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Examples of Recursion

plus Zero y = y
plus (Succ x′ ) y = Succ (plus x′ y)

plus = λx . λy . iter x as
Zero → y
Succ → z . Succ z

In System T

pred Zero = Zero
pred (Succ x′ ) = x′ 

pred = λx . case x of
Zero → Zero
Succ x′ → x′ 

minus x Zero = x
minus x (Succ y′ ) = pred (minus x y′ )

minus = λx . λy . iter y as
Zero → x
Succ → z . pred z
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iter M as Zero → N
Succ → y . P := rec M as Zero → N

Succ _ → y . P

rec M as Zero → N
Succ x → y . P :=

snd(iter M as Zero → (Zero, N)
Succ → (x, y) . (Succ x, P))

•  goes from  to  timepred (Succn Zero) O(1) O(n)

•  goes from  to minus (Succn Zero) (Succm Zero) O(n) O(n2 + nm)

• Native  has the same performance penalty as encoding in CBVrec
• Recursive result always computed; full traversal is mandatory

Expressiveness vs Cost
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⟨M N ||E⟩ ↦ ⟨M ||N ⋅ E⟩
⟨λx . M ||N ⋅ E⟩ ↦ ⟨M[N/x] ||E⟩

⟨rec M as ralt ||E⟩ ↦ ⟨M ||rec ralt with E⟩
⟨Zero ||rec ralt with E⟩ ↦ ⟨N ||E⟩

⟨Succ M ||rec ralt with E⟩ ↦ ⟨P[M/x, rec M as ralt/y] ||E⟩

ralt := { Zero → N ∣ Succ x → y . P }

⟨M ||E⟩
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What’s the Dual of Natural Numbers?
•     is dual to    Zero : 1 → Nat Run : Nat⊥ → ⊥

•     is dual to    Succ : Nat → Nat Tail : Nat⊥ → Nat⊥

•  is an infinite stream of computationsNat⊥

• You can run them, but they don’t return 

Nat Values: Zero Succ V
Nat Continuation: rec {Zero → N ∣ Succ x → y . P} with E

Nat⊥ Value: corec {Run → E ∣ Tail α → β . F} with V
Nat⊥ Continuations: Run Tail E

Nat⊥
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Corecursion on Streams

• Generalize  to Nat⊥ Stream A
• Infinite stream of computations that return an A

•     and    Head : Stream A → A Tail : Stream A → Stream A

Nat⊥ Value: corec {Run → E ∣ Tail β → γ . F} with V
Nat⊥ Conts.: Run Tail E

Stream A Value: corec {Head α → E ∣ Tail β → γ . F} with V
Stream A Conts.: Head E Tail E

In an Abstract Machine
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Corecursion on Streams
• Functional, direct-style

• Don’t mention continuations directly; implicit “evaluation contexts”

• Contexts named by ; invoked by jumps μα . J ⟨M ||α⟩

Destructors:                when Head M : A Tail M : Stream A M : Stream A
Generator:    corec {Head → x . N ∣ Tail β → y . P} with M

• Accumulator , named  and  in the branchesM x y

• Head branch:  computes first element from current accumulator N x

• Tail branch:  computes one of two optionsP

• Continue: return a new accumulator value from current  used for next corecursive  loopy

• End: send a fully-formed stream to context ; this corecursive loop is finished β

In the λμ-Calculus
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Examples of Corecursion
 count x = x, x + 1, x + 2, x + 3…

count = λx . corec {Head → y . y ∣ Tail _ → z . Succ z} with x

scons x (y0, y1, y2…) = x, y0, y1, y2…

scons = λx . λys . corec {Head → _ . x ∣ Tail α → _ . μδ . ⟨ys ||α⟩} with _

app [x0, x1, …, xn] (y0, y1, y2…) = x0, x1, …, xn, y0, y1, y2…

app = λxs . λys . corec

Head → Cons x xs . x
Tail _ → Cons x xs . xs
Head → Nil . Head ys

Tail α → Nil . μδ . ⟨Tail ys ||α⟩

with xs

In an Abstract Machine
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Tail _ → γ . F} with V
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• Encoded :  adds  overhead to cost of corec Head(Tailn+1(scons x ys)) O(n) Head(Tailn ys)

• Native CBN  has same overhead as encoding; Native CBV  more efficientcorec corec
• Corollary by duality of  and rec iter
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Γ ⊢ Φ(Zero) Γ, x : Nat, Φ(x) ⊢ Φ(Succ x)

Φ(Zero) ⇒ (∀x:Nat . Φ(x) ⇒ Φ(x + 1))
⇒ (∀x:Nat . Φ(x))
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Bisimulation
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Proof: By coinduction on …α ÷ Stream A

• :    α = Head β ⟨evens alt ||Head β⟩ = ⟨0 ||β⟩ = ⟨repeat 0 ||Head β⟩

• :    Assume CoIH  and show 
…

α = Tail β ⟨evens alt ||β⟩ = ⟨repeat 0 ||β⟩
⟨evens alt ||Tail β⟩ = ⟨repeat 0 ||Tail β⟩

 

⟨evens alt ||Tail β⟩ = ⟨evens (Tail(Tail alt)) ||β⟩ (def . evens)
= ⟨evens alt ||β⟩ (def . alt)
= ⟨repeat 0 ||β⟩ (CoIH)
= ⟨repeat 0 ||Tail β⟩ (def . repeat)

Theorem: evens alt = repeat 0 : Stream A

• S.T.S: α ÷ Stream A ⊢ ⟨evens alt ||α⟩ = ⟨repeat 0 ||α⟩

repeat x = x, x, x… alt = 0,1,0,1… evens (x0, x1, x2…) = x0, x2, x4…
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• Strong (co)induction proves any property Φ
• Strong induction is unsound in CBN

• Strong coinduction is unsound in CBV

• Weak (co)induction restricts Φ
• Weak induction on : must be strict on  like x x ⟨x ||E⟩ = ⟨x ||E′ ⟩

• Weak induction on : must be productive on  like α α ⟨V ||α⟩ = ⟨V′ ||α⟩

• Weak (co)induction is always sound

And Effectful Computation
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Lessons Learned
• Duality — Ideas for free!
• Impact of evaluation, computation, effects, divergence 

• CBV: strong induction and efficient corecursion 

• CBN: strong coinduction and efficient recursion 

• Future work: Call-by-push-value or polarities could get best of both worlds

• (Co)Induction are both inversion principles 
• Induction: inversion on input, guided by information flow 

• Coinduction: inversion on output, guided by control flow


