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» Both programs and proofs with loops



Topic

e (Co)Recursion and (Co)Induction



Topic

e “Terminating” or “Productive”



Topic

e Extend to non-termination, effects
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» Duality



Methodology

« Computational



Methodology

e Curry-Howard



Methodology

* sequent calculus as abstract machines



Methodology

e (Classical



Recursive Programs
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Recursion on Natural Numbers

In System T

iter M as Zero - N _ rec M as Zero - N
Succ - y.P" Succ _—>y.P
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In System T

plus Zero y =y plus = Ax. dy .iter x as
Zero =y

plus (Succ x') y = Succ (plus x" y)
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Examples of Recursion

In System T

plus Zero y =y plus = Ax. dy .iter x as
Zero =y

plus (Succ x') y = Succ (plus x" y)

Succ = 7.S5ucc 7

pred Zero = Zero pred = Ax .case x of

Zero — Zero

pred (Succ x') = x’ / /
Succ X' = x

| minus = Ax.Ay.iter y as
MmIinus x Zero = Xx

minus x (Succ y') = pred (minus x y’) Zero — X

Succ — z.pred z
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Recursion vs Iteration

Expressiveness vs Cost

rec M as Zero - N o snd(iter M as Zero — (Zero, N)
Succx —-y.P" Succ — (x,vy).Succ x, P))



Recursion vs Iteration

Expressiveness vs Cost

e pred (Succ” Zero) goes from O(1) to O(n) time



Recursion vs Iteration

Expressiveness vs Cost

o minus (Succ™ Zero) (Succ™ Zero) goes from O(n) to O(n* + nm)



Recursion vs Iteration

Expressiveness vs Cost

* Native rec has the same performance penalty as encoding in CBV



Recursion vs Iteration

Expressiveness vs Cost

* Recursive result always computed; full traversal is mandatory
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Recursion in an Abstract Machine

Building the Recursive Continuation

(M| E)

(M N|E) » (M| N-E)
(Ax.M||N - E) » (M[N/x]| E)

ralt .= { Zero - N | Succ x > y.P }

(rec M as ralt|E) — (M| rec ralt with E)
(Zero || rec ralt with E) — (N | E)

(Succ M ||rec ralt with E) — (P[M/x,rec M as ralt/y]|| E)
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What's the Dual of Natural Numbers?

Nat+

e Succ: Nat — Nat isdualto Tail : Nat— — Nat+



What's the Dual of Natural Numbers?

Nat+

e Nat~ is an infinite stream of computations



What's the Dual of Natural Numbers?

Nat+

* You can run them, but they don’t return



What's the Dual of Natural Numbers?

Nat+

Nat Values: Zero Succ 'V
Nat Continuation: rec {Zero —» N | Succ x — y.P} with E



What's the Dual of Natural Numbers?

Nat+

Nat* Value: corec {Run - E | Tail a - (. F} with V

Nat*+ Continuations: Run Tail E
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Corecursion on Streams

In an Abstract Machine

. Generalize Nat~ to Stream A



Corecursion on Streams

In an Abstract Machine

* Infinite stream of computations that return an A



Corecursion on Streams

In an Abstract Machine

e Head : Stream A —- A and Tail : Stream A — Stream A



Corecursion on Streams

In an Abstract Machine

Nat* Value: corec {Run — E | Tail f — y.F} with V
Nat~ Conts.: Run Tail E



Corecursion on Streams

In an Abstract Machine

Stream A Value: corec {Head a — E | Tail f — y.F} with V
Stream A Conts.: Head E Tail E
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Corecursion on Streams

In the Ap-Calculus
* Functional, direct-style



Corecursion on Streams

In the Ap-Calculus

* Don’t mention continuations directly; implicit “evaluation contexts”



Corecursion on Streams

In the Ap-Calculus

* Contexts named by ua . J; invoked by jumps (M || a)



Corecursion on Streams

In the Ap-Calculus

Destructors: Head M : A Tail M : Stream A when M : Stream A



Corecursion on Streams

In the Ap-Calculus

Generator: corec {Head — x.N | Tail f — y.P} with M



Corecursion on Streams

In the Ap-Calculus

* Accumulator M, named x and y in the branches



Corecursion on Streams

In the Ap-Calculus

* Head branch: N computes first element from current accumulator x



Corecursion on Streams

In the Ap-Calculus

* Tail branch: P computes one of two options



Corecursion on Streams

In the Ap-Calculus

* Continue: return a new accumulator value from current y used for next corecursive loop



Corecursion on Streams

In the Ap-Calculus

* End: send a fully-formed stream to context f; this corecursive loop is finished
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Examples of Corecursion

In an Abstract Machine
count x=x,x+ 1, x+2, x+3...



Examples of Corecursion

In an Abstract Machine

count = Ax . corec {Head — v.y | Tail _ — z.Succ z} with x



Examples of Corecursion

In an Abstract Machine

scons x (Yo, Vi Yo---) =X, Yo» V1> V- - -



Examples of Corecursion

In an Abstract Machine

scons = Ax.Ays . corec {Head — x| Tail a - _.uo.(ys|| a)} with



Examples of Corecursion

In an Abstract Machine

app [xg, X15 ---» X, Voo V1> Vo---) = Xgs X{5 =5 Xps Yoo V15 Voo - -



Examples of Corecursion

In an Abstract Machine

Head — Cons x xs. x

Tail — Cons x xs. xs

app = Axs . Ays . corec Head — Nil . Head ys with xs

Tail o« — Nil. uo.{(Tail ys| o)
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Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

: Head o0 - E : L Head o0 - E :
colter { T il y.F} with V .= corec { Tail — ;/.F} with V



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

(Left V|[E, F1) = (VIE)  (Right V||[E,F]) = (V| F)



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

Head a - E Head a — |Head a, E} , ,
. ith V := coi th Right
corec { Tail B — ;/.F} with V := coiter { Tail — [B.7]. [Tail B, F] } Wi ignt 'V



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

* (Amortized) overhead cost; consider scons x ys:



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

* Native corec: Head(Tail""'(scons x ys)) adds O(1) overhead to cost of Head(Tail" ys)



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

* Encoded corec: Head(Tail*'(scons x ys)) adds O(n) overhead to cost of Head(Tail" ys)



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

* Native CBN corec has same overhead as encoding; Native CBV corec more efficient



Corecursion vs Coiteration

Expressiveness vs Cost; CBV vs CBN

» Corollary by duality of rec and iter



(Co)Inductive Reasoning
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Finite Induction

By Inversion on the Input

[ ®(True) T F ®(False)

I',x: Bool = ®(x) J
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Infinite Induction

By Inversion on the Input
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I',x: Nat = ®(x)
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An Induction Principle

Based on Information Flow

[+ ®(Zero)

I',x: Nat = ®O(x)



An Induction Principle

Based on Information Flow

' = ®(Zero) 1,x:Nat,P(x) = O(Succ x)

I',x: Nat - ®(x)



An Induction Principle

Based on Information Flow

' = ®(Zero) 1,x:Nat,P(x) = O(Succ x)

I',x: Nat - ®(x) /




An Induction Principle

Based on Information Flow

' = ®(Zero) 1,x:Nat,P(x) = O(Succ x)

I',x: Nat = ®O(x)

O(Zero) = (Vx:Nat. D(x) > O(x+ 1)) /
= (Vx:Nat . D(x))
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Finite Coinduction

By Inversion on the Output

' x:AFVx=V x:B
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I'FV=V:A->B

Jx uf (Vlx-p) =,V
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Finite Coinduction

By Inversion on the Output

' x:AFVx=V x:B

/bc.Vx:,,]V
I'HFV=V.:A—>B

I'x:A,p+-BF O - f)

Jx.pup (V- )y =,V
[La+A - BF ®(a)



Infinite Coinduction

By Inversion on the Output



Infinite Coinduction

By Inversion on the Output

I',a+ Stream A = O(a)



Infinite Coinduction

By Inversion on the Output

I',a+ Stream A = O(a)



Infinite Coinduction

By Inversion on the Output

[LB=+AF ®(Head f)

I',a+ Stream A = O(a)



Infinite Coinduction

By Inversion on the Output

[0+ A O(Head p)
[+ A O(Tail(Head p))

I',a+ Stream A = O(a)
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By Inversion on the Output

[0+ A ©(Head )
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Infinite Coinduction

By Inversion on the Output

[0+ A ©(Head )
[+ A ©(Tail(Head /7))
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Infinite Coinduction

By Inversion on the Output

[0+ A ©(Head )
[+ A ©(Tail(Head /7))
[+ A I— O(Tail(Tail(Head p)))

I',a+ Stream A = O(a)
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Based on Control Flow

[0+ A ©(Head p)
I',a= Stream A, D(a) = ©(Tail o) J

I',a+ Stream A = O(a)
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= (Vs,s": Stream A.D(s,s") > Head s = Head s : A)
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A Coinduction Principle

Based on Control Flow

[0+ A ©(Head p)
I',a= Stream A, D(a) = ©(Tail o) J

I',a+ Stream A = O(a)

Bisimulation J}

= (Vs,s" : Stream A .D(s,s) = Head s = Head s' : A)
= (Vs,s" : Stream A .D(s,s") = O(Tail s, Tail s))
= (Vs,s": Stream A.D(s,s") = s =" : Stream A)
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Proof by Coinduction

repeat x = X, X, X... alt = 0,1,0,1... evens (Xg, Xi,Xy...) = Xg, Xy, X4 - .
Theorem: evens alt = repeat O . Stream A

o ST.S:a+ Stream A + (evens alt| a) = (repeat O| o)

Proof: By coinduction on a = Stream A...



Proof by Coinduction

repeat x = X, X, X... alt = 0,1,0,1... evens (X, Xi,Xy...) = Xg, X9, X4 - -
Theorem: evens alt = repeat O . Stream A

o ST.S:a+ Stream A + (evens alt| a) = (repeat O| o)

o a = Head : (evens alt||Head p) = (0| f) = (repeat O| Head )



Proof by Coinduction

repeat x = X, X, X... alt = 0,1,0,1... evens (Xg, Xi,Xy...) = Xg, Xy, X4 - .
Theorem: evens alt = repeat O . Stream A

o ST.S:a+ Stream A + (evens alt| a) = (repeat O| o)

o a = Tail f: Assume ColH (evens alt|| ) = (repeat O | ) and show
(evens alt| Tail f) = (repeat O| Tail p)...



Proof by Coinduction

repeat x = X, X, X... alt = 0,1,0,1... evens (Xg, Xi,Xy...) = Xg, Xy, X4 - .
Theorem: evens alt = repeat O . Stream A

o ST.S:a+ Stream A + (evens alt| a) = (repeat O| o)

(evens alt|| Tail f) = (evens (Tail(Tail alt)) | ) (def . evens)
= (evens alt|| /) (def . alr)
= (repeat O | p) (ColH)
= (repeat 0 || Tail ) (def . repeat)
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Weak vs Strong (Co)Induction

And Effectful Computation

 Strong (co)induction proves any property @



Weak vs Strong (Co)Induction

And Effectful Computation

» Strong induction is unsound in CBN



Weak vs Strong (Co)Induction

And Effectful Computation

» Strong coinduction is unsound in CBV



Weak vs Strong (Co)Induction

And Effectful Computation

o Weak (co)induction restricts @



Weak vs Strong (Co)Induction

And Effectful Computation

* Weak induction on x: must be strict on x like (x || E) = (x| E")



Weak vs Strong (Co)Induction

And Effectful Computation

« Weak induction on a: must be productive on a like (V|| a) = (V| a)



Weak vs Strong (Co)Induction

And Effectful Computation

« Weak (co)induction is always sound
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l.essons Learned

» Duality — Ideas for free!

» Impact of evaluation, computation, effects, divergence

» CBV: strong induction and efficient corecursion
* CBN: strong coinduction and efficient recursion

* Future work: Call-by-push-value or polarities could get best of both worlds

 (Co)Induction are both inversion principles

* Induction: inversion on input, guided by information flow

» Coinduction: inversion on output, guided by control flow



