
PPDP 2020, September 8–10

A Computational Understanding
of Classical (Co)Recursion
Paul Downen and Zena M. Ariola

Topic

Topic

• Both programs and proofs with loops

Topic

• Both programs and proofs with loops
• (Co)Recursion and (Co)Induction

Topic

• Both programs and proofs with loops
• (Co)Recursion and (Co)Induction
• “Terminating” or “Productive”

Topic

• Both programs and proofs with loops
• (Co)Recursion and (Co)Induction
• “Terminating” or “Productive”
• Extend to non-termination, effects

Methodology

Methodology

• Duality

Methodology

• Duality
• Computational

Methodology

• Duality
• Computational
• Curry-Howard

Methodology

• Duality
• Computational
• Curry-Howard

• sequent calculus as abstract machines

Methodology

• Duality
• Computational
• Curry-Howard

• sequent calculus as abstract machines

• Classical

Recursive Programs

Recursion on Natural Numbers
In System T

Recursion on Natural Numbers

• Simply-typed -calculus plus inductive λ Nat = Zero ∣ Succ Nat

In System T

Recursion on Natural Numbers

• Simply-typed -calculus plus inductive λ Nat = Zero ∣ Succ Nat

 recA
Nat : Nat → A → (Nat → A → A) → A

In System T

Recursion on Natural Numbers

• Simply-typed -calculus plus inductive λ Nat = Zero ∣ Succ Nat

 recA
Nat : Nat → A → (Nat → A → A) → A

 rec M as {Zero → N ∣ Succ x → y . P} where M, x : Nat; N and P, y : A

In System T

Recursion on Natural Numbers

• Simply-typed -calculus plus inductive λ Nat = Zero ∣ Succ Nat

 recA
Nat : Nat → A → (Nat → A → A) → A

 rec M as {Zero → N ∣ Succ x → y . P} where M, x : Nat; N and P, y : A

case M of Zero → N
Succ x → P

:= rec M of Zero → M
Succ x → _ . P

In System T

Recursion on Natural Numbers

• Simply-typed -calculus plus inductive λ Nat = Zero ∣ Succ Nat

 recA
Nat : Nat → A → (Nat → A → A) → A

 rec M as {Zero → N ∣ Succ x → y . P} where M, x : Nat; N and P, y : A

case M of Zero → N
Succ x → P

:= rec M of Zero → M
Succ x → _ . P

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

In System T

Examples of Recursion
In System T

Examples of Recursion

plus Zero y = y
plus (Succ x′) y = Succ (plus x′ y)

In System T

Examples of Recursion

plus Zero y = y
plus (Succ x′) y = Succ (plus x′ y)

plus = λx . λy . iter x as
Zero → y
Succ → z . Succ z

In System T

Examples of Recursion

plus Zero y = y
plus (Succ x′) y = Succ (plus x′ y)

plus = λx . λy . iter x as
Zero → y
Succ → z . Succ z

In System T

pred Zero = Zero
pred (Succ x′) = x′

Examples of Recursion

plus Zero y = y
plus (Succ x′) y = Succ (plus x′ y)

plus = λx . λy . iter x as
Zero → y
Succ → z . Succ z

In System T

pred Zero = Zero
pred (Succ x′) = x′

pred = λx . case x of
Zero → Zero
Succ x′ → x′

Examples of Recursion

plus Zero y = y
plus (Succ x′) y = Succ (plus x′ y)

plus = λx . λy . iter x as
Zero → y
Succ → z . Succ z

In System T

pred Zero = Zero
pred (Succ x′) = x′

pred = λx . case x of
Zero → Zero
Succ x′ → x′

minus x Zero = x
minus x (Succ y′) = pred (minus x y′)

Examples of Recursion

plus Zero y = y
plus (Succ x′) y = Succ (plus x′ y)

plus = λx . λy . iter x as
Zero → y
Succ → z . Succ z

In System T

pred Zero = Zero
pred (Succ x′) = x′

pred = λx . case x of
Zero → Zero
Succ x′ → x′

minus x Zero = x
minus x (Succ y′) = pred (minus x y′)

minus = λx . λy . iter y as
Zero → x
Succ → z . pred z

Recursion vs Iteration
Expressiveness vs Cost

Recursion vs Iteration

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

Expressiveness vs Cost

Recursion vs Iteration

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

rec M as Zero → N
Succ x → y . P :=

snd(iter M as Zero → (Zero, N)
Succ → (x, y) . (Succ x, P))

Expressiveness vs Cost

Recursion vs Iteration

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

rec M as Zero → N
Succ x → y . P :=

snd(iter M as Zero → (Zero, N)
Succ → (x, y) . (Succ x, P))

• goes from to timepred (Succn Zero) O(1) O(n)

Expressiveness vs Cost

Recursion vs Iteration

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

rec M as Zero → N
Succ x → y . P :=

snd(iter M as Zero → (Zero, N)
Succ → (x, y) . (Succ x, P))

• goes from to timepred (Succn Zero) O(1) O(n)

• goes from to minus (Succn Zero) (Succm Zero) O(n) O(n2 + nm)

Expressiveness vs Cost

Recursion vs Iteration

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

rec M as Zero → N
Succ x → y . P :=

snd(iter M as Zero → (Zero, N)
Succ → (x, y) . (Succ x, P))

• goes from to timepred (Succn Zero) O(1) O(n)

• goes from to minus (Succn Zero) (Succm Zero) O(n) O(n2 + nm)

• Native has the same performance penalty as encoding in CBVrec

Expressiveness vs Cost

Recursion vs Iteration

iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

rec M as Zero → N
Succ x → y . P :=

snd(iter M as Zero → (Zero, N)
Succ → (x, y) . (Succ x, P))

• goes from to timepred (Succn Zero) O(1) O(n)

• goes from to minus (Succn Zero) (Succm Zero) O(n) O(n2 + nm)

• Native has the same performance penalty as encoding in CBVrec
• Recursive result always computed; full traversal is mandatory

Expressiveness vs Cost

Recursion in an Abstract Machine
Building the Recursive Continuation

Recursion in an Abstract Machine
Building the Recursive Continuation

⟨M ||E⟩

Recursion in an Abstract Machine
Building the Recursive Continuation

⟨M N ||E⟩ ↦ ⟨M ||N ⋅ E⟩
⟨λx . M ||N ⋅ E⟩ ↦ ⟨M[N/x] ||E⟩

⟨M ||E⟩

Recursion in an Abstract Machine
Building the Recursive Continuation

⟨M N ||E⟩ ↦ ⟨M ||N ⋅ E⟩
⟨λx . M ||N ⋅ E⟩ ↦ ⟨M[N/x] ||E⟩

ralt := { Zero → N ∣ Succ x → y . P }

⟨M ||E⟩

Recursion in an Abstract Machine
Building the Recursive Continuation

⟨M N ||E⟩ ↦ ⟨M ||N ⋅ E⟩
⟨λx . M ||N ⋅ E⟩ ↦ ⟨M[N/x] ||E⟩

⟨rec M as ralt ||E⟩ ↦ ⟨M ||rec ralt with E⟩

ralt := { Zero → N ∣ Succ x → y . P }

⟨M ||E⟩

Recursion in an Abstract Machine
Building the Recursive Continuation

⟨M N ||E⟩ ↦ ⟨M ||N ⋅ E⟩
⟨λx . M ||N ⋅ E⟩ ↦ ⟨M[N/x] ||E⟩

⟨rec M as ralt ||E⟩ ↦ ⟨M ||rec ralt with E⟩
⟨Zero ||rec ralt with E⟩ ↦ ⟨N ||E⟩

ralt := { Zero → N ∣ Succ x → y . P }

⟨M ||E⟩

Recursion in an Abstract Machine
Building the Recursive Continuation

⟨M N ||E⟩ ↦ ⟨M ||N ⋅ E⟩
⟨λx . M ||N ⋅ E⟩ ↦ ⟨M[N/x] ||E⟩

⟨rec M as ralt ||E⟩ ↦ ⟨M ||rec ralt with E⟩
⟨Zero ||rec ralt with E⟩ ↦ ⟨N ||E⟩

⟨Succ M ||rec ralt with E⟩ ↦ ⟨P[M/x, rec M as ralt/y] ||E⟩

ralt := { Zero → N ∣ Succ x → y . P }

⟨M ||E⟩

Corecursive Programs

What’s the Dual of Natural Numbers?
Nat⊥

What’s the Dual of Natural Numbers?
• is dual to Zero : 1 → Nat Run : Nat⊥ → ⊥

Nat⊥

What’s the Dual of Natural Numbers?
• is dual to Zero : 1 → Nat Run : Nat⊥ → ⊥

• is dual to Succ : Nat → Nat Tail : Nat⊥ → Nat⊥

Nat⊥

What’s the Dual of Natural Numbers?
• is dual to Zero : 1 → Nat Run : Nat⊥ → ⊥

• is dual to Succ : Nat → Nat Tail : Nat⊥ → Nat⊥

• is an infinite stream of computationsNat⊥

Nat⊥

What’s the Dual of Natural Numbers?
• is dual to Zero : 1 → Nat Run : Nat⊥ → ⊥

• is dual to Succ : Nat → Nat Tail : Nat⊥ → Nat⊥

• is an infinite stream of computationsNat⊥

• You can run them, but they don’t return

Nat⊥

What’s the Dual of Natural Numbers?
• is dual to Zero : 1 → Nat Run : Nat⊥ → ⊥

• is dual to Succ : Nat → Nat Tail : Nat⊥ → Nat⊥

• is an infinite stream of computationsNat⊥

• You can run them, but they don’t return

Nat Values: Zero Succ V
Nat Continuation: rec {Zero → N ∣ Succ x → y . P} with E

Nat⊥

What’s the Dual of Natural Numbers?
• is dual to Zero : 1 → Nat Run : Nat⊥ → ⊥

• is dual to Succ : Nat → Nat Tail : Nat⊥ → Nat⊥

• is an infinite stream of computationsNat⊥

• You can run them, but they don’t return

Nat Values: Zero Succ V
Nat Continuation: rec {Zero → N ∣ Succ x → y . P} with E

Nat⊥ Value: corec {Run → E ∣ Tail α → β . F} with V
Nat⊥ Continuations: Run Tail E

Nat⊥

Corecursion on Streams
In an Abstract Machine

Corecursion on Streams

• Generalize to Nat⊥ Stream A

In an Abstract Machine

Corecursion on Streams

• Generalize to Nat⊥ Stream A
• Infinite stream of computations that return an A

In an Abstract Machine

Corecursion on Streams

• Generalize to Nat⊥ Stream A
• Infinite stream of computations that return an A

• and Head : Stream A → A Tail : Stream A → Stream A

In an Abstract Machine

Corecursion on Streams

• Generalize to Nat⊥ Stream A
• Infinite stream of computations that return an A

• and Head : Stream A → A Tail : Stream A → Stream A

Nat⊥ Value: corec {Run → E ∣ Tail β → γ . F} with V
Nat⊥ Conts.: Run Tail E

In an Abstract Machine

Corecursion on Streams

• Generalize to Nat⊥ Stream A
• Infinite stream of computations that return an A

• and Head : Stream A → A Tail : Stream A → Stream A

Nat⊥ Value: corec {Run → E ∣ Tail β → γ . F} with V
Nat⊥ Conts.: Run Tail E

Stream A Value: corec {Head α → E ∣ Tail β → γ . F} with V
Stream A Conts.: Head E Tail E

In an Abstract Machine

Corecursion on Streams
In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A
Generator: corec {Head → x . N ∣ Tail β → y . P} with M

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A
Generator: corec {Head → x . N ∣ Tail β → y . P} with M

• Accumulator , named and in the branchesM x y

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A
Generator: corec {Head → x . N ∣ Tail β → y . P} with M

• Accumulator , named and in the branchesM x y

• Head branch: computes first element from current accumulator N x

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A
Generator: corec {Head → x . N ∣ Tail β → y . P} with M

• Accumulator , named and in the branchesM x y

• Head branch: computes first element from current accumulator N x

• Tail branch: computes one of two optionsP

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A
Generator: corec {Head → x . N ∣ Tail β → y . P} with M

• Accumulator , named and in the branchesM x y

• Head branch: computes first element from current accumulator N x

• Tail branch: computes one of two optionsP

• Continue: return a new accumulator value from current used for next corecursive loopy

In the λμ-Calculus

Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors: when Head M : A Tail M : Stream A M : Stream A
Generator: corec {Head → x . N ∣ Tail β → y . P} with M

• Accumulator , named and in the branchesM x y

• Head branch: computes first element from current accumulator N x

• Tail branch: computes one of two optionsP

• Continue: return a new accumulator value from current used for next corecursive loopy

• End: send a fully-formed stream to context ; this corecursive loop is finished β

In the λμ-Calculus

Examples of Corecursion
In an Abstract Machine

Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…
In an Abstract Machine

Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…

count = λx . corec {Head → y . y ∣ Tail _ → z . Succ z} with x

In an Abstract Machine

Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…

count = λx . corec {Head → y . y ∣ Tail _ → z . Succ z} with x

scons x (y0, y1, y2…) = x, y0, y1, y2…

In an Abstract Machine

Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…

count = λx . corec {Head → y . y ∣ Tail _ → z . Succ z} with x

scons x (y0, y1, y2…) = x, y0, y1, y2…

scons = λx . λys . corec {Head → _ . x ∣ Tail α → _ . μδ . ⟨ys ||α⟩} with _

In an Abstract Machine

Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…

count = λx . corec {Head → y . y ∣ Tail _ → z . Succ z} with x

scons x (y0, y1, y2…) = x, y0, y1, y2…

scons = λx . λys . corec {Head → _ . x ∣ Tail α → _ . μδ . ⟨ys ||α⟩} with _

app [x0, x1, …, xn] (y0, y1, y2…) = x0, x1, …, xn, y0, y1, y2…

In an Abstract Machine

Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…

count = λx . corec {Head → y . y ∣ Tail _ → z . Succ z} with x

scons x (y0, y1, y2…) = x, y0, y1, y2…

scons = λx . λys . corec {Head → _ . x ∣ Tail α → _ . μδ . ⟨ys ||α⟩} with _

app [x0, x1, …, xn] (y0, y1, y2…) = x0, x1, …, xn, y0, y1, y2…

app = λxs . λys . corec

Head → Cons x xs . x
Tail _ → Cons x xs . xs
Head → Nil . Head ys

Tail α → Nil . μδ . ⟨Tail ys ||α⟩

with xs

In an Abstract Machine

Corecursion vs Coiteration
Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

corec {Head α → E
Tail β → γ . F} with V := coiter {Head α → [Head α, E]

Tail → [β, γ] . [Tail β, F]} with Right V

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

corec {Head α → E
Tail β → γ . F} with V := coiter {Head α → [Head α, E]

Tail → [β, γ] . [Tail β, F]} with Right V

• (Amortized) overhead cost; consider :scons x ys

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

corec {Head α → E
Tail β → γ . F} with V := coiter {Head α → [Head α, E]

Tail → [β, γ] . [Tail β, F]} with Right V

• (Amortized) overhead cost; consider :scons x ys
• Native : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(1) Head(Tailn ys)

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

corec {Head α → E
Tail β → γ . F} with V := coiter {Head α → [Head α, E]

Tail → [β, γ] . [Tail β, F]} with Right V

• (Amortized) overhead cost; consider :scons x ys
• Native : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(1) Head(Tailn ys)

• Encoded : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(n) Head(Tailn ys)

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

corec {Head α → E
Tail β → γ . F} with V := coiter {Head α → [Head α, E]

Tail → [β, γ] . [Tail β, F]} with Right V

• (Amortized) overhead cost; consider :scons x ys
• Native : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(1) Head(Tailn ys)

• Encoded : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(n) Head(Tailn ys)

• Native CBN has same overhead as encoding; Native CBV more efficientcorec corec

Expressiveness vs Cost; CBV vs CBN

Corecursion vs Coiteration

coiter {Head α → E
Tail → γ . F} with V := corec {Head α → E

Tail _ → γ . F} with V

⟨Left V || [E, F]⟩ ↦ ⟨V ||E⟩ ⟨Right V || [E, F]⟩ ↦ ⟨V ||F⟩

corec {Head α → E
Tail β → γ . F} with V := coiter {Head α → [Head α, E]

Tail → [β, γ] . [Tail β, F]} with Right V

• (Amortized) overhead cost; consider :scons x ys
• Native : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(1) Head(Tailn ys)

• Encoded : adds overhead to cost of corec Head(Tailn+1(scons x ys)) O(n) Head(Tailn ys)

• Native CBN has same overhead as encoding; Native CBV more efficientcorec corec
• Corollary by duality of and rec iter

Expressiveness vs Cost; CBV vs CBN

(Co)Inductive Reasoning

Finite Induction
By Inversion on the Input

Finite Induction
By Inversion on the Input

Γ, x : Bool ⊢ Φ(x)

Finite Induction
By Inversion on the Input

Γ, x : Bool ⊢ Φ(x)

Finite Induction
By Inversion on the Input

Γ, x : Bool ⊢ Φ(x)
Γ ⊢ Φ(True)

Finite Induction
By Inversion on the Input

Γ, x : Bool ⊢ Φ(x)
Γ ⊢ Φ(True) Γ ⊢ Φ(False)

Finite Induction
By Inversion on the Input

Γ, x : Bool ⊢ Φ(x)
Γ ⊢ Φ(True) Γ ⊢ Φ(False)

Infinite Induction
By Inversion on the Input

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)
Γ ⊢ Φ(0)

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)
Γ ⊢ Φ(0) Γ ⊢ Φ(1)

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)
Γ ⊢ Φ(0) Γ ⊢ Φ(1) Γ ⊢ Φ(2)

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)
Γ ⊢ Φ(0) Γ ⊢ Φ(1) Γ ⊢ Φ(2) …

Infinite Induction
By Inversion on the Input

Γ, x : Nat ⊢ Φ(x)
Γ ⊢ Φ(0) Γ ⊢ Φ(1) Γ ⊢ Φ(2) …

?

An Induction Principle
Based on Information Flow

An Induction Principle
Based on Information Flow

Γ, x : Nat ⊢ Φ(x)

An Induction Principle
Based on Information Flow

Γ, x : Nat ⊢ Φ(x)

Γ ⊢ Φ(Zero)

An Induction Principle
Based on Information Flow

Γ, x : Nat ⊢ Φ(x)

Γ ⊢ Φ(Zero) Γ, x : Nat, Φ(x) ⊢ Φ(Succ x)

An Induction Principle
Based on Information Flow

Γ, x : Nat ⊢ Φ(x)

Γ ⊢ Φ(Zero) Γ, x : Nat, Φ(x) ⊢ Φ(Succ x)

An Induction Principle
Based on Information Flow

Γ, x : Nat ⊢ Φ(x)

Γ ⊢ Φ(Zero) Γ, x : Nat, Φ(x) ⊢ Φ(Succ x)

Φ(Zero) ⇒ (∀x:Nat . Φ(x) ⇒ Φ(x + 1))
⇒ (∀x:Nat . Φ(x))

Finite Coinduction
By Inversion on the Output

Finite Coinduction
By Inversion on the Output

λx . V x =η V

Finite Coinduction
By Inversion on the Output

Γ ⊢ V = V′ : A → B
λx . V x =η V

Finite Coinduction
By Inversion on the Output

Γ ⊢ V = V′ : A → B

Γ, x : A ⊢ V x = V′ x : B
λx . V x =η V

Finite Coinduction
By Inversion on the Output

Γ ⊢ V = V′ : A → B

Γ, x : A ⊢ V x = V′ x : B
λx . V x =η V

λx . μβ . ⟨V ||x ⋅ β⟩ =η V

Finite Coinduction
By Inversion on the Output

Γ, α ÷ A → B ⊢ Φ(α)

Γ ⊢ V = V′ : A → B

Γ, x : A ⊢ V x = V′ x : B
λx . V x =η V

λx . μβ . ⟨V ||x ⋅ β⟩ =η V

Finite Coinduction
By Inversion on the Output

Γ, α ÷ A → B ⊢ Φ(α)

Γ ⊢ V = V′ : A → B

Γ, x : A ⊢ V x = V′ x : B
λx . V x =η V

λx . μβ . ⟨V ||x ⋅ β⟩ =η V

Finite Coinduction
By Inversion on the Output

Γ, α ÷ A → B ⊢ Φ(α)

Γ, x : A, β ÷ B ⊢ Φ(x ⋅ β)

Γ ⊢ V = V′ : A → B

Γ, x : A ⊢ V x = V′ x : B
λx . V x =η V

λx . μβ . ⟨V ||x ⋅ β⟩ =η V

Infinite Coinduction
By Inversion on the Output

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, β ÷ A ⊢ Φ(Tail(Head β))

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, β ÷ A ⊢ Φ(Tail(Head β))
Γ, β ÷ A ⊢ Φ(Tail(Tail(Head β)))

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, β ÷ A ⊢ Φ(Tail(Head β))
Γ, β ÷ A ⊢ Φ(Tail(Tail(Head β)))

⋮

Infinite Coinduction
By Inversion on the Output

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, β ÷ A ⊢ Φ(Tail(Head β))
Γ, β ÷ A ⊢ Φ(Tail(Tail(Head β)))

⋮

?

A Coinduction Principle
Based on Control Flow

A Coinduction Principle
Based on Control Flow

Γ, α ÷ Stream A ⊢ Φ(α)

A Coinduction Principle
Based on Control Flow

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)

A Coinduction Principle
Based on Control Flow

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, α ÷ Stream A, Φ(α) ⊢ Φ(Tail α)

A Coinduction Principle
Based on Control Flow

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, α ÷ Stream A, Φ(α) ⊢ Φ(Tail α)

A Coinduction Principle
Based on Control Flow

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, α ÷ Stream A, Φ(α) ⊢ Φ(Tail α)

Bisimulation
= (∀s, s′ : Stream A . Φ(s, s′) ⇒ Head s = Head s′ : A)
⇒ (∀s, s′ : Stream A . Φ(s, s′) ⇒ Φ(Tail s, Tail s′))
⇒ (∀s, s′ : Stream A . Φ(s, s′) ⇒ s = s′ : Stream A)

A Coinduction Principle
Based on Control Flow

Γ, α ÷ Stream A ⊢ Φ(α)

Γ, β ÷ A ⊢ Φ(Head β)
Γ, α ÷ Stream A, Φ(α) ⊢ Φ(Tail α)

Bisimulation
= (∀s, s′ : Stream A . Φ(s, s′) ⇒ Head s = Head s′ : A)
⇒ (∀s, s′ : Stream A . Φ(s, s′) ⇒ Φ(Tail s, Tail s′))
⇒ (∀s, s′ : Stream A . Φ(s, s′) ⇒ s = s′ : Stream A)

⇓

Proof by Coinduction

Proof by Coinduction
repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Proof by Coinduction

Theorem: evens alt = repeat 0 : Stream A
repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Proof by Coinduction

Theorem: evens alt = repeat 0 : Stream A

• S.T.S: α ÷ Stream A ⊢ ⟨evens alt ||α⟩ = ⟨repeat 0 ||α⟩

repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Proof by Coinduction

Proof: By coinduction on …α ÷ Stream A

Theorem: evens alt = repeat 0 : Stream A

• S.T.S: α ÷ Stream A ⊢ ⟨evens alt ||α⟩ = ⟨repeat 0 ||α⟩

repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Proof by Coinduction

Proof: By coinduction on …α ÷ Stream A

• : α = Head β ⟨evens alt ||Head β⟩ = ⟨0 ||β⟩ = ⟨repeat 0 ||Head β⟩

Theorem: evens alt = repeat 0 : Stream A

• S.T.S: α ÷ Stream A ⊢ ⟨evens alt ||α⟩ = ⟨repeat 0 ||α⟩

repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Proof by Coinduction

Proof: By coinduction on …α ÷ Stream A

• : α = Head β ⟨evens alt ||Head β⟩ = ⟨0 ||β⟩ = ⟨repeat 0 ||Head β⟩

• : Assume CoIH and show
…

α = Tail β ⟨evens alt ||β⟩ = ⟨repeat 0 ||β⟩
⟨evens alt ||Tail β⟩ = ⟨repeat 0 ||Tail β⟩

Theorem: evens alt = repeat 0 : Stream A

• S.T.S: α ÷ Stream A ⊢ ⟨evens alt ||α⟩ = ⟨repeat 0 ||α⟩

repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Proof by Coinduction

Proof: By coinduction on …α ÷ Stream A

• : α = Head β ⟨evens alt ||Head β⟩ = ⟨0 ||β⟩ = ⟨repeat 0 ||Head β⟩

• : Assume CoIH and show
…

α = Tail β ⟨evens alt ||β⟩ = ⟨repeat 0 ||β⟩
⟨evens alt ||Tail β⟩ = ⟨repeat 0 ||Tail β⟩

⟨evens alt ||Tail β⟩ = ⟨evens (Tail(Tail alt)) ||β⟩ (def . evens)
= ⟨evens alt ||β⟩ (def . alt)
= ⟨repeat 0 ||β⟩ (CoIH)
= ⟨repeat 0 ||Tail β⟩ (def . repeat)

Theorem: evens alt = repeat 0 : Stream A

• S.T.S: α ÷ Stream A ⊢ ⟨evens alt ||α⟩ = ⟨repeat 0 ||α⟩

repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…

Weak vs Strong (Co)Induction
And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

• Strong coinduction is unsound in CBV

And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

• Strong coinduction is unsound in CBV

• Weak (co)induction restricts Φ

And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

• Strong coinduction is unsound in CBV

• Weak (co)induction restricts Φ
• Weak induction on : must be strict on like x x ⟨x ||E⟩ = ⟨x ||E′ ⟩

And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

• Strong coinduction is unsound in CBV

• Weak (co)induction restricts Φ
• Weak induction on : must be strict on like x x ⟨x ||E⟩ = ⟨x ||E′ ⟩

• Weak induction on : must be productive on like α α ⟨V ||α⟩ = ⟨V′ ||α⟩

And Effectful Computation

Weak vs Strong (Co)Induction

• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

• Strong coinduction is unsound in CBV

• Weak (co)induction restricts Φ
• Weak induction on : must be strict on like x x ⟨x ||E⟩ = ⟨x ||E′ ⟩

• Weak induction on : must be productive on like α α ⟨V ||α⟩ = ⟨V′ ||α⟩

• Weak (co)induction is always sound

And Effectful Computation

Lessons Learned

Lessons Learned
• Duality — Ideas for free!

Lessons Learned
• Duality — Ideas for free!
• Impact of evaluation, computation, effects, divergence

• CBV: strong induction and efficient corecursion

• CBN: strong coinduction and efficient recursion

• Future work: Call-by-push-value or polarities could get best of both worlds

Lessons Learned
• Duality — Ideas for free!
• Impact of evaluation, computation, effects, divergence

• CBV: strong induction and efficient corecursion

• CBN: strong coinduction and efficient recursion

• Future work: Call-by-push-value or polarities could get best of both worlds

• (Co)Induction are both inversion principles
• Induction: inversion on input, guided by information flow

• Coinduction: inversion on output, guided by control flow

