A Computational Understanding of Classical (Co)Recursion
 Paul Downen and Zena M. Ariola

Topic

Topic

- Both programs and proofs with loops

Topic

- Both programs and proofs with loops
- (Co)Recursion and (Co)Induction

Topic

- Both programs and proofs with loops
- (Co)Recursion and (Co)Induction
- "Terminating" or "Productive"

Topic

- Both programs and proofs with loops
- (Co)Recursion and (Co)Induction
- "Terminating" or "Productive"
- Extend to non-termination, effects

Methodology

Methodology

- Duality

Methodology

- Duality
- Computational

Methodology

- Duality
- Computational
- Curry-Howard

Methodology

- Duality
- Computational
- Curry-Howard
- sequent calculus as abstract machines

Methodology

- Duality
- Computational
- Curry-Howard
- sequent calculus as abstract machines
- Classical

Recursive Programs

Recursion on Natural Numbers

In System T

Recursion on Natural Numbers

In System T

- Simply-typed λ-calculus plus inductive Nat $=$ Zero \mid Succ Nat

Recursion on Natural Numbers

In System T

- Simply-typed λ-calculus plus inductive Nat $=$ Zero \mid Succ Nat

$$
\mathbf{r e c}_{N a t}^{A}: N a t \rightarrow A \rightarrow(N a t \rightarrow A \rightarrow A) \rightarrow A
$$

Recursion on Natural Numbers

In System T

- Simply-typed λ-calculus plus inductive Nat $=$ Zero \mid Succ Nat

$$
\operatorname{rec}_{N a t}^{A}: N a t \rightarrow A \rightarrow(N a t \rightarrow A \rightarrow A) \rightarrow A
$$

rec M as $\{$ Zero $\rightarrow N \mid$ Succ $x \rightarrow y . P\} \quad$ where $M, x: N a t ; N$ and $P, y: A$

Recursion on Natural Numbers

In System T

- Simply-typed λ-calculus plus inductive Nat $=$ Zero \mid Succ Nat

$$
\operatorname{rec}_{N a t}^{A}: N a t \rightarrow A \rightarrow(N a t \rightarrow A \rightarrow A) \rightarrow A
$$

rec M as $\{$ Zero $\rightarrow N \mid$ Succ $x \rightarrow y . P\} \quad$ where $M, x: N a t ; N$ and $P, y: A$

$$
\text { case } M \text { of Zero } \rightarrow N \text { rec } M \text { of Zero } \rightarrow M
$$

Recursion on Natural Numbers

In System T

- Simply-typed λ-calculus plus inductive Nat $=$ Zero \mid Succ Nat

$$
\operatorname{rec}_{N a t}^{A}: N a t \rightarrow A \rightarrow(N a t \rightarrow A \rightarrow A) \rightarrow A
$$

rec M as $\{$ Zero $\rightarrow N \mid$ Succ $x \rightarrow y . P\} \quad$ where $M, x: N a t ; N$ and $P, y: A$

$$
\begin{aligned}
& \text { case } M \text { of Zero } \rightarrow N \text {. } \operatorname{rec} M \text { of Zero } \rightarrow M \\
& \text { Succ } x \rightarrow P^{-} \quad \text { Succ } x \rightarrow{ }_{-} . P \\
& \text { iter } M \text { as Zero } \rightarrow N \quad .=\text { rec } M \text { as Zero } \rightarrow N \\
& \text { Succ } \rightarrow y . P:=\quad \text { Succ }{ }_{-} \rightarrow y . P
\end{aligned}
$$

Examples of Recursion

In System T

Examples of Recursion

In System T

$$
\begin{aligned}
\text { plus Zero } y & =y \\
\text { plus }\left(\text { Succ } x^{\prime}\right) y & \left.=\text { Succ (plus } x^{\prime} y\right)
\end{aligned}
$$

Examples of Recursion

In System T

$$
\begin{array}{rlrl}
\text { plus Zero } y & =y & \text { plus }=\lambda x . \lambda y . \text { iter } x \text { as } \\
\text { plus }\left(\text { Succ } x^{\prime}\right) y & =\text { Succ }\left(\text { plus } x^{\prime} y\right) & \text { Zero } \rightarrow y \\
\text { Succ } \rightarrow z . \text { Succ } z
\end{array}
$$

Examples of Recursion

In System T

$$
\begin{aligned}
\text { plus Zero } y & =y \\
\text { plus }\left(\operatorname{Succ} x^{\prime}\right) y & =\operatorname{Succ}\left(\text { plus } x^{\prime} y\right)
\end{aligned}
$$

$$
p l u s=\lambda x . \lambda y . \text { iter } x \text { as }
$$

$$
\text { Zero } \rightarrow y
$$

$$
\text { Succ } \rightarrow z . \text { Succ } z
$$

$$
\begin{aligned}
\text { pred Zero } & =\text { Zero } \\
\text { pred }\left(\text { Succ } x^{\prime}\right) & =x^{\prime}
\end{aligned}
$$

Examples of Recursion

In System T

$$
\begin{aligned}
\text { plus Zero } y & =y \\
\text { plus }\left(\text { Succ } x^{\prime}\right) y & =\operatorname{Succ}\left(\text { plus } x^{\prime} y\right)
\end{aligned}
$$

$$
\text { plus }=\lambda x \cdot \lambda y . \operatorname{iter} x \text { as }
$$

$$
\text { Zero } \rightarrow y
$$

$$
\text { Succ } \rightarrow z . \text { Succ } z
$$

$$
\begin{aligned}
\text { pred Zero } & =\text { Zero } \\
\text { pred }\left(\text { Succ } x^{\prime}\right) & =x^{\prime}
\end{aligned}
$$

pred $=\lambda x$. case x of

$$
\text { Zero } \rightarrow \text { Zero }
$$

Succ $x^{\prime} \rightarrow x^{\prime}$

Examples of Recursion

In System T

$$
\begin{aligned}
\text { plus Zero } y & =y \\
\text { plus }\left(\text { Succ } x^{\prime}\right) y & \left.=\text { Succ (plus } x^{\prime} y\right) \\
\text { pred Zero } & =\text { Zero } \\
\text { pred }\left(\text { Succ } x^{\prime}\right) & =x^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { plus }=\lambda x . \lambda y . \text { iter } x \text { as } \\
& \text { Zero } \rightarrow y \\
& \text { Succ } \rightarrow z . \text { Succ } z \\
& \text { pred }=\lambda x . \text { case } x \text { of } \\
& \text { Zero } \rightarrow \text { Zero } \\
& \text { Succ } x^{\prime} \rightarrow x^{\prime}
\end{aligned}
$$

minus x Zero $=x$
minus $x\left(\right.$ Succ $\left.y^{\prime}\right)=\operatorname{pred}\left(\right.$ minus $\left.x y^{\prime}\right)$

Examples of Recursion

$$
\begin{aligned}
\text { plus Zero } y & =y \\
\text { plus }\left(\text { Succ } x^{\prime}\right) y & \left.=\text { Succ (plus } x^{\prime} y\right) \\
\text { pred Zero } & =\text { Zero } \\
\text { pred }\left(\text { Succ } x^{\prime}\right) & =x^{\prime}
\end{aligned}
$$

$$
\text { minus } x \text { Zero }=x
$$

$$
\text { minus } \left.x\left(\text { Succ } y^{\prime}\right)=\text { pred (minus } x y^{\prime}\right)
$$

$$
\text { plus }=\lambda x . \lambda y . \text { iter } x \text { as }
$$

$$
\begin{aligned}
& \text { Zero } \rightarrow y \\
& \text { Succ } \rightarrow z . \text { Succ } z
\end{aligned}
$$

pred $=\lambda x$. case x of

$$
\text { Zero } \rightarrow \text { Zero }
$$

$$
\text { Succ } x^{\prime} \rightarrow x^{\prime}
$$

minus $=\lambda x . \lambda y$. iter y as

$$
\text { Zero } \rightarrow x
$$

$$
\text { Succ } \rightarrow z \cdot \text { pred } z
$$

Recursion vs Iteration

Expressiveness vs Cost

Recursion vs Iteration

Expressiveness vs Cost

$$
\text { iter } M \text { as Zero } \rightarrow N \quad \begin{array}{r}
\text { rec } M \text { as Zero } \rightarrow N \\
S u c c
\end{array} \rightarrow_{y . P}:=\begin{array}{r}
\text { Succ }
\end{array} \rightarrow y . P
$$

Recursion vs Iteration

Expressiveness vs Cost

$$
\begin{aligned}
\text { iter } M \text { as Zero } \rightarrow N \\
\text { Succ } \rightarrow y . P:=\begin{aligned}
& \text { rec } M \text { as Zero } \rightarrow N \\
& \text { Succ }_{-} \rightarrow y . P
\end{aligned}
\end{aligned}
$$

rec M as Zero $\rightarrow N \quad$ \quad snd(iter M as Zero $\rightarrow($ Zero, $N)$
Succ $x \rightarrow y . P:=\quad$ Succ $\rightarrow(x, y) .($ Succ $x, P))$

Recursion vs Iteration

Expressiveness vs Cost

$$
\begin{aligned}
& \text { iter } M \text { as Zero } \rightarrow N \\
& \text { Succ } \rightarrow y \cdot P:=\begin{array}{r}
\text { rec } M \text { as Zero } \rightarrow N \\
\text { Succ }
\end{array} \rightarrow y . P \\
& \text { rec } M \text { as Zero } \rightarrow N \\
& \text { Succ } x \rightarrow y . P:= \operatorname{snd}(\text { iter } M \text { as Zero } \rightarrow(\text { Zero, } N) \\
&\text { Succ } \rightarrow(x, y) .(\text { Succ } x, P))
\end{aligned}
$$

- pred (Succ ${ }^{n}$ Zero) goes from $O(1)$ to $O(n)$ time

Recursion vs Iteration

Expressiveness vs Cost

$$
\begin{aligned}
& \text { iter } M \text { as Zero } \rightarrow N \quad \text { rec } M \text { as Zero } \rightarrow N \\
& \text { Succ } \rightarrow y . P^{:=} \quad \text { Succ }_{-} \rightarrow y . P \\
& \text { rec } M \text { as Zero } \rightarrow N \quad \text { snd(iter } M \text { as Zero } \rightarrow(\text { Zero, } N) \\
& \text { Succ } x \rightarrow y . P:=\quad \text { Succ } \rightarrow(x, y) .(\text { Succ } x, P))
\end{aligned}
$$

- pred (Succn Zero) goes from $O(1)$ to $O(n)$ time
- minus (Succ ${ }^{n}$ Zero) (Succ ${ }^{m}$ Zero) goes from $O(n)$ to $O\left(n^{2}+n m\right)$

Recursion vs Iteration

Expressiveness vs Cost

$$
\begin{array}{r}
\text { iter } M \text { as Zero } \rightarrow N \\
\text { Succ } \rightarrow y . P:=\begin{array}{r}
\text { rec } M \text { as Zero } \rightarrow N \\
\text { Succ }
\end{array} \quad \begin{array}{r}
-y . P
\end{array} \\
\text { rec } M \text { as Zero } \rightarrow N \\
\text { Succ } x \rightarrow y . P:=\begin{array}{r}
\text { snd(iter } M \text { as Zero } \rightarrow(\text { Zero, } N) \\
\text { Succ } \rightarrow(x, y) .(\text { Succ } x, P))
\end{array}
\end{array}
$$

- pred (Succ ${ }^{n}$ Zero) goes from $O(1)$ to $O(n)$ time
- minus (Succ ${ }^{n}$ Zero) (Succ ${ }^{m}$ Zero) goes from $O(n)$ to $O\left(n^{2}+n m\right)$
- Native rec has the same performance penalty as encoding in CBV

Recursion vs Iteration

Expressiveness vs Cost

$$
\begin{array}{r}
\text { iter } M \text { as Zero } \rightarrow N \\
\text { Succ } \rightarrow y . P:=\begin{array}{r}
\text { rec } M \text { as Zero } \rightarrow N \\
\text { Succ }
\end{array} \quad \begin{array}{r}
-y . P
\end{array} \\
\text { rec } M \text { as Zero } \rightarrow N \\
\text { Succ } x \rightarrow y . P:=\begin{array}{r}
\text { snd(iter } M \text { as Zero } \rightarrow(\text { Zero, } N) \\
\text { Succ } \rightarrow(x, y) .(\text { Succ } x, P))
\end{array}
\end{array}
$$

- pred (Succ ${ }^{n}$ Zero) goes from $O(1)$ to $O(n)$ time
- minus (Succ ${ }^{n}$ Zero) (Succ ${ }^{m}$ Zero) goes from $O(n)$ to $O\left(n^{2}+n m\right)$
- Native rec has the same performance penalty as encoding in CBV
- Recursive result always computed; full traversal is mandatory

Recursion in an Abstract Machine

Building the Recursive Continuation

Recursion in an Abstract Machine

Building the Recursive Continuation
$\langle M \| E\rangle$

Recursion in an Abstract Machine

Building the Recursive Continuation

$$
\begin{aligned}
&\langle M \| E\rangle \\
&\langle M N \| E\rangle \mapsto\langle M \| N \cdot E\rangle \\
&\langle\lambda x \cdot M \| N \cdot E\rangle \mapsto\langle M[N / x] \| E\rangle
\end{aligned}
$$

Recursion in an Abstract Machine

Building the Recursive Continuation

$$
\begin{aligned}
&\langle M \| E\rangle \\
&\langle M N \| E\rangle \mapsto\langle M \| N \cdot E\rangle \\
&\langle\lambda x \cdot M \| N \cdot E\rangle \mapsto\langle M[N / x] \| E\rangle \\
& \text { ralt }:=\{\text { Zero } \rightarrow N \mid \text { Succ } x \rightarrow y . P\}
\end{aligned}
$$

Recursion in an Abstract Machine

Building the Recursive Continuation

$$
\begin{gathered}
\langle M \| E\rangle \\
\langle M N \| E\rangle \mapsto\langle M \| N \cdot E\rangle \\
\langle\lambda x \cdot M \| N \cdot E\rangle \mapsto\langle M[N / x] \| E\rangle \\
\text { ralt }:=\{\text { Zero } \rightarrow N \mid \text { Succ } x \rightarrow y \cdot P\} \\
\langle\mathbf{r e c} M \text { as ralt } \| E\rangle \mapsto\langle M \| \text { rec } \text { ralt with } E\rangle
\end{gathered}
$$

Recursion in an Abstract Machine

Building the Recursive Continuation

$$
\begin{aligned}
&\langle M \| E\rangle \\
&\langle M N \| E\rangle \mapsto\langle M \| N \cdot E\rangle \\
&\langle\lambda x \cdot M \| N \cdot E\rangle \mapsto\langle M[N / x] \| E\rangle \\
& \text { ralt }:=\{\text { Zero } \rightarrow N \mid \text { Succ } x \rightarrow y . P\} \\
&\langle\text { rec } M \text { as ralt } \| E\rangle \mapsto\langle M \| \text { rec ralt with } E\rangle \\
&\langle\text { Zero } \| \text { rec ralt with } E\rangle \mapsto\langle N \| E\rangle
\end{aligned}
$$

Recursion in an Abstract Machine

Building the Recursive Continuation

$$
\begin{aligned}
&\langle M \| E\rangle \\
&\langle M N \| E\rangle \mapsto\langle M \| N \cdot E\rangle \\
&\langle\lambda x \cdot M \| N \cdot E\rangle \mapsto\langle M[N / x] \| E\rangle \\
& \text { ralt }:=\{\text { Zero } \rightarrow N \mid \text { Succ } x \rightarrow y \cdot P\} \\
&\langle\text { rec } M \text { as ralt } \| E\rangle \mapsto\langle M \| \text { rec ralt with } E\rangle \\
&\langle\text { Zero } \| \text { rec ralt with } E\rangle \mapsto\langle N \| E\rangle \\
&\langle\text { Succ } M \| \text { rec ralt with } E\rangle \mapsto\langle P[M / x, \text { rec } M \text { as ralt } / y] \| E\rangle
\end{aligned}
$$

Corecursive Programs

What's the Dual of Natural Numbers?

What's the Dual of Natural Numbers?

- Zero : $1 \rightarrow$ Nat is dual to Run :Nat ${ }^{\perp} \rightarrow \perp$

What's the Dual of Natural Numbers?

- Zero: $1 \rightarrow$ Nat is dual to Run: Nat ${ }^{\perp} \rightarrow \perp$
- Succ : Nat \rightarrow Nat is dual to Tail : Nat ${ }^{\perp} \rightarrow N a t^{\perp}$

What's the Dual of Natural Numbers?

- Zero: $1 \rightarrow$ Nat is dual to Run: Nat ${ }^{\perp} \rightarrow \perp$
- Succ: Nat \rightarrow Nat is dual to Tail : Nat ${ }^{\perp} \rightarrow$ Nat $^{\perp}$
- $N a t^{\perp}$ is an infinite stream of computations

What's the Dual of Natural Numbers?

- Zero : $1 \rightarrow$ Nat is dual to Run : Nat ${ }^{\perp} \rightarrow \perp$
- Succ: Nat \rightarrow Nat is dual to Tail: Nat ${ }^{\perp} \rightarrow$ Nat ${ }^{\perp}$
- $N a t^{\perp}$ is an infinite stream of computations
- You can run them, but they don't return

What's the Dual of Natural Numbers?

- Zero: $1 \rightarrow$ Nat is dual to Run: Nat ${ }^{\perp} \rightarrow \perp$
- Succ: Nat \rightarrow Nat is dual to Tail :Nat ${ }^{\perp} \rightarrow$ Nat $^{\perp}$
- $N a t^{\perp}$ is an infinite stream of computations
- You can run them, but they don't return

$$
\begin{array}{rcc}
\text { Nat Values: } & \text { Zero } & \text { Succ } V \\
\text { Nat Continuation: } & \text { rec }\{\text { Zero } \rightarrow N \mid & \text { Succ } x \rightarrow y . P\} \text { with } E
\end{array}
$$

What's the Dual of Natural Numbers?

- Zero: $1 \rightarrow$ Nat is dual to Run: Nat ${ }^{\perp} \rightarrow \perp$
- Succ: Nat \rightarrow Nat is dual to Tail: Nat ${ }^{\perp} \rightarrow$ Nat $^{\perp}$
- $N a t^{\perp}$ is an infinite stream of computations
- You can run them, but they don't return

Nat Values:

Nat Continuation:
$N a t^{\perp}$ Value:
Nat ${ }^{\perp}$ Continuations:

```
Zero Succ V
rec {Zero }->N|\mathrm{ Succ }x->y.P}\mathrm{ with E
```

corec $\{$ Run $\rightarrow E \mid$ Tail $\alpha \rightarrow \beta . F\}$ with V Run Tail E

Corecursion on Streams

In an Abstract Machine

Corecursion on Streams

In an Abstract Machine

- Generalize $N a t^{\perp}$ to Stream A

Corecursion on Streams

In an Abstract Machine

- Generalize Nat ${ }^{\perp}$ to Stream A
- Infinite stream of computations that return an A

Corecursion on Streams

In an Abstract Machine

- Generalize Nat ${ }^{\perp}$ to Stream A
- Infinite stream of computations that return an A
- Head : Stream $A \rightarrow A$ and Tail :Stream $A \rightarrow$ Stream A

Corecursion on Streams

In an Abstract Machine

- Generalize Nat ${ }^{\perp}$ to Stream A

- Infinite stream of computations that return an A
- Head: Stream $A \rightarrow A$ and Tail:Stream $A \rightarrow$ Stream A
$N a t^{\perp}$ Value: corec $\{$ Run $\rightarrow E \mid$ Tail $\beta \rightarrow \gamma . F\}$ with V
Nat ${ }^{\perp}$ Conts.: Run Tail E

Corecursion on Streams

In an Abstract Machine

- Generalize Nat ${ }^{\perp}$ to Stream A

- Infinite stream of computations that return an A
- Head : Stream $A \rightarrow A$ and Tail:Stream $A \rightarrow \operatorname{Stream~} A$

Nat ${ }^{\perp}$ Value: \quad corec $\{R u n \rightarrow E \mid$ Tail $\beta \rightarrow \gamma . F\}$ with V

Nat ${ }^{\perp}$ Conts.:
Stream A Value:
Stream A Conts.:
corec $\{$ Head $\alpha \rightarrow E \mid$ Tail $\beta \rightarrow \gamma . F\}$ with V Head $E \quad$ Tail E

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

Corecursion on Streams

In the $\lambda \mu$-Calculus

- Functional, direct-style

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M : A Tail M : Stream A when M : Stream A

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M : A Tail M: Stream A when M : Stream A
Generator: corec $\{$ Head $\rightarrow x . N \mid$ Tail $\beta \rightarrow y . P\}$ with M

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M:A Tail M:Stream A when M : Stream A Generator: $\operatorname{corec}\{$ Head $\rightarrow x . N \mid$ Tail $\beta \rightarrow y . P\}$ with M

- Accumulator M, named x and y in the branches

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M : A Tail M : Stream A when M : Stream A Generator: corec $\{$ Head $\rightarrow x . N \mid$ Tail $\beta \rightarrow y . P\}$ with M

- Accumulator M, named x and y in the branches
- Head branch: N computes first element from current accumulator x

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M : A Tail M : Stream A when M : Stream A Generator: corec $\{$ Head $\rightarrow x . N \mid$ Tail $\beta \rightarrow y . P\}$ with M

- Accumulator M, named x and y in the branches
- Head branch: N computes first element from current accumulator x
- Tail branch: P computes one of two options

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M : A Tail M : Stream A when M : Stream A
Generator: corec $\{$ Head $\rightarrow x . N \mid$ Tail $\beta \rightarrow y . P\}$ with M

- Accumulator M, named x and y in the branches
- Head branch: N computes first element from current accumulator x
- Tail branch: P computes one of two options
- Continue: return a new accumulator value from current y used for next corecursive loop

Corecursion on Streams

In the $\boldsymbol{\lambda} \mu$-Calculus

- Functional, direct-style
- Don't mention continuations directly; implicit "evaluation contexts"
- Contexts named by $\mu \alpha$. J; invoked by jumps $\langle M \| \alpha\rangle$

Destructors: Head M : A Tail M : Stream A when M : Stream A
Generator: $\operatorname{corec}\{$ Head $\rightarrow x . N \mid$ Tail $\beta \rightarrow y . P\}$ with M

- Accumulator M, named x and y in the branches
- Head branch: N computes first element from current accumulator x
- Tail branch: P computes one of two options
- Continue: return a new accumulator value from current y used for next corecursive loop
- End: send a fully-formed stream to context β; this corecursive loop is finished

Examples of Corecursion

In an Abstract Machine

Examples of Corecursion

In an Abstract Machine

$$
\text { count } x=x, x+1, x+2, x+3 \ldots
$$

Examples of Corecursion

In an Abstract Machine

$$
\begin{gathered}
\text { count } x=x, x+1, x+2, x+3 \ldots \\
\text { count }=\lambda x \cdot \operatorname{corec}\left\{\text { Head } \rightarrow y \cdot y \mid \text { Tail }_{-} \rightarrow z . \text { Succ } z\right\} \text { with } x
\end{gathered}
$$

Examples of Corecursion

In an Abstract Machine

$$
\begin{gathered}
\text { count } x=x, x+1, x+2, x+3 \ldots \\
\text { count }=\lambda x \cdot \operatorname{corec}\left\{\text { Head } \rightarrow y \cdot y \mid \text { Tail }_{-} \rightarrow z \cdot \text { Succ } z\right\} \text { with } x \\
\operatorname{scons} x\left(y_{0}, y_{1}, y_{2} \ldots\right)=x, y_{0}, y_{1}, y_{2} \ldots
\end{gathered}
$$

Examples of Corecursion

In an Abstract Machine

$$
\begin{gathered}
\text { count } x=x, x+1, x+2, x+3 \ldots \\
\text { count }=\lambda x \cdot \operatorname{corec}\{\text { Head } \rightarrow y \cdot y \mid \text { Tail } \rightarrow z \cdot \text { Succ } z\} \text { with } x \\
\text { scons } x\left(y_{0}, y_{1}, y_{2} \ldots\right)=x, y_{0}, y_{1}, y_{2} \ldots \\
\text { scons }=\lambda x . \lambda y s . \operatorname{corec}\left\{\text { Head } \rightarrow_{-} . x \mid \text { Tail } \alpha \rightarrow_{-} \cdot \mu \delta .\langle y s \| \alpha\rangle\right\} \text { with }
\end{gathered}
$$

Examples of Corecursion

In an Abstract Machine

$$
\begin{gathered}
\text { count } x=x, x+1, x+2, x+3 \ldots \\
\text { count }=\lambda x . \operatorname{corec}\{\text { Head } \rightarrow y \cdot y \mid \text { Tail } \rightarrow z \cdot \text { Succ } z\} \text { with } x \\
\text { scons } x\left(y_{0}, y_{1}, y_{2} \ldots\right)=x, y_{0}, y_{1}, y_{2} \ldots \\
\text { scons }=\lambda x \cdot \lambda y s . \operatorname{corec}\left\{\text { Head } \rightarrow-x \mid \text { Tail } \alpha \rightarrow_{-} \cdot \mu \delta \cdot\langle y s \| \alpha\rangle\right\} \text { with }- \\
\operatorname{app}\left[x_{0}, x_{1}, \ldots, x_{n}\right]\left(y_{0}, y_{1}, y_{2} \ldots\right)=x_{0}, x_{1}, \ldots, x_{n}, y_{0}, y_{1}, y_{2} \ldots
\end{gathered}
$$

Examples of Corecursion

In an Abstract Machine

$$
\begin{gathered}
\text { count } x=x, x+1, x+2, x+3 \ldots \\
\text { count }=\lambda x . \operatorname{corec}\{\text { Head } \rightarrow y \cdot y \mid \text { Tail } \rightarrow z . \text { Succ } z\} \text { with } x \\
\text { scons } x\left(y_{0}, y_{1}, y_{2} \ldots\right)=x, y_{0}, y_{1}, y_{2} \ldots \\
\text { scons }=\lambda x . \lambda y s . \operatorname{corec}\left\{\text { Head } \rightarrow-x \mid \text { Tail } \alpha \rightarrow_{-} \mu \delta .\langle y s \| \alpha\rangle\right\} \text { with }- \\
\operatorname{app}\left[x_{0}, x_{1}, \ldots, x_{n}\right]\left(y_{0}, y_{1}, y_{2} \ldots\right)=x_{0}, x_{1}, \ldots, x_{n}, y_{0}, y_{1}, y_{2} \ldots \\
\operatorname{app}=\lambda x s . \lambda y s . \operatorname{corec}\left\{\begin{array}{c}
\text { Head } \rightarrow \text { Cons } x x s . x \\
\text { Tail } \rightarrow \text { Cons } x x . x s \\
\text { Head } \rightarrow \text { Nil. Head ys } \\
\text { Tail } \alpha \rightarrow \text { Nil. } \mu \delta .\langle\text { Tail } y s \| \alpha\rangle
\end{array}\right\} \text { with } x s
\end{gathered}
$$

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\operatorname{coiter}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail }_{-} \rightarrow \gamma . F
\end{array}\right\} \text { with } V
$$

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\begin{gathered}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{gathered}
$$

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\left.\begin{array}{c}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{array}\right] \begin{gathered}
\text { corec }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \beta \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{coiter}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow[\text { Head } \alpha, E] \\
\text { Tail } \rightarrow[\beta, \gamma] .[\text { Tail } \beta, F]
\end{array}\right\} \text { with Right } V
\end{gathered}
$$

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\begin{gathered}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{gathered} \begin{gathered}
\text { corec }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \beta \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{coiter}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow[\text { Head } \alpha, E] \\
\text { Tail } \rightarrow[\beta, \gamma] .[\text { Tail } \beta, F]
\end{array}\right\} \text { with Right } V
\end{gathered}
$$

- (Amortized) overhead cost; consider scons x ys:

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\left.\begin{array}{c}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma, F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{array}\right] \begin{gathered}
\text { corec }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \beta \rightarrow \gamma, F
\end{array}\right\} \text { with } V:=\operatorname{coiter}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow[\text { Head } \alpha, E] \\
\text { Tail } \rightarrow[\beta, \gamma] .[\text { Tail } \beta, F]
\end{array}\right\} \text { with Right } V
\end{gathered}
$$

- (Amortized) overhead cost; consider scons x ys:
- Native corec: $\operatorname{Head}\left(\operatorname{Tail}^{n+1}\left(\operatorname{scons} x\right.\right.$ ys)) adds $O(1)$ overhead to cost of $\operatorname{Head}\left(\operatorname{Tail}^{n} y s\right)$

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\left.\begin{array}{c}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{array}\right] \begin{gathered}
\text { corec }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \beta \rightarrow \gamma, F
\end{array}\right\} \text { with } V:=\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow[\text { Head } \alpha, E] \\
\text { Tail } \rightarrow[\beta, \gamma] .[\text { Tail } \beta, F]
\end{array}\right\} \text { with Right } V
\end{gathered}
$$

- (Amortized) overhead cost; consider scons x ys:
- Native corec: $\operatorname{Head}\left(\right.$ Tail $^{n+1}\left(\right.$ scons x ys)) adds $O(1)$ overhead to cost of Head(Tail ${ }^{n}$ ys)
- Encoded corec: Head(Tail ${ }^{n+1}\left(\right.$ scons x ys)) adds $O(n)$ overhead to cost of $\operatorname{Head}\left(\right.$ Tail n ys)

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\begin{gathered}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{gathered} \begin{gathered}
\text { corec }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \beta \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{coiter}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow[\text { Head } \alpha, E] \\
\text { Tail } \rightarrow[\beta, \gamma] .[\text { Tail } \beta, F]
\end{array}\right\} \text { with Right } V
\end{gathered}
$$

- (Amortized) overhead cost; consider scons x ys:

- Encoded corec: $\operatorname{Head}\left(T a i l^{n+1}(\right.$ scons x ys)) adds $O(n)$ overhead to cost of Head(Tailn ys)
- Native CBN corec has same overhead as encoding; Native CBV corec more efficient

Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

$$
\begin{gathered}
\text { coiter }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{corec}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \rightarrow \gamma . F
\end{array}\right\} \text { with } V \\
\langle\text { Left } V \|[E, F]\rangle \mapsto\langle V \| E\rangle \quad\langle\text { Right } V \|[E, F]\rangle \mapsto\langle V \| F\rangle
\end{gathered} \begin{gathered}
\text { corec }\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow E \\
\text { Tail } \beta \rightarrow \gamma . F
\end{array}\right\} \text { with } V:=\operatorname{coiter}\left\{\begin{array}{c}
\text { Head } \alpha \rightarrow[\text { Head } \alpha, E] \\
\text { Tail } \rightarrow[\beta, \gamma] .[\text { Tail } \beta, F]
\end{array}\right\} \text { with Right } V
\end{gathered}
$$

- (Amortized) overhead cost; consider scons x ys:
- Native corec: $\operatorname{Head}\left(\right.$ Tail $^{n+1}\left(\right.$ scons x ys)) adds $O(1)$ overhead to cost of Head(Tail ${ }^{n}$ ys)
- Encoded corec: Head(Tail ${ }^{n+1}\left(\right.$ scons x ys)) adds $O(n)$ overhead to cost of Head(Tail ${ }^{n}$ ys)
- Native CBN corec has same overhead as encoding; Native CBV corec more efficient
- Corollary by duality of rec and iter

(Co)Inductive Reasoning

Finite Induction

By Inversion on the Input

Finite Induction

By Inversion on the Input
$\Gamma, x:$ Bool $\vdash \Phi(x)$

Finite Induction

By Inversion on the Input
$\Gamma, x:$ Bool $\vdash \Phi(x)$

Finite Induction

By Inversion on the Input

$\Gamma \vdash \Phi($ True $)$

$$
\Gamma, x: \text { Bool } \vdash \Phi(x)
$$

Finite Induction

By Inversion on the Input

$$
\Gamma \vdash \Phi(\text { True }) \quad Г \vdash \Phi(\text { False })
$$

$$
\Gamma, x: \text { Bool } \vdash \Phi(x)
$$

Finite Induction

By Inversion on the Input

$$
\Gamma \vdash \Phi(\text { True }) \quad \Gamma \vdash \Phi(\text { False })
$$

$$
\Gamma, x: \text { Bool } \vdash \Phi(x)
$$

Infinite Induction

By Inversion on the Input

Infinite Induction

By Inversion on the Input

$$
\Gamma, x: N a t \vdash \Phi(x)
$$

Infinite Induction

By Inversion on the Input

$\Gamma, x: N a t \vdash \Phi(x)$

Infinite Induction

By Inversion on the Input
$\Gamma \vdash \Phi(0)$

$$
\Gamma, x: N a t \vdash \Phi(x)
$$

Infinite Induction

By Inversion on the Input

$$
\Gamma \vdash \Phi(0) \quad \Gamma \vdash \Phi(1)
$$

$$
\Gamma, x: \operatorname{Nat} \vdash \Phi(x)
$$

Infinite Induction

By Inversion on the Input

$$
\Gamma \vdash \Phi(0) \quad \Gamma \vdash \Phi(1) \quad \Gamma \vdash \Phi(2)
$$

$$
\Gamma, x: N a t \vdash \Phi(x)
$$

Infinite Induction

By Inversion on the Input

$$
\Gamma \vdash \Phi(0) \quad \Gamma \vdash \Phi(1) \quad \Gamma \vdash \Phi(2) \quad \cdots
$$

$$
\Gamma, x: N a t \vdash \Phi(x)
$$

Infinite Induction

By Inversion on the Input

$$
\Gamma \vdash \Phi(0) \quad \Gamma \vdash \Phi(1) \quad \Gamma \vdash \Phi(2) \quad \cdots
$$

$$
\Gamma, x: N a t \vdash \Phi(x)
$$

An Induction Principle

An Induction Principle

Based on Information Flow
$\Gamma, x: N a t \vdash \Phi(x)$

An Induction Principle

Based on Information Flow

$\Gamma \vdash \Phi($ Zero $)$

$$
\Gamma, x: \operatorname{Nat} \vdash \Phi(x)
$$

An Induction Principle

Based on Information Flow

$\Gamma \vdash \Phi($ Zero $) \quad \Gamma, x: N a t, \Phi(x) \vdash \Phi($ Succ $x)$

$$
\Gamma, x: \operatorname{Nat} \vdash \Phi(x)
$$

An Induction Principle

Based on Information Flow

$\Gamma \vdash \Phi($ Zero $) \quad \Gamma, x: N a t, \Phi(x) \vdash \Phi($ Succ $x)$

$$
\Gamma, x: \operatorname{Nat} \vdash \Phi(x)
$$

An Induction Principle

Based on Information Flow

$\Gamma \vdash \Phi($ Zero $) \quad \Gamma, x: N a t, \Phi(x) \vdash \Phi($ Succ $x)$

$$
\begin{gathered}
\Gamma, x: N a t \vdash \Phi(x) \\
\Phi(\text { Zero }) \Rightarrow(\forall x: N a t . \Phi(x) \Rightarrow \Phi(x+1)) \\
\Rightarrow(\forall x: N a t . \Phi(x))
\end{gathered}
$$

Finite Coinduction

By Inversion on the Output

Finite Coinduction

By Inversion on the Output

$$
\lambda x . V x={ }_{\eta} V
$$

Finite Coinduction

By Inversion on the Output

$$
\lambda x . V x={ }_{\eta} V
$$

$\Gamma \vdash V=V^{\prime}: A \rightarrow B$

Finite Coinduction

By Inversion on the Output
$\Gamma, x: A \vdash V x=V^{\prime} x: B$

$$
\Gamma \vdash V=V^{\prime}: A \rightarrow B
$$

$$
\lambda x . V x={ }_{\eta} V
$$

Finite Coinduction

By Inversion on the Output
$\Gamma, x: A \vdash V x=V^{\prime} x: B$

$$
\Gamma \vdash V=V^{\prime}: A \rightarrow B
$$

$$
\lambda x . V x={ }_{\eta} V
$$

$$
\lambda x \cdot \mu \beta \cdot\langle V \| x \cdot \beta\rangle={ }_{\eta} V
$$

Finite Coinduction

By Inversion on the Output
$\Gamma, x: A \vdash V x=V^{\prime} x: B$

$$
\Gamma \vdash V=V^{\prime}: A \rightarrow B
$$

$$
\lambda x . V x={ }_{\eta} V
$$

$$
\Gamma, \alpha \div A \rightarrow B \vdash \Phi(\alpha)
$$

$$
\lambda x \cdot \mu \beta \cdot\langle V \| x \cdot \beta\rangle={ }_{\eta} V
$$

Finite Conduction

By Inversion on the Output
$\Gamma, x: A \vdash V x=V^{\prime} x: B$

$$
\Gamma \vdash V=V^{\prime}: A \rightarrow B
$$

$$
\lambda x . V x={ }_{\eta} V
$$

$$
\overline{\Gamma, \alpha \div A \rightarrow B \vdash \Phi(\alpha)} \lambda x \cdot \mu \beta .\langle V \| x \cdot \beta\rangle={ }_{\eta} V
$$

Finite Coinduction

By Inversion on the Output
$\Gamma, x: A \vdash V x=V^{\prime} x: B$
$\Gamma \vdash V=V^{\prime}: A \rightarrow B$

$$
\lambda x . V x={ }_{\eta} V
$$

$$
\Gamma, x: A, \beta \div B \vdash \Phi(x \cdot \beta)
$$

$$
\Gamma, \alpha \div A \rightarrow B \vdash \Phi(\alpha)
$$

$$
\lambda x \cdot \mu \beta \cdot\langle V \| x \cdot \beta\rangle={ }_{\eta} V
$$

Infinite Coinduction

By Inversion on the Output

Infinite Coinduction

By Inversion on the Output
$\Gamma, \alpha \div$ Stream $A \vdash \Phi(\alpha)$

Infinite Coinduction

By Inversion on the Output

$\Gamma, \alpha \div$ Stream $A \vdash \Phi(\alpha)$

Infinite Coinduction

By Inversion on the Output

$$
\Gamma, \beta \div A \vdash \Phi(\operatorname{Head} \beta)
$$

$$
\Gamma, \alpha \div \text { Stream } A \vdash \Phi(\alpha)
$$

Infinite Coinduction

By Inversion on the Output

$$
\begin{aligned}
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Head} \beta) \\
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Tail}(\text { Head } \beta))
\end{aligned}
$$

$\Gamma, \alpha \div$ Stream $A \vdash \Phi(\alpha)$

Infinite Coinduction

By Inversion on the Output

$$
\begin{aligned}
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Head} \beta) \\
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Tail}(H e a d ~ \beta)) \\
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Tail}(\operatorname{Tail}(\text { Head } \beta)))
\end{aligned}
$$

$\Gamma, \alpha \div$ Stream $A \vdash \Phi(\alpha)$

Infinite Coinduction

By Inversion on the Output

$$
\begin{aligned}
& \Gamma, \beta \div A \vdash \Phi(\text { Head } \beta) \\
& \Gamma, \beta \div A \vdash \Phi(\text { Tail }(\text { Head } \beta)) \\
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Tail}(\text { Tail }(\text { Head } \beta))) \\
& \quad \vdots \\
& \Gamma, \alpha \div \text { Stream } A \vdash \Phi(\alpha)
\end{aligned}
$$

Infinite Coinduction

By Inversion on the Output

$$
\begin{aligned}
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Head} \beta) \\
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Tail}(\operatorname{Head} \beta)) \\
& \Gamma, \beta \div A \vdash \Phi(\operatorname{Tail}(\text { Tail }(\text { Head } \beta))) \\
& \quad \vdots \\
& \Gamma, \alpha \div \text { Stream } A \vdash \Phi(\alpha)
\end{aligned}
$$

A Coinduction Principle

Based on Control Flow

A Coinduction Principle

Based on Control Flow

$\Gamma, \alpha \div \operatorname{Stream} A \vdash \Phi(\alpha)$

A Coinduction Principle

Based on Control Flow
$\Gamma, \beta \div A \vdash \Phi($ Head $\beta)$

$\Gamma, \alpha \div$ Stream $A \vdash \Phi(\alpha)$

A Coinduction Principle

$\Gamma, \beta \div A \vdash \Phi($ Head $\beta)$
 $\Gamma, \alpha \div \operatorname{Stream} A, \Phi(\alpha) \vdash \Phi($ Tail $\alpha)$

$$
\Gamma, \alpha \div \text { Stream } A \vdash \Phi(\alpha)
$$

A Coinduction Principle

Based on Control Flow

$$
\begin{array}{r}
\Gamma, \beta \div A \vdash \Phi(\text { Head } \beta) \\
\Gamma, \alpha \div \text { Stream } A, \Phi(\alpha) \vdash \Phi(\text { Tail } \alpha)
\end{array}
$$

$$
\Gamma, \alpha \div \text { Stream } A \vdash \Phi(\alpha)
$$

A Coinduction Principle

$\Gamma, \beta \div A \vdash \Phi($ Head $\beta)$
 $\Gamma, \alpha \div \operatorname{Stream} A, \Phi(\alpha) \vdash \Phi($ Tail $\alpha)$

$\Gamma, \alpha \div$ Stream $A \vdash \Phi(\alpha)$

Bisimulation

$$
\begin{aligned}
& =\left(\forall s, s^{\prime}: \text { Stream A. } \Phi\left(s, s^{\prime}\right) \Rightarrow \text { Head } s=\text { Head } s^{\prime}: A\right) \\
& \Rightarrow\left(\forall s, s^{\prime}: \text { Stream A. } \Phi\left(s, s^{\prime}\right) \Rightarrow \Phi\left(\text { Tail } s, \text { Tail } s^{\prime}\right)\right) \\
& \Rightarrow\left(\forall s, s^{\prime}: \text { Stream A. } \Phi\left(s, s^{\prime}\right) \Rightarrow s=s^{\prime}: \text { Stream A }\right)
\end{aligned}
$$

A Coinduction Principle

$\Gamma, \beta \div A \vdash \Phi($ Head $\beta)$
 $\Gamma, \alpha \div \operatorname{Stream} A, \Phi(\alpha) \vdash \Phi($ Tail $\alpha)$

$$
\begin{aligned}
& \Gamma, \alpha \div \text { Stream }-\boldsymbol{\Phi}(\alpha) \\
& \text { Bisimulation } \\
& \quad=\left(\forall s, s^{\prime}: \text { Stream } A . \Phi\left(s, s^{\prime}\right) \Rightarrow \text { Head } s=\text { Head } s^{\prime}: A\right) \\
& \quad \Rightarrow\left(\forall s, s^{\prime}: \text { Stream } A . \Phi\left(s, s^{\prime}\right) \Rightarrow \Phi\left(\text { Tail } s, \text { Tail } s^{\prime}\right)\right) \\
& \Rightarrow\left(\forall s, s^{\prime}: \text { Stream } A . \Phi\left(s, s^{\prime}\right) \Rightarrow s=s^{\prime}: \text { Stream } A\right)
\end{aligned}
$$

Proof by Coinduction

Proof by Coinduction

$$
\text { repeat } x=x, x, x \ldots \quad \text { alt }=0,1,0,1 \ldots \quad \text { evens }\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots
$$

Proof by Coinduction

$$
\text { repeat } x=x, x, x \ldots \quad \text { alt }=0,1,0,1 \ldots \quad \text { evens }\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots
$$

Theorem: evens alt $=$ repeat $0:$ Stream A

Proof by Coinduction

repeat $x=x, x, x \ldots \quad$ alt $=0,1,0,1 \ldots \quad$ evens $\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots$
Theorem: evens alt $=$ repeat $0:$ Stream A

- S.T.S: $\alpha \div$ Stream $A \vdash\langle$ evens alt $\| \alpha\rangle=\langle$ repeat $0 \| \alpha\rangle$

Proof by Coinduction

repeat $x=x, x, x \ldots \quad$ alt $=0,1,0,1 \ldots \quad$ evens $\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots$
Theorem: evens alt $=$ repeat $0:$ Stream A

- S.T.S: $\alpha \div$ Stream $A \vdash\langle$ evens alt $\| \alpha\rangle=\langle$ repeat $0 \| \alpha\rangle$

Proof: By coinduction on $\alpha \div$ Stream A...

Proof by Coinduction

repeat $x=x, x, x \ldots \quad$ alt $=0,1,0,1 \ldots \quad$ evens $\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots$
Theorem: evens alt $=$ repeat $0:$ Stream A

- S.T.S: $\alpha \div$ Stream $A \vdash\langle$ evens alt $\| \alpha\rangle=\langle$ repeat $0 \| \alpha\rangle$

Proof: By coinduction on $\alpha \div$ Stream A...

- $\alpha=$ Head $\beta:\langle$ evens alt $\|$ Head $\beta\rangle=\langle 0 \| \beta\rangle=\langle$ repeat $0 \|$ Head $\beta\rangle$

Proof by Coinduction

repeat $x=x, x, x \ldots \quad$ alt $=0,1,0,1 \ldots \quad$ evens $\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots$
Theorem: evens alt $=$ repeat $0:$ Stream A

- S.T.S: $\alpha \div$ Stream $A \vdash\langle$ evens alt $\| \alpha\rangle=\langle$ repeat $0 \| \alpha\rangle$

Proof: By coinduction on $\alpha \div$ Stream A...

- $\alpha=$ Head β : \langle evens alt $\|$ Head $\beta\rangle=\langle 0 \| \beta\rangle=\langle$ repeat $0 \|$ Head $\beta\rangle$
- $\alpha=$ Tail β : Assume $\operatorname{CoIH}\langle$ evens alt $\| \beta\rangle=\langle$ repeat $0 \| \beta\rangle$ and show \langle evens alt $\|$ Tail $\beta\rangle=\langle$ repeat $0 \|$ Tail $\beta\rangle . .$.

Proof by Coinduction

repeat $x=x, x, x \ldots \quad$ alt $=0,1,0,1 \ldots \quad$ evens $\left(x_{0}, x_{1}, x_{2} \ldots\right)=x_{0}, x_{2}, x_{4} \ldots$
Theorem: evens alt $=$ repeat $0:$ Stream A

- S.T.S: $\alpha \div$ Stream $A \vdash\langle$ evens alt $\| \alpha\rangle=\langle$ repeat $0 \| \alpha\rangle$

Proof: By coinduction on $\alpha \div$ Stream A...

- $\alpha=$ Head β : \langle evens alt $\|$ Head $\beta\rangle=\langle 0 \| \beta\rangle=\langle$ repeat $0 \|$ Head $\beta\rangle$
- $\alpha=$ Tail β : Assume CoIH \langle evens alt $\| \beta\rangle=\langle$ repeat $0 \| \beta\rangle$ and show \langle evens alt $\|$ Tail $\beta\rangle=\langle$ repeat $0 \|$ Tail $\beta\rangle . .$.

$$
\begin{array}{rlr}
\langle\text { evens alt } \| \text { Tail } \beta\rangle & =\langle\text { evens }(\text { Tail }(\text { Tail alt })) \| \beta\rangle & \text { (def. evens) } \\
& =\langle\text { evens alt } \| \beta\rangle & (\text { def. alt }) \\
& =\langle\text { repeat } 0 \| \beta\rangle & (\text { CoIH }) \\
& =\langle\text { repeat } 0 \| \text { Tail } \beta\rangle & \text { (def. repeat })
\end{array}
$$

Weak vs Strong (Co)Induction

And Effectful Computation

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ
- Strong induction is unsound in CBN

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ
- Strong induction is unsound in CBN
- Strong coinduction is unsound in CBV

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ
- Strong induction is unsound in CBN
- Strong coinduction is unsound in CBV
- Weak (co)induction restricts Φ

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ
- Strong induction is unsound in CBN
- Strong coinduction is unsound in CBV
- Weak (co)induction restricts Φ
- Weak induction on x : must be strict on x like $\langle x \| E\rangle=\left\langle x \| E^{\prime}\right\rangle$

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ
- Strong induction is unsound in CBN
- Strong coinduction is unsound in CBV
- Weak (co)induction restricts Φ
- Weak induction on x : must be strict on x like $\langle x \| E\rangle=\left\langle x \| E^{\prime}\right\rangle$
- Weak induction on α : must be productive on α like $\langle V \| \alpha\rangle=\left\langle V^{\prime} \| \alpha\right\rangle$

Weak vs Strong (Co)Induction

And Effectful Computation

- Strong (co)induction proves any property Φ
- Strong induction is unsound in CBN
- Strong coinduction is unsound in CBV
- Weak (co)induction restricts Φ
- Weak induction on x : must be strict on x like $\langle x \| E\rangle=\left\langle x \| E^{\prime}\right\rangle$
- Weak induction on α : must be productive on α like $\langle V \| \alpha\rangle=\left\langle V^{\prime} \| \alpha\right\rangle$
- Weak (co)induction is always sound

Lessons Learned

Lessons Learned

- Duality - Ideas for free!

Lessons Learned

- Duality - Ideas for free!
- Impact of evaluation, computation, effects, divergence
- CBV: strong induction and efficient corecursion
- CBN: strong coinduction and efficient recursion
- Future work: Call-by-push-value or polarities could get best of both worlds

Lessons Learned

- Duality - Ideas for free!
- Impact of evaluation, computation, effects, divergence
- CBV: strong induction and efficient corecursion
- CBN: strong coinduction and efficient recursion
- Future work: Call-by-push-value or polarities could get best of both worlds
- (Co)Induction are both inversion principles
- Induction: inversion on input, guided by information flow
- Coinduction: inversion on output, guided by control flow

