
Structures for Structural
Recursion

Paul Downen Philip Johnson-Freyd
Zena M. Ariola

University of Oregon

ICFP’15, August 31 – September 2, 2015

Induction and Co-induction

Well-founded recursion

I Well-foundedness implies termination of some
sort

I No infinite loops

I Two dual flavors: induction and co-induction

Induction

dataNatwhere
Z : Nat
S : Nat→ Nat

data List awhere
Nil : List a

Cons : a→ List a→ List a

length : ∀a. List a→ Nat
length Nil = Z
length (Cons x xs) = let y = length xs in S y

Co-induction

codata InfList awhere
Cons : a→ InfList a→ InfList a

zeroes : InfList Nat
zeroes = Cons Z zeroes

count : Nat→ InfList Nat
count x = Cons x (count S(x))

Co-induction

codata Stream awhere
Head : Stream a→ a

Tail : Stream a→ Stream a

zeroes : StreamNat
zeroes.Head = Z
zeroes.Tail = zeroes

count : Nat→ StreamNat
(count x).Head = x

(count x).Tail = count (x + 1)

Well-founded induction and co-induction

I Well-foundedness for induction is clear
I Structural induction

I Well-foundedness for co-induction is murky
I Productivity? Guardedness?

I Asymmetric bias for induction over co-induction

I Can they be unified?

I Idea: Complete symmetry to find structure

Recursion on Structures

Classical sequent calculus: a symmetric language

I Producers (terms):

v ∈ Term ::= x | µα.c | . . .

I Consumers (co-terms):

e ∈ CoTerm ::= α | µ̃x .c | . . .

I Computations (commands):

c ∈ Command ::= 〈v ||e〉

Input and output

A place for everything and everything in its place.

I Computations do not return, they run

I Unspecified inputs (x , y , z) and outputs (α, β, γ)

I µ̃ abstracts over unspecified input

〈x ||µ̃y .c〉 = c{y/x}

I µ abstracts over unspecified output

〈µβ.c ||α〉 = c{β/α}

Data types

I Values are constructed

I Consumed by pattern matching

dataNatwhere
Z : ` Nat |
S : Nat ` Nat |

data List(a)where
Nil : ` List(a) |

Cons : a, List(a) ` List(a) |

Co-data types

I Observations are constructed

I Produced by pattern matching

codata a→ bwhere
· : a | a→ b ` b

codata Stream(a)where
Head : | Stream(a) ` a

Tail : | Stream(a) ` Stream(a)

User-defined (co-)data types

I All types user-definable, follow same pattern

I ADTs from functional languages are data

I Functions are co-data

I Universal quantification is co-data
I Explicit ∀ à la System Fω

I Existential quantification is data

I Types that lie outside the functional paradigm

Recursion on data structures

Called function

〈 length || xs · α 〉

Have List(a) Want Nat

〈length||Nil · α〉 = 〈Z||α〉
〈length||Cons(x , xs) · α〉 = 〈length||xs · µ̃y .〈S(y)||α〉〉

Recursion on co-data structures

Called function

〈 count || x · α 〉

Have Nat Want Stream(Nat)

〈count||x · Head[α]〉 = 〈x ||α〉
〈count||x · Tail[α]〉 = 〈count||S(x) · α〉

Structural recursion

I Distinction between induction and co-induction
fade away

I Both are modes of recursion on some structure
I Induction: recurse on data structure value

I Co-induction: recurse on co-data structure observation

I Recursive invocations run with sub-structures

〈length||Cons(x , xs) · α〉 = 〈length||xs · µ̃y .〈S(y)||α〉〉
〈count||x · Tail[α]〉 = 〈count||S(x) · α〉

Structures for Recursion

Finding the sub-structure

I To check well-foundedness, check for decreasing
sub-structure

I But relevant sub-structure appears inside a larger
structural context

〈length||Cons(x , xs) · α〉 = 〈length||xs · µ̃y .〈S(y)||α〉〉
〈count||x · Tail[α]〉 = 〈count||S(x) · α〉

I Structure of function calls not special, same for
tuples, etc.

I How do we know where to find it?

Tracking sub-structures with sized types

I Type-based approach to termination

I Size approximate the depth of structures

I Types can be indexed by (several) sizes

I Separate recursion in types from recursion in
programs

Recursion in types

I Add extra size index to recursive (co-)data types

I Change in size tracks recursive sub-structures of
recursive types

I Given x : Nat(i) then S(x) : Nat(i + 1)

I Given α : Stream(i , a) then
Tail[α] : Stream(i + 1, a)

Recursion in programs

I Recursion over structures of recursive type
quantifies over size index

I length : ∀a.∀i . List(i , a)→ Nat(i)

I count : ∀i .(∃j .Nat(j))→ Stream(i ,∃j .Nat(j))

I Different kinds of sizes for different purposes:
I Step-by-step (primitive) recursion: computation depends on

type-level size index at run-time, dependently typed vectors

I Bounded (noetherian) recursion: type-level size index is
erasable at run-time, recurse on deeply nested sub-structure

Structures for structural recursion

I Size quantifiers are themselves (co-)data types

I Their values and observations are structures for
specifying structural recursion

I Like ∀ and ∃, quantify sizes over arbitrary types

I Can “induct” over co-data types, vice versa
I Eliminate the need for strictures on structures

More in the paper

I Source effect-free functional calculus with
recursion, data types, and “pure” objects

I Target classical calculus with user-defined
recursive (co-)data and recursion schemes

I Modest dependent types with control effects

I Different evaluation strategies, parametrically

I Strong normalization

I Type erasure and computationally relevant types

Final thoughts

I Induction and co-induction are modes of
structural recursion

I Find the structure with both sides of the story

I Duality and symmetry are powerful weapons:
they invert murky problems into clear ones

	Induction and Co-induction
	Recursion on Structures
	Structures for Recursion
	Conclusion

