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Abstract
Parigot’s λµ-calculus, a system for computational reasoning about
classical proofs, serves as a foundation for control operations em-
bodied by operators like Scheme’s callcc. We demonstrate that the
call-by-value theory of the λµ-calculus contains a latent theory of
delimited control, and that a known variant of λµ which unshack-
les the syntax yields a calculus of composable continuations from
the existing constructs and rules for classical control. To relate to
the various formulations of control effects, and to continuation-
passing style, we use a form of compositional program transforma-
tions which preserves the underlying structure of equational the-
ories, contexts, and substitution. Finally, we generalize the call-
by-name and call-by-value theories of the λµ-calculus by giving
a single parametric theory that encompasses both, allowing us to
generate a call-by-need instance that defines a calculus of classical
and delimited control with lazy evaluation and sharing.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Control primitives

Keywords Delimited Control; Equational Theory; Program Trans-
formation; Continuation-passing Style; Evaluation Strategy

1. Introduction
Many programming languages give the programmer the ability
to manipulate the flow of control during execution. For example,
exception handling mechanisms allow for a faulty execution path to
be aborted up to the nearest recovery point, and the callcc operator,
which first appeared in Scheme, gives access to the current control
state in the program represented as a first-class function called
a continuation. Griffin [16] observed that certain manipulations
of control flow correspond to reasoning in classical logic: in the
same way that intuitionistic logic corresponds to the λ-calculus,
adding classical axioms corresponds to adding control operators
like callcc. In order to extend the same high-level reasoning tools
that apply to open programs in the pure λ-calculus, Sabry and
Felleisen developed equational theories [14, 28, 29] for callcc that
not only describe operational rules [18] that could be used in
an evaluator, but also observational guarantees that the evaluator

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-2873-9 /14/09. . . $15.00.
http://dx.doi.org/10.1145/2628136.2628147

must fulfill. Of note, Sabry’s [28] theory of callcc makes use of
continuation variables that have special properties and can only be
instantiated by callcc. As we will see, this not only greatly aids in
reasoning about terms with free variables, but also helps in relating
the equational and operational interpretations of callcc.

In another line of work, Parigot’s [25] λµ-calculus gives a sys-
tem for computing with classical proofs. As opposed to the pre-
vious theories based on the λ-calculus with additional primitive
constants, the λµ-calculus begins with continuation variables in-
tegrated into its core, so that control abstractions and applications
have the same status as ordinary function abstraction. In this sense,
the λµ-calculus presents a native language of control. Both λ- and
λµ-based approaches have their advantages: we have much more
experience programming with the λ-calculus model and the λµ-
calculus reveals insights into reasoning about control. Therefore,
we aim to present both approaches side-by-side. Typically, a call-
by-value version of the λµ-calculus has been related [3] to a dif-
ferent presentation of control based on Felleisen’s [14] C operator,
but here we show that it is indeed isomorphic to the call-by-value
λ-calculus with the ordinary callcc operator.

However, callcc isn’t the only effectful operation we are in-
terested in — callcc alone is not capable of giving a direct-style
representation of other effects like exception handling and muta-
ble references. Instead, there is a variant of this classical mode
of control, exemplified by the shift and reset operators [7], called
delimited control or composable continuations because the reach
of a control operator can be delimited in scope and continuations
can be composed like ordinary functions. Filinski [15] showed that
delimited control is vastly more powerful than classical control:
delimited control operators can give a direct-style representation
of any monadic effect in a call-by-value language. The call-by-
value λ-calculus extended with the shift and reset operators [7]
has been particularly well-studied, as they have a simple definition
in terms of continuation composition and an equational theory due
to Kameyama and Hasegawa [19].

Back in the setting of the λµ-calculus, a simple variant of the
call-by-name calculus, attributed to de Groote [10], takes a more re-
laxed view of the syntax. Although these two calculi have been con-
sidered the same for typed programs, Saurin [31] discovered that in
the untyped setting, de Groote’s relaxed variant of the λµ-calculus,
there called Λµ, enjoys a form of observational completeness — if
two terms cannot be proven equal then they exhibit observably dif-
ferent behavior — which Parigot’s original λµ-calculus does not
have. Even more, Herbelin and Ghilezan [17] discovered that the
call-by-name Λµ-calculus provides a theory for delimited control
in a non-strict functional language: the syntactic relaxation gives
rise to a native form of composable continuations with a call-by-
name evaluation order.

Here, we show that the call-by-value interpretation of the λµ-
calculus contains a latent theory of delimited control in strict func-
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Figure 1. Correspondences of classical and delimited control.

tional languages as well. No new programming constructs are
needed. No new rules are required. All we need to do is unshackle
the syntactic restrictions on programs in the λµ-calculus. Key to
this approach is the fact that the syntax of Parigot’s λµ-calculus
disallows programs from observing the result of invoking a contin-
uation. Removing this restriction gives us an inherit interpretation
of such programs from the existing theory, which turns out to be
a delimited form of continuations. The call-by-value interpretation
of the Λµ-calculus is particularly interesting because the role of
the delimiter is more intricate than in the call-by-name setting, and
has given rise to distinct control operators with different observa-
tional properties. In particular, we discover that the call-by-value
Λµv-calculus is isomorphic to the call-by-value λ-calculus with
the less-studied shift0 and reset0 delimited control operators, as
described by Materzok’s [20] λ$ theory. Therefore, the syntac-
tic relaxation of the λµ-calculus gives us a canonical bridge from
classical to delimited control in both the call-by-name and call-by-
value settings.

The connections between the various control calculi are pictured
in Figure 1, which contains both λ-based (λc callcc [28] for callcc,
λ$ [20] for shift0, λS [19] for shift) and λµ-based (λµv [17], Λµv ,
λµt̂p [17]) approaches. The syntactic embedding from the more
restricted λµv-calculus to the more relaxed Λµv-calculus provides
the connection between the classical and delimited worlds, while
maintaining soundness and completeness with respect to a typical
continuation-passing style (CPS) transformation. We also spell out
the connection with shift and reset, which can be embedded into
shift0 [22] and the λµt̂p-calculus [17]. In particular, the connection
with the Λµv-calculus suggests that, similar to Sabry’s [28] theory
of callcc, Kameyama and Hasegawa’s [19] λS theory of shift can
also benefit from the use of continuation variables (here called
λSα) to provide a more powerful tool for reasoning about open
programs.

Along the way, we introduce a proof methodology for establish-
ing an equational correspondence [29] between two theories that
takes advantage of the typical compositionality and hygiene of pro-
gram transformations in order to simplify the correspondence. In
short, a general class of transformations preserves the basic struc-
tures of equality relations and substitution. Additionally, we con-
nect the study of classical and delimited control in call-by-value
and call-by-name languages by presenting a single parametric Λµ-
calculus, similar to the parametric λ-calculus [27], that subsumes
the equational theories for both evaluation strategies. The paramet-
ric calculus can serve as a bridge between the existing work on
type systems and semantics for call-by-name Λµ-calculi and call-
by-value control operators in the λ-calculus. We further exercise
the parametric Λµ-calculus as a tool for studying evaluation strate-
gies and control by deriving a call-by-need calculus with delimited
control from the pure call-by-need λ-calculus [1].

In summary, our contributions are:
• We show that the call-by-value equational theory for the λµ-

calculus that is sound and complete with respect to the usual
CPS transformation remains sound and complete for the syn-
tactically relaxed Λµ-calculus.

V ∈ V alue ::= x || λx.M
M,N ∈ Term ::= V ||M N

E ∈ EvalCxt ::= � || E M || V E

βv (λx.M) V = M {V/x}
ηv λx.V x = V

βΩ (λx.E[x]) M = E[M ]

Figure 2. The syntax and axioms of the pure λc-calculus.

• We demonstrate a general technique of using compositional
and hygienic program transformations to more easily relate the
syntactic theories of different languages.
• We classify various call-by-value control effects, expressed by

primitive control operators, by their correspondence with sub-
sets of the Λµ-calculus: callcc corresponds with Parigot’s orig-
inal λµ-calculus, shift and reset correspond with a subset of
Λµ equal to Ariola et al.’s λµt̂p-calculus, and shift0 and reset0
correspond to the full Λµ-calculus.
• We generalize the call-by-name and call-by-value theories of

the Λµ-calculus into a single parametric theory for control that
can be instantiated by different evaluation strategies.
• We generate a strategy for the parametric theory of Λµ that

corresponds with Ariola and Felleisen’s [1] call-by-need λ-
calculus, thereby giving a theory of both classical and delimited
control with lazy evaluation and sharing (memoization).
Next, we begin by reviewing ways to reason about callcc in the

call-by-value λ-calculus and how Parigot’s λµ-calculus provides a
well-behaved syntactic restriction of first-class control operators.

2. Callcc and classical control
To understand control operators in a strict functional language,
we first look to the flow of control in the pure, call-by-value λc-
calculus [26], shown in Figure 2. The syntax of λc is the λ-calculus,
which includes variables x, function abstractions λx.M , and func-
tion calls M N . We can reason about the behavior of programs in
this calculus by using the equational theory of Moggi’s [23] com-
putational λ-calculus, whose axioms are also given in Figure 2.1

We can more specifically describe how to reduce a term to a value
in terms of an operational semantics. Evaluation contexts E point
out the current position of evaluation where we need to reduce the
program, signified by the “hole” �, and are defined as usual for
the pure call-by-value λ-calculus. We write E[M ] for plugging a
term M into the context E by replacing the “hole” � with M . In
particular, evaluation contexts are defined so that the arguments to
a function call are evaluated first and a function only receives a
value, as described by the βv axiom. Therefore, we can describe
the operational semantics of the λc-calculus with the single rule:

E[(λx.M) V ] 7→ E[M {V/x}]
It follows that βv is an operational [18] rule, since it is used during
evaluation, whereas ηv and βΩ are instead observational properties
that do not happen during evaluation, but also do not change the
observable result of a program. Because the only operational step

1 Note that the axioms must always be used in a way that is hygienic, so that
they respect the static binding of variables given by the usual definitions
of free and bound variables, and M {V/x} stands for the usual capture-
avoiding substitution of V for x inM . In the case of λc, x must not be free
in V for ηv to hold, and x must not be free in E for βΩ to hold. Similar
such side conditions apply for the axioms in the other theories that follow.



Clift E[callccM ] = callcc(λα.E[M (λx.α(E[x]))])

Cabort E[α M ] = α M

Ccurrent callcc(λα.α M) = callcc(λα.M)

Celim callcc(λα.M) = M

Figure 3. The axioms of control in the λc callcc equational theory.

matches exactly the βv axiom, it is straightforward to check that
the equational theory is as strong as the operational semantics: if
the operational semantics reaches a value so does the equational
theory.

Languages like Scheme and SML/NJ allow programmers the
ability to manipulate the control flow of their programs by giving
them access to continuations — a representation of an evaluation
context — as an object on par with first-class functions. One way
to model such control effects in strict functional programming
languages is to extend the λc-calculus with primitive operators
that create or use continuations. The classic control operator to
consider is callcc, first introduced in Scheme. Informally, when we
call callcc in Scheme with a (higher-order) function h, the operator:
(1) takes a snapshot of the current evaluation context, (2) wraps the
evaluation context inside of a first-class function (the continuation)
which jumps back to the currently active context when called, and
(3) calls h with the continuation as its argument.

We can explain the behavior of first-class control more formally
by extending the λc-calculus with callcc as a primitive function
constant. To account for the continuation functions generated by
callcc, we denote the continuation value captured in the context E
as [E], giving us the following operational steps:

E[(λx.M) V ] 7→ E[M {V/x}]
E[callccV ] 7→ E[V [E]]

E[[E′] V ] 7→ E′[V ]

The second two rules explain how to evaluate callcc and continua-
tions. To perform a call to callcc in an evaluation context E, wrap
a copy of the context into the function [E] and pass it along to the
argument of callcc. To call [E] at some later point during evalua-
tion, “jump” out of the current evaluation context and restore the
state of the program to E, plugging the argument into the hole of
the context.
Example 1. To illustrate the behavior of callcc, consider the follow-
ing term that captures its (empty) evaluation context and returns a
function that, when given an input x, ends the program by “jump-
ing” out of its calling context with the constant function λ .x.

callcc(λk.λx.k (λ .x)) 7→ (λk.λx.k (λ .x)) [�]

7→ λx.[�] (λ .x)

If we use the function λx.[�] (λ .x) in a larger program, we can
see how the continuation [�] immediately ends the program and
returns a constant function as the final result.

((λx.[�] (λ .x)) 2) + 10 7→ ([�] (λ .2)) + 10

7→ λ .2 End example 1.

Like with the pure calculus, we would like to also describe
the behavior of callcc with an equational theory. However, be-
cause the operational steps for callcc and continuations manipu-
late their entire evaluation context, we cannot just apply them in
an arbitrary sub-term of a program. This sort of issue is addressed
by the equational theories for control developed by Felleisen and
Sabry [14, 28, 29]. In particular, we will use Sabry’s [28] theory
of control, here called λc callcc, which extends the λc theory with

the axioms of callcc shown in Figure 3. This theory extends the
λc-calculus with the primitive function callcc and makes use of a
distinguished set of continuation variables, α, β, etc. Continua-
tion variables may only be introduced by the form callcc(λα.M),
so that a term like (λα.α y) (λx.x) is syntactically illegal. Note
that this means there are two different syntactic forms that refer to
callcc, either as an ordinary function application callcc (λx.M) or
the special form callcc(λα.M), which are equated by Clift.

Unfortunately, unlike the case with the pure λc-calculus, it is no
longer so clear how the equational theory relates to the operational
semantics. In actuality, the equational theory is no longer as strong
as the operational semantics. The program in Example 1 shows
the problem, where there is no way to eliminate the top-most
application of callcc in the term callcc(λk.λx.k (λ .x)) so that
it cannot be equated to a value. Therefore, for general terms there
is a disconnect between the operational and equational accounts of
callcc. However, is it possible that we can find some specific subset
of “well-behaved” terms where the two semantics always coincide?
Example 2. Let’s extend the term in Example 1 so that rather than
returning its final result, it instead finishes by “jumping” to some
continuation α. The operational interpretation of the term is similar
to before, where we now supply α with a function that forms a
constant function and jumps out of its calling context back to α.

α (callcc(λk.λx.k (λ .x))) 7→ α ((λk.λx.k (λ .x))[α �])

7→ α (λx.[α �] (λ .x))

If we use this function in a larger program, it behaves similarly to
the function from Example 1, except that we now end the program
by supplying a result to α rather than implicitly returning a value.

((λx.[α �] (λ .x)) 2) + 10 7→→ α (λ .2)

The equational theory in Figure 3 is capable of simulating this
operational evaluation. In particular, the first step, which com-
pletely eliminates callcc, is achieved with the Clift, Cabort, and
Celim axioms, resulting in a jump that passes a similar function to
α. This sequence of steps is possible because we know that α will
inevitably jump out of its calling context, so that any surrounding
evaluation context is redundant garbage.

α (callcc(λk.λx.k (λ .x)))

=Clift callcc(λβ.α ((λk.λx.k (λ .x)) (λy.β (α y))))

=Cabort callcc(λβ.α ((λk.λx.k (λ .x)) (λy.α y)))

=Celim α ((λk.λx.k (λ .x)) (λy.α y))

=βv α (λx.(λy.α y) (λ .x))

Thus, calling a continuation variable like α serves as a marker that
signifies the end of a usable evaluation context, and allows us to
recognize the rest of the calling context as garbage and end the call
to callcc early. The function that α receives behaves exactly like the
one that was created by the operational semantics. For example, if
we call it in the same context as before, we still end up with a jump
that returns the constant function λ .2 to α.

((λx.(λy.α y) (λ .x)) 2) + 10 =βv ((λy.α y) (λ .2)) + 10

=βv (α (λ .2)) + 10

=Cabort α (λ .2)

End example 2.
Example 2 shows how “jumps” are important for understanding

callcc. By starting with a jump instead of a general term, we fix the
mismatch between the operational semantics and equational theory.
As it turns out [3], this concept is explicitly expressed by Parigot’s
λµ-calculus [25], in which jumps, referred to as commands, are
given prominent status. A call-by-value version of the λµ-calculus
is given in Figure 4, where we extend the syntax of the λ-calculus



V ∈ V alue ::= x || λx.M
M,N ∈ Term ::= V ||M N || µα.c
c ∈ Command ::= [α]M

E ∈ EvalCxt ::= � || E M || V E

µv [α](E[µβ.c]) = c {[α](E[M ])/[β]M}
ηµ µα.[α]M = M

βµ (λx.µα.[β]M) N = µα.[β](λx.M) N

Figure 4. The syntax and axioms of control in the λµv-calculus.

with co-variables α, β, . . . along with their abstraction µα.c and
application [α]M . Intuitively, the calculus can be viewed as impos-
ing a syntactic restriction on the use of the callcc operator, where it
must always be applied to a λ-abstraction whose body immediately
jumps, as in callcc(λα.β M).

The λµv equational theory extends λc with the axioms of con-
trol given in Figure 4. Note that the axiom describing the behavior
of a µ-abstraction makes use of structural substitution [2] to per-
form a pattern-matching substitution on terms, following the nor-
mal criteria for static scope and avoiding variable capture. The sub-
stitution {[α]E[N ]/[β]N} replaces every command of the form
[β]N , for an arbitrary termN , with [α]E[N ]. We can also describe
the λµv-calculus in terms of an operational semantics, similar to
λc and λc callcc. In particular, we always evaluate a command of
the form [α]M according to the following two rules:

[α]E[(λx.M) V ] 7→ [α]E[M {V/x}]
[α]E[µβ.c] 7→ c {[α](E[M ])/[β]M}

Notice that the first rule is exactly the βv axiom, as usual, and the
second rule is exactly the µv axiom. Therefore, it is straightfor-
ward to show how the operational semantics and equational theory
coincide. The µv axiom is the operational rule for implementing µ-
abstractions, whereas ηµ and βµ express observational properties
of control.
Example 3. We can transcribe the λc callcc term from Example 2
into a command in the λµv-calculus by explicating some of the
implicit behavior of the callcc operator. In particular, we need to
explicitly say that we are returning a result to our current context,
and state that invoking the bound co-variable will abort with the
form µ .[β]M . This gives us a command that produces a similar
result as Example 2.

[α]µβ.[β](λx.µ .[β](λ .x)) 7→ [α](λx.µ .[α](λ .x))

As before, when we call the function passed to α in a similar
context, we see the similar result [α]λ .2.

[δ](((λx.µ .[α](λ .x)) 2) + 10) 7→ [δ]((µ .[α](λ .2)) + 10)

7→ [α](λ .2)

The λµv equational theory gives us the same result as the above:
every operational step is an application of either the βv or µv
axioms. End example 3.

3. Compositional equational correspondence
We have mentioned that Parigot’s λµ-calculus models the λ-
calculus with callcc, but how can we relate the two equational
theories? To answer this question, we will turn to Sabry and
Felleisen’s [29] concept of equational correspondence. In the gen-
eral case, we have two equational theories — a theory EqS for
equating programs in language LS (for source) and a theory EqT

for equating programs in language LT (for target). We can say that
EqS is in equational correspondence with EqT if and only if there
are two translations, T S from LS to LT and ST from LT back to
LS , that satisfy the following two criteria:2

(1) T S and ST are inverses up to EqS and EqT :
EqS ` ST JT SJMKK = M and EqT ` T SJST JP KK = P .

(2) EqS and EqT are sound with respect to each other: EqS `
M = N implies EqT ` T SJMK = T SJNK and EqT ` P =
Q implies EqS ` ST JP K = ST JQK.

Intuitively, criteria (1) guarantees that both languages are big
enough to reflect each other, and criteria (2) guarantees that the
translations preserve the intended semantics. When taken together,
both criteria are enough to prove the additional property:

(3) EqS and EqT are complete with respect to each other: EqT `
T SJMK = T SJNK implies EqS ` M = N and EqS `
ST JP K = ST JQK implies EqT ` P = Q.

The soundness and completeness of a transformation is a weaker
result than an equational correspondence: it expresses an embed-
ding of the source language into the target such that the full source
language corresponds to the image of the transformation. An equa-
tional correspondence adds the additional guarantee that the trans-
formation covers the full target language, forming an isomorphism
up to the two equational theories.

In order to establish an equational correspondence, we must
surely show that the axioms of the two theories are inter-derivable.
However, knowing that the axioms work out is not enough to
show that every equation is preserved by the transformations — we
also have to take care of the additional inference principles of the
equational theories. Uses of reflexivity, transitivity, and symmetry
in the two theories coincides for any pair of transformations. The
biggest obstacle is congruence, the property that equality may be
lifted into any context C so that M = N implies C[M ] = C[N ].
However, we can guarantee that even congruence is preserved for a
wide class of transformations. Therefore, we introduce a general
proof methodology that takes advantage of typical properties of
transformations to simplify establishing the correspondence.

Fortunately, many program transformations are compositional,
meaning that the transformation of a term depends only on the
transformation of its subterms. Compositionality of a transform,
J K, implies a form of context-free interpretation, so that for any
context C in the source language, there exists a unique context in
the target, denoted JCK, such that JC[M ]K , JCK[JMK] for any
M .3 Crucially, there is a well-defined meaning for every context
that can be given in isolation of both its input and its surrounding
context. This property guarantees that the transformations respect
congruence: if we apply the equation EqS ` M = N inside a
context C, then by congruence in the target language we also have
that EqT ` JCK[JMK] = JCK[JNK], where the transformation of
C is not affected by the fact that we are plugging in a different term.
Therefore, when working with an equational correspondence by
compositional transformations, it is enough to show that the axioms
of one theory are provable by the other — the other properties of
equality follow.

2 The notation EqS `M = N means that M and N are equated by EqS .
3 We can plug one context into another, C[C′], in the obvious way by
treating C′ as a term. This means that contexts form a monoid with the
empty context, �, as the identity element and plugging-in as the composi-
tion operation. Therefore, a compositional transformation can be seen as a
monoid homomorphism that respects the compositional nature of contexts:
J�K = � and JC[C′]K = JCK[JC′K]. In a language with different syntac-
tic types, like λµv , contexts instead form a category and a compositional
transformation is a functor between contexts in the source and target.



Proposition 1. Compositional transformations preserve the struc-
ture of an equality relation: reflexivity, transitivity, symmetry, and
congruence.

Another obstacle that compositionality allows us to avoid is
handling substitution. Since some axioms, like βv , may rely on sub-
stitution, we end up having to show that substitution in the source
and target language are compatible with one another. Since we
are working with call-by-value languages that only allow substi-
tution for a subset of terms, we would need a property of the form
JMK

{
JV KV /x

}
= JM {V/x}K, where V is a value and JV KV is

the embedding of V into a target-level value.4 First, we point out
that ordinary capture-avoiding substitution can be implemented by
an iterative procedure that replaces the free occurrences of the vari-
able one by one. For example, when we are substituting V for x in
a term M , we can identify a particular occurrence of the free vari-
able x in M = C[x] and replace x with V . If we can’t find such an
x then the substitution does nothing. Second, we also require that
the transformation is hygienic, so that it does not capture or escape
the static variables of its input. In other words, hygiene guarantees
that C captures the variable x if and only if JCK does. Third, if
source variables are values and are embedded directly into target
variables, so that JxKV , x, then this procedure maps directly to
the target language:

JC[x]K
{

JV KV /x
}

= JCK[JxKV ]
{

JV KV /x
}

= JCK[JV KV ]
{

JV KV /x
}

= JC[V ]K
{

JV KV /x
}

Structural substitution, which replaces one context with another,
follows similarly.

Proposition 2. Let J K be a hygienic, compositional transforma-
tion, and J KV be the transformation of substitutable terms. If
JxKV , x then JMK

{
JV KV /x

}
, JM {V/x}K. Furthermore,

JMK {JC′K/JCK} , JM {C′/C}K.

Therefore, in order to establish an equational correspondence
with hygienic, compositional transformations, we only need to
show that (1) the two transformations are inverses, and (2) the
axioms of the two theories, which may rely on substitution, are
inter-derivable. The rest of the correspondence follows generically
from Propositions 1 and 2. Furthermore, one nice property about
an equational correspondence, as well as soundness and complete-
ness, is that it composes transitively [30]: if EqS is in equational
correspondence with EqT and EqT is in equational correspon-
dence with EqU , then EqS is also in equational correspondence
with EqU . This fact lets us relate two theories in several steps by
going through some intermediate languages.

4. Correspondence of λµv and callcc
We can apply the proof technique described in Section 3 to formally
relate the λµv-calculus to callcc in a call-by-value λ-calculus. First,
we need to explain how to translate one language into the other in
terms of two inverse, compositional transformations, spelling out
the details of the transcription process used in Example 3. The in-
teresting points of the syntactic translations are given in Figure 5,
and the rest is defined homomorphically. With these two transfor-
mations, the equational correspondence follows straightforwardly
from the outlined methodology. Compositionality and hygiene of
the transformations is confirmed by observing that every clause in
the grammars of λµv and λc callcc is exactly defined by one clause

4 Note that in a typical call-by-value language where values are implicitly
included in general terms, we may have that the more general transforma-
tion JV K introduces a non-trivial context C, so that JV K , C[JV KV ].

KJµα.cK , callcc(λα.KJcK)

KJ[α]MK , α KJMK

K−1JcallccK , λh.µα.[α]h (λx.µ .[α]x)

K−1Jcallcc(λα.M)K , µα.[α]K−1JMK

K−1JαK , λx.µ .[α]x

Figure 5. The isomorphism between λµv and λc callcc.

CJxKV , x

CJλx.MKV , λ(x, α).CJMKM α

CJV KM , λα.α CJV KV

CJM NKM , λα.CJMKM λx.CJNKMλy.x (y, α)

CJµα.cKM , λα.CJcKc

CJ[α]MKc , CJMKM α

Figure 6. CPS transformation C from λµv to the λ-calculus.

in the transformation, that there are no additional parameters to the
transformations, and that the transformations do not cause capture
or escape of free static variables.

Theorem 1. λc callcc is in equational correspondence with λµv .

Proof. The equational correspondence is formed by the K and
K−1 transformations. Since the transformations are compositional
and hygienic, we only need to show (1) that they are inverses of
one another and (2) that the axioms of the two theories are inter-
derivable. Criteria (1) follows by mutual induction on terms, values,
etc. Criteria (2) follows by cases on the axioms.

Crucially, the Cabort [28] axiom lets us recognize the abortive
nature of continuations, even for free continuation variables. This
lets us bridge the gap between Felleisen’s [14] C operator and
callcc. Intuitively, C(λα.M) may be encoded as callcc(λα.tpM),
where tp is a free continuation variable that stands for the “top-
level.” We then run a term M by explicitly marking the top-level
of the program as in the jump tpM . This same free tp co-variable
also shows up in the correspondence [3] between C and λµv .

We can also use a similar methodology to verify that the equa-
tional theory of the λµv-calculus makes sense — that there are no
equalities between programs that behave differently, or that we are
not missing some crucial axiom that we would need to relate two
similar programs. A now common technique for getting around this
dilemma is to reduce the theory in question to another, more well-
understood theory. This allows for the established understanding of
the target theory to be reflected back to the source. In particular, it
is typical to translate the language through a continuation-passing
style (CPS) transformation into the λ-calculus (or a variant thereof),
and to use the induced semantics that comes from the resulting λ-
calculus terms as a definition of the semantics of the source lan-
guage. The goal, then, is to establish an equational correspondence
between the source language and the image of the CPS transforma-
tion in the target language.

Figure 6 gives a CPS transformation for terms, values, and com-
mands of the λµv-calculus, based on Plotkin’s [26] call-by-value
CPS transformation. The CPS transformation is defined so that it
does not depend on the evaluation strategy of the target λ-calculus



c ∈ Command ::= [q]M q ∈ CoTerm ::= α || µ̃x.c

βv (λx.M) V = M {V/x}
µq [q]µα.c = c {q/α}
µ̃v [µ̃x.c]V = c {V/x}

ηv λx.V x = V

ηµ µα.[α]M = M

ηµ̃ µ̃x.[q]x = q

ςv E[M ] = µα.[µ̃x.[α]E[x]]M

Figure 7. The syntax and axioms of control in the λµµ̃v-calculus.

CJ[q]MKc , CJMKM CJqKq CJαKq , α CJµ̃x.cKq , λx.CJcKc

Figure 8. CPS transformation C for co-terms of λµµ̃v .

— the argument to every function call is a value, so that the re-
sulting term behaves the same according to both a call-by-name
and call-by-value evaluation strategy. Intuitively, the transforma-
tion turns every term of the λµv-calculus into a function that ac-
cepts a continuation as a description of the entire future of the
computation. The way to read the term CJMKM α is “run M , and
when it is done, the value it returns is passed to α.” For instance, a
value immediately returns, so the transformation of a value imme-
diately calls the continuation and allows it to take over. The most
complicated case is for function application M N , which can be
read as: in a calling context α, first (1) run M and wait for it
to return a value x, second (2) run N and wait for it to return a
value y, and third (3) call x with y inside the original calling con-
text α. Notice that the control constructs of λµv translate directly
to the concept of continuations used by the transformation: a µ-
abstraction gives a name to the continuation and a command runs a
term in a chosen continuation. Also note that, similar to the axioms
of λµv , the CPS transformation must be hygienic and take care to
respect the static binding of variables. For instance, in the transfor-
mation CJλx.MKV , λ(x, α).CJMK α, the x introduced by the
λ-abstraction on the left must be the same x that is referenced by
CJMK on the right, but the α that is introduced must not be free in
CJMK to avoid unintentional variable capture.

There are some complications that arise when trying to form
the equational correspondence between the λµv and λ theories,
which is typical when reasoning about CPS transformations. The
primary issue is that we need to translate CPS terms back to the
source calculus. For instance, if we see the CPS term α V , we want
to turn it into some command [α]V ′. However, for other cases,
the reverse CPS transformation is not so obvious. Therefore, we
introduce an intermediate calculus that is isomorphic to λµv , but
is more closely connected with the CPS transformation. Borrowing
syntax for the sequent calculus from Curien and Herbelin [6], we
extend the λµv-calculus with µ̃-abstractions as the opposite of µ-
abstractions, giving us the λµµ̃v-calculus in Figure 7. Note that
this calculus no longer relies on structural substitution to capture an
evaluation context, but instead first converts an evaluation context
into a µ̃-abstraction (by the ςv axiom) as in the following example:

f (µα.[β]λx.µ .[α]x) =ςv µα.
′[µ̃y.[α′](f y)]µα.[β]λx.µ .[α]x

=µq µα.
′[β]λx.µ .[µ̃y.[α′](f y)]x

=µ̃v µα.
′[β]λx.µ .[α′](f x)

Intuitively, the ςv axiom recognizes the fact that evaluation contexts
are transformations from inputs to outputs, and gives a name both
to the input end, x, and the output end, α. In other words, an
evaluation context is not only missing an input denoted by �, it
is also missing an “output” that says what to do with the result. We

Mc ::= VM V q || V q V V || V V (V V , V q) VM ::= λα.Mc

V q ::= α || λx.Mc V V ::= x || λ(x, α).Mc

Figure 9. The image of the CPS transformation of λµµ̃v by C.

C−1JVM V qKc , [C−1JV qKq]C−1JVM KM

C−1JV q V V Kc , [C−1JV qKq]C−1JV V KV

C−1JV V (V ′V , V q)Kc , [C−1JV qKq]C−1JV V KV C−1JV ′V KV

C−1Jλα.McKM , µα.C−1JMcKc

C−1JαKq , α C−1Jλx.McKq , µ̃x.C−1JMcKc

C−1JxKV , x C−1Jλ(x, α).McKV , λx.µα.C−1JMcKc

Figure 10. The inverse of C on the image of λµµ̃v .

also extend the CPS transformation as shown in Figure 8 to account
for the new syntax, showing how the µ̃-abstractions correspond
exactly with λ-abstraction continuations. That way, it is relatively
easy to translate a continuation of the form λx.M created by the
CPS transformation back into the λµµ̃v-calculus.

The second issue is that the C transformation does not “reach”
every program in the λ-calculus, even if we restrict ourselves to
terms where function arguments are always values. Because of this
fact, it is impossible to translate the entire λ-calculus back into
the λµµ̃v-calculus (or λµv-calculus) in a meaningful way. There-
fore, we need to determine the image of the CPS transformation
of λµµ̃v — that is, the smallest subset of the λ-calculus that in-
cludes the transformation of every λµµ̃v term and is closed under
reduction. The general target of the transformation is the λ-calculus
extended with pairs constructed as (M,N) and deconstructed by
λ-abstractions of the form λ(x, y).M . For our purposes, we reason
about CPS terms with the usual β and η axioms of the λ-calculus
along with the following two rules for pairs:

β× (λ(x, y).M) (N1, N2) = M {N1, N2/x, y}
η× λ(x, y).M (x, y) = M

The subset of this calculus reachable by the C transform is shown
in Figure 9. Intuitively, Mc, VM , V q , and V V are the image
of commands, terms, co-terms and values of the λµµ̃v-calculus,
respectively. Notice that V V is always a function deconstructing
a pair, and all instances of λ(x, y).M are in V V , so that we only
need to apply the η× axiom to values in V V .

We can now provide an inverse translation from this subset
of the λ-calculus back to the λµµ̃v-calculus, as shown in Fig-
ure 10. Note that sending a λµµ̃v term through both transforma-
tions changes the term. Most of the changes, for values and for
functions, just introduce an extra ηµ expansion. The worst case is
if we start with the application M N , where we end up with

C−1JCJM NKM KM , µα.[µ̃x.[µ̃y.[α]x y]N ′]M ′

This term is reminiscent of Sabry’s [28] technique of continuation-
grabbing style, where we write a CPS term in more abstract syntax
as a way to relate to languages with control effects. In that light, we
are relying on µ-abstractions to grab the continuation, on co-terms
to represent continuations, and on commands to represent sending
a continuation to a term.

With both transformations, it is now relatively straightforward
to show the soundness and completeness of the λµµ̃v equational
theory in terms of its CPS transformation using the methodology



outlined in Section 3. We can check that the axioms of the two
theories are provable with respect to the transformations. The βv ,
µq , and µ̃v axioms correspond with the various forms of β equality
in the image of the CPS transformation, and the ηv , ηµ, and ηµ̃
axioms correspond with the η equalities. The last axiom, ςv , is
necessary for proving that the C and C−1 transforms are inverses
for function application, by simplifying the expanded term back
down to the form M N .

Theorem 2. The λµµ̃v equational theory is sound and complete
with respect to the βη theory of the λ-calculus with pairs.

Proof. This follows from the fact that the C and C−1 transforma-
tions form an equational correspondence between λµµ̃v and the
image of C in the λ-calculus. Criteria (1) holds by mutual induction
on terms, values, etc. Criteria (2) holds by the fact that the transfor-
mations are compositional and hygienic and the axioms are inter-
derivable. Criteria (3) for C follows from criteria (1) and (2).

Additionally, we can show how the λµµ̃v-calculus relates to the
original λµv-calculus by the same methodology. Specifically, the
µ̃-abstractions can be considered syntactic sugar on top of the λµv-
calculus, by using one free co-variable δ, which the λµµ̃v theory is
able to erase

λµµ̃v ` [µ̃x.c]M =ςv,µq,βv [δ](λx.µ .c) M

so that we have not added anything essential that wasn’t already in
the λµv-calculus.5 Therefore, we are justified in considering λµv
as the canonical calculus, and treating µ̃-abstractions as syntactic
sugar and the axioms of λµµ̃v in Figure 7 as derived equalities in
the λµv theory. By checking the axioms of λµµ̃v and λµv , we find
that the two are in equational correspondence with one another.

Theorem 3. λµv is in equational correspondence with λµµ̃v .

Proof. The equational correspondence is formed by the compo-
sitional transformations that (a) inject λµv terms into λµµ̃v un-
changed, and (b) desugaring µ̃-abstractions everywhere in a λµµ̃v
term, by using a fresh co-variable δ. Criteria (1) and (2) follow from
the same proof methodology as in Theorem 1.

By putting everything together, as a corollary we get an alternate
proof [28, 29] of the soundness and completeness of λc callcc
with respect to its CPS transformation by factoring through λµv .
Of note, the CPS transformation for callcc that we get out, after
simplification, is the expected one:

CJK−1JcallccKKV = λ(h, α).h ((λ(x, ).α x), α)

By comparing this CPS transformation of callcc with the encod-
ing of callcc in the λµv-calculus, it shows how the λµv-calculus
may be seen as a representation of control that is “closer” to the
underlying CPS — and λµµ̃v is even closer still.

5. Relaxing the syntax
There is a variant of Parigot’s λµ-calculus, originating from de
Groote [10], which takes a more relaxed approach to the syntax
of the calculus. In essence, the distinction between commands and
terms is blurred, allowing them to mingle in new ways. Like the
original λµ-calculus, this variant was originally studied as a typed
calculus with a call-by-name interpretation. The command [α]M ,
when considered as a term, can be given the type⊥ denoting false-
hood. However, Saurin [31] showed that when considered in the
untyped setting, this variant of the λµ-calculus, named the Λµ-
calculus, enjoys certain properties that do not hold for Parigot’s

5 As a corollary, Theorem 2 implies that C in Figure 8 is the same as first
desugaring away all µ̃-abstractions and then taking the CPS transformation.

V ∈ V alue ::= x || λx.M
M,N ∈ Term ::= V ||M N || µα.M || [α]M

E ∈ EvalCxt ::= � || E M || V E

µv [α](E[µβ.M ]) = M {[α](E[N ])/[β]N}
ηµ µα.[α]M = M

βµ (λx.µα.[β]M) N = µα.[β](λx.M) N

Figure 11. The Λµv-calculus.

CJ[q]MKM , CJMKM CJqKq

CJµα.MKM , λα.CJMKM

CJµ̃x.MKq , λx.CJMKM

Figure 12. CPS transformation C for extra terms of Λµµ̃v .

original presentation. In contrast to David and Py’s [9] proof that
the original λµ-calculus does not satisfy Böhm’s theorem of sepa-
rability, Saurin showed that the Λµ-calculus does. In other words,
there are terms in the λµ-calculus which are equationally distinct
but cannot be observably distinguished, whereas in the Λµ-calculus
there is a reason for every inequality between terms — some con-
text can tell them apart.6 This suggests that in the untyped call-by-
name setting, there is something missing from the λµ-calculus that
is restored by relaxing the syntax.

Here, we would like to ask the same question in the untyped
call-by-value setting: is there something missing from the λµv-
calculus that is restored by a more relaxed syntax? We begin by
investigating a call-by-value variant of Saurin’s Λµ-calculus. The
call-by-value Λµv-calculus is shown in Figure 11, where the only
change from λµv is that in Λµv terms and commands have been
collapsed into the same syntactic type. This opens up the possibility
to write new programs, like µα.µβ.M and λx.[α]x, that were not
legal in the λµv-calculus. However, it is important to stress that we
are not adding anything new to the language — the only difference
is that we allow the same constructs to be used in new contexts.

Because we are not adding anything new to the language, we
don’t need to add any new rules. Rather, we only lift the call-by-
value equational theory λµv into the relaxed setting by allowing
the metavariables for terms and commands to stand in for more
expressions, exactly the way we lifted the axioms of λc into the
λµv-calculus. More specifically, the axioms of the Λµv equational
theory are the λc axioms plus the additional axioms of control in
Figure 11. The Λµv theory is a conservative extension of λc and
λµv , where the only change is that the axioms of λµv apply to
more terms and in more contexts according to the conflation of
terms and commands. For example, we now have the βv equality
(λx.[α]x) V = [α]V which was invalid in λµv , not because
it wasn’t a legal instance of βv , but because λx.[α]x was not
a legal term. We also have the µv equality [α1][α2]µβ.M =
[α1]M {α2/β} that occurs inside of a nested command, which
could not be expressed in the syntax of λµv-calculus.

Likewise, we can apply the call-by-value CPS transformation C
to the Λµv-calculus by lifting the transformation unchanged into
the relaxed syntax. As before, we relate the CPS transformation
to the intermediate language Λµµ̃v , which extends co-terms with

6 More formally, for any two closed normal terms M and N that are not
equated, there is a context C such that C[M ] = x and C[N ] = y.



M ::= λα.M ||M V q || V q V V || V V (V V , V q)

V q ::= α || λx.M V V ::= x || λ(x, α).M

Figure 13. The image of CPS transformation of Λµµ̃v by C.

C−1JM V qKM , [C−1JV qKq]C−1JMKM

C−1Jλα.MKM , µα.C−1JMKM

C−1Jλx.MKq , µ̃x.C−1JMKM

C−1Jλ(x, α).MKV , λx.µα.C−1JMKM

Figure 14. The inverse of C on the image of Λµµ̃v .

µ̃-abstractions, µ̃x.M and has the relaxed axioms

µq [q]µα.M = M {q/α} µ̃v [µ̃x.M ]V = M {V/x}

in addition to those in Figure 7. The affected clauses of the trans-
formation are shown in Figure 12, where a command may appear
in a context previously reserved for terms, and vice versa for terms
in contexts expecting commands. Again, the pattern of the CPS
transformation is essentially the same. More specifically, C relates
contexts in the Λµv-calculus to exactly the same contexts in the
CPS λ-calculus: the transformation on terms still sends the context
λx.� to λα.α (λ(x, β).� β), and still sends the context µα.� to
λα.�. This is further evidence we have not changed our interpre-
tation of the λµv constructs, but are only using them in new ways.

It is interesting to observe the impact that the relaxed syntax
of Λµv has on the image of the CPS transformation. As seen in
Figure 13, the previous distinction between the image of terms
and commands is collapsed, as we may expect. But this collapse
has opened up the possibilities of new terms in the CPS setting.
More specifically, we may now have a sequence of applications,
like (λα.M) V q1 V q2 V q3 , which did not occur before. This shows
us that the relaxed syntax of the Λµv-calculus has opened up the
availability of more evaluation contexts in the resulting CPS terms,
letting us supply a term with as many continuations as we want.

Extending our previous proof of the CPS soundness and com-
pleteness of λµµ̃v to cover Λµµ̃v is straightforward. The extension
of the inverse CPS transformation of Λµµ̃v is shown in Figure 14.
The C and C−1 transformations are still compositional and remain
inverses, and the axioms of Λµµ̃v and the image of C are still mu-
tually inter-derivable.

Theorem 4. The Λµµ̃v equational theory is sound and complete
with respect to the βη theory of the λ-calculus with pairs.

Proof. The C and C−1 transformations form an equational corre-
spondence between Λµµ̃v and the image of C in the λ-calculus, as
in the proof of Theorem 2.

Additionally, Λµv is in equational correspondence with Λµµ̃v
in the same manner as λµv and λµµ̃v: we may desugar all µ̃-
abstractions using the same process as given in Section 4 for λµµ̃v .
As a corollary, we have soundness and completeness of Λµv with
respect to the λ-calculus with pairs by the C transformation.

Theorem 5. Λµv is in equational correspondence with Λµµ̃v .

Proof. The same as for Theorem 3, lifted into Λµµ̃v .

ηt̂p µt̂p.[t̂p]V = V

µt̂p [t̂p]µt̂p.c = c

βt̂p (λx.µt̂p.[q]M) (µt̂p.c) = µt̂p.[q](λx.M) (µt̂p.c)

Figure 15. The axioms of t̂p in the λµt̂p equational theory.

6. Shift and delimited control
So far, we have investigated the foundations of classical control —
manipulations of control flow that are expressible by operators like
callcc or Felleisen’s [14] C operator. There is also another form of
control effect referred to as delimited control. Intuitively, delimited
control operators are different from callcc in two primary ways:
(1) the evaluation context that is seen by the control operator is
scoped by a delimiter, so that only a partial snapshot is taken of
the program’s control state, and (2) the continuation that is pro-
duced by the control operator does not jump somewhere else when
called, but instead returns a result to its calling context. Because
the continuations that come out of delimited control actually return
something useful, so that the output of one may be fed to another,
they are sometimes referred to as composable continuations. This
additional compositional power — that we may isolate and run an
effectful computation to see how it behaves, and that we may con-
nect multiple continuations together — is essential for the expres-
sive capabilities of delimited control.

Upon Saurin’s [31] discovery of the observational complete-
ness of Λµ in the untyped call-by-name setting, Herbelin and
Ghilezan [17] observed that the seemingly innocuous move from
λµ to Λµ has a profound impact on the expressive power of the lan-
guage. Whereas λµ is a calculus for call-by-name classical control,
Λµ is a calculus for call-by-name delimited control. Indeed, even
de Groote [10] and Ong and Stewart’s [24] original analysis in call-
by-name and call-by-value, respectively, relates typed Λµ-calculi
to variants of Felleisen’s [14] theory of control with a compos-
able form of continuations that do not abort like in Felleisen’s the-
ory. Furthermore, Fujita [13] analyzes an alternative call-by-value
theory for Λµ with a CPS transformation that actually composes
continuations much like the continuation-composing style trans-
formation of the shift operator [8]. In essence, the type systems
prevent programs from taking advantage of the extra expressibility
that is latently present in the untyped calculi.

In his seminal work, Filinski [15] showed a different notion of
completeness for delimited control in call-by-value functional lan-
guages: every computational effect that can be encoded as a monad
can be directly expressed by delimited control operators. This prop-
erty does not hold for classical control — for example, neither
callcc nor C are able to express mutable references. So we see sim-
ilar situations in call-by-name and call-by-value, where a delimited
form of control is more complete than classical control. We have
already seen some indications of delimited control hiding in callcc
and λµv: a jump, α M , marks the end of a usable context and a
command, [α]M , encapsulates a control effect. We will now see
how the additional programs available in Λµv let us express vari-
ous forms of delimited control, and look for which one corresponds
to the full Λµv-calculus.

6.1 The λµt̂p-calculus
An obvious place to begin the search, since it is also based on
Parigot’s λµ-calculus, is with the λµt̂p-calculus of Ariola et al. [4].
The λµt̂p-calculus is a call-by-value language that extends λµv
with a single dynamically bound co-variable named t̂p, so that we
have the new term µt̂p.c and new command [t̂p]M . The intuition
of the dynamic nature of t̂p is that it corresponds to the dynamic



V ∈ V alue ::= x || λx.M
M,N ∈ Term ::= V ||M N || µα.c
c ∈ Command ::= [q]M || V || (λx.c′) c
q ∈ CoTerm ::= α || µ̃x.x

T P−1Jt̂pK , µ̃x.x

T P−1Jµt̂p.cK , µγ.(λx.[γ]x) T P−1JcK

T PJµ̃x.xKq , t̂p

T PJV Kc , [t̂p]T PJV KV

T PJ(λx.c′) cKc , [t̂p](λx.µt̂p.T PJc′K) (µt̂p.T PJcK)

Figure 16. The embedding T P−1 of λµt̂p into Λµv , the image of
T P−1 in Λµv , and the translation back into λµt̂p.

scope of exception handling — the chosen handler is based on the
call stack at run-time rather than lexical scope — and it is used
to delimit the scope of µ-abstractions. Herbelin and Ghilezan [17]
introduce an equational theory that is sound and complete with
respect to the CPS transformation of λµt̂p, which includes all the
axioms of λµv along with the axioms of t̂p shown in Figure 15.
Additionally, any of the λµv axioms that mention a command of the
form [α]M is extended to [q]M , where q is either α or t̂p. Note that
since t̂p is a dynamic variable, the ηt̂p, µt̂p, and extended µv axioms
are allowed to “capture” the t̂p variable which can happen when t̂p
occurs “free” in V or c. Also notice that, unlike the usual situation,
the ηt̂p rule is considered operational, allowing us to simplify terms
like µt̂p.[t̂p]5 = 5. The µt̂p rule, on the other hand, is purely an
observational property that is never needed to evaluate a term in
the λµt̂p-calculus.

The Λµv-calculus is large enough to express all of λµt̂p without
the use of dynamically scoped co-variables. For convenience, we
will rely on µ̃-abstractions as useful syntactic sugar (recall from
Section 5 that Λµµ̃v and Λµv are equivalent). One way to develop
the embedding from λµt̂p to Λµv is to factor through the CPS
transformations by first writing λµt̂p in continuation-passing style,
and then translating that term into the Λµv-calculus. The use of
the dynamic co-variable t̂p in a command like [t̂p]M , after some
simplifications, is embedded as:

C−1JCJt̂pKqKq , C−1Jλx.λγ.γ xKq =ηµ µ̃x.x

That is to say, t̂p can be thought of as a (closed) co-term that, when
given a value, just returns that value up to whoever is listening
for the output of the command. Binding t̂p in a term like µt̂p.c
is embedded as:

C−1JCJµt̂p.cKM KM , C−1Jλα.λγ.CJcKc λx.α x γKM

, µα.µγ.[µ̃x.[γ][α]x]C−1JCJcKcKM

=βv,ςv µα.(λx.[α]x) (C−1JCJcKcKM )

Thus, we can look at µt̂p.c in one of two ways. On the one hand,
binding t̂p grabs the nearest two continuations (the second one, γ,
is generally referred to as the meta-continuation) and then runs the
command c in a meta-continuation made by composing the two.
On the other hand, binding t̂p grabs the nearest continuation α,
wraps it in a function, calls the function with c as an argument, and
passes the value returned by c along to α. The embedding, T P−1,
that translates the dynamic t̂p into Λµv (using µ̃-abstractions as
syntactic sugar) is shown in Figure 16.

Example 4. Using the translation T P−1 into Λµv , we have an
alternate interpretation of the dynamic t̂p co-variable that steps
outside of the syntactic restrictions of λµt̂p. For example, the ηt̂p
reduction of µt̂p.[t̂p]z to z can be done in two separate steps. First,
we concentrate on the command [t̂p]z, and find out that it simplifies
to the value z:

T P−1J[t̂p]zK , [µ̃x.x]z =µ̃v z

Therefore, the command [t̂p]z propagates z upward to give us
µt̂p.[t̂p]z = µt̂p.z. Next, the binding of t̂p, when given the value
z as its body, also propagates z upward:

T P−1Jµt̂p.zK , µγ.(λx.[γ]x) z =βv µγ.[γ]z =ηµ z

This lets us break down the reduction of t̂p into the two steps that
propagate values upward: µt̂p.[t̂p]z = µt̂p.z = z.

We can also explain the dynamic nature of t̂p by the fact that
it signifies a closed co-term in the Λµv-calculus. For example,
consider the following command which “captures” t̂p in terms of
its embedding into Λµv:

T P−1J[t̂p]µα.[t̂p](λx.µt̂p.[α]x)K

, [µ̃y.y]µα.[µ̃z.z](λx.µγ.(λw.[γ]w) ([α]x))

=µv [µ̃z.z](λx.µγ.(λw.[γ]w) ([µ̃y.y]x))

, T P−1J[t̂p](λx.µt̂p.[t̂p]x)K

The Λµv-calculus has no concept of dynamic variables, and yet the
reduction gives the appearance of dynamic capture when viewed in
the λµt̂p-calculus.

Finally, instead of interpreting µt̂p.c as a passive form that
forces us to evaluate the underlying command c, we can give it a
more active interpretation that re-arranges its evaluation context.
For example, when we see the term µt̂p.[β]z in an evaluation
context, we can use the call-by-value order of function calls to
specify that [β]z is to be evaluated first:

T P−1J[α]((µt̂p.[β]z) + 10)K , [α]((µγ.(λx.[γ]x) ([β]z)) + 10)

=µv (λx.[α](x+ 10)) ([β]z)

In general, the embedding of λµt̂p into Λµv gives us some derived
equalities that are allowed by the more relaxed syntax:

[t̂p]V = V µt̂p.V = V

[q]E[µt̂p.c] = (λx.[q]E[x]) c End example 4.

As it turns out, the embedding of λµt̂p does not cover the entire
Λµv-calculus — there are some unreachable terms. However, we
can still consider the image of λµt̂p inside of Λµv , as shown
in Figure 16, and give the correspondence between these two.
Intuitively, the essential addition that t̂p gives us is the closed
identity co-term, µ̃x.x, and the ability to run a command and
observe its result, (λx.c′) c.

Theorem 6. The λµt̂p equational theory is sound and complete
with respect to the Λµv equational theory.

Proof. The compositional transformations T P and T P−1 form an
equational correspondence between λµt̂p and its image in Λµv .

6.2 Shift and reset
One of the most well-studied presentations of delimited control is
given by Danvy and Filinski’s [7] shift and reset control operators.
These operators were used by Filinski [15] to encode a direct
representation of monadic effects, and have been given a sound and
complete axiomatization by Kameyama and Hasegawa [19] with
respect to their CPS transformations. Furthermore, the shift and



resetvalue 〈V 〉 = V

resetlift (λx.〈M〉) 〈N〉 = 〈(λx.M) 〈N〉〉
Selim S(λα.α M) = M

resetS 〈E[SM ]〉 = 〈M (λx.〈E[x]〉)〉
S reset S(λα.〈M〉) = S(λα.M)

Spure 〈α V 〉 = α V

Figure 17. The axioms of shift (S) and reset (〈M〉) in λSα.

SRJµα.cK , S(λα.SRJcK)

SRJµt̂p.cK , SRJcK

SRJ[q]MK , 〈SRJqK SRJMK〉
SRJαK , α

SRJt̂pK , λx.x

SR−1JSK , λh.µα.[t̂p]h (λx.µt̂p.[α]x)

SR−1JS(λα.M)K , µα.[t̂p]SR−1JMK

SR−1J〈M〉K , µt̂p.[t̂p]SR−1JMK

SR−1JαK , λx.µt̂p.[α]x

Figure 18. The isomorphism between λSα and λµt̂p.

reset operators, with Kameyama and Hasegawa’s axiomatization,
have been shown to correspond to the λµt̂p-calculus [4, 17]. Since
the λµt̂p-calculus expresses only a subset of Λµv , it means that
shift and reset is not the form of delimited control that corresponds
to the full Λµv-calculus. However, for the sake of completeness,
we still include shift and reset in our analysis.

Recall that for λc callcc, we gave a special status to contin-
uation variables α that are introduced by a call to callcc, as in
callcc(λα.M), in the style of Sabry [28]. These special contin-
uation variables correspond to a particular use of co-variables in
the λµ-calculus, which allowed us to “abort” the current evaluation
context when calling α. Although Kameyama and Hasegawa [19]
do not consider continuation variables with special properties, they
greatly ease local reasoning about open terms without explicit men-
tion of their closing context. If we do, we may add a special rule
for continuation variables which must be introduced by a shift, as in
S(λα.M). In contrast to callcc, which creates functions that never
return, the functions created by shift always return because they in-
troduce a reset when called. Therefore, we may give the additional
axiom that asserts that α is always a pure function that returns to
its calling context, so a surrounding reset is unnecessary

Spure 〈α V 〉 = α V

which we add to Kameyama and Hasegawa’s λS -calculus to get the
λSα-calculus shown in Figure 17. This axiom is supported by the
embedding of continuation variables into λµt̂p that reflects exactly
the way that shift wraps up a continuation.

We strengthen the result of Herbelin and Ghilezan [17] and re-
late shift and reset to Λµv through the λµt̂p-calculus. In particu-
lar, Kameyama and Hasegawa’s [19] λS theory of shift and reset
is sound and complete with respect to λSα, which is in equational
correspondence with λµt̂p by the compositional transformations in
Figure 18. As a corollary, λS is sound and complete with respect to
the Λµv-calculus.

Theorem 7. The λS equational theory is sound and complete with
respect to the λSα equational theory, and λSα is in equational
correspondence with λµt̂p.

Proof. There is a direct injection of λS into λSα as well as a re-
verse embedding that forgets the special status of continuation vari-
ables. These compositional transformations form an equational cor-
respondence between λS and the subset of λSα terms that do not
contain free occurrences of continuation variables. Furthermore,
the compositional SR and SR−1 transformations form an equa-
tional correspondence between λSα and λµt̂p.

Example 5. Let us consider how continuations compose us-
ing shift and reset, λµt̂p, and Λµv , and how the reduction is
simulated in each of the three calculi. For example, the term
〈S (λk.k (k 2)) + 10〉 captures the evaluation context �+ 10 and
applies it twice to the number 2, giving us 22 as the result. In terms
of the λS -calculus, we have the following reduction:

〈S (λk.k (k 2)) + 10〉 =resetS 〈(λk.k (k 2)) (λx.〈x+ 10〉)〉
=βv 〈(λx.〈x+ 10〉) ((λx.〈x+ 10〉) 2)〉
=βv 〈(λx.〈x+ 10〉) 〈2 + 10〉〉
=resetvalue 〈(λx.〈x+ 10〉) 12〉
=βv 〈〈12 + 10〉〉
=resetvalue 22

By translating the shift and reset operators into λµt̂p using the
SR−1 embedding, we get the simplified term

SR−1J〈S (λα.α (α 2)) + 10〉K
= µt̂p.[t̂p]((µα.[α](µt̂p.[α]2)) + 10)

which also produces the answer 22:

µt̂p.[t̂p]((µα.[α](µt̂p.[α]2)) + 10)

=µv µt̂p.[t̂p]((µt̂p.[t̂p](2 + 10)) + 10)

=ηt̂p
µt̂p.[t̂p](12 + 10)

=ηt̂p
22

Again, we can translate the term into Λµv using the T P−1 embed-
ding to get the simplified term

T P−1Jµt̂p.[t̂p]((µα.[α](µt̂p.[α]2)) + 10)K
=µv µγ.(λx.[γ]x) ([µ̃y.y]((µα.(λz.[α]z) ([α]2)) + 10))

which produces the same result:

µγ.(λx.[γ]x) ([µ̃y.y]((µα.(λz.[α]z) ([α]2)) + 10))

=µv µγ.(λx.[γ]x) ((λz.[µ̃y.y](z + 10)) ([µ̃y.y](2 + 10)))

=µ̃v,βv µγ.(λx.[γ]x) ([µ̃y.y](12 + 10))

=µ̃v,βv µγ.[γ]22

=ηµ 22 End example 5.

Observe that, like with callcc, the embeddings into λµt̂p and
Λµv give the expected CPS transformation of shift and reset, up to
currying. In particular, after the embeddings we attain a two-pass
CPS transformation [8, 19] for shift and reset:

CJT P−1JSR−1JSKKKV

= λ(h, α).h ((λ(x, β).λγ.α x (λy.β y γ)), (λz.λγ.′γ′ z))

CJT P−1JSR−1J〈M〉KKK
= λα.λγ.JMK (λx.λγ.′γ′ x) (λy.α y γ)

Remark 1. Recall that in Section 5, we noted that the original typed
interpretation of the de Groote [10]-style Λµ-calculus effectively



β$ V $S0(λα.M) = M {V/α}
η$ S0(λα.α$M) = M

$v V $V ′ = V V ′

$E V $E[M ] = (λx.V $E[x])$M

Figure 19. The axioms of shift0 (S0) and $ in λ$.

ZJµα.MK , S0(λα.ZJMK)

ZJ[q]MK , ZJqK$ZJMK

ZJαK , α

ZJµ̃x.MK , λx.ZJMK

Z−1JS0K , λh.µα.h (λx.[α]x)

Z−1JS0(λα.M)K , µα.Z−1JMK

Z−1JN$MK , (λk.[µ̃x.k x]Z−1JMK) Z−1JNK

Z−1JαK , λx.[α]x

Figure 20. The isomorphism between λ$ and Λµµ̃v .

considers commands to have the type ⊥. This typing would force
x in both [µ̃x.x]M and (λx.c′) c to always have the type ⊥.
Applying this typing regime to the λµt̂p-calculus, we would only
allow [t̂p]M when M has type ⊥, and likewise µt̂p.c would have
type ⊥. In other words, this type system severely restricts the new
t̂p variable as there is no way to use it with interesting types
like integers or booleans. This restriction gives an intuitive reason
why de Groote’s typing forces the Λµ-calculus to be equivalent in
expressive power to Parigot’s classical λµ-calculus, by enforcing
the restriction in the types rather than in the syntax.

From another perspective, by embedding shift and reset into
the Λµv-calculus, de Groote’s typing would only allow 〈M〉 when
M has the type⊥. Therefore, the classical type system restricts the
use of the delimiter to terms that cannot return a result because they
belong to a type with no values. However, there are extensions of
the basic, classical type system for λµt̂p [4] and λS [7] that allow
for delimiters to return values with various types. In the approach
taken here, the untyped semantics of the Λµv-calculus is already
expressive enough to represent the dynamic behavior of delimited
control. The difference between classical and delimited control is
then a matter of choosing a less expressive, classical type system
— like de Groote [10], Ong and Stewart [24], or Fujita [13] —
or a more expressive, “delimited” one that allows programs like
([µ̃x.x]1) + 2 to be well-typed. End remark 1.

7. Correspondence of Λµv and shift0
Having considered languages that only touch on a subset of the
Λµv-calculus, we may wonder what language constructs express
the full calculus. Next, we consider two other operators, now
known as shift0 and reset0, that were introduced as variants of shift
and reset by Danvy and Filinski [7], but have garnered relatively
less attention. More recently, Materzok and Biernacki [20, 21] have
investigated the static and dynamic semantics of shift0 and reset0.
Intuitively, the difference between shift and shift0 is that when
shift captures its calling context, the surrounding reset delimiter
is left in place, whereas when shift0 captures its calling context
the surrounding reset0 delimiter is removed. For example, we have

different equations for the two different operators:

〈f (S (λk.M))〉 = 〈(λk.M) (λx.〈f x〉)〉
〈f (S0 (λk.M))〉0 = (λk.M) (λx.〈f x〉0)

This seemingly minor alteration on the surrounding context makes
all the difference. Indeed, Materzok [22] shows that shift0 and
reset0 are not only powerful enough to encode shift and reset, they
are able to represent an arbitrary hierarchy of nested shift and reset
operators [8] with a dynamically growing and shrinking stack of
continuations.
Example 6. We can view the difference between the shift and shift0
operators by the influence they have over their delimited evalua-
tion contexts. For example, the term S (λk1.S (λk2.k1 (k2 1)))
appears to swap two surrounding evaluation contexts by capturing
them locally as k1 and k2, respectively, and then applying them in
the reverse order so that the nearest context k1 sees the result of
evaluating k2 with 1. However, because shift leaves its surround-
ing reset delimiter intact, the second call to shift can only see the
empty context. Therefore, the second shift effectively does nothing
productive, and the net effect of the entire term is to yield 1. For
example, if we evaluate the term using the λS theory in the con-
text 〈〈�× 2〉+ 10〉, where the first evaluation context doubles its
input and the second adds 10, then we get the same result as the
simple numeric expression (1× 2) + 10:

〈〈(S (λk1.S (λk2.k1 (k2 1))))× 2〉+ 10〉
=resetS,βv 〈〈S (λk2.(λy.〈y × 2〉) (k2 1))〉+ 10〉
=resetS,βv 〈〈(λy.〈y × 2〉) ((λx.〈x〉) 1)〉+ 10〉
=βv 〈〈(λy.〈y × 2〉) 〈1〉〉+ 10〉
=βv,resetvalue 〈〈〈1× 2〉〉+ 10〉
=resetvalue 12

Alternatively, consider the same term implemented with shift0 in
place of shift. The shift0 operator removes its surrounding reset0
delimiter after it is done, allowing the second call to shift0 to
capture some surrounding, possibly non-empty, evaluation context.
Therefore, the net effect of the term is to swap the two nearest eval-
uation contexts, separated by reset0, before yielding 1. Likewise, if
we evaluate the term in the similar context 〈〈�× 2〉0 + 10〉0 us-
ing Materzok’s [20] λS0 theory for shift0 and reset0, we see that
the program returns the result of (1 + 10)× 2:

〈〈(S0 (λk1.S0 (λk2.k1 (k2 1))))× 2〉0 + 10〉0
=〈S0〉,βv 〈(S0 (λk2.(λy.〈y × 2〉0) (k2 1))) + 10〉0
=〈S0〉,βv (λy.〈y × 2〉0) ((λx.〈x+ 10〉0) 1)

=βv (λy.〈y × 2〉0) 〈1 + 10〉0
=〈v〉,βv 〈11× 2〉0
=〈v〉 22 End example 6.

Materzok’s [20] λS0 theory of shift0 and reset0 was developed
in terms of another call-by-value λ-calculus which includes shift0
and the delimiting form M$N .7 Intuitively, the term V $M sur-
rounds M with a delimiter represented by V , where V is a func-
tion that describes how to resume ifM evaluates to a value. IfM is
instead a call to shift0, then V is captured along with the delimiter.
The reset0 delimiter comes out as the special case when we have
(λx.x)$M , so that the delimiter immediately returns the value it’s
given. The axioms of the λ$-calculus are βv , ηv and the additional
axioms shown in Figure 19. The rules for λ$ already look quite sim-
ilar to the rules for Λµµ̃v , and in fact the two correspond. We give
translations between Λµµ̃v and λ$ in Figure 20 which gives the ex-
act correspondence between the two notions of delimited control.

7 Additionally, E$M becomes another form of evaluation context.



M,N ∈ Term ::= x || λx.M ||M N || µα.M || [α]M

E ∈ EvalCxt ::= � || E M

βn (λx.M) N = M {N/x}
ηn λx.M x = M

µn [α]E[µβ.M ] = M {[α]E[N ]/[β]N}
ηµ µα.[α]M = M

Figure 21. The call-by-name Λµ-calculus.

In essence, the V $M delimiter corresponds to a command in Λµv
where V is converted into a co-term (i.e., a continuation).

Theorem 8. λ$ is in equational correspondence with Λµµ̃v .

Proof. The compositional Z and Z−1 transformations form an
equational correspondence between λ$ and Λµµ̃v .

Remark 2. To illustrate the difference between shift/reset and
shift0/reset0, we point out that reset0 may be defined in the fol-
lowing equivalent ways:

〈M〉0 , (λx.x)$M , [µ̃x.x]M , [t̂p]M

Note that in the second two definitions, a command is being used in
a place where we might normally expect a term in the λµv-calculus.
This definition for the delimiter is observationally different from
reset. For example, according to both λS and λµt̂p, the reset
delimiter is idempotent:

〈〈M〉〉 , µt̂p.[t̂p]µt̂p.[t̂p]M =µt̂p
µt̂p.[t̂p]M , 〈M〉

This equation makes sense because a reset forms a hard barrier
that shift can never cross, so having more than one is redundant.
However, the reset0 delimiter is not idempotent:

〈〈M〉0〉0 , [t̂p][t̂p]M 6= [t̂p]M , 〈M〉0
This equation is impossible because multiple calls to shift0 in a row
can capture the evaluation context several layers out, effectively
“digging” out of a series of nested reset0s (see Example 6). For
example, by instantiating the above M with µα.µβ.(λx.[β]x), we
are able to differentiate between the contexts [t̂p][t̂p]� and [t̂p]�.8

Note, however, that idempotency of reset is provable in Λµv re-
gardless of M , even if it does not come from λS , so it is a property
of Λµv as a whole and not just the image of SR−1. In other words,
this observational property of reset holds even with a program us-
ing shift0 to “dig” out of nested reset0 delimiters. It follows that
not only are shift and shift0 different control operators, reset and
reset0 are different delimiters, as shown by their different encod-
ings and observational properties in the Λµv-calculus. Going the
other way, Shan [33] shows how to operationally simulate shift0 in
terms of shift by directly representing [15] stacks of continuations.
However, here we are not only concerned with the operational cor-
rectness of encodings, but also in preserving the other observational
properties of the various control operators, like the idempotency of
reset in λS or the η$ axiom from λ$. End remark 2.

8. A parametric approach to delimited control
Having determined a second interpretation of the Λµ-calculus, we
can now start to examine the impact of evaluation strategies on

8 This is a dual to the usual concept of observational equivalence: rather
than having a context to look at the differences between two terms, here we
are using a term to look at the differences between two contexts.

βV (λx.M) V = M {V/x}
ηV λx.V x = V

µE [α]E[µβ.M ] = M {[α]E[N ]/[β]N}
ηµ µα.[α]M = M

βEΩ (λx.E[x]) M = E[M ]

βµ (λx.µα.[β]M) N = µα.[β](λx.M) N

Figure 22. A parametric equational theory for the ΛµS -calculus.

V ∈ V alueV ::= x || λx.M
E ∈ StrictCxtV ::= � || E M || V E

V ∈ V alueN ::= M E ∈ StrictCxtN ::= � || E M

Figure 23. Call-by-value (V) and call-by-name (N ) strategies.

delimited control effects by seeing how the call-by-value and call-
by-name theories are related. Herbelin and Ghilezan [17] use the
call-by-name equational theory shown in Figure 21 for analyzing
the relationship between the relaxed Λµ-calculus and delimited
control. Now, observe how the call-by-name axioms vary from the
call-by-value axioms from Figures 2 and 11. On the one hand, in
the call-by-name theory, the β rule for reducing function calls has
been generalized so that the argument can be any term instead of a
value, and likewise the η rule for eliminating a trivial λ-abstraction
has been generalized for any term. On the other hand, the µ rule for
capturing an evaluation context has been restricted, since call-by-
name has a more restricted form of evaluation contexts: including
only chains of applications like�N1 N2 N3. Contrastingly, the ηµ
rule is completely unchanged between the two theories.

At a higher level, consider what happens when we move from a
call-by-name theory, like the original λ-calculus, to a call-by-value
theory. We must restrict rules like β to only substitute the simpler
subset of terms that we call “values” because it would be improper
to substitute non-value terms — so by contrast every term in call-
by-name is a “value” and subject to substitution. On the other hand,
consider how to move from a call-by-value theory with control, like
λµv or λ callccv , to a call-by-name theory. We must restrict rules
like µv to avoid capturing certain contexts that are no longer “strict”
and do not evaluate their inputs. For example, if we consider the λµ
term (λ .M) (µα.c), then the context (λ .M) � is not strict — it
never evaluates the term we plug into�— so the correct move is to
discard the argument (µα.c) instead of letting it capture its context.

Therefore, the differences between call-by-name and call-by-
value can be summarized by the answers to two questions: “what
terms are values?” and “what contexts are strict?” To further high-
light the commonalities between the call-by-value and call-by-
name theories of the Λµ-calculus, we present a unified paramet-
ric equational theory in Figure 22, similar to the parametric λ-
calculus [27], but extended with control effects (both classical and
delimited). In this theory, we state the basic axioms generically by
assuming that there is some decision on what we mean by values V
and evaluation contexts E, and leaving their precise definitions to
be filled in later. More specifically, a definition for the sets of values
and evaluation contexts is a definition of a strategy S. We then re-
cover our previous call-by-value and call-by-name equational the-
ories by instantiating the parametric ΛµS -calculus with the appro-
priate strategies shown in Figure 23. As expected, the ΛµV gives



V ∈ V alue ::= λx.M M ∈ Term ::= V || x ||M N

A ∈ Answer ::= B[V ] B ∈ BindCxt ::= � || (λx.B) M

E ∈ EvalCxt ::= � || E M || (λx.E[x]) E || (λx.E) M

deref (λx.E[x]) V = (λx.E[V ]) V

lift (λx.A) M N = (λx.A N) M

assoc (λy.E[y]) ((λx.A) M) = (λx.(λy.E[y]) A) M

Figure 24. A call-by-need λ-calculus.

V ∈ V alueAF ::= λx.M

E ∈ EvalCxtAF ::= � || E M || (λx.Q[x]) E

Q ∈ Question ::= � || QM || (λx.Q[x]) Q || (λx.Q) M

|| [α]Q || µα.Q

Figure 25. A call-by-need (AF) strategy.

us exactly the Λµv theory, and in ΛµN the βEΩ and βµ axioms fall
out as derivable from the others, giving us the theory in Figure 21.

Call-by-need and delimited control: Having a parametric theory
for the Λµ-calculus makes it easier to investigate the impact of a
strategy on languages with classical or delimited control. For ex-
ample, how might we fit call-by-need — a strategy for “more effi-
cient” lazy evaluation that defers evaluating arguments to function
calls until they are needed but remembers their value for future use
— into the picture? To start, let’s consider Ariola and Felleisen’s [1]
call-by-need λ-calculus, shown in Figure 24. We can see how the
call-by-need λ-calculus defers and saves work by considering a
possible evaluation trace for a term like (λx.M) N :9

(λx.M ) N = (λx.E[x]) N = (λx.E[x]) V

=deref (λx.E[V ]) V

However, life is not always so simple, since N may not evaluate
exactly to a value V , but instead it might be a value surrounded
by context of bindings, B[V ]. To deal with this issue, the call-
by-need λ-calculus has the axiom assoc that moves the evaluation
context (λx.E[x])� through the bindings until it reaches the value.
Similarly, lift brings an evaluation context like � N to a value.

In order to turn this call-by-need λ-calculus into an instance
of the parametric theory we need to figure out what is the correct
definition for values and evaluation contexts. First, let’s consider
just the pure λ-calculus subset of the theory. The definition for val-
ues can be taken rather directly from Figure 24 which says that
only λ-abstractions are values. This decision gives us a βV rule
that is a stronger version of deref and can substitute a value into
any context (recall the substitution procedure from Section 3). But
what about the definition of evaluation contexts? The βElift rule,
E[(λx.M) N ] = (λx.E[M ]) N , that is derivable from βEΩ (see
[19] for deriving βlift from βΩ) can simulate lift and assoc as-
suming that both �M and (λx.E[x]) � are considered evaluation
contexts. Therefore, our evaluation contexts should include at least
these two cases.10

9 The evaluation context has been highlighted by drawing a box that sepa-
rates the term currently being evaluated from its surrounding context.
10 We can already make some interesting comparisons between the three
strategies by the way axioms for the pure λ-calculus are used: inN , βV is

Now, let’s consider what happens when we take control ef-
fects into account. In particular, does it make sense for context
(λx.E) M to be capturable by the µE rule? For example, what
happens if we have a classical control effect inside the body of a
function call? Because of the βµ axiom, we could either pull out
the µ-abstraction first or capture the binding context and copy it

[α](λx.µβ.[γ]M) N =βµ,µE [γ](λx.M {α/β}) N
=µE [γ]M

{
[α](λx.N ′) N/[β]N ′

}
leading to completely different sharing properties (whether there
is one shared N or every β command gets a fresh copy of N )
depending on which path you take. This same issue is raised in [5]
on the interaction between bindings and control effects in call-by-
need. Since the call-by-need λ-calculus is a calculus about sharing,
non-deterministic sharing is undesirable, and we leave (λx.E) M
out of our set of evaluation contexts. In a related question, what
happens if we have an otherwise strict function whose body begins
with a control effect, like λx.µα.[β]x? Should we be required to
extract the µ-abstraction out of the function body before realizing
the function was strict all along? Let’s suppose that we call this
function strict, since it will evaluate x in some evaluation context
given by β, giving us the following step:

[α](λx.µδ.[β]x) (µγ.M) =µE M {[α](λx.µδ.[β]x) N/[γ]N}

These decisions give us the strategy for call-by-need shown in
Figure 25, where the strict evaluation contexts are either a calling
context, E M , or an application of a strict function that has some
question about its argument, (λx.Q[x]) E. Also note that because
the parametric ΛµS -calculus includes delimited control, this gives
us a definition of the call-by-need evaluation strategy that works
with delimited control effects. For example, in the terminology of
the λµt̂p-calculus, we can derive the following equations by their
embedding in the ΛµAF -calculus:

[t̂p]µα.M =µE M
{
t̂p/α

}
µt̂p.[t̂p]V =βV ,µE ,ηµ V

These equations are not terribly surprising, they are quite similar
to the call-by-value axioms for t̂p, but we were able to derive them
completely from our decisions about what we mean by values and
evaluation contexts. Of note, one difference with call-by-value is
that µt̂p.[t̂p]x does not reduce to x, because we said that x is not
a value. However, it is relatively straightforward to come up with a
call-by-need strategy with variables in the set of values, and to pull
out the corresponding instance of the ΛµS equational theory.

9. Conclusion
By now, we have seen how the core of classical control effects,
as expressed by callcc in Scheme, naturally scales to the far more
powerful world of delimited control. No new programming con-
structs or rules are required to explain delimited control — the char-
acterization of classical control is enough. On the one hand, this
conclusion may be rather surprising. After all, we know that delim-
ited control operators like shift and reset are vastly more powerful
than callcc. On the other hand, the conclusion should be reassuring.
Compared to composable continuations, we have a relatively better
understanding of callcc, so the fact that there are no new ingredi-
ents means that there is nothing extra that we have to explain. The
theory that we get out for delimited control is the one that (1) arises
canonically from a sub-language of classical control, (2) doesn’t
add any new programming constructs, and (3) applies the existing
rules without change to a more flexible syntax.

operational, ηV is observational, and βEΩ is trivial; in V , βV is operational
and ηV and βEΩ are observational; in AF , βV and βEΩ are operational
and ηV is trivial.



Although they were introduced around the same time, presented
side-by-side by Danvy and Filinski [7], the shift and reset formu-
lation of delimited control receives more attention than the rela-
tively neglected variants shift0 and reset0. For example, there was
a ten-year lag between the developments of equational theories for
shift and reset [19] and for shift0 and reset0 [20]. However, this
analysis of composable continuations suggests that shift0 is a more
“primitive” control operator than shift, while still allowing for de-
sirable and strong observational guarantees that hold for reset (like
idempotency), and warrants more attention. On the one hand, Her-
belin and Ghilezan [17] conjecture that the λµt̂p-calculus, and by
extension the call-by-value λ-calculus with shift and reset, satisfy
Böhm’s theorem of separability. On the other hand, the close rela-
tionship with the call-by-value Λµv-calculus instead suggests be-
ginning with separability of the shift0 and reset0 notion of com-
posable continuations (or better yet shift0 and $), from which the
others may follow.

The Λµ-calculus may also serve as a more general framework
for understanding control effects in functional programming lan-
guages. For instance, although we focus on untyped semantics here,
we can still consider type and effect systems for such languages.
Materzok [20, 21] provides a type system for the call-by-value λ-
calculus with the shift0 operator, which may be translated to the
call-by-value Λµv-calculus since the two are isomorphic. Addition-
ally, Saurin [32] provides a type system for the call-by-name Λµ-
calculus. It would be interesting to use the parametric Λµ-calculus
as a common language to compare the two type systems, and to
see the impact that evaluation strategy has on the static typing of
programs using delimited control. This may suggest a generalized
type and effect systems for static analysis of delimited control un-
der both call-by-value and call-by-name evaluation strategies in the
same vein as the parametric equational theory for the Λµ-calculus.
Furthermore, in practice functional languages with delimited con-
trol allow for the use of multiple different prompts [12] for differ-
ent purposes, like the ability to create exception handlers that catch
only certain kinds of exceptions. The λµ-calculus has already [11]
shed some light on this language feature, and the analysis of de-
limited control in the Λµ-calculus may provide more insight into
a formulation that is practical yet easy to reason about with strong
observational guarantees similar to shift and reset.
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