flat unity sub-calculus to the full unity sub-calculus uses nested
(co-)patterns to repeat the final step of η-expansion above for every bound (co-)variables
of a disallowed type based (this process terminates because each step reduces the type
of a bound (co-)variables, since the types of D are non-recursive). Each of these steps
follows by induction on the typing derivation. Since each of these steps are individually
an equational correspondence (where the reverse translation is just syntactic inclusion
into the larger calculus), the composition of the whole procedure also forms an equational
correspondence. J

G Functional-sequent correspondence

I Definition 21. The extensible λ-calculus has the following sub-calculi: the pure sub-calculus
excludes µ-abstractions and jumps, and the totally pure sub-calculus also excludes fixed point
terms νx.M .

I Definition 22. A co-data declaration is functional if and only if every observer in the
declaration has exactly one output (to the right of `), and a data declaration is functional if
and only if every constructor in the declaration has exactly one output (which must be the
declared data type itself). We say that a global environment is functional when it contains
only functional (co-)data declarations.

The functional sub-calculus of the extensible dual calculus excludes the ?? discipline,
co-fixed point co-terms ν̃x.e, and non-functional (co-)data type declarations. In other words,
patterns in the functional sub-calculus have the form KY ..x.. with no co-variables and
co-patterns have the form OY ..x..α with exactly one co-variable.

Furthermore, the purely functional sub-calculus is the functional sub-calculus where terms
are restricted to have zero free co-variables and commands and co-terms both restricted have
exactly one free co-variable. The totally pure functional sub-calculus additionally excludes
fixed point terms νx.v.

I Lemma 23 (Type preservation). For all functional global environments G, F terms M and
jumps J , and functional dual terms v, commands c, and co-terms e:

a) if Γ `Θ
G M : A : S | ∆ then Γ `Θ

G LJMK : A : S | ∆,
b) if J : (Γ `Θ

G ∆) then LJJK : (Γ `Θ
G ∆),

c) if Γ `Θ
G v : A : S | ∆ then Γ `Θ

G N JvK : A : S | ∆,
d) if c : (Γ `Θ

G α : A : S,∆) then Γ `Θ
G N JcKα:A : A : S | α : A : S,∆, and

e) if Γ | e : A : S `Θ
G β : B : R,∆ then for all Γ `Θ

G M : A : S | β : B : R,∆, Γ `Θ
G

N JeKβ:B [M] : B : R | β : B : R,∆.

CSL 2018

20:38 Beyond Polarity

λ-calculus to dual calculus:

LJ〈M ||α〉K , 〈LJMK||α〉

LJxK , x

LJletx = M inN : CK , µα:C.〈LJMK||µ̃x.〈LJNK||α〉〉
LJνx.MK , νx.LJMK

LJµα.JK , µα.LJJK

LJKB.. M..K , KB.. LJMK..

LJcaseM of{pi.Ni i..} : CK , µα:C.〈LJMK||λ̃{pi.〈LJvK||α〉 i..}〉

LJλ{qi.(M : Ai) i..}K , λ{[qi αi:Ai].〈LJMiK||αi〉 i..}
LJM.OB.. N.. : CK , µα:C.〈LJMK||OB.. LJNK.. α〉

Dual calculus to λ-calculus:

N J〈v||e〉Kα , N JeKα[N JvK]

N JxK , x

N Jµα:A.cK , µα:A.〈N JcKα:A||α〉
N Jνx.vK , νx.N JvK

N JKB.. v..Kα , KB..N JvKα..

N Jλ{qi (αi).ci i..}K , λ
{
qi.N JciKαi i..

}
N JαKα:A[M] ,M
N JβKα:A[M] , µδ:A.〈M ||β〉 (β 6= α, δ /∈ FV (M))
N Jµ̃x.cKα[M] , letx = M inN JcKα

N JOB.. v.. eKα[M] , N JeKα[M.OB.. N JvK..]
N

q
λ̃{pi.ci i..}

y
α

[M] , caseM of{pi.N JciKα i..}

Figure 21 Translations between the λ-calculus and the functional sub-calculus of the dual calculus.

Proof. Parts (a) and (b) follow by mutual induction on the syntax of λ-calculus terms and
jumps, and parts (c), (d), and (e) follow by mutual induction on the syntax of dual terms,
commands, and co-terms. J

I Lemma 24 (Equational correspondence). For all functional global environments G, there
is an untyped equational correspondence between dual and the functional sub-calculus of the
dual calculus, specifically:

a) for all λ-calculus terms M , N JLJMKK = M ,
b) for all functional dual terms v, LJN JvKK = v,
c) if M = M ′ in F then LJMK = LJM ′K in the functional sub-calculus, and
d) if v = v′ in the functional sub-calculus then N JvK = LJv′K in the λ-calculus.

P. Downen and Z.M. Ariola 20:39

Likewise, there is a typed equational correspondence between the extensible λ-calculus and
functional dual terms of the same type in the same environment.

Proof. Since the translations N J K here and NKJ K from [6] are the same (up to the untyped
equational theory), the equational correspondence follows as an instance of Theorem 9.6
of [6] extended with (co-)fixed points and the χ axiom. The recursive terms νx.M are the
same via translation, and are equipped with the same rewriting rule ν, so they correspond
one-for-one.

Additionally, the χ? axioms in the two calculi are sound with respect to each other (with
the help of some other axioms in the equational theory). For soundness of the dual χ? axiom
with respect to the let-based one, note that χ?

〈µβ:?.〈v||µ̃x:?.c〉||e〉 =χ? 〈v||µ̃x:?.〈µβ:?.c||e〉〉

is subsumed by β?µ when e is a co-value, and every non-co-value is ς-equivalent to some
µ̃-abstraction, so it suffices to only consider the case when e is a µ̃-abstraction (since ς is
already known to be sound):

N J〈µβ:?.〈v||µ̃x:?.c〉||µ̃y:?.c′〉Kδ
=α let y:? = µβ:?.〈letx:? = N JvK inN JcKβ:?||β〉

inN Jc′Kδ
=κµ

let y:? = letx:? = N JvK

inµβ:?.〈N JcKβ:?||β〉
inN Jc′Kδ

=χ? letx:? = N JvK

in let y:? = µβ:?.〈N JcKβ:?||β〉

inN Jc′Kδ
=α N J〈v||µ̃x:?.〈µβ:?.c||µ̃y:?.c′〉〉Kδ

Going the other way, soundness of the χ? axiom for reassociating ? let bindings is sound in
the dual calculus as follows:

L

t
let y:? = letx:? = M1 inM2

inN

|

=α µδ.〈µβ:?.〈LJM1K||µ̃x:?.〈LJM2K||β:?〉〉||µ̃y:?.〈LJNK||δ〉〉
=χ? µδ.〈LJM1K||µ̃x:?.〈µβ:?.〈LJM2K||β:?〉||µ̃y:?.〈LJNK||δ〉〉〉
=ηµ µδ.〈LJM1K||µ̃x:?.〈LJM2K||µ̃y:?.〈LJNK||δ〉〉〉

=βµ L

t
letx:? = M1

in let y:? = M2 inN

|

J

I Corollary 25 (Isomorphism correspondence). For all functional global environments G,
Θ `G A ≈ B : k in the extensible λ-calculus if and only if Θ `G A ≈ B : k in the functional
sub-calculus of the extensible dual calculus.

H Faithfulness of the encodings

First, we show the isomorphism between the call-by-name and -value shifts.

CSL 2018

20:40 Beyond Polarity

I Theorem 3. The following isomorphisms hold (under �F) for all ` A : + and ` B : −

↑+A ≈ −⇑A ↓−B ≈ +⇓B ↓+A ≈ A ≈ +⇑A ↑−B ≈ B ≈ −⇓B

Proof. The isomorphism �F ↓− ≈ +⇓ : − → + is witnessed by the two terms

x : ↓−Z : + `Z:−
F casexof{box−(z:Z).λ{enter+.z}} : +⇓Z : +

y : +⇓Z : + `Z:−
F box−(y.enter+) : ↓−Z : +

Both compositions of these two terms are equal to their free variable as follows:

x : ↓−Z : + `Z:−
F let y:+⇓Z = casexof{box−(z:Z).λ{enter+.z}}

in box−(y.enter+)
=κ

F
casexof{box−(z:Z). let y:+⇓Z = λ{enter+.z}

in box−(y.enter+)}
=βlet

casexof{box−(z:Z).box−(λ{enter+.z}.enter+)}

=β
+⇓

casexof{box−(z:Z).box−(z)}

=η↓−
x : ↓−Z : +

y : +⇓Z : + `Z:−
F letx:↓−Z = box−(y.enter+)

in casexof{box−(z:Z).λ{enter+.z}}
=βlet

case box−(y.enter+) of{box−(z:Z).λ{enter+.z}}

=β↓−
λ{enter+.(y.enter+)}

=η
+⇓

y : +⇓Z : +

The isomorphism �F ↑+ ≈ −⇑ : +→ − follows by duality in the sequent calculus,
since there is a one-for-one correspondence between type isomorphisms of the two calculi
(Theorem 25). Furthermore, the details of the remaining identity shift isomorphisms are
shown in [6]. J

For the remainder, we show that the type isomorphisms developed in [6] can be extended
to higher-kinded types, quantifiers, and call-by-need evaluation. The main impact of the
extension is to show the compatibility of type isomorphism with the new type constructors,
and to generalize the nested (co-)patterns used in the soundness proof to include existential
and universal type abstractions.

H.1 Local encoding
First, we prove that a type isomorphism gives rise to a local form of equational correspondence.

I Theorem 5. For all isomorphic types Θ �G A ≈ B : S, the terms of type A (i.e., Γ `Θ
G M :

A : S | ∆) are in equational correspondence with terms of type B (i.e., Γ `Θ
G N : B : S | ∆).

Proof. To establish an equational correspondence, we need to find maps between terms
of the isomorphic types A and B. Since the same language serves as both the source and
the target, we will use a pair of appropriate contexts based on the types A and B that are
derived from the given witnesses to the isomorphism.

P. Downen and Z.M. Ariola 20:41

Suppose that x : A : S `Θ
G P

′ : B : S and y : B : S `Θ
G P : A : S witnesses the isomorphism

Θ `G A ≈ B : S, where x, y /∈ Γ. The desired contexts are then C = letx:A = � inP ′ for
converting from A to B and C ′ = let y:B = � inP for converting back. To show that these
context mappings give an equational correspondence, we must show that (1) the mappings
preserve equality, and (2) both compositions of the mappings are an identity. The first fact
follows immediately from compatibility; if two terms are equal, then they are equal in any
context. The second fact is derived from the definition of type isomorphisms at base kinds,
and the χS and ηlet axioms. The composition for M : A is:

Γ `Θ
G C

′[C[M]] = (let y:B = (letx:A = M inP ′) inP)
=χS (letx:A = M in (let y:B = P ′ inP))
=iso (letx:A = M inx) =ηlet

M : A : S | ∆

The reverse composition is also equal to the identity: Γ `Θ
G C[C ′[N]] = N : B : S | ∆. J

I Lemma 26. Type isomorphisms are

a) reflexive: if Θ `G A =βη B : k then Θ �G A ≈ B : k,
b) symmetric: if Θ �G A ≈ B : k then Θ �G B ≈ A : k, and
c) transitive: if Θ �G A ≈ B : k and Θ �G B ≈ C : k then Θ �G A ≈ C : k.

Proof. By induction on the kind k. Symmetry and transitivity of higher kinds k → l follows
immediately from the inductive hypothesis. For the base case S, note that symmetry follows
directly from the definition of type isomorphism and reflexivity is witnessed by the identities
〈x||α〉 : (x : A `Θ

G α : B) and 〈x||α〉 : (x : B `Θ
G α : B) typable by the TCR and TCL rules,

which is equal to its own self-composition by the ηµ and ηµ̃ axioms. The only non-trivial
property is transitivity for the base case S, so suppose that we have the isomorphisms
Θ �G A ≈ B : S and Θ �G B ≈ C : S as witnessed by

c1 : (x1 : A `Θ
G β1 : B) c′1 : (y1 : B `Θ

G α1 : A)
c2 : (y2 : B `Θ

G γ2 : C) c′2 : (z2 : C `Θ
G β2 : B)

The isomorphism Θ �G A ≈ C : S is then witnessed by

〈µβ1:B.c1||µ̃y2:B.c2〉 : (x1 : A `Θ
G γ2 : C)

〈µβ2:B.c′2||µ̃y1:B.c′1〉 : (z2 : C `Θ
G α1 : A)

Note that by the definition of type isomorphism, it must be that Θ `G A : S, Θ `G B : S,
and Θ `G C : S. Both compositions of these two commands are equal to identities via the
χS law, which is an axiom for S = ? and S = ?? and derivable from β+

µ and β−µ̃ for S = +
and S = −, respectively. In the one direction, we have:

〈µγ2:C.〈µβ1:B.c1||µ̃y2:B.c2〉||µ̃z2:C.〈µβ2:B.c′2||µ̃y1:B.c′1〉〉
=χS 〈µβ1:B.c1||µ̃y2:B.〈µγ2:C.c2||µ̃z2:C.〈µβ2:B.c′2||µ̃y1:B.c′1〉〉〉
=χS 〈µβ1:B.c1||µ̃y2:B.〈µβ2:B.〈µγ2:C.c2||µ̃z2:C.c′2〉||µ̃y1:B.c′1〉〉
=iso 〈µβ1:B.c1||µ̃y2:B.〈µβ2:B.〈y2||β2〉||µ̃y1:B.c′1〉〉
=ηµηµ̃

〈µβ1:B.c1||µ̃y1:B.c′1〉

=iso 〈x1||α1〉
: x1 : A `Θ

G α1 : A

The other direction of composition is equal to the identity 〈z2||γ2〉 analogously. J

CSL 2018

20:42 Beyond Polarity

I Lemma 27 (Connective isomorphism compatibility). For each (co-)data type constructor
F : ki → i..l ∈ D, Θ �G FAi i.. ≈ FBi i.. : l for all G extending D and Θ �G Ai ≈ Bi : ki.
Likewise for F in place of D.

Proof. The most interesting cases of compatibility are for the shifts (since they are the only
constructors to involve non-call-by-value and -name evaluation) and quantifiers (since they
are higher-order), and the remaining cases for ⊕, ⊗, 0, 1, &, `, >, ⊥, and → are analogous
to these (the details of which are shown in [6]).

For the shift data type S⇑ : + → S, assume that an isomorphism Θ �G A ≈ B : + as
witnessed by

c : (x : A `Θ
G β : B) c′ : (y : B `Θ

G α : A)

The isomorphism Θ �G S⇑A ≈ S⇑B : S is then witnessed by

〈x′||λ̃{valS(x:A).〈valS(µβ:B.c)||β′〉}〉 : (x′:S⇑A `Θ
G β
′:S⇑B)

〈y′||λ̃{valS(y:B).〈valS(µα:A.c′)||α′〉}〉 : (y′:S⇑B `G α:S⇑A)

The shift data type ↓S : S → + is analogous to the above; assume an isomorphism
Θ �G A ≈ B : S as witnessed by

c : (x : A `Θ
G β : B) c′ : (y : B `Θ

G α : A)

The isomorphism Θ �G S⇑A ≈ S⇑B : + is then witnessed by

〈x′||λ̃{boxS(x:A).〈boxS(µβ:B.c)||β′〉}〉 : (x′:↓SA `Θ
G β
′:↓SB)

〈y′||λ̃{boxS(y:B).〈boxS(µα:A.c′)||α′〉}〉 : (y′:↓SB `Θ
G α:↓SA)

Where the calculations showing that both compositions are equal to an identity are analogous
to the ones for S⇑.

For the existential quantifier data type ∃k : (k → +) → CBV , assume that we have
an isomorphism Θ �G A ≈ B : k → +, which is definitionally the same as an isomorphism
Θ, Z : k �G A Z ≈ B Z : +, is witnessed by

c : (x : A Z `Θ,Z:k
G β : B Z) c′ : (y : B Z `Θ,Z:k

G α : A Z)

The isomorphism Θ �G ∃kA ≈ ∃kB : + is then witnessed by

〈x′||λ̃{pack(Z:k)(x:A Z).〈packZ (µβ:B Z.c)||β′〉}〉 : (x′ : ∃kA `Θ
G β
′ : ∃kB)

〈y′||λ̃{pack(Z:k)(y:B Z).〈packZ (µα:A Z.c′)||α′〉}〉 : (y′ : ∃kB `Θ
G α
′ : ∃kA)

The compatibility of the type constructors S⇓ : − → S, ↑S : S → −, and ∀k : (k → −)→
− follow from the above three cases by duality. J

I Lemma 28 (Isomorphism Substitution). If Θ, X : k `D A : l and Θ �D B ≈ C : k then
Θ `D A[B/X] ≈ A[C/X] : l. Likewise for F in place of D.

Proof. Follows from the compatibility of the D and F connectives (Theorem 27) by (first)
induction on the kind k, (second) induction on the kind l and (third) induction on the
derivation of Θ, X : k `D A : l. J

P. Downen and Z.M. Ariola 20:43

I Definition 29 (Declaration isomorphism). Two data type declarations are isomorphic with
respect to a global environment G containing them, written

�G data F(X:k..) : Swhere K : (A : T .. `Θ FX.. | B : R..)..
≈ data F′(X:k..) : Swhere K′ : (A : T .. `Θ F′X.. | B : R..)..

when �G F ≈ F′ : k → ..S. Dually, two co-data type declarations are isomorphic with respect
to a global environment G containing them, written

�G codata G(X:k..) : Swhere O : (A : T .. | GX.. `Θ B : R..)..
≈ codata G′(X:k..) : Swhere O′ : (A : T .. | G′X.. `Θ B : R..)..

when �G G ≈ G′ : k → ..S.

I Lemma 30. For any ` G and a declared connective F : k ∈ G, then �G F ≈ JFKDG .

Proof. Analogous to Theorem 8.9 of [6], by extending the structural laws of Figures 8.4 and
8.5 with quantified type variables and with the following laws for the ∀k and ∃k quantifiers:

�G
data F(Θ) : + where

K : (A : + `Y :l F(Θ) |)
≈∃L

data F(Θ) : + where
K : (∃Y :l.A : + ` F(Θ) |)

�G
codata G(Θ) : + where

O : (| G(Θ) `Y :l A : −)
≈∃L

codata G(Θ) : + where
O : (| G(Θ) ` ∀Y :l.A : −)

J

I Theorem 31. For all ` G extending D and Θ `G A : k,
Θ �G A = JAKDG : k

Proof. By induction on the derivation of Θ `G A : k, using reflexivity (Theorem 26) in the
case of type variables and type function abstraction, substitution (Theorem 28) in the case
of type application, and the encoding (Theorem 30) in the case of connectives. J

I Theorem 4. For all ` G extending F and Θ `G A : k, Θ �G A ≈ JAKFG : k.

Proof. Analogous to Theorem 31, noting that the witnesses to isomorphism lie in the
functional sub-calculus of D. J

H.2 Global encoding
The particular set of nested patterns and co-patterns used for the dual encodings is encom-
passed by the following inductive definition:

pD ::= valS pD⊕ qD ::= enterS qD&
pD⊕ ::= ιip

D
⊕ | pD∃ qD& ::= πiq

D
& | qD∀

pD∃ ::= packY pD∃ | pD⊗ qD∀ ::= specY qD∀ | qD`
pD⊗ ::= (cont qD↑ , pD⊗) | (pD↓ , pD⊗) | () qD` ::= [throw pD↓ , qD`] | [qD↑ , qD`] | []
pD↓ ::= boxS x qD↑ ::= evalS α

The particular set of nested patterns and co-patterns used for the functional encodings is
encompassed by the following inductive definition:

pF ::= valS pF⊕ qF ::= enterS .qF&

CSL 2018

20:44 Beyond Polarity

pF⊕ ::= ιip
F
⊕ | pF∃ qF& ::= πi.q

F
& | qF∀

pF∃ ::= packY pF∃ | pF⊗ qF∀ ::= specY .qF∀ | qF→
pF⊗ ::= (pF↓ , pF⊗) | () qF→ ::= call(pF↓).qF→ | qF↑
pF↓ ::= boxS x qF↑ ::= evalS

I Lemma 32. For any G extending D, the following two standard reductions

(βp) 〈pD[ρ]||λ̃{pi.ci i..}〉 7→ ci[ρ] (pD = pi)
(βq) 〈λ{qi.ci i..} ||qD[ρ]〉 7→ ci[ρ] (qD = qi)

and the following two equations

Γ | λ̃
{
pDi .〈pDi ||α〉 i..

}
: A `Θ

G α : A,∆
Γ | λ̃

{
pDi .〈pDi ||α〉 i..

}
= α : A `Θ

G α : A,∆
ηp

Γ, x : A `Θ
G λ
{
qDi .〈x||qDi 〉 i..

}
: A | ∆

Γ, x : A `Θ
G λ
{
qDi .〈x||qDi 〉 i..

}
= x : A | ∆

ηq

are derivable, and analogously for pF and qF in place of pD and qD, respectively.

Proof. Analogous to the proof of the derived βη axioms for nested (co-)patterns in Theorem
8.1 of [6]. J

I Theorem 33. If ` G extends D and c = c′ : (Γ `Θ
G ∆) then JcKDG = Jc′KDG : (JΓKDG `Θ

D
J∆KDG).

Proof. Observe that patterns are encoded into pD and co-patterns are encoded into qD.
Therefore, the β and η axioms of (co-)data types are translated into the nested forms in
Theorem 32, which are derivable. Since these are the only part of the syntax that is changed
by the encoding, and equality is compatible, every equation is preserved by the encoding. J

I Theorem 6. If the global environment ` G extends F and Γ `Θ
G M = N : A | ∆ then

JΓKFG `Θ
F JMKFG = JNKFG : JAKFG | J∆KFG .

Proof. Analogous to Theorem 33 and the fact that the type isomorphisms of F and the
functional sub-calculus of D are in one-to-one correspondence (Theorem 25). J

I Coherence and rewriting theory

Here, we show the coherence of equality via some standard properties of the untyped rewriting
theory. Let � stand for the non-compatible reduction, that is, one of the rewriting rules used
to define the untyped 7→ and→ relations applied exactly as-is without any additional closure
properties. We write < for the reflexive closure of �, and Ï for the reflexive-transitive
closure of �.

I.1 Confluence
Recall that confluence of a rewriting relation→R (whose reflexive-transitive closure is denoted
by →→R) between expressions (here denoted by M) means that for every divergent pair of
reductions M1 ←←R M →→R M2 there is a common point of convergence M1 →→R M

′ ←←R M2.
Additionally, strong normalization of→R means that there are no infinite reduction sequences
M1 →R M2 →R M2 →R For our purposes here, we can disregard the φ??µ and φ?µ̃ rules
since they are subsumed by the strictly more general β??µ and β?µ̃ rules. Confluence for the multi-
discipline sequent calculus then follows by standard methods for a sub-calculus—everything
besides ς reduction—which we then extend to the full calculus using the adjunction-based
technique from [10].

P. Downen and Z.M. Ariola 20:45

I Lemma 34. For any global environment G, βµβµ̃ηµηµ̃βδ reduction is confluent.

Proof. Note that because values and co-values are closed under reduction (Property E.1),
the only critical pairs (between βSµ and ηSµ , βSµ̃ and ηSµ̃ , β?

?

µ and δ?? , and β?µ̃ and δ?) converge
in 0 steps (that is to say, the reduct of each side of the critical pair is identical up to
α-equivalence). This means that βµβµ̃ηµηµ̃βδ reduction forms a combinatorial orthogonal
rewriting system, and is therefore confluent. J

Unlike the other operational rules, the ς rules can be exhaustively completed ahead
of time as a compilation “pre-processor” into a smaller language without ς. The focused
sub-syntax is exactly the ς-normal forms; that is to say, the applications of constructors and
observers are restricted to (co-)values, as in K(E.., V ..) and O[V .., E..]. Furthermore, note
that this sub-syntax is closed under reduction, which means that is also outlines the focused
sub-calculus wherein the ς rules are no longer necessary.

We now give a transformation on commands and (co-)terms into the focused sub-syntax,
denoted by ()ς , that performs a particular ς-normalization. The ()ς transformation is
defined homomorphically on all syntactic forms except for data structures and co-data
observations which are defined by induction as follows (where we omit writing the discipline
annotations that can be inferred from constructor and observation names based on the global
environment):

(KB..E..V ..)ς , KB..Eς ..V ς ..
(KB..E..V .. v′ v..)ς , µα.〈v′ς ||µ̃y.〈(KB..E..V .. y v′..)ς ||α〉〉
(KB..E.. e′ e..v..)ς , µα.〈µβ.〈(KB..E.. β e..v..)ς ||α〉||e′ς〉

[OB..V ..E..]ς , OB..V ς ..Eς ..

[OB..V ..E.. e′ e..]ς , µ̃x.〈µβ.〈x||[OB..V ..E.. β e..]ς〉||e′ς〉
[OB..V .. v′ v..e..]ς , µ̃x.〈v′ς ||µ̃y.〈x||[OV .. y v..e..]ς〉〉

This transformation, when coupled with plain syntactic inclusion, induces an adjunction (more
specifically, a reflection) in the style of [23] between the full calculus and the sub-calculus of
ς-normal forms.

I Lemma 35. ς transformation and inclusion forms a reflection of the full multi-discipline
sequent calculus inside its sub-calculus of ς-normal forms. That is to say, the following four
properties hold:

a) For every command c, c→Rς c
ς .

b) For every ς-normal form c, cς =α c.
c) If c→→R c

′ and c, c′ are ς-normal forms, then c→→Rς c
′.

d) If c→→Rς c
′ then cς →→R c

′ς .

and similarly for terms and co-terms, where R stands for the βµβµ̃ηµηµ̃βδ rules.

Proof. a) This property says that the ()ς transformation performs a ς-normalization
(actually, any Rς reduction would be fine, but it happens that only ς-normalization is
needed), which follows by mutual induction on the syntax of commands and (co-)terms.

b) This property says that ()ς is an identity function (up to α-equivalence) on ς-normal
forms, which again follows by induction on syntax.

c) This property says that reductions on ς-normal forms are included in the full calculus,
which is immediate.

CSL 2018

20:46 Beyond Polarity

d) This is the main property which allows us to transport all reductions from the full calculus
into the sub-calculus of ς-normal forms. The cases for applications of a single specific rule
follows from the fact that (co-)values are closed under reduction (Property E.1) which
implies that V ς is a value and Eς is a co-value, and that ()ς distributes over substitution
(because it is compositional):

(βSµ) 〈µα:S.c||ES〉 → c[ES/α:S] becomes:

〈µα:S.c||ES〉ς =α 〈µα:S.(cς)||EςS〉 →βSµ
cς [EςS/α:S] =α (c[ES/α:S])ς

(ηSµ) µα:S.〈vS ||α:S〉 → vS becomes:

(µα:S.〈vS ||α:S〉)ς =α µα:S.〈vςS ||α:S〉 →ηSµ
vςS

(βF) for a data type F in G

〈KiB..ERi ..VTi ..)||λ̃{
»

(Ki Y ..α:Ri..x:Ti..).ci
i
}〉

→ ci[B/Y .., ERi/α:Ri.., VTi/x:Ti..]

becomes:

〈KiB..ERi ..VTi ..||λ̃{
»

(Ki Y ..α:Ri..x:Ti..).ci
i
}〉ς

=α 〈KiB..EςRi ..V
ς
Ti ..)||λ̃{

»

(Ki Y ..α:Ri..x:Ti..).cςi
i
}〉

→βF
cςi [B/Y .., E

ς
Ri/α:Ri.., V ςTi/x:Ti..]

=α (ci[B/Y .., ERi/α:Ri.., VTi/x:Ti..])ς

(ςF) for a data type F in G

P [eR]→ µα:S.〈µβ:R.〈P [β:R]||α:S〉||eR〉

becomes:

P [eR]ς =α µα:S.〈µβ:R.〈P [β:R]ς ||α:S〉||eςR〉 =α µα:S.〈µβ:R.〈P [β:R]||α:S〉||eR〉ς

(δ??) 〈µα:?? .c||v?? 〉 → c because α:?? /∈ FV (c) becomes:

〈µα:?? .c||v?? 〉ς =α 〈µα:?? .cς ||vς?? 〉 → cς

The cases for βSµ̃ , ηµ̃, βG for a co-data type G in G, ςG for a co-data type G in G, and
δ? are dual to the above cases.

The case for reflexivity and transitivity follows from the reflexivity and transitivity of the
sub-calculus. The case for compatibility is a little more subtle since the ()ς can change
when a non-(co-)value is turned into a (co-)value by an internal reduction. In this case,
the translation of the left-hand side simplifies down to the translation of the right-hand
side with the help of βµβµ̃ηµηµ̃ reductions. For example, we could have a reduction of
the pair (v, v′)→ (V, v′) of type A⊗B that converts the first component to a value when
both v and v′ are non-values. Under translation, this instance reduces as:

(v, v′)ς =α µα.〈vς ||µ̃x.〈(x, v′)ς ||α〉〉
→ µα.〈V ς ||µ̃x.〈(x, v′)ς ||α〉〉
→βµ̃

µα.〈(x, v′)ς ||α〉[V ς/x]

P. Downen and Z.M. Ariola 20:47

→ηµ
(x, v′)ς [V ς/x]

=α ((x, v′)ς [V/x])ς =α (V, v′)ς

With the help of this fact as necessary, the case for compatibility follows since ()ς is
compositional and the sub-calculus is also compatible. J

I Theorem 36. For any global environment G, all reduction in the multi-discipline sequent
calculus is confluent.

Proof. Follows from Theorem 34 and Theorem 35, as shown in [10]. In particular, let R
stand for all non-ς reduction rules and suppose that m1 ←← m →→Rς m2. It follows that
mς

1 ←←R mς →→R m2, so by confluence of R there is an m′ such that m1 →→Rς m
ς
1 →→R

m′ ←←R m
ς
2 ←←Rς m2. J

I.2 Standardization
To show standardization, we will first show how non-standard reductions can be postponed
after standard ones. The non-standard reduction relation, written as �, and its reflexive-
transitive closure, ��, are defined as

m→ m′ m 67→ m′

m� m′ m�� m

m�� m′ m′�� m′′

m�� m′′

I Lemma 37. If m� m′ then the status of m (i.e., finished, stuck, in progress) is the same
as m′.

Proof. First, we just show the forward direction: if m� m′ and m′ is finished, stuck, or in
progress, then m is final, stuck, or in progress, respectively. Note that finished and stuck
commands are closed under reduction in general. Also observe the fact that if D[m]� m′′

then either

m′′ =α D[m′] for some m′ such that m� m′, or
m′′ =α D

′[m[ρ]] for some D′ and substitution ρ,

which follows by induction on D. Now, supposing that m′2 � D[m] 7→ D[m1] because
m � m1, then we can proceed by cases on the previous fact:

If m′2 =α D[m2] then we have m2 � m � m1, and it can be checked that m2 7→ m′ for
some m′ by cases on the standard reduction rule used for m � m1.
If m′2 =α D′[m[ρ]] then m′2 7→ D′[m1[ρ]] since standard reduction is closed under
substitution.

The backward direction follows from the previous fact because every expression is exactly
one of finished, stuck, or in progress. That is to say, if we know the status of m′ (say,
finished), then it would be contradictory for m to be anything else, since that would imply
that m′ would have to have a different status. J

The main crux of the standardization proof is to commute standard and non-standard
reductions to perform the standard ones first, so that given any m�� 7→→ m′ it is also the
case that m 7→→�� m′. The complication is that commuting a pair of single steps can lead to
duplication—standard reductions can duplicate non-standard reductions in sub-expressions,
whereas non-standard reductions might be the next standard one leading to many standard
steps when order is exchanged—so that in general if m� 7→ m′ then we could wind up with

CSL 2018

20:48 Beyond Polarity

m 7→→�� m′. So the simple single-step case does not directly generalize to multiple steps by
induction on the reflexive-transitive closure of reduction sequences.

To work around this problem, we employ a technique that is sometimes used for mitigating
similar complications in confluence proofs: work with a grand reduction relation that allows
for certain multi-step reduction sequences, but still enables induction on the syntactic
structure of expressions. Our grand reductions will come in three different flavors: internal
non-standard reductions that preserve the top node of the syntax tree (⇒i), non-standard
reductions that might rewrite the top of the syntax tree (⇒), and a prefix of standard
reductions followed by a grand non-standard reduction (Z⇒). These are defined by mutual
induction on the syntax of expressions, where Z⇒ and⇒ enjoy a generic definition independent
on the syntactic form of the left-hand side, and only ⇒i follows by cases on syntax (where
±?? denotes any S besides ? and ±? denotes any S besides ??):

m 7→→ m′ m′ ⇒ m′′

m Z⇒ m′′
m⇒i m′ m′ < m′′ m′ 67→ m′′

m⇒ m′′

S∈{+, ??} wS⇒ivS < v′S eS Z⇒e′S 〈vS ||e′S〉67→〈v′S ||e′S〉
〈wS ||eS〉 ⇒i 〈v′S ||e′S〉

S∈{+, ??} VS⇒iV ′S<V
′′
S eS⇒ie′S 〈V ′S ||e′S〉67→〈V ′′S ||e′S〉

〈VS ||eS〉 ⇒i 〈V ′′S ||e′S〉

S∈{−, ?} vS Z⇒v′S fS⇒ieS<e′S 〈v′S ||eS〉67→〈v′S ||e′S〉
〈vS ||fS〉 ⇒i 〈v′S ||e′S〉

S∈{−, ?} vS⇒iv′S ES⇒iE′S<E
′
S 〈v′S ||E′S〉67→〈v′S ||E′′S〉

〈vS ||ES〉 ⇒i 〈v′S ||E′′S〉

x⇒i x α⇒i α

c Z⇒ c′

µα:±?.c⇒i µα:±?.c′
c Z⇒ c′

µ̃x:±?? .c⇒i µ̃x:±?? .c′

c⇒ c′

µα:?? .c⇒i µα:?? .c′
c⇒ c′

µ̃x:?.c⇒i µ̃x:?.c′

e Z⇒ e′.. v Z⇒ v′..

KB..e..v..⇒i KB..e′..v′..
v Z⇒ v′.. e Z⇒ e′..

OB..v..e..⇒i OB..v′..e′..

c Z⇒ c′..

λ{q.c..} ⇒i λ{q.c′..}
c Z⇒ c′..

λ̃{p.c..} ⇒i λ̃{p.c′..}

I Lemma 38. a) m⇒i m, m⇒ m, and m Z⇒ m.
b) m⇒i m′ implies m⇒ m′ implies m Z⇒ m′.
c) m� m′ implies m⇒ m′, m 7→ m′ implies m Z⇒ m′, and m→ m′ implies m Z⇒ m′.
d) m ⇒i m′ implies D[m]�� D[m′] for any D, m ⇒ m′ implies m�� m′, and m Z⇒ m′

implies m 7→→�� m′.

Proof. a) By induction on the syntax of m.
b) By the definition of ⇒i, ⇒, and Z⇒.
c) By induction on the syntax of the left-hand side m, using part (a) as necessary for

unchanged sub-expressions.

P. Downen and Z.M. Ariola 20:49

d) By mutual induction on the derivation of ⇒i, ⇒, and Z⇒. J

I Lemma 39. a) If m Z⇒ m′, x[ρ] Z⇒ x[ρ′] for all x, and α[ρ] Z⇒ α[ρ′] for all α, then
m[ρ] Z⇒ m′[ρ′].

b) If vS Z⇒ v′S and eS Z⇒ e′S then 〈vS ||eS〉 Z⇒ 〈v′S ||e′S〉.

Proof. The conjunction of parts (a) and (b) follow simultaneously by induction on the given
derivations of m Z⇒ m′, vS Z⇒ v′S , and eS Z⇒ e′S by generalizing (b) to: If vS Z⇒ v′S , eS Z⇒ e′S ,
x[ρ] Z⇒ x[ρ′] for all x, and α[ρ] Z⇒ α[ρ′] for all α then 〈vS ||eS〉[ρ] Z⇒ 〈v′S ||e′S〉[ρ′].

For part (a), note that any VS Z⇒ V ′S and ES Z⇒ E′S implies VS ⇒ V ′S and ES ⇒ E′S
because (co-)values do not standard reduce. Further, x ⇒ v and α ⇒ e implies x ⇒i v

and α ⇒i e since x 6→ and α 6→. It follows that if m ⇒ m′ and ρ Z⇒ ρ′ (pointwise)
then m[ρ] Z⇒ m′[ρ′] since the cases where substitution replaces a variable or co-variable
cannot cause two top-level reductions. The other interesting cases are for ⇒i reduction of a
command, which relies on part (b) of the inductive hypothesis, and ⇒i of ?? µ-abstractions
and ? µ̃-abstractions, which propagate the initial standard reductions of the underlying
command (generated by the inductive hypothesis) down to the abstraction itself.

For part (b), the general idea is to perform the standard reductions of vS Z⇒ v′S and
eS Z⇒ e′S first as appropriate (according to the compatibility of 7→ depending on S), and
then commute the possible trailing non-standard ηµ and ηµ̃ reductions which then become
standard βµ or βµ̃ reductions. For example, if we have the derivations e+ Z⇒ e′+ and

c Z⇒ 〈v′+||α:+〉
µα:+.c⇒i µα:+.〈v′+||α:+〉 �η+

µ
v′+

v+ 7→→ µα:+.c⇒ v′+

v+ Z⇒ v′+

then because e+ is a co-value (as every + term is), for any ρ Z⇒ ρ′, by the inductive hypothesis
(a) on the sub-derivations c Z⇒ 〈v′+||α:+〉 and e+ Z⇒ e′+ we have the derivation

c Z⇒ 〈v′+||α:+〉

e+ Z⇒ e′+.... IH
e+[ρ] Z⇒ e′[ρ′].... IH

〈v+||e+〉[ρ] 7→→ 〈µα:+.c[ρ]||e+[ρ]〉
7→β+

µ
c[e+[ρ]/α:+, ρ] Z⇒ 〈v′+[ρ′]||e′+[ρ′]〉

〈v+||e+〉[ρ] Z⇒ 〈v′+||e′+〉[ρ]

The other cases are similar to this one. J

I Lemma 40. If either m Z⇒7→ m′, m⇒7→ m′, or m⇒i 7→ m′ then m Z⇒ m′.

Proof. By mutual induction on the derivation of Z⇒, ⇒, and ⇒i. The first case is for Z⇒
followed by 7→: if

m1 7→→ m2 m2 ⇒ m3
m1 Z⇒ m3 7→ m4

then the inductive hypothesis on m2 ⇒ m3 7→ m4 gives m2 Z⇒ m4, which is the same as
m2 7→→ m′3 ⇒ m4 for some m′3, so by transitivity of 7→ we have

m1 7→→ m2 7→→ m′3 m′3 ⇒ m4
m1 Z⇒ m4

CSL 2018

20:50 Beyond Polarity

The second group of cases is for ⇒ followed by 7→, which proceeds by cases on the
potential trailing non-standard rewriting rule, which dictates more of the ⇒ derivation by
inversion when present:

(reflexive): If

m1 ⇒i m2
m1 ⇒ m2 7→ m3

then the inductive hypothesis on m1 ⇒i m2 7→ m3 gives m1 Z⇒ m3.
(η±?µ): If

c Z⇒ 〈v±?||α:±?〉
µα:±?.c⇒i µα:±?.〈v±?||α:±?〉 µα:±?.〈v±?||α:±?〉�η±?µ

v±?

µα:±?.c⇒ v±? 7→ v′±?

then 〈v±?||α:±?〉 7→ 〈v′±?||α:±?〉 and the inductive hypothesis on c Z⇒ 〈v±?||α:±?〉 7→
〈v′±?||α:±?〉 gives c Z⇒ 〈v′±?||α:±?〉 so we have

c Z⇒ 〈v′±?||α:±?〉
µα:±?.c⇒i µα:±?.〈v′±?||α:±?〉 µα:±?.〈v′±?||α:±?〉�η±?µ

v′±?

µα:±?.c⇒ v′±?

µα:±?.c Z⇒ v′±?

(η??µ): If

c⇒ 〈v?? ||α:?? 〉
µα:?? .c⇒i µα:?? .〈v?? ||α:?? 〉 µα:?? .〈v?? ||α:?? 〉�η??µ

v??

µα:?? .c⇒ v?? 7→ v′??

then 〈v?? ||α:?? 〉 7→ 〈v′?? ||α:?? 〉 and the inductive hypothesis on c Z⇒ 〈v?? ||α:?? 〉 7→ 〈v′?? ||α:?? 〉
gives c 7→→ c′ ⇒ 〈v′?? ||α:?? 〉 for some c′, so we have

c′ ⇒ 〈v′?? ||α:?? 〉
µα:?? .c′ ⇒i µα:?? .〈v′?? ||α:?? 〉 µα:?? .〈v′?? ||α:?? 〉� v′??

µα:?? .c 7→→ µα:?? .c′ ⇒ v′??

µα:?? .c Z⇒ v′??

(β??µ): If

c1 ⇒ c2

µα:?? .c1 ⇒i µα:?? .c2 e?? Z⇒ E??

〈µα:?? .c1||e?? 〉 ⇒i 〈µα:?? .c2||E?? 〉�β??µ
c2[E?? /α:??]

〈µα:?? .c1||e?? 〉 ⇒ c2[E?? /α:??] 7→ c3

then for the β??µ reduction to be non-standard and followed by a standard reduction, it
must be that α is not needed in c2, i.e., c2 is not some H[〈V?? ||α:?? 〉]. Thus, c2[E?? /α:??] is
also not some H[〈V?? ||E?? 〉], so the standard reduction does not require the substitution of
E?? , meaning that c3 =α c

′
3[E?? /α:??] and c2 7→ c′3 for some c′3. The inductive hypothesis

on c1 ⇒ c2 7→ c′3 gives c1 7→→ c′1 ⇒ c′3, so we can proceed by cases on whether or not
〈µα:?? .c′1||e?? 〉 is a value:

P. Downen and Z.M. Ariola 20:51

(value): From c′1 ⇒ c′3 and E′?? Z⇒ E?? , we have a derivation of c′1[E′?? /α:??] Z⇒
c′3[E?? /α:??], and

〈µα:?? .c1||e?? 〉 7→→ 〈µα:?? .c′1||e?? 〉
7→→ 〈µα:?? .c′1||E′?? 〉
7→φ??µ

c′1[E′?? /α:??]

Z⇒ c′3[E?? /α:??] =α c3

(non-value): We have the derivation

c′1 ⇒ c′3

µα:?? .c′1 ⇒i µα:?? .c′3 e?? Z⇒ E??

〈µα:?? .c′1||e?? 〉 ⇒i 〈µα:?? .c′3||E?? 〉�β??µ
c′3[E?? /α:??]

〈µα:?? .c1||e?? 〉 7→→ 〈µα:?? .c′1||e?? 〉 ⇒ c3

〈µα:?? .c1||e?? 〉 Z⇒ c3

(δ??): If

c1 ⇒ c2

µα:?? .c1 ⇒i µα:?? .c2 e?? Z⇒ e′??

〈µα:?? .c1||e?? 〉 ⇒i 〈µα:?? .c2||e′?? 〉�δ?? c2

〈µα:?? .c1||e?? 〉 ⇒ c2 7→ c3

then the inductive hypothesis on c1 ⇒ c2 7→ c3 gives c1 7→→ c′2 ⇒ c3 for some c′2 so we
have

c′2 ⇒ c3

µα:?? .c′2 ⇒i µα:?? .c3 e?? Z⇒ e′??

〈µα:?? .c′2||e?? 〉 ⇒i 〈µα:?? .c3||e′?? 〉�δ?? c3

〈µα:?? .c1||e?? 〉 7→→ 〈µα:?? .c′2||e?? 〉 ⇒ c3

〈µα:?? .c1||e?? 〉 Z⇒ c3

The cases for η±??µ , η?µ, β?µ, and δ? are dual to the above.

The third group of cases are for ⇒i followed by a standard rewriting rule, which proceeds
by cases on the rule:

(β+
µ): If

c Z⇒ c′

µα:+.c⇒i µα:+.c′ E+ Z⇒ E′+

〈µα:+.c||E+〉 ⇒i 〈µα:+.c′||E′+〉 7→β+
µ
c′[E′+/α:+]

then we have

c Z⇒ c′ E+ Z⇒ E′+....
〈µα:+.c||E+〉 7→β+

µ
c[E+/α:+] Z⇒ c′[E′+/α:+]

〈µα:+.c||E+〉 Z⇒ c′[E′+/α:+]

CSL 2018

20:52 Beyond Polarity

(β−µ): If

c Z⇒ c′

µα:−.c⇒i µα:−.c′ E− ⇒i E′−

〈µα:−.c||E−〉 ⇒i 〈µα:−.c′||E′−〉 7→β−µ
c′[E′−/α:−]

then we have 〈µα:−.c||E−〉 Z⇒ c′[E′−/α:−] analogously to the previous case for β+
µ by

weakening E− ⇒i E′− to E− Z⇒ E′−.
(β?µ): If

c Z⇒ c′

µα:?.c⇒i µα:?.c′ E? ⇒i E′? <η?µ E
′′
?

〈µα:?.c||E?〉 ⇒i 〈µα:?.c′||E′′? 〉 7→β?µ
c′[E′′? /α:?]

then we have 〈µα:?.c||E?〉 Z⇒ c′[E′′? /α:?] analogously to the previous case for β+
µ by

weakening E? ⇒i E′? <η?µ E
′′
? to E? Z⇒ E′′? .

(φ??µ): If

c⇒ c′

µα:?? .c⇒i µα:?? .c′ E?? ⇒i E′??

〈µα:?? .c||E?? 〉 ⇒i 〈µα:?? .c′||E′′?? 〉 7→φ??µ
c′[E′′?? /α:??]

where c′ =α H
′[〈V ′?? ||α:?? 〉] with α not bound by H ′ because of the standard φ??µ reduction,

and c =α H[〈V?? ||α:?? 〉] with α not bound by H because c⇒ c′ (following by induction on
H ′), then we have the weakened E?? Z⇒ E′?? from E?? ⇒i E′?? and the derivation

c Z⇒ c′ E?? Z⇒ E′??....
〈µα:?? .c||E?? 〉 7→φ??µ

c[E?? /α:??] Z⇒ c′[E′?? /α:??]

〈µα:?? .c||E?? 〉 Z⇒ c′[E′+/α:??]

(βG) for a co-data declaration G in G: For simplicity, we will illustrate G = &; the general
case for an arbitrary co-data declaration is analogous to this one by induction on the
components of the possible observations of that co-data type. If

c1 Z⇒ c′1 c2 Z⇒ c′2

λ{π1α1.c1 | π2α2.c2}
⇒i λ{π1α1.c

′
1 | π2α2.c

′
2} E ⇒i E′

〈λ{π1α1.c1 | π2α2.c2} ||πiE〉
⇒i 〈λ{π1α1.c

′
1 | π2α2.c

′
2} ||πiE′〉

7→β&
c′i[E′/αi]

then E ⇒i E′ can be weakened to E Z⇒ E′ so we have

ci Z⇒ c′i E Z⇒ E′....
〈λ{π1α1.c1|π2α2.c2} ||πiE〉 7→β&

ci[E/αi] Z⇒ c′i[E′/αi]
〈λ{π1α1.c1|π2α2.c2} ||πiE〉 Z⇒ c′i[E′/αi]

P. Downen and Z.M. Ariola 20:53

(ςG) for a co-data declaration G in G: As before, we will illustrate for the special case
where G = &, which can be generalized to arbitrary co-data declarations by induction on
the components of the possible observations. If

f Z⇒ f ′

πif ⇒i πif
′ 7→ς&

µ̃x.〈µβ.〈x||πiβ〉||f ′〉

then we have

f Z⇒ f ′....
πif 7→ς&

µ̃x.〈µβ.〈x||πiβ〉||f〉 Z⇒ µ̃x.〈µβ.〈x||πiβ〉||f ′〉
πif Z⇒ µ̃x.〈µβ.〈x||πiβ〉||f ′〉

The cases of each of the rules β±??µ̃ , φ?µ̃, and βF and ςF for a data declaration F in G being
applied after a ⇒i reduction on a command are dual to the above.

The last group of cases are for ⇒i followed by 7→ on a strict sub-expression due to
compatibility:

If S ∈ {+, ??}, v′S 7→ v′′S , and

wS ⇒i vS < v′S eS Z⇒ e′S

〈wS ||eS〉 ⇒i 〈v′S ||e′S〉 7→ 〈v′′S ||e′S〉

then the inductive hypothesis on wS ⇒ v′S 7→ v′′S gives wS Z⇒ v′′S , so that 〈wS ||eS〉 Z⇒
〈v′′S ||e′S〉.
If S ∈ {+, ??}, e′S 7→ e′′S , and

VS ⇒i V ′S < V ′′S eS ⇒i e′S

〈VS ||eS〉 ⇒i 〈V ′′S ||e′S〉 7→ 〈V ′′S ||e′′S〉

then the inductive hypothesis on eS ⇒i e′S 7→ e′′S gives eS Z⇒ e′′S , so that 〈VS ||eS〉 Z⇒
〈V ′′S ||e′′S〉.
If c2 7→ c3 and

c1 ⇒ c2

µα:?? .c1 ⇒i µα:?? .c2 7→ µα:?? .c3

then the inductive hypothesis on c1 ⇒ c2 7→ c3 gives c1 7→→ c′2 ⇒ c3 for some c′2, so that

c′2 ⇒ c3

µα:?? .c′2 ⇒i µα:?? .c3
µα:?? .c1 7→→ µα:?? .c′2 ⇒ µα:?? .c3

µα:?? .c1 Z⇒ µα:?? .c3

The cases for − and ?? commands and ? µ̃-abstractions are dual to the above.

Note that there is no possible standard reduction on variables and co-variables, + and
− µ- and µ̃-abstractions, pattern-matching terms and co-terms, and data and co-data
structures built from (co-)values, so the ⇒i cases for (co-)terms of these syntactic forms are
impossible. J

I Lemma 41. If m�� 7→→ m′ then m 7→→�� m′. It follows that if m→→ m′ then m 7→→�� m′.

CSL 2018

20:54 Beyond Polarity

Proof. First note the following facts:

a) The reflexive-transitive closure of ⇒ (written as ⇒∗) is the same as��, which follows
from the fact that m� m′ implies m⇒ m′ implies m�� m′.

b) If m ⇒7→→ m′ then m 7→→⇒ m′, which follows by induction on the reflexive-transitive
structure of 7→→.

c) If m ⇒∗ 7→→ m′ (where ⇒∗ is the reflexive-transitive closure of ⇒) then m 7→→⇒∗ m′,
which follows from the previous fact by induction on the reflexive transitive structure of
⇒∗ .

Therefore, m �� 7→→ m′ implies m 7→→�� m′. Finally, since every → is either 7→ or �,
m →→ m′ implies m 7→→�� m′ because of the previous fact by induction on the reflexive-
transitive structure of →→, commuting standard reductions before non-standard ones as
necessary. J

I Theorem 42 (Standardization). If m→→ m′ and m′ is finished then m ⇓ m′′ →→ m′.

Proof. We know that m 7→→ m′′�� m′ for some m′, and since m′ is final then m′′ must be
as well so m ⇓ m′′. J

I.3 Untyped contextual equivalence
First, we define the following “weak equivalence” relation ω∼ on commands that only checks
compatibility of their needed variables:

c1
ω∼ c2 ⇐⇒ NV(c1) = NV(c2)

I Property I.1. c1
ω∼ c2 if and only if H1[c1] ω∼ H2[c2].

For any relation � on finished commands, we define the following generalization of � up
to evaluation, written �⇓:

c1 �⇓ c2 ⇐⇒ (c1 ⇓ c′1 =⇒ ∃c2 ⇓ c′2.c′1 � c′2) ∧ (c2 ⇓ c′2 =⇒ ∃c1 ⇓ c′1.c′1 � c′2)

I Definition 43 (Untyped contextual equivalence). Two well-disciplined (but untyped) expres-
sions m1 and m2 of the same syntactic sort (command, S term, or S co-term) are contextually
equivalent, denoted by m1 ∼= m2, exactly when C[m1] ω∼⇓ C[m2] for all contexts C such that
C[m1] and C[m2] are well-disciplined commands.

Note that if � is reflexive, transitive, and symmetric on finished commands then so too is �⇓.
So since that ω∼ is reflexive, transitive, and symmetric, so is contextual equivalence.

I Lemma 44. Contextual equivalence is the largest compatible relation included in ω∼⇓. That
is, given any compatible relation � between expressions such that c1 � c2 implies c1

ω∼⇓ c2,
then m1 � m2 implies m1 ∼= m2.

Proof. Supposem1 � m2 and C is an appropriate context such that C[m1] and C[m2] are well-
disciplined commands. We know C[m1] � C[m2] by compatibility and thus C[m1] ω∼⇓ C[m2]
by assumption. Therefore, m1 ∼= m2. J

I Lemma 45. If χ /∈ R and m1 =R m2 then m1 ∼= m2.

P. Downen and Z.M. Ariola 20:55

Proof. Follows from confluence and standardization of R and Theorem 44.
First, we show that R equality between finished commands is included in weak equivalence.

Suppose that c1 =R c2 and both are finished. By confluence, we know that c1 →→R c
′ ←←R c2

such that c′ is finished as well. Next, observe that→R between finished commands is included
in ω∼, by cases on the applied reduction rule. It follows that →→R is also included in ω∼ by
induction on the reflexive-transitive structure of→→R, and since ω∼ is symmetric and transitive
we have that c1

ω∼ c′
ω∼ c2.

Second, note that equality is compatible by definition, so supposing that c1 =R c2, it
suffices to show that c1

ω∼⇓ c2. By confluence, we know that c1 →→ c3 ←← c2 for some c3,
and without loss of generality suppose that c1 ⇓ c′1. By confluence of c3 ←← c1 7→→ c′1, we
have c3 →→ c′3 ←← c′1 meaning that c2 →→ c3 →→ c′3 where c′3 is finished because c′1 →→ c′3. By
standardization, we have that c2 ⇓ c′2 →→ c′3. So since c′1 =R c

′
2 and both are finished we have

c1 7→→ c′1
ω∼ c′2 ←←[c2. Therefore, c1

ω∼⇓ c2. J

The last step is to prove that the χ axiom on its own is included in contextual equivalence,
which we can show by a bisimulation-style of argument.

I Lemma 46. If D1[m1] =χ m
′
2 then m′2 =α D2[m2] for some D2 and m2 (of the same

syntactic sort as m1) such that m1 =χ m2, D1[m] =χ D2[m] for all m (of the same syntactic
sort as m1 and m2), and NV(D1[m1]) = NV(D2[m2]) when both are commands.

Proof. The special case for D1[m1]↔χ m
′
2 follows by induction on D1, and the general case

for D1[m1] =χ m
′
2 follows from the previous fact by induction on the reflexive-transitive-

symmetric structure of =χ since ↔χ is also symmetric. J

I Lemma 47. If c1 =χ c2 then c1 is finished if and only if c2 is, and if both are finished
then c1

ω∼ c2.

Proof. Given a finished command c1, c2 must also be finished because NV(c1) = NV(c2),
which also implies that c1

ω∼ c2. J

I Lemma 48. If m =χ 7→ m′ then m 7→=χ m
′.

Proof. First, observe that if m1 =χ m2 7→ m′2 because m2 � m′2, then m1 7→ m′1 =χ m
′
2 for

some m1 � m′1, which follows by cases on the standard rewriting rule used in m2 � m′2.
Second, suppose that m =χ D2[m2] 7→ D′2[m′2] because m2 � m′2. It follows that

m =α D1[m1] for some D1 and m1 such that m1 =χ m2 and D1[m′] =χ D2[m′] for
all syntactically appropriate m′. As shown previously, m1 =χ m2 � m′2 implies that
m1 � m′1 =χ m

′
2, so we have D1[m1] 7→ D1[m′1] =χ D2[m′2]. J

I Lemma 49. If m1 =χ m2 then m1 ∼= m2.

Proof. χ-equality is compatible by definition, so it suffices to show that c1 =χ c2 implies
c1

ω∼⇓ c2. Without loss of generality (because both =χ and ω∼⇓ are symmetric), suppose that
c1 ⇓ c′1 meaning that c1 7→→ c′1 and c′1 is finished. By induction on the reflexive-transitive
structure of 7→→, the fact that c2 =χ c1 7→→ c′1 and c′1 is finished implies that c2 7→→ c′2 =χ c

′
1

for some finished c′2 such that c′1
ω∼ c′2. J

I Theorem 50 (Untyped soundness). If c1 = c2 then c1 ∼= c2.

Proof. Follows by induction on c1 = c2 since every equality is a finite alternation of χ and
non-χ equalities, and contextual equivalence is reflexive and transitive. J

CSL 2018

20:56 Beyond Polarity

I Corollary 51 (Untyped coherence). There are two ω∼-related and two ω∼-unrelated expressions
of every syntactic sort. It follows that there are two =-related and two =-unrelated expressions
of every syntactic sort.

Proof. Since both contextual equivalence and untyped equality is reflexive by definition, any
expression of a syntactic sort is related to itself by both ω∼ and =. Now, pick any two distinct
variables x, y and α, β, and note that 〈x:S||α:S〉 6ω∼ 〈y:S||α:S〉 and 〈x:S||α:S〉 6ω∼ 〈x:S||β:S〉.
As special cases of contextual equivalence (with the contexts �, 〈�||α:S〉, and 〈x:S||�〉,
respectively), it follows that:

〈x:S||α:S〉 6∼= 〈y:S||α:S〉 〈x:S||α:S〉 6∼= 〈x:S||β:S〉 x:S 6∼= y:S α:S 6∼= β:S

And since the = relation is included in ω∼, these expressions must not be =-related. J

I.4 Typed contextual equivalence
We now defined a typed version of contextual equivalence that restricts compatibility to only
well-typed contexts in observable environments.

I Definition 52 (Observable environments). An input environment Γ is observable with
respect to G if Γ = x : G(A..).. where each G is a co-data type constructor G : k.. → S
in G where S 6= ?? . Dually, an output environment ∆ is observable with respect to G if
∆ = α : F(A..).. where each F is a data type constructor F : k..→ S in G where S 6= ?.

I Definition 53 (Typed contextual equivalence).

Two typed commands are contextually equivalent, written as c1 ∼= c2 : (Γ `Θ
G ∆), exactly

when C[c1] ω∼⇓ C[c2] for all contexts C such that C[ci] : (Γ′ `Θ
G ∆′) for some observable

Γ′ and ∆′.
Two typed terms are contextually equivalent, written as Γ `Θ

G v1 ∼= v2 : A | ∆, exactly
when C[v1] ω∼⇓ C[v2] for all contexts C such that C[vi] : (Γ′ `Θ

G ∆′) for some observable
Γ′ and ∆′.
Two typed co-terms are contextually equivalent, written as Γ | e1 ∼= e2 : A `Θ

G ∆, exactly
when C[e1] ω∼⇓ C[e2] for all contexts C such that C[ei] : (Γ′ `Θ

G ∆′) for some observable
Γ′ and ∆′.

Note that, like untyped contextual equivalence (Theorem 44), typed contextual equivalence
is the largest typed relation that is compatible (in the typed sense) and included in ω∼⇓
for commands typed in an observable environment. That is, given any � between typed
expressions that is compatible with well-typed contexts and where c1 � c2 : (Γ `Θ

G ∆)
for an observable Γ and ∆ implies that c1

ω∼⇓ c2, then c1 � c2 : (Γ `Θ
G ∆) implies that

c1 ∼= c2 : (Γ `Θ
G ∆) (and similarly for (co-)terms).

To prove that typed equality is sound with respect to typed contextual equivalence, we
instantiate the orthogonality model of types from [6] in a way that accommodates call-by-need
and its dual.

Top reduction on a single command, c c′, is defined as:
c �βSµβSµ̃βG c

′

c c′

vS �ςG v
′
S

〈vS ||ES〉 〈v′S ||ES〉
eS �ςG e

′
S

〈VS ||eS〉 〈VS ||eS〉

Top reduction is then generalized to a pair of commands, (c1, c2) (c′1, c′2) as follows:

c1 c′1
(c1, c2) (c′1, c2)

c1 c′1 c2 c′2
(c1, c2) (c′1, c′2)

c2 c′2
(c1, c2) (c1, c′2)

P. Downen and Z.M. Ariola 20:57

I Definition 54 (Poles and interaction spaces). A pole P is a binary relation on commands.
For a given pole P, an P-interaction space A (or just P-space for short) is a binary relation
between terms and a binary relation between co-terms, both of a common discipline S, such
that v Av′ and e A e′ implies that 〈v||e〉 P 〈v′||e′〉. Given two P-spaces A and B, we write
A v B to mean that

v A v′ =⇒ v B v′ e A e′ =⇒ e B e′

For any poles

‚

and ‚ and any

‚

-space W, the ‚W-orthogonal operation on

‚

-spaces,
written ‚W , is defined as

v A‚W v′ ⇐⇒ ∀e A e′.〈v||e〉‚ 〈v′||e′〉 e A‚W e′ ⇐⇒ ∀v A v′.〈v||e〉‚ 〈v′||e′〉
For any pole

‚

and

‚

-space V, the V-restriction operation on

‚

-spaces, written |V, is
defined as

v A|V v′ ⇐⇒ v V v′ ∧ v A v′ e A|V e′ ⇐⇒ e V e′ ∧ e A e′

I Definition 55 (Safety condition). A safety condition S is a pair of poles (

‚

,‚) such that
‚ ⊆ ‚

and the following condition holds:

Closure under expansion: For all c1

‚

c2, if (c1, c2) (c′1, c′2) and c′1‚c′2 then c1‚c2.

I Definition 56 (Worlds). For a safety condition S = (

‚

,‚), an S-world T is a triple
(U,V,W) of

‚

-spaces such that V v U, W v U, and the following conditions hold:

Saturation: For all v1 U v2, if (〈v1||E1〉, 〈v2||E2〉) (c1, c2) for all E1 W|‚W
V

∣∣∣
V
E2 and

some c1 ‚ c2, then v1 W v2. Dually, for all e1 U e2, if (〈V1||e1〉, 〈V2||e2〉) (c1, c2) for
all V1 W|‚W

V

∣∣∣
V
V2 and some c1 ‚ c2, then e1 W e2.

Generation: For all

‚

-spaces A vW, if A = A|‚W
V then A = A‚W .

In addition to saturation and generation, there are two more important properties of a
collection of worlds (one for each S) that depend on the global environment G. Letting

data F(X : k).. : Swhere
Ki : (Aij : Tij j.. `Y :l.. FX.. | Bij : Rij j..) i..

codata G(X : k).. : Swhere
Oi : (Aij : Tij j.. | GX.. `Y :l.. Bij : Rij j..) i..

stand for a generic pair of data and co-data declarations in G, then the collection of worlds
TS = (US ,VS ,WS) should have the two properties of:

Focalization: If Vj WTij
∣∣
VTij

V ′j
j.. and Ej WRij

∣∣
VRij

E′j
j.. then

KiB..Ej j..Vj j.. WS |VS KiB′..E′j j..V ′j j.. OiB..Vj j..Ej j.. WS |VS OiB
′..V ′j

j..E′j
j..

for each i. Additionally,

λ{[Oi Y ..xij :Tij j..αij :Rij j..].ci i..} WS λ{[Oi Y ..xij :Tij j..αij :Rij j..].ci i..}
λ̃{(Ki Y ..αij :Rij j.., xij :Tij ..).ci i..} WS λ̃{(Ki Y ..αij :Rij j.., xij :Tij ..).c′i i..}

if

ci[B/Y .., Vij/xij :Tij j.., Eij/αij :Rij j..] ‚ c′i[B′/Y .., V ′ij/xij :Tij j.., E′ij/αij :Rij j..] i..

for all Vij WTij
∣∣
VTij

V ′ij
ij.. and Eij WRij

∣∣
VRij

E′ij
ij...

CSL 2018

20:58 Beyond Polarity

Extensionality: If V VS V ′ and (
⋃
i BV (qi)) ∩ (FV (V) ∪ FV (V ′)) = ∅ then

V VS λ{qi.〈V ′||qi〉 i..} λ{qi.〈V ||qi〉 i..} VS V ′

Dually, if E VS E′ and (
⋃
i BV (pi)) ∩ (FV (E) ∪ FV (E′)) then

E VS λ̃{pi.〈pi||E′〉 i..} λ̃{pi.〈pi||E〉 i..} VS E′

Let the pole

‚

be the total relation (i.e., cross product) of commands with no free ??
variables and ? co-variables. Likewise, let the interaction spaces US and VS be the total
relations between S terms and S co-terms (for US) and S values and S co-values (for VS)
which have no free ?? variables and ? co-variables. The model is then instantiated by the
following poles ‚,

‚‚ and interaction spaces WS :

c‚ c′ ⇐⇒ c

‚

c′ ∧ c ω∼⇓ c′ c

‚‚c′ ⇐⇒ c

‚

c′

v?? W?? v
′
?? ⇐⇒ v?? X

‚U??
?? v′?? v±? W±? v′±? ⇐⇒ v±? U±? v′±?

e? W? e
′
? ⇐⇒ e? X‚U?

? v′? e±?? W±?? e′±?? ⇐⇒ e±?? U±?? e′±??

where

XS = ({(x:S, x:S) | x ∈ Var}, {(α:S, α:S) | α ∈ CoVar})

Now some immediate facts that follow by the above definitions:

‚ is closed under untyped observational equivalence of

‚

commands: if c1

‚

c2 and
c1 ∼= c2 then c1‚c2. It follows that ‚ is also closed under

untyped equality of

‚
commands: if c1

‚
c2 and c1 = c2 then c1‚c2, and‚

-expansion: if c1

‚

c2 and c1 →→ c′1 ‚ c′2 ←← c2 then c1 ‚ c2.
This means that the triple S = (

‚

,

‚‚,‚) is a safety condition.
The S-worlds TS = (US ,VS ,WS) for S ∈ {+,−} are both (trivially) saturated, generative,
focalizing, and extensional.

The S-worlds TS = (US ,VS ,WS) for S ∈ {?? , ?} are also both saturated, generative, and
focalizing though these facts are more involved.

I Lemma 57 (Saturation). For S ∈ {?? , ?},

a) if v1 US v2 and 〈v1||E1〉 c1 ‚ c2 〈v2||E2〉 for all E1 WS |
‚WS
VS E2 then v1 WS v2,

and
b) if e1 US e2 and 〈V1||e1〉 c1 ‚ c2 〈V2||e2〉 for all V1 WS |

‚WS
VS V2 then e1 WS e2.

Proof. a) For S = ?, this saturation property is trivial since v1 U? v2 if and only if v1 W? v2

by definition. For S = ?? , note that α?? W?? |
‚W??
V??

α?? by definition of W?? , and thus

〈v1||α?? 〉 c1 ‚ c2 〈v2||α?? 〉

so 〈v1||α?? 〉‚ 〈v2||α?? 〉 by

‚‚-expansion of ‚, and therefore v1 W?? v2.
b) Follows dually to part (a).

J

I Lemma 58.

P. Downen and Z.M. Ariola 20:59

a) If e1 W? e2 then either 〈v1||e1〉 ‚ 〈v2||e2〉 for all v1 W? v2, or there are two co-values
E1 W? E2 such that ei 7→→ Ei.

b) If v1 W?? v2 then either 〈v1||e1〉 ‚ 〈v2||e2〉 for all e1 W?? e2, or there are two values
V1 W? V2 such that vi 7→→ Vi.

Proof. a) Choose a variable x not free in e1 and e2, so that 〈x:?||e1〉
ω∼⇓ 〈x:?||e2〉, and note

that 〈x:?||ei〉 7→ c′ if and only if ei 7→ e′i and c′ =α 〈x:?||e′i〉 due to the caveat of the φ?µ̃
rule. Now suppose that 〈x:?||e1〉 ⇓ 〈x:?||e′1〉 and 〈x:?||e2〉 ⇓ 〈x:?||e′2〉, so that the result
follows by cases on whether or not e′i are co-values:

If both e′i co-values, the result is immediate by reflexivity of 7→→.
If both e′i are not co-values, then let v1 and v2 be arbitrary ? terms. e1 and e2 must
be µ̃-abstractions, µ̃x1:?.c1 and µ̃x2:?.c2 respectively, such that c1

ω∼⇓ c2 because
of e1 W? e2 and Property I.1. From c1

ω∼⇓ c2 and Property I.1, it follows that
〈v1||e1〉

ω∼⇓ 〈v2||e2〉.
It is impossible for one of e′i to be a co-value and the other not. Without loss of
generality, suppose e′1 is any co-value, e′2 is a non-co-value. For 〈x:?||e′1〉

ω∼⇓ 〈x:?||e′2〉
to hold, it must be the case that 〈x:?||e′2〉 is finished and (because 〈x:?||e′1〉 is finished)
and 〈x:?||e′1〉

ω∼ 〈x:?||e′2〉. Note that x:? ∈ NV〈x:?||e′1〉 because e′1 is a co-value and
x:? /∈ NV〈x:?||e′2〉 because e′2 is not, which contradicts the requirements of ω∼ that
demand the set of needed (co-)variables to be the same.

b) Analogous to the proof of part (a) by duality.
Otherwise, both 〈x:?||ei〉 6⇓ so that if 〈x:?||ei〉 7→→ 〈x:?||e′i〉 67→ then 〈x:?||e′i〉 is stuck and

thus e′i is not a co-value. It follows that for and any ? terms v1 and v2, 〈vi||ei〉 6⇓, and so
〈v2||e1〉

ω∼⇓ 〈v2||e2〉. J

I Lemma 59 (Generation). For S ∈ {?? , ?} and A vWS , then A = A|‚WS
VS implies A = A‚WS .

Proof. Suppose that S = ?, v1 A v2 and e1 A e2, so that we must show that 〈v1||e1〉 ‚
〈v2||e2〉. By Theorem 58, we know that either 〈v1||e1〉 ‚ 〈v2||e2〉 immediately (because
〈v′1||e1〉‚ 〈v′2||e2〉 for any v′1 W? v

′
2) or ei 7→→ Ei for some E1 and E2. In the later case, since

A = A|‚WS
VS we have that

〈v1||e1〉 7→→ 〈v1||E1〉‚ 〈v2||E2〉 ←← [〈v2||e2〉

and so 〈v1||e1〉‚ 〈v2||e2〉 by

‚‚-expansion. The case where S = ?? is dual. J

And finally, observe that the collection of worlds TS for all S satisfies the focalization
and extensionality criteria, where the only interesting case is the ηG conversion of ? data
types and ?? co-data types: in both of these cases, we rely on the fact that free ? co-variables
and ?? variables are forbidden, so that the set of needed (co-)variables cannot be changed by
ηG conversion.

Therefore, we have an instance of the parametric model of the sequent calculus, which
gives us the adequacy of typed equality in terms.

I Lemma 60 (Adequacy). a) c = c′ : (Γ `Θ
G ∆) implies c = c′ : (Γ �Θ

G ∆).
b) Γ `Θ

G v = v′ : A | ∆ implies Γ �Θ
G v = v′ : A | ∆.

c) Γ | e = e′ : A `Θ
G ∆ implies Γ | e = e′ : A �Θ

G ∆.

Proof. An instance of Lemma 7.12 from [6], where the case for recursive (co-)terms follows
the methodology of [20]. J

CSL 2018

20:60 Beyond Polarity

And from adequacy, we get the soundness of typed equality with respect to contextual
equivalence.

I Theorem 61 (Typed equality soundness). a) c = c′ : (Γ `Θ
G ∆) implies c ∼= c′ : (Γ `Θ

G ∆).
b) Γ `Θ

G v = v′ : A | ∆ implies Γ `Θ
G v
∼= v′ : A | ∆.

c) Γ | e = e′ : A `Θ
G ∆ implies Γ | e ∼= e′ : A `Θ

G ∆.

Proof. First, note that the equality relation is compatible, so we only need to show that
commands that are equal in an observable environment are related by ω∼⇓. But this follows
from adequacy (Theorem 60), since the interpretation of typing judgements of commands
can be instantiated by the identity substitution for every observable Γ and ∆, implying that
the commands are related by ω∼⇓ by the definition of ‚. J

I Theorem 1 (Closed coherence). For any global environment ` G extending F , the equality
`G ι1() = ι2() : 1⊕ 1 : + is not derivable.

Proof. Assuming that `G ι1() = ι2() : 1⊕ 1 | is derivable, then `G ι1() ∼= ι2() : 1⊕ 1 |
holds by Theorem 61. It follows that for i ∈ {1, 2}, since both

〈ιi()||λ̃{ι1z.〈x|| eval+ α〉 | ι2z.〈y|| eval+ α〉}〉 : (x:↑1, y:↑1 `G α:1)

are well-typed in an observable environment, they must be related by ω∼⇓. But i = 1 evaluates
to 〈x|| eval+ α〉 and i = 2 evaluates to 〈y|| eval+ α〉, so they are not related by ω∼⇓, which is
a contradiction. Therefore `G ι1() = ι2() : 1⊕ 1 | cannot be derivable. Note that since
the command lies in the functional sub-calculus of D, they cannot be equal in extensible F
either because of the equational correspondence between the two calculi (Theorem 24). J

	Introduction
	Polarity, data, and co-data
	Polarity and sharing
	A multi-discipline intermediate language
	The functional core intermediate language: F
	Syntax
	Type System
	Equational Theory
	Adding effects

	Encoding user-defined (co-)data types into F
	Correctness of encoding

	Conclusion
	Appendix outline
	Related Work
	A dual multi-discipline sequent calculus
	The dual core intermediate language: D
	Syntax
	Type system
	Equational theory

	Encoding fully dual (co-)data types into D
	Operational semantics
	The disciplined sub-syntax
	Untyped rewriting and operational semantics
	Properties of the operational semantics
	The functional -calculus

	Core F and D calculi
	The core F functional -calculus
	The core D dual sequent calculus

	Functional-sequent correspondence
	Faithfulness of the encodings
	Local encoding
	Global encoding

	Coherence and rewriting theory
	Confluence
	Standardization
	Untyped contextual equivalence
	Typed contextual equivalence

