A Computational Understanding of Classical (Co)Recursion Paul Downen and Zena M. Ariola

PPDP 2020, September 8–10

• Both programs and proofs with loops

Both programs and proofs with loops (Co)Recursion and (Co)Induction

Both programs and proofs with loops (Co)Recursion and (Co)Induction "Terminating" or "Productive"

• Both programs and proofs with loops (Co)Recursion and (Co)Induction • "Terminating" or "Productive"

- Extend to non-termination, effects

• Duality

• Duality

Computational

- Duality
- Computational
- Curry-Howard

- Duality
- Computational
- Curry-Howard
 - sequent calculus as abstract machines

- Duality
- Computational
- Curry-Howard
 - sequent calculus as abstract machines
- Classical

Recursive Programs

• Simply-typed λ -calculus plus inductive $Nat = Zero \mid Succ Nat$

• Simply-typed λ -calculus plus inductive Nat = Zero | Succ Nat

$\mathbf{rec}_{Nat}^{A}: Nat \to A \to (Nat \to A \to A) \to A$

- Simply-typed λ -calculus plus inductive Nat = Zero | Succ Nat

In System T

$\mathbf{rec}_{Nat}^A : Nat \to A \to (Nat \to A \to A) \to A$

rec *M* as $\{Zero \rightarrow N \mid Succ \ x \rightarrow y . P\}$ where M, x : Nat; N and P, y : A

- Simply-typed λ -calculus plus inductive Nat = Zero | Succ Nat
 - $\mathbf{rec}_{Nat}^{A}: Nat \to A \to (Nat \to A \to A) \to A$
- **rec** *M* **as** {*Zero* \rightarrow *N* | *Succ* $x \rightarrow y \cdot P$ } where *M*, x : Nat; *N* and *P*, y : A
 - case *M* of Zero $\rightarrow N$ Succ $x \rightarrow P$:= rec *M* of Zero $\rightarrow M$ Succ $x \rightarrow P$.

- Simply-typed λ -calculus plus inductive Nat = Zero | Succ Nat
 - $Succ \rightarrow y \cdot P$

In System T

 $\mathbf{rec}_{Nat}^{A}: Nat \to A \to (Nat \to A \to A) \to A$ **rec** *M* **as** {*Zero* \rightarrow *N* | *Succ* $x \rightarrow y \cdot P$ } where *M*, x : Nat; *N* and *P*, y : Acase *M* of Zero $\rightarrow N$ Succ $x \rightarrow P$:= rec *M* of Zero $\rightarrow M$ Succ $x \rightarrow - P$ iter *M* as Zero $\rightarrow N$._ rec *M* as Zero $\rightarrow N$ $Succ _ \rightarrow y . P$

plus Zero y = yplus (Succ x') y = Succ (plus x' y)

plus Zero y = yplus (Succ x') y = Succ (plus x' y)

In System T

$plus = \lambda x \cdot \lambda y \cdot \text{iter } x \text{ as}$ $Zero \rightarrow y$ $Succ \rightarrow z$. Succ z

plus Zero y = yplus (Succ x') y = Succ (plus x' y)

pred Zero = Zero pred (Succ x') = x'

In System T

$plus = \lambda x \cdot \lambda y \cdot iter x as$ $Zero \rightarrow y$ $Succ \rightarrow z$. Succ z.

plus Zero y = yplus (Succ x') y = Succ (plus x' y)

pred Zero = Zero pred (Succ x') = x'

In System T

$plus = \lambda x \cdot \lambda y \cdot iter x as$ $Zero \rightarrow y$ $Succ \rightarrow z$. Succ z

$pred = \lambda x \cdot case x \circ f$ $Zero \rightarrow Zero$ Succ $x' \rightarrow x'$

plus Zero y = yplus (Succ x') y = Succ (plus x' y)

pred Zero = Zero pred (Succ x') = x'

minus x Zero = xminus x (Succ y') = pred (minus x y')

In System T

$plus = \lambda x \cdot \lambda y \cdot iter x as$ $Zero \rightarrow y$ $Succ \rightarrow z$. Succ z.

$pred = \lambda x \cdot case x \circ f$ $Zero \rightarrow Zero$ Succ $x' \rightarrow x'$

plus Zero y = yplus (Succ x') y = Succ (plus x' y)

pred Zero = Zero pred (Succ x') = x'

minus x Zero = xminus x (Succ y') = pred (minus x y')

In System T

$plus = \lambda x \cdot \lambda y \cdot iter x as$ $Zero \rightarrow y$ $Succ \rightarrow z$. Succ z.

$pred = \lambda x \cdot case x \circ f$ $Zero \rightarrow Zero$ Succ $x' \rightarrow x'$

minus = $\lambda x \cdot \lambda y \cdot iter y$ as $Zero \rightarrow x$ Succ $\rightarrow z$. pred z

iter *M* as $Zero \rightarrow N$ $Succ \rightarrow y \cdot P := \operatorname{rec} M$ as $Zero \rightarrow N$ $Succ _ \rightarrow y \cdot P$

rec *M* as $Zero \rightarrow N$ $Succ \ x \rightarrow y \cdot P := \frac{snd(\text{iter } M \text{ as } Zero \rightarrow (Zero, N))}{Succ \rightarrow (x, y) \cdot (Su)}$

Expressiveness vs Cost

iter *M* as $Zero \rightarrow N$ $Succ \rightarrow y \cdot P := \operatorname{rec} M$ as $Zero \rightarrow N$ $Succ _ \rightarrow y \cdot P$

$Succ \rightarrow (x, y) . (Succ x, P))$

rec *M* as $Zero \rightarrow N$ $Succ \ x \rightarrow y \cdot P := snd(\text{iter } M \text{ as } Zero \rightarrow (Zero, N))$ $Succ \ x \rightarrow y \cdot P := Succ \rightarrow (x, y) \cdot (Succ \rightarrow (x, y))$

• pred (Succⁿ Zero) goes from O(1) to O(n) time

Expressiveness vs Cost

iter *M* as $Zero \rightarrow N$ $Succ \rightarrow y \cdot P := \operatorname{rec} M$ as $Zero \rightarrow N$ $Succ \rightarrow y \cdot P := Succ \rightarrow y \cdot P$ $Succ \rightarrow (x, y) . (Succ x, P))$

iter *M* as $Zero \rightarrow N$ rec *M* as $Zero \rightarrow N$ $Succ \rightarrow y \cdot P \stackrel{:=}{=} Succ _ \rightarrow y \cdot P$ $Succ \rightarrow (x, y) . (Succ x, P))$

rec *M* as $Zero \rightarrow N$ $Succ \ x \rightarrow y \cdot P := snd(\text{iter } M \text{ as } Zero \rightarrow (Zero, N))$ $Succ \ x \rightarrow y \cdot P := Succ \rightarrow (x, y) \cdot (Succ \rightarrow (x, y))$

• pred (Succⁿ Zero) goes from O(1) to O(n) time

• minus (Succⁿ Zero) (Succ^m Zero) goes from O(n) to $O(n^2 + nm)$

iter *M* as Zero $\rightarrow N$ rec *M* as Zero $\rightarrow N$ $Succ \rightarrow y \cdot P := Succ _ \rightarrow y \cdot P$ **rec** M as $Zero \rightarrow N$.__ snd(**iter** M as $Zero \rightarrow (Zero, N)$ Succ $x \to y \cdot P :=$ $Succ \rightarrow (x, y) . (Succ x, P))$

- pred (Succⁿ Zero) goes from O(1) to O(n) time
- minus (Succⁿ Zero) (Succ^m Zero) goes from O(n) to $O(n^2 + nm)$
- Native rec has the same performance penalty as encoding in CBV

iter *M* as $Zero \rightarrow N$ rec *M* as $Zero \rightarrow N$ $Succ \rightarrow y \cdot P \stackrel{:=}{=} Succ _ \rightarrow y \cdot P$ **rec** *M* as $Zero \rightarrow N$ $Succ \ x \rightarrow y \cdot P := snd(\text{iter } M \text{ as } Zero \rightarrow (Zero, N))$ $Succ \ x \rightarrow y \cdot P := Succ \rightarrow (x, y) \cdot (Succ \rightarrow (x, y))$ $Succ \rightarrow (x, y) . (Succ x, P))$

- pred (Succⁿ Zero) goes from O(1) to O(n) time
- minus (Succⁿ Zero) (Succ^m Zero) goes from O(n) to $O(n^2 + nm)$
- Native rec has the same performance penalty as encoding in CBV
 - Recursive result always computed; full traversal is mandatory

Recursion in an Abstract Machine

Building the Recursive Continuation

Recursion in an Abstract Machine

Building the Recursive Continuation

 $\langle M \parallel E \rangle$

Recursion in an Abstract Machine

Building the Recursive Continuation

- $\langle M \parallel E \rangle$
- $\langle M N \| E \rangle \mapsto \langle M \| N \cdot E \rangle$ $\langle \lambda x . M \| N \cdot E \rangle \mapsto \langle M[N/x] \| E \rangle$

- $\langle M \parallel E \rangle$
- $\langle M N \| E \rangle \mapsto \langle M \| N \cdot E \rangle$ $\langle \lambda x . M \| N \cdot E \rangle \mapsto \langle M[N/x] \| E \rangle$
- $ralt := \{ Zero \rightarrow N \mid Succ \ x \rightarrow y . P \}$

- $\langle M \parallel E \rangle$
- $\langle M N \| E \rangle \mapsto \langle M \| N \cdot E \rangle$ $\langle \lambda x . M \| N \cdot E \rangle \mapsto \langle M[N/x] \| E \rangle$
- $ralt := \{ Zero \rightarrow N \mid Succ \ x \rightarrow y . P \}$
- $\langle \operatorname{rec} M \operatorname{as} ralt || E \rangle \mapsto \langle M || \operatorname{rec} ralt \operatorname{with} E \rangle$

 $\langle Zero \| \mathbf{rec} \ ralt \ \mathbf{with} \ E \rangle \mapsto \langle N \| E \rangle$

- $\langle M \parallel E \rangle$
- $\langle M N \| E \rangle \mapsto \langle M \| N \cdot E \rangle$ $\langle \lambda x . M \| N \cdot E \rangle \mapsto \langle M[N/x] \| E \rangle$
- $ralt := \{ Zero \rightarrow N \mid Succ \ x \rightarrow y . P \}$
- $\langle \operatorname{rec} M \operatorname{as} ralt || E \rangle \mapsto \langle M || \operatorname{rec} ralt \operatorname{with} E \rangle$

 $\langle Zero \| rec \ ralt \ with \ E \rangle \mapsto \langle N \| E \rangle$

- $\langle M \parallel E \rangle$
- $\langle M N \| E \rangle \mapsto \langle M \| N \cdot E \rangle$ $\langle \lambda x . M \| N \cdot E \rangle \mapsto \langle M[N/x] \| E \rangle$
- $ralt := \{ Zero \rightarrow N \mid Succ \ x \rightarrow y . P \}$
- $\langle \operatorname{rec} M \operatorname{as} ralt || E \rangle \mapsto \langle M || \operatorname{rec} ralt \operatorname{with} E \rangle$
- $\langle Succ M \| rec ralt with E \rangle \mapsto \langle P[M/x, rec M as ralt/y] \| E \rangle$

Corecursive Programs

• Zero: $1 \rightarrow Nat$ is dual to $Run: Nat^{\perp} \rightarrow \bot$

- Zero: $1 \rightarrow Nat$ is dual to $Run: Nat^{\perp} \rightarrow \bot$
- Succ : Nat \rightarrow Nat is dual to Tail : Nat^{\perp} \rightarrow Nat^{\perp}

- Zero: $1 \rightarrow Nat$ is dual to $Run: Nat^{\perp} \rightarrow \bot$
- Succ: Nat \rightarrow Nat is dual to Tail: Nat^{\perp} \rightarrow Nat^{\perp}
- Nat^{\perp} is an infinite stream of computations

- Zero: $1 \rightarrow Nat$ is dual to $Run: Nat^{\perp} \rightarrow \bot$
- Succ: Nat \rightarrow Nat is dual to Tail: Nat^{\perp} \rightarrow Nat^{\perp}
- Nat^{\perp} is an infinite stream of computations
 - You can run them, but they don't return

- Zero: $1 \rightarrow Nat$ is dual to $Run: Nat^{\perp} \rightarrow \bot$
- Succ: Nat \rightarrow Nat is dual to Tail: Nat^{\perp} \rightarrow Nat^{\perp}
- Nat^{\perp} is an infinite stream of computations
 - You can run them, but they don't return

Nat Values: Succ V Zero rec {*Zero* \rightarrow *N* | *Succ* $x \rightarrow y . P$ } with *E Nat* Continuation:

- Zero: $1 \rightarrow Nat$ is dual to $Run: Nat^{\perp} \rightarrow \bot$
- Succ : Nat \rightarrow Nat is dual to Tail : Nat^{\perp} \rightarrow Nat^{\perp}
- Nat^{\perp} is an infinite stream of computations
 - You can run them, but they don't return

Nat Values: Zero Succ V *Nat* Continuation: rec {*Zero* \rightarrow *N* | *Succ* $x \rightarrow y . P$ } with *E* Nat^{\perp} Value: corec { $Run \rightarrow E \mid Tail \ \alpha \rightarrow \beta . F$ } with V Nat^{\perp} Continuations: Tail E Run

• Generalize Nat^{\perp} to Stream A

• Generalize Nat^{\perp} to Stream A

• Infinite stream of computations that return an A

• Generalize Nat^{\perp} to Stream A

- Infinite stream of computations that return an A
- Head : Stream $A \rightarrow A$ and Tail : Stream $A \rightarrow Stream A$

- Generalize Nat^{\perp} to Stream A
 - Infinite stream of computations that return an A
- Head : Stream $A \rightarrow A$ and Tail : Stream $A \rightarrow Stream A$ Nat^{\perp} Value: Nat^{\perp} Conts.: Run

In an Abstract Machine

corec $\{Run \rightarrow E \mid Tail \ \beta \rightarrow \gamma . F\}$ with V

Tail E

- Generalize Nat^{\perp} to Stream A
 - Infinite stream of computations that return an A
- Head : Stream $A \rightarrow A$ and Tail : Stream $A \rightarrow Stream A$ Nat^{\perp} Conts.:
- Stream A Value: Stream A Conts.:

In an Abstract Machine

Nat^{\perp} Value: **corec** {*Run* \rightarrow *E* | *Tail* $\beta \rightarrow \gamma$. *F*} with *V*

Run Tail E

corec {*Head* $\alpha \rightarrow E$ | *Tail* $\beta \rightarrow \gamma . F$ } with V Head E Tail E

• Functional, direct-style

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. *J*; invoked by jumps $\langle M \| \alpha \rangle$

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. *J*; invoked by jumps $\langle M \| \alpha \rangle$

Destructors: Head M: A Tail M: Stream A when M: Stream A

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. *J*; invoked by jumps $\langle M \| \alpha \rangle$

Destructors: Head M: A Tail M: Stream A when M: Stream A Generator: corec {Head $\rightarrow x . N \mid Tail \beta \rightarrow y . P$ } with M

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. J; invoked by jumps $\langle M \| \alpha \rangle$

Destructors: Head M: A Tail M: Stream A when M: Stream A Generator: corec {*Head* $\rightarrow x.N \mid Tail \beta \rightarrow y.P$ } with M

• Accumulator *M*, named *x* and *y* in the branches

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. J; invoked by jumps $\langle M \| \alpha \rangle$
- Generator: corec {*Head* $\rightarrow x.N$ | *Tail* $\beta \rightarrow y.P$ } with M
 - Accumulator *M*, named *x* and *y* in the branches
 - Head branch: N computes first element from current accumulator x

In the $\lambda\mu$ -Calculus

Destructors: *Head* M : A *Tail* M : *Stream* A when M : *Stream* A

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. J; invoked by jumps $\langle M \| \alpha \rangle$

Destructors: *Head* M : A *Tail* M : *Stream* A when M : *Stream* A Generator: corec {*Head* $\rightarrow x.N$ | *Tail* $\beta \rightarrow y.P$ } with M

- Accumulator *M*, named *x* and *y* in the branches
- Head branch: *N* computes first element from current accumulator *x*
- Tail branch: *P* computes one of two options

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. J; invoked by jumps $\langle M \| \alpha \rangle$

Destructors: *Head* M : A *Tail* M : *Stream* A when M : *Stream* A Generator: corec {*Head* $\rightarrow x.N$ | *Tail* $\beta \rightarrow y.P$ } with M

- Accumulator *M*, named *x* and *y* in the branches
- Head branch: *N* computes first element from current accumulator *x*
- Tail branch: *P* computes one of two options
 - Continue: return a new accumulator value from current y used for next corecursive loop

- Functional, direct-style
 - Don't mention continuations directly; implicit "evaluation contexts"
 - Contexts named by $\mu\alpha$. J; invoked by jumps $\langle M \| \alpha \rangle$

Destructors: *Head* M : A *Tail* M : *Stream* A when M : *Stream* A Generator: corec {*Head* $\rightarrow x.N$ | *Tail* $\beta \rightarrow y.P$ } with M

- Accumulator *M*, named *x* and *y* in the branches
- Head branch: *N* computes first element from current accumulator *x*
- Tail branch: *P* computes one of two options
 - Continue: return a new accumulator value from current y used for next corecursive loop
 - End: send a fully-formed stream to context β ; this corecursive loop is finished

count x = x, x + 1, x + 2, x + 3...

In an Abstract Machine

count x = x, x + 1, x + 2, x + 3...

count = λx . **corec** {*Head* $\rightarrow y . y \mid Tail _ \rightarrow z$. *Succ* z} with x

scons $x (y_0, y_1, y_2...) = x, y_0, y_1, y_2...$

- *count* x = x, x + 1, x + 2, x + 3...
- *count* = λx . **corec** {*Head* $\rightarrow y . y$ | *Tail* $_ \rightarrow z$. *Succ* z} with x

scons $x(y_0, y_1, y_2...) = x, y_0, y_1, y_2...$

- *count* x = x, x + 1, x + 2, x + 3...
- *count* = λx . **corec** {*Head* $\rightarrow y . y$ | *Tail* $_ \rightarrow z$. *Succ* z } with x
- scons = $\lambda x \cdot \lambda ys \cdot \text{corec} \{ Head \rightarrow _ x \mid Tail \ \alpha \rightarrow _ \mu \delta \cdot \langle ys \parallel \alpha \rangle \}$ with _

scons $x(y_0, y_1, y_2...) = x, y_0, y_1, y_2...$

app $[x_0, x_1, ..., x_n]$ $(y_0, y_1, y_2...) = x_0, x_1, ..., x_n, y_0, y_1, y_2...$

- *count* x = x. x + 1. x + 2. x + 3...
- *count* = λx . **corec** {*Head* $\rightarrow y . y$ | *Tail* $_ \rightarrow z$. *Succ* z } with x
- scons = $\lambda x \cdot \lambda ys \cdot \text{corec} \{ \text{Head} \rightarrow _ x \mid \text{Tail } \alpha \rightarrow _ \mu \delta \cdot \langle ys \parallel \alpha \rangle \}$ with _

scons $x(y_0, y_1, y_2...) = x, y_0, y_1, y_2...$

app $[x_0, x_1, ..., x_n]$ $(y_0, y_1, y_2...) = x_0, x_1, ..., x_n, y_0, y_1, y_2...$

In an Abstract Machine

with xs

- *count* x = x, x + 1, x + 2, x + 3...
- *count* = λx . **corec** {*Head* $\rightarrow y . y$ | *Tail* $_ \rightarrow z$. *Succ* z} with x
- scons = $\lambda x . \lambda ys$. corec {*Head* $\rightarrow _ . x | Tail \alpha \rightarrow _ . \mu \delta . \langle ys || \alpha \rangle$ } with _

 - $app = \lambda xs . \lambda ys . \mathbf{corec} \left\{ \begin{array}{l} Head \to Cons \ x \ xs . \ x \\ Tail \ _ \to Cons \ x \ xs . \ xs \\ Head \to Nil . \ Head \ ys \\ Tail \ \alpha \to Nil . \ \mu\delta . \langle Tail \ ys \parallel \alpha \rangle \end{array} \right\}$

Expressiveness vs Cost; CBV vs CBN

coiter $\left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$ with $V := \operatorname{corec} \left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \ _ \to \gamma . F \end{array} \right\}$ with V

Expressiveness vs Cost; CBV vs CBN

coiter $\left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$ with $V := \operatorname{corec} \left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \ _ \to \gamma . F \end{array} \right\}$ with V

Expressiveness vs Cost; CBV vs CBN

$\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$

coiter $\left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$ with $V := \text{corec} \left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \ \to \gamma . F \end{array} \right\}$ with V

Expressiveness vs Cost; CBV vs CBN

 $\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$

 $\operatorname{corec}\left\{\begin{array}{c} Head \ \alpha \to E \\ Tail \ \beta \to \gamma \, . \, F\end{array}\right\} \operatorname{with} V := \operatorname{coiter}\left\{\begin{array}{c} Head \ \alpha \to [Head \ \alpha, \, E] \\ Tail \to [\beta, \gamma] \, . \, [Tail \ \beta, F]\end{array}\right\} \operatorname{with} Right \, V$

coiter
$$\left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$$
 with

• (Amortized) overhead cost; consider scons x ys:

Expressiveness vs Cost; CBV vs CBN

$V := \operatorname{corec} \left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \ \to \gamma \cdot F \end{array} \right\} \text{ with } V$

$\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$ $\left\{\begin{array}{c} Head \ \alpha \to E \\ Tail \ \beta \to \gamma \,. \, F\end{array}\right\} \text{ with } V := \text{coiter } \left\{\begin{array}{c} Head \ \alpha \to [Head \ \alpha, \, E] \\ Tail \to [\beta, \gamma] \,. \, [Tail \ \beta, F]\end{array}\right\} \text{ with } Right \ V$

coiter
$$\left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$$
 with

- (Amortized) overhead cost; consider scons x ys:
 - Native corec: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(1) overhead to cost of $Head(Tail^n \ ys)$

Expressiveness vs Cost; CBV vs CBN

$V := \operatorname{corec} \left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \ \to \gamma \cdot F \end{array} \right\} \text{ with } V$

$\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$ $\left\{\begin{array}{c} Head \ \alpha \to E \\ Tail \ \beta \to \gamma . F\end{array}\right\} \text{ with } V := \text{coiter } \left\{\begin{array}{c} Head \ \alpha \to [Head \ \alpha, E] \\ Tail \to [\beta, \gamma] . [Tail \ \beta, F]\end{array}\right\} \text{ with } Right \ V$

coiter
$$\left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$$
 with

- (Amortized) overhead cost; consider scons x ys:
 - Native corec: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(1) overhead to cost of $Head(Tail^n \ ys)$
 - Encoded **corec**: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(n) overhead to cost of $Head(Tail^n \ ys)$

Expressiveness vs Cost; CBV vs CBN

$V := \operatorname{corec} \left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \ \to \gamma \cdot F \end{array} \right\} \text{ with } V$

$\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$ $\left\{\begin{array}{c} Head \ \alpha \to E \\ Tail \ \beta \to \gamma \,. \, F\end{array}\right\} \text{ with } V := \text{coiter } \left\{\begin{array}{c} Head \ \alpha \to [Head \ \alpha, \, E] \\ Tail \to [\beta, \gamma] \,. \, [Tail \ \beta, F]\end{array}\right\} \text{ with } Right \ V$

coiter
$$\left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$$
 with

- (Amortized) overhead cost; consider scons x ys:
 - Native corec: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(1) overhead to cost of $Head(Tail^n \ ys)$
 - Encoded **corec**: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(n) overhead to cost of $Head(Tail^n \ ys)$

• Native CBN corec has same overhead as encoding; Native CBV corec more efficient

Expressiveness vs Cost; CBV vs CBN

$V := \operatorname{corec} \left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \ \to \gamma \ F \end{array} \right\} \text{ with } V$

$\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$ $\operatorname{corec} \left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \ \beta \to \gamma \, . \, F \end{array} \right\} \operatorname{with} V := \operatorname{coiter} \left\{ \begin{array}{c} Head \ \alpha \to [Head \ \alpha, \, E] \\ Tail \to [\beta, \gamma] \, . \, [Tail \ \beta, F] \end{array} \right\} \operatorname{with} Right \, V$

coiter
$$\left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \to \gamma . F \end{array} \right\}$$
 with

- (Amortized) overhead cost; consider scons x ys:
 - Native corec: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(1) overhead to cost of $Head(Tail^n \ ys)$
 - Encoded **corec**: $Head(Tail^{n+1}(scons \ x \ ys))$ adds O(n) overhead to cost of $Head(Tail^n \ ys)$
- Native CBN corec has same overhead as encoding; Native CBV corec more efficient
- Corollary by duality of **rec** and **iter**

Expressiveness vs Cost; CBV vs CBN

$V := \operatorname{corec} \left\{ \begin{array}{l} Head \ \alpha \to E \\ Tail \ \to \gamma \ F \end{array} \right\} \text{ with } V$

$\langle Left V \| [E, F] \rangle \mapsto \langle V \| E \rangle \qquad \langle Right V \| [E, F] \rangle \mapsto \langle V \| F \rangle$ $\operatorname{corec} \left\{ \begin{array}{c} Head \ \alpha \to E \\ Tail \ \beta \to \gamma \, . \, F \end{array} \right\} \operatorname{with} V := \operatorname{coiter} \left\{ \begin{array}{c} Head \ \alpha \to [Head \ \alpha, \, E] \\ Tail \to [\beta, \gamma] \, . \, [Tail \ \beta, F] \end{array} \right\} \operatorname{with} Right \, V$

(Co)Inductive Reasoning

By Inversion on the Input

By Inversion on the Input

$\Gamma, x : Bool \vdash \Phi(x)$

By Inversion on the Input

$\Gamma, x: Bool \vdash \Phi(x)$

$\Gamma \vdash \Phi(True)$

$\Gamma, x: Bool \vdash \Phi(x)$

By Inversion on the Input

$\Gamma, x: Bool \vdash \Phi(x)$

By Inversion on the Input

$\Gamma \vdash \Phi(True)$ $\Gamma \vdash \Phi(False)$

$\Gamma, x: Bool \vdash \Phi(x)$

By Inversion on the Input

$\Gamma \vdash \Phi(True)$ $\Gamma \vdash \Phi(False)$

By Inversion on the Input

By Inversion on the Input

By Inversion on the Input

$\Gamma \vdash \Phi(0)$

By Inversion on the Input

$\Gamma \vdash \Phi(0) \quad \Gamma \vdash \Phi(1)$

By Inversion on the Input

$\Gamma \vdash \Phi(0)$ $\Gamma \vdash \Phi(1)$ $\Gamma \vdash \Phi(2)$

By Inversion on the Input

$\Gamma \vdash \Phi(0)$ $\Gamma \vdash \Phi(1)$ $\Gamma \vdash \Phi(2)$...

By Inversion on the Input

$\Gamma \vdash \Phi(0)$ $\Gamma \vdash \Phi(1)$ $\Gamma \vdash \Phi(2)$...

By Inversion on the Input

 $\Gamma, x: Nat \vdash \Phi(x)$

 $\Gamma \vdash \Phi(Zero)$

 $\Gamma, x : Nat \vdash \Phi(x)$

$\Gamma \vdash \Phi(Zero)$ $\Gamma, x : Nat, \Phi(x) \vdash \Phi(Succ x)$

 $\Gamma, x: Nat \vdash \Phi(x)$

$\Gamma \vdash \Phi(Zero)$ $\Gamma, x : Nat, \Phi(x) \vdash \Phi(Succ x)$

 $\Gamma, x: Nat \vdash \Phi(x)$

$\Gamma \vdash \Phi(Zero)$ $\Gamma, x : Nat, \Phi(x) \vdash \Phi(Succ x)$

 $\Gamma, x: Nat \vdash \Phi(x)$

 $\Phi(Zero) \Rightarrow (\forall x:Nat . \Phi(x) \Rightarrow \Phi(x+1))$ $\Rightarrow (\forall x:Nat . \Phi(x))$

By Inversion on the Output

By Inversion on the Output

$\lambda x \cdot V \cdot x =_{\eta} V$

$\Gamma \vdash V = V' : A \rightarrow B$

By Inversion on the Output

$\lambda x \cdot V \cdot x =_{\eta} V$

$\Gamma, x : A \vdash V x = V' x : B$

$\Gamma \vdash V = V' : A \rightarrow B$

By Inversion on the Output

$\lambda x \cdot V \cdot x =_{\eta} V$

$\Gamma, x : A \vdash V x = V' x : B$

$\Gamma \vdash V = V' : A \rightarrow B$

By Inversion on the Output

 $\lambda x \cdot V \cdot x =_{n} V$

 $\lambda x \cdot \mu \beta \cdot \langle V \| x \cdot \beta \rangle =_{\eta} V$

$\Gamma, x : A \vdash V x = V' x : B$

$\Gamma \vdash V = V' : A \longrightarrow R$

$\Gamma, \alpha \div A \to B \vdash \Phi(\alpha)$

By Inversion on the Output

 $\lambda x \cdot V \cdot x =_n V$

$\lambda x \, . \, \mu \beta \, . \, \langle V \| \, x \cdot \beta \rangle =_{\eta} V$

Finite Coinduction

$\Gamma, x : A \vdash V x = V' x : B$

$\Gamma \vdash V = V' : A \rightarrow R$

$\Gamma, \alpha \div A \to B \vdash \Phi(\alpha)$

By Inversion on the Output

$\lambda x \cdot V \cdot x =_n V$

$\lambda x \cdot \mu \beta \cdot \langle V \| x \cdot \beta \rangle =_{\eta} V$

Finite Coinduction

$\Gamma, x : A \vdash V x = V' x : B$

$\Gamma \vdash V = V' : A \rightarrow R$

$\Gamma, x: A, \beta \div B \vdash \Phi(x \cdot \beta)$

$\Gamma, \alpha \div A \to B \vdash \Phi(\alpha)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

$\Gamma, \beta \div A \vdash \Phi(Head \beta)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

$\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \beta \div A \vdash \Phi(Tail(Head \beta))$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

$\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \beta \div A \vdash \Phi(Tail(Head \beta))$ $\Gamma, \beta \div A \vdash \Phi(Tail(Tail(Head \beta)))$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

$\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \beta \div A \vdash \Phi(Tail(Head \beta))$ $\Gamma, \beta \div A \vdash \Phi(Tail(Tail(Head \beta)))$ $\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

$\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \beta \div A \vdash \Phi(Tail(Head \beta))$ $\Gamma, \beta \div A \vdash \Phi(Tail(Tail(Head \beta)))$ $\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

A Coinduction Principle

A Coinduction Principle

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

A Coinduction Principle

$\Gamma, \beta \div A \vdash \Phi(Head \beta)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

A Coinduction Principle $\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \alpha \div Stream A, \Phi(\alpha) \vdash \Phi(Tail \alpha)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

A Coinduction Principle $\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \alpha \div Stream A, \Phi(\alpha) \vdash \Phi(Tail \alpha)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

A Coinduction Principle $\Gamma, \beta \div A \vdash \Phi(Head \beta)$ $\Gamma, \alpha \div Stream A, \Phi(\alpha) \vdash \Phi(Tail \alpha)$

$\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$

Bisimulation

 $= (\forall s, s' : Stream A : \Phi(s, s') \Rightarrow Head s = Head s' : A)$ \Rightarrow ($\forall s, s'$: Stream A. $\Phi(s, s') \Rightarrow \Phi(Tail s, Tail s')$) \Rightarrow ($\forall s, s'$: Stream A. $\Phi(s, s') \Rightarrow s = s'$: Stream A)

A Coinduction Principle $\Gamma, \alpha \div Stream A, \Phi(\alpha) \vdash \Phi(Tail \alpha)$

Bisimulation

 $\Gamma, \alpha \div Stream A \vdash \Phi(\alpha)$ $= (\forall s, s' : Stream A : \Phi(s, s') \Rightarrow Head s = Head s' : A)$ \Rightarrow ($\forall s, s'$: Stream A. $\Phi(s, s') \Rightarrow \Phi(Tail s, Tail s')$)

 \Rightarrow ($\forall s, s'$: Stream A. $\Phi(s, s') \Rightarrow s = s'$: Stream A)

Based on Control Flow

 $\Gamma, \beta \div A \vdash \Phi(Head \beta)$

repeat x = x, x, x... *alt* = 0,1,0,1... *evens* $(x_0, x_1, x_2...) = x_0, x_2, x_4...$

Theorem: evens alt = repeat 0 : Stream A

repeat x = x, x, x... alt = 0, 1, 0, 1... $evens(x_0, x_1, x_2...) = x_0, x_2, x_4...$

Theorem: evens alt = repeat 0 : Stream A

- S.T.S: $\alpha \div Stream A \vdash \langle evens \ alt \| \alpha \rangle = \langle repeat \ 0 \| \alpha \rangle$
- *repeat* x = x, x, x... *alt* = 0,1,0,1... *evens* $(x_0, x_1, x_2...) = x_0, x_2, x_4...$

Proof by Coinduction **Theorem**: evens alt = repeat 0 : Stream A • S.T.S: $\alpha \div Stream A \vdash \langle evens \ alt \| \alpha \rangle = \langle repeat \ 0 \| \alpha \rangle$

Proof: By coinduction on $\alpha \div Stream A...$

- *repeat* x = x, x, x... *alt* = 0,1,0,1... *evens* $(x_0, x_1, x_2...) = x_0, x_2, x_4...$

Proof by Coinduction Theorem: evens alt = repeat 0 : Stream A • S.T.S: $\alpha \div Stream A \vdash \langle evens \ alt \| \alpha \rangle = \langle repeat \ 0 \| \alpha \rangle$ **Proof**: By coinduction on $\alpha \div Stream A...$ • $\alpha = Head \beta$: $\langle evens \ alt \| Head \ \beta \rangle = \langle 0 \| \beta \rangle = \langle repeat \ 0 \| Head \ \beta \rangle$

- *repeat* x = x, x, x... *alt* = 0,1,0,1... *evens* $(x_0, x_1, x_2...) = x_0, x_2, x_4...$

Proof by Coinduction Theorem: evens alt = repeat 0 : Stream A • S.T.S: $\alpha \div Stream A \vdash \langle evens \ alt \| \alpha \rangle = \langle repeat \ 0 \| \alpha \rangle$ **Proof**: By coinduction on $\alpha \div Stream A...$ • $\alpha = Head \beta$: $\langle evens \ alt \| Head \ \beta \rangle = \langle 0 \| \beta \rangle = \langle repeat \ 0 \| Head \ \beta \rangle$ • $\alpha = Tail \beta$: Assume CoIH (evens alt $||\beta\rangle = (repeat 0 ||\beta)$ and show $\langle evens \ alt \| Tail \ \beta \rangle = \langle repeat \ 0 \| Tail \ \beta \rangle...$

- *repeat* x = x, x, x... *alt* = 0,1,0,1... *evens* $(x_0, x_1, x_2...) = x_0, x_2, x_4...$

Proof by Coinduction Theorem: evens alt = repeat 0 : Stream A • S.T.S: $\alpha \div Stream A \vdash \langle evens \ alt \| \alpha \rangle = \langle repeat \ 0 \| \alpha \rangle$ **Proof**: By coinduction on $\alpha \div Stream A...$ • $\alpha = Head \beta$: $\langle evens \ alt \| Head \ \beta \rangle = \langle 0 \| \beta \rangle = \langle repeat \ 0 \| Head \ \beta \rangle$ • $\alpha = Tail \beta$: Assume CoIH (evens alt $\|\beta\rangle = \langle repeat 0 \|\beta\rangle$ and show $\langle evens \ alt \| Tail \ \beta \rangle = \langle repeat \ 0 \| Tail \ \beta \rangle...$ $\langle evens \ alt \| Tail \ \beta \rangle = \langle evens \ (Tail(Tail \ alt)) \| \beta \rangle$ $= \langle evens \ alt \| \beta \rangle$ $= \langle repeat \ 0 \| \beta \rangle$

- *repeat* x = x, x, x... *alt* = 0,1,0,1... *evens* $(x_0, x_1, x_2...) = x_0, x_2, x_4...$

- $= \langle repeat \ 0 \parallel Tail \ \beta \rangle$

(def. evens) (def. alt) (CoIH) (def. repeat)

• Strong (co)induction proves any property Φ

• Strong (co)induction proves any property Φ

• Strong induction is *unsound* in CBN

- Strong (co)induction proves any property Φ
 - Strong induction is *unsound* in CBN
 - Strong coinduction is *unsound* in CBV

- Strong (co)induction proves any property Φ
 - Strong induction is *unsound* in CBN
 - Strong coinduction is *unsound* in CBV
- Weak (co)induction restricts Φ

- Strong (co)induction proves any property Φ
 - Strong induction is *unsound* in CBN
 - Strong coinduction is *unsound* in CBV
- Weak (co)induction restricts Φ
 - Weak induction on x: must be strict on x like $\langle x \| E \rangle = \langle x \| E' \rangle$

- Strong (co)induction proves any property Φ
 - Strong induction is *unsound* in CBN
 - Strong coinduction is *unsound* in CBV
- Weak (co)induction restricts Φ
 - Weak induction on x: must be strict on x like $\langle x \| E \rangle = \langle x \| E' \rangle$
 - Weak induction on α : must be *productive on* α like $\langle V \| \alpha \rangle = \langle V' \| \alpha \rangle$

- Strong (co)induction proves any property Φ
 - Strong induction is *unsound* in CBN
 - Strong coinduction is *unsound* in CBV
- Weak (co)induction restricts Φ
 - Weak induction on x: must be strict on x like $\langle x \| E \rangle = \langle x \| E' \rangle$
 - Weak induction on α : must be *productive on* α like $\langle V \| \alpha \rangle = \langle V' \| \alpha \rangle$
- Weak (co)induction is *always sound*

Lessons Learned

Lessons Learned Duality — Ideas for free!

Lessons Learned

- Duality Ideas for free!
- - CBV: strong induction and efficient corecursion
 - CBN: strong coinduction and efficient recursion
 - Future work: Call-by-push-value or polarities could get best of both worlds

• Impact of evaluation, computation, effects, divergence
Lessons Learned

- Duality Ideas for free!
- - CBV: strong induction and efficient corecursion
 - CBN: strong coinduction and efficient recursion
 - Future work: Call-by-push-value or polarities could get best of both worlds
- (Co)Induction are both inversion principles
 - Induction: inversion on input, guided by information flow
 - Coinduction: inversion on output, guided by control flow

• Impact of evaluation, computation, effects, divergence