
Sequent Calculus as a
Compiler Intermediate

Language

Paul Downen 1 Luke Maurer 1

Zena M. Ariola 1 Simon Peyton Jones 2

1University of Oregon

2Microsoft Research Cambridge

ICFP’16, September 18 – 28, 2016

Curry-Howard in theory and practice

I Functional programming: wonderful marriage
between theory and practice

I λ-calculus and natural deduction not just
theoretical; a practical toolset for the real world

I Great basis for programming languages

I But what about intermediate languages in
compilers?

Sequent Calculus as an Intermediate Language

I λ-calculus has been used in compilers for decades

I But λ’s not the only game in town; the sequent
calculus is another useful intermediate language

I Low-level representations (Ohori, 1999a)

I A logic (Ohori, 1999b) for administrative-normal forms
(Flanagan et al., 1993)

I Memory management via structural rules (Ohori, 2003)

I Intuitionistic restrictions for functional purity

I A sequent-based language fits between λ-calculus
and continuation-passing style

Intermediate Languages

A Compiler’s Job

Feature Rich Source

...

Detail Rich Machine

But this is a big jump; what goes in the middle?

Direct-Style IL

Feature Rich Source

Core

Detail Rich Machine

Desugar

Generate Code

Optimize

I Optimizations account for evaluation strategy

I Core = λ-calculus + polymorphism + data types

Continuation-Passing-Style IL

Feature Rich Source

Core

CPS Core

Detail Rich Machine

Desugar

CPS Transform

Generate Code

Optimize

I CPS transform bakes in evaluation strategy

I CPS Core = Core - non-tail-calls

The Sequent Calculus

Gentzen’s Two Logics

I Natural Deduction: “closer to mathematician’s
reasoning”

I Sequent Calculus: “easier to reason about”

I Natural Deduction ≈ λ-calculus

I Sequent Calculus ≈ ???

An (Abstract) Abstract Machine Language

I Language with left-right dichotomy: producers
(values v) and consumers (continuations k)
(Curien and Herbelin, 2000)

I Primary composition (a cut 〈v || k〉) resembles an
abstract machine state

I Still has high-level features: binding, substitution

I Gentzen discovered statically-typed call-stacks in
the 1930s

Sequent-Style Intermediate Language

Feature Rich Source

Core

Sequent Core

Detail Rich Machine

Desugar

Translation

Optimize

Generate Code

Optimize

I Two-Way translation doesn’t care about evaluation strategy

I Sequent Core = sequent calculus counterpart to Core

(Natural) Core vs Sequent Core

I Core is a data-flow language
I Everything about expressions that return values

I Sequent Core contrasts data-flow and
control-flow

I Results given by values

I Continuations do things with results

I Both can be given a name

I Computation happens when the two meet

I Two-way translation preserves semantics and
types: can have best of both worlds!

The Two Roles of Continuations

Continuations as Evaluation Contexts

(f (0) + 1)× 2

Take f ;
Apply it to 0;
Add 1;
Multiply by 2;

I Say what to do with the intermediate results in a
program

I Evaluation contexts are about doing

Continuations as Join Points

if x > 100 :

print "x is large"

else :

print "x is small"

print "goodbye"

x > 100

print "x is large" print "x is small"

print "goodbye"

yes no

I A common point where several branches of
control flow join together (φ node in SSA)

I Join points are about sharing

Evaluation Contexts vs Join Points

I The two are different in pure, lazy languages

I Evaluation contexts:
I Take exactly one input

I Are strict in their input

I Cannot be run more than once

I Can be scrutinized (use rewrite rules matching “call patterns”)

I Join points:
I Take zero or more inputs

I May not need their input

I Can be run many times (via recursion)

I Are inscrutable (like a λ-abstraction)

Functions vs Join Points

I “But ‘join points’ sound a lot like functions!”

I They are, but very special functions:
I Always tail-called, don’t return

I Never escape their scope

I Different operational reading: just a jump to a
labeled block of code

I Join points are more efficient to implement, less
costly than a full closure

Sequent Core in GHC

Implementation

I Sequent Core implemented as a GHC plugin
(http://github.com/lukemaurer/sequent-core)

I Use two-way translation to lift Sequent Core
optimizations into Core-to-Core passes

I Implemented analogues of GHC
optimizations/analyses on Sequent Core (The
Mighty Simplifier, Let Floating, . . .)

I Found Sequent Core is better at join points

http://github.com/lukemaurer/sequent-core

Case-of-Case and Friends

In Core:

let j x y = big
in not(case z of A x y → j x y

B → False)

⇓
let j x y = big
in case z of A x y → not (j x y)

B → not False

This is bad! The join point is ruined (j no longer
tail-called)

Case-of-Case and Friends

In Sequent Core (using Core syntax):

let j x y = big
in not(case z of A x y → j x y

B → False)

⇓
let j x y = not big
in case z of A x y → j x y

B → not False

This is much better! The join point is preserved!

(Re-)Contification

I Sequent Core robustly preserves this status
through optimizations (Yay!)

I But Core does not “know” about join points;
they’re lost in translation (Boo!)

I Contification: find functions that “look like” join
points, and make them join points (Fluet and
Weeks, 2001)

I Re-Contification (remembering lost join points
after translation) is essential to the pipeline

Evaluation

I Benchmarks of Sequent Core optimizations
competitive with Core

I Similar performance, with occasional wins and losses

I Biggest cause for change (esp. losses): inlining
I Inlining heuristics are tuned for Core; both very subtle and

driving force for optimizations

I With such a drastic change, can’t pinpoint a root cause

I Modifying Core and original Simplifier would give
clearer view on the impact of join points

I Need to pursue further optimizations for
cascading effects

More in the paper

I Thorough description of the static and dynamic
semantics of Sequent Core:

I Type system

I Call-by-name operational semantics: for reasoning about results

I Call-by-need abstract machine: for operational reading of join
points

I Purity via static scope restriction (Kennedy,
2007)

I Translations to and from Core

I Lightweight contification algorithm for translation

What Did Sequent Core Teach Us?

I “Continuations” serve (at least) two roles

I Sequent calculus is great at representing negative
types (functions)

I As GHC’s Might Simplifier already knew!

I Not just intuitionistic: join points are classical
feature that can be tamed for purity

I Go beyond administrative-normal form

I Control flow not just for strict languages; it’s
great for lazy languages, too

What Do We Want in an Intermediate Language?

Direct Sequent CPS
Simple grammar +

Operational reading + ++ ++
Flexible eval order + + −

Control flow − ++ ++
Rewrite rules + + −

Current and Future Work

I From Sequent Core, extend Core with direct-style
join points

I Improve optimizations (like contification) by
inducing cascading effects

I Use Sequent Core as a laboratory for more
context-aware opportunities using control flow

References I

P. Curien and H. Herbelin. The duality of
computation. In ICFP, 2000. doi:
10.1145/351240.351262.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen.
The essence of compiling with continuations. In
PLDI, 1993. doi: 10.1145/155090.155113.

M. Fluet and S. Weeks. Contification using
dominators. In ICFP, 2001. doi:
10.1145/507635.507639.

A. Kennedy. Compiling with continuations, continued.
In ICFP, 2007. doi: 10.1145/1291151.1291179.

References II

A. Ohori. The logical abstract machine: A
curry-howard isomorphism for machine code. In
FLOPS, 1999a. doi: 10.1007/10705424_20.

A. Ohori. A curry-howard isomorphism for
compilation and program execution. In TLCA,
1999b. doi: 10.1007/3-540-48959-2_20.

A. Ohori. Register allocation by proof transformation.
In ESOP, 2003. doi: 10.1007/3-540-36575-3_27.

	Introduction
	Curry-Howard and Compilers
	Curry-Howard and the Sequent Calculus
	Continuations and Join Points
	Putting Theory to Practice
	Conclusion

