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Problems in High-Assurance Programming

Consequences are huge, so correctness is paramount

Need to prove that programs “do the right thing”

E.g., Security protocols, private information management

E�iciency is o�en still a top concern

The right thing at the wrong time is still wrong!

If the answer comes too late, it doesn’t ma�er

E.g., Automotive control systems, medical devices,
high-speed network communication (Du�, OPLSS ’18)
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Curry-Howard Correspondence

propositions ≈ types
proofs ≈ programs
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Correspondence of Logic and Languages

Logic Language

Natural deduction λ-calculus

Proposition Type

Proof Program

Second-order quantification Generics and modules

Classical logic Control flow e�ects (call/cc)
...

...
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Putting Logic to Work

1. Start with ideas from logic; find connections to computation

2. Use it to reason about program behavior

3. Apply it to compile programs be�er
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The Truth about Truth



A non-constructive proof

Theorem
There exist two irrational numbers, x and y, such that xy is rational.

Proof.
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2. Done!
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Classic Classical Logic
Truth is Divine

. . . and sometimes out of reach to mortals
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Constructive Intuitionistic Logic
Truth is the Work of Mortals
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The Monologue of the Sage
Truth is Disseminated through Proclamations
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The Dialogue of the Sage and the Skeptic
Truth is Discovered through Debate
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Constructive Classical Logic
Who Possesses The Burden of Proof?
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Constructive Classical Logic
Who Possesses The Burden of Proof?
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Interpretation of Classical Principles
The Miraculous versus the Mundane

Excluded Middle with a Positive Mindset

Excluded Middle with a Negative Mindset
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Duality in Practice



Duality
“Co-things” are the opposite of “things”

Y
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Duality in Logic

De Morgan duals

not true = false

not false = true

not(A and B) = (not A) or (not B)

not(A or B) = (not A) and (not B)
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The sequent

A1,A2, . . .An ` B1,B2, . . . ,Bm

means

A1 and A2 and . . . and An
=⇒

B1 or B2 or . . . or Bm

• ` A means A is true

A ` • means A is false

• ` • means contradiction
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Computational Sequent Calculus

• ` A means A is true
A ` • means A is false
• ` • means contradiction

• ` P : A is a producer of A values
C : A ` • is a consumer of A values

〈P||C〉 : (• ` •) is a runnable command

〈P||C〉 : (x1 : A1 . . . xn : An ` α1 : B1 . . . αm : Bm)

is an open command

with free inputs xi and outputs αj

Think: producer = sage, consumer = skeptic, command = dialogue
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Dualities of Computation

〈P||C〉

Answers

�estions

Producer Consumer

Answers �estions

Program Context

Construction Destruction

Data Flow Control Flow

Generics Modules
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Dualities of Computation

〈P||C〉

Modules

Generics

Producer Consumer

Answers �estions

Program Context

Construction Destruction

Data Flow Control Flow

Generics Modules
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Classical Logic and Control1

Classical logic ∼= λµ = λ-calculus + labels + jumps

Corresponds to Scheme’s call/cc control operator

A ∨ ¬A as application of call/cc
“time travel” caused by invoking the continuation

Producer 6= command:

Producers return a value
Commands don’t return, they jump

Delimited control is much more expressive

Can represent any (monadic) side e�ect

Delimited control is λµ where expression = command

1Downen, Ariola, ICFP ’14
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Data vs Codata2

data a⊕ bwhere
Le� : a ` a⊕ b

Right : b ` a⊕ b

codata a & bwhere
First : a & b ` a

Second : a & b ` b

data a⊗ bwhere
Pair : a, b ` a⊗ b

codata a

&

bwhere
Split : a

&

b ` a, b

data a	 bwhere
Yield : a ` a	 b, b

codata a→ bwhere
Call : a, a→ b ` b

2Downen & Ariola, ESOP ’14
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Induction vs Coinduction3

Induction is a bo�om-up, divide-and-conquer approach:

data List awhere
Nil : • ` List a

Cons : a, List a ` List a

dataNatwhere
Zero : • ` Nat
Succ : Nat ` Nat

length(Nil) = Zero
length(Cons(x, xs)) = Succ(length(xs))

Coinduction is a top-down, demand-driven approach

count(0) = 0, 1, 2, . . . count(x) = x, count(x + 1)

codata Stream awhere
Head : Stream a ` a

Tail : Stream a ` Stream a

count(x).Head = x
count(x).Tail = count(Succ(x))

3Downen, Johnson-Freyd, Ariola, ICFP ’15 19
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Functional vs Object-oriented4

record Stream A : Set where
coinductive
�eld head : A

tail : Stream A

count : Nat → Stream Nat
head (count x) = x
tail (count x) = count (x + 1)

public interface Stream〈A〉 {
public A head ();
public Stream〈A〉 tail ();

}
public class Count implements Stream〈Integer〉 {

private �nal Integer �rst ;
public Count(Integer x) { this . �rst = x; }
public Integer head() { return this . �rst ; }
public Stream〈Integer〉 tail () { return new Count(this. �rst +1); }

}

4Downen & Ariola, Classical (Co)Recursion: Programming, 2021
20
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Codata in Programming5

Codata integrates features of functional & OO languages

First-class functions are codata
Objects are codata

Codata connects methods of functional & OO programming

Church Encodings are the Visitor Pa�ern

Codata captures several functional & OO design techniques

Demand-driven programming
Procedural abstraction
Pre- and Post-Conditions

Codata improves λ-calculus theory (JDA WoC’16; JDA JFP’17)

5Downen, Sullivan, Ariola, Peyton Jones, ESOP ’19
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Coinduction in Programming6

Induction represents terminating, batch-processing algorithm
Coinduction naturally represents interactive, infinite processes

“Online” streaming algorithms & network telemetry
Interactive programs, user interfaces, & web servers
Operating systems & real-time systems

Instead of termination, productivity is important
Service is always available, indefinitely
Process ends only when client is done

Induction & coinduction are both structural recursion (ICFP’15)
Induction follows structure of values (producers)
Coinduction follows structure of contexts (consumers)

Coinductive hypothesis follows control flow (PPDP’20)
Dual to induction following information flow

6Downen, Johnson-Freyd, Ariola, ICFP ’15, Downen & Ariola, PPDP ’20 22



Orthogonal models of safety7

Domain-specific notion of safety: set of commands ‚
Safe interaction is orthogonality

Individuals P ‚ C ⇐⇒ 〈P||C〉 ∈‚
Groups: A+ ‚ A− ⇐⇒ ∀P ∈ A+,C ∈ A−. P ‚ C
Adjoint duality: A‚ is biggest B s.t. A ‚ B or B ‚ A

Types are fixed points: A = (A+,A−) = (A−‚,A+‚) = A‚
‚ = type safety, termination, consistency, equivalence, . . .

Handles many features of advanced & practical languages:
Linearity, e�ects, (co)recursion (DA, CSL’18), subtyping (DJA, WRLA’18),

dependent types (DJA, ICFP’15), intersection & union types (DAG, FI’19)

Non-determinism and alternative evaluation orders via
asymmetric orthogonality and the (co)value restriction

7Downen, Johnson-Freyd, Ariola, JLAMP ’19; Downen, Johnson-Freyd, Ariola, WRLA ’18
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Logic of
Compilation



The Life-cycle of a Program

Feature Rich Source (Human)

...

Detail Rich Target (Machine)

Reason

Execute

But this is a big jump; what goes in the middle?
24



Intermediate Languages

Feature Rich Source (Human)

Intermediate

Detail Rich Target (Machine)

Desugar

Reason

Generate Code

Optimize

Execute

25



The Two-Way Street of Influence

Feature Rich Source (Human)

Expressive & Performant Intermediate

Detail Rich Target (Machine)

Reason

Implementation
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The Two-Way Street of Influence

Feature Rich Source (Human)

Expressive & Performant Intermediate

Detail Rich Target (Machine)

ReasonImplementation

ReasonImplementation
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Re-associating programs

λ-calculus Sequent calculus

f 1 2 3 . . . 〈f ||1 · 2 · 3 · α〉

α

·

3·

2·

1f

||

·

·

·

α3

2

1

f

27



Sequent Calculus as an Intermediate Language8

Bring the main action of a program to center stage

Similar to continuation-passing style (CPS) and static single
assignment (SSA), but . . .

Function calls are concrete, be�er for optimization
Appropriate for both functional and imperative code

Gives an explicit representation of control flow

Shows how to implement codata

Helps to formalize and optimize calling conventions

8Downen, Maurer, Ariola, Peyton Jones, ICFP ’15; Downen, Ariola, JFP ’16
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Join Points in Control Flow

if x > 100 :

print"x is large"
else :

print"x is small"
print"goodbye"

x > 100

print "x␣ is ␣ large " print "x␣ is ␣ small "

print "goodbye"

yes no

29



Purely Functional Join points9

Some optimizations follow control flow, not data flow

If careless, potential exponential blowup of code size

Join points are found in SSA and CPS, in di�erent forms

Classical logic can represent join points in direct style

Classical-Intuitionistic hybrid gives join points while
maintaining purity

9Maurer, Downen, Ariola, Peyton Jones, PLDI ’17
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The Duality of Evaluation

f (1 + 1): is 1 + 1 done before or a�er call?

〈P||C〉

Data Flow: CBN

Control Flow: CBV

Call-by-value favors producer P ; follows control flow first

Call-by-name favors consumer C; follows data flow first

31



Polarization Hypothesis

〈P||C〉

Data Flow: Answers

Control Flow: �estions

Positive: CBV Data Types
Answer �estion

Primary Secondary

Action Reaction

Concrete Abstract

Finite Infinite

e.g., lists, trees, structures,
. . .

Negative: CBN Codata Types
Answer �estion

Secondary Primary

Reaction Action

Abstract Concrete

Infinite Finite

e.g., functions, streams, processes,
. . .

Think: Positive vs Negative burden of proof 32



Polarity in Intermediate Languages

Dual (adjoint) language: “universal” IL for CBV and CBN

User-defined types encoded into finite set of primitives

Purely functional (Downen & Ariola, CSL ’18)
Perfectly dual (Downen & Ariola, LMCS ’20)

Encodings have same properties as source program

Must be robust in the face of computational e�ects

Going beyond polarity, for call-by-need, etc., requires only
four extra “polarity shi�s”

33



Efficient Calling Conventions

Systems languages give fine-grained calling conventions:

Fixed number of parameters
Boxed (call-by-reference) versus unboxed (call-by-value)
Many shapes (integer vs floating point vs arrays)
All checks done statically at compile time

Functional languages make e�icient calls di�icult:

Currying: a→ (b→ c) instead of (a, b)→ c
Polymorphism: ∀a.a→ a; is a = Int or a = Int→ Int?
Pervasive Boxing: due to polymorphism or laziness

34



Kinds are Calling Conventions10

Polarity points out types of e�icient machine primitives

Hindsight: unboxed data must be positive (PJ&L, FPLCA’91)

Primitive function types must be negative (DSAP, Haskell’19)

Polarized types are so well-behaved they fuse together
Unboxed tuples combine into a single structure
Currying recomposes into single multi-arity function

Implementation details stored statically in types & kinds
How many bits? Where are they stored?
How can you use this object?
When do you run this code?

Kinds: the type system of the machine

10Downen, Ariola, Peyton Jones, Eisenberg, ICFP ’20
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Conclusion



Summary

1. Translate an idea from logic to computation

2. Use it to understand program behavior

3. Apply it to implement programs more e�iciently

36



Lessons Learned

Curry-Howard is the gi� that keeps giving

Good for theory of programming

Proving properties
Verifying correctness
Designing programs

Good for practice of compilation

Express low-level details in high-level representation
Reason about performance
Formalize and develop new optimizations

37



Future Work



A Dual Programming Language

Through the lens of duality, the two main paradigms are:
Object-oriented: richness of codata types, paucity of data
Functional: richness of data types, paucity of codata

Codata already captures many important OO principles
Interfaces, encapsulation, dynamic dispatch, subtyping

Concurrency is modeled through communicating agents
Session types specify concurrent protocols
Linearity controls limited resources

Duality expresses communication between a server and client

Goal: Dual programming language fusing high- & low-level,
functional & OO, sequential & concurrent programming

38



The Duality of Information Security

Confidentiality (who knows?) & integrity (says who?) are dual
public v private yet trusted v untrusted
“That duality is what makes security hard” – Myers OPLSS ’17

Both are dependent on data flow and control flow

private bool secret ;
if secret { return true; } else { return false ; }

Are sensitivity & privacy dual? (co)e�ects, adjoint languages
(Near et al., OOPSLA’19)
Can di�erential privacy be decomposed into orthogonality?

M ‚ε,δ M′ i� ∀S ⊆ R, Pr[M ∈ S] ≤ eε Pr[M′ ∈ S] + δ

x DB1 y i� databases x, y di�er by 1 row
ε, δ-di�erentially private algorithm: DB1

‚ε,δ

Hypothesis: Orthogonality gives a robust model for the
dualities of information security

39



A Logical Foundation of Compiler Correctness

Old: Compiling & running whole programs give right answer

Problems with whole-program correctness:
Cannot link with system libraries
No foreign-function interface
Poor modularity and separate compilation

Compositional compiler correctness: Compiling part of a
program and linking with a valid context gives the right answer

Context C ∈ A in target; program P ∈ A‚ in source

Other properties (e.g., privacy and security) could be modeled
as compositional correctness criteria preserved by compiler

Hypothesis: sequent calculus gives a logical framework for
compositional compiler correctness & security 40
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Structural
(Co)Induction



Unifying (Co)Induction as Structural Recursion11

A call stack x · α contains an:

argument x

return pointer α

length is well-founded because its argument shrinks:

〈length||Nil · α〉 = 〈Zero||α〉
〈length|| Cons x xs · α〉 = 〈length|| xs · Succ ◦ α〉

count is well-founded because its return pointer shrinks:

〈count||x · Headα〉 = 〈x||α〉
〈count||x · Tailα 〉 = 〈count||Succ x · α 〉

11Downen, Johnson-Freyd, Ariola, ICFP ’15



Inductive Reasoning

• ` P(True) • ` P(False)
x : Bool ` P(x)

• ` P(0) • ` P(1) • ` P(2) . . .

x : Nat ` P(x)

• ` P(0) y : Nat, P(y) ` P(y + 1)
x : Nat ` P(x)
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Coinductive Reasoning13

x : Stream A, P(x) ` P(x)
x : Stream A ` P(x)

warning!

x : Stream A ` P
(

x.Head, x.Tail.Head,

x.Tail.Tail.Head, . . .

)
x : Stream A ` P(x)

α÷ A ` P(Headα) α÷ A ` P(Tail[Headα]) . . .

γ ÷ Stream A ` P(γ)
12

α÷ A ` P(Headα) β ÷ Stream A, P(β) ` P(Tail β)
γ ÷ Stream A ` P(γ)

12Read α÷ A as α : −A, i.e., an assumption of not A, a continuation expecting A.
13Downen & Ariola, PPDP ’20
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α÷ A ` P(Headα) β ÷ Stream A, P(β) ` P(Tail β)
γ ÷ Stream A ` P(γ)

12Read α÷ A as α : −A, i.e., an assumption of not A, a continuation expecting A.
13Downen & Ariola, PPDP ’20



Control Flow



Intuitionistic vs Classical Logic

Intuitionistic logic ⊂ Classical logic

Intuitionistic logic rejects the following classical laws:

Excluded Middle: A ∨ ¬A (either A or not A is true)

Double Negation: ¬¬A =⇒ A (if not not A is true, so is A)

Pierce’s Law: ((A =⇒ B) =⇒ A) =⇒ A



Manipulating the Flow of Control

Control operators let the programmer manipulate control flow

These bind continuations that are the “rest of the computation”

Scheme’s call/cc: ((A→ B)→ A)→ A

Felleisen’s C: ¬¬A→ A (where ¬A is a continuation)

Ambiguous choice: A + ¬A (either a value or continuation)



A Natural Extension of Classical Logic14

Parigot’s classical λµ = λ-calculus + labels + jumps

Expression 6= command:

Expressions return a value
Commands don’t return, they jump

Corresponds to call/cc

Delimited control is much more expressive

Can represent any (monadic) side e�ect

Delimited control is λµ where expression = command

14Downen, Ariola, ICFP ’14



Delimited Control as (Resumable) Exceptions

def square_root (x ):
if x <= 0:
raise ValueError( "square ␣ root ␣must␣be␣ positive " )

...

try :
x = input("Please ␣ enter ␣a ␣number:␣" )
print(square_root ( int (x )))

except ValueError :
print( "That’s ␣not␣a ␣ valid ␣number")



Delimited Control as Coroutines

def depth_�rst_search ( tree ):
if type(tree ) is list :
for child in tree :
yield from depth_�rst_search ( child )

else :
yield tree

def print_dfs ( tree ):
for elem in depth_�rst_search ( tree ):
print(elem)

print_dfs ([[1], 2, [[3, 4], 5], [[6]]]) => 1, 2, 3, 4, 5, 6



Delimited Control as Dynamic Labels15

Practical programs should be modular

Interference between side e�ects should be avoided

E.g., exception handling

Was the exception in parsing input, or processing value?

Solved by multiple control delimiters:

A delimiter is a dynamically-bound label

Di�erent labels denote separate scopes

15Downen, Ariola, ESOP ’12; Downen, Ariola JFP ’14



Join Points



Join Points versus φ-nodes

x < 0

y1 = −x y2 = x

z = φ(y1, y2)

. . .

yes no

label j(z) = . . .

in if x < 0
then jump j(−x)
else jump j(x)



Sequent Calculus



Re-orienting proofs

Natural Deduction Sequent calculus

A B
A ∧ B

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧ B,∆



Re-orienting proofs

Natural Deduction Sequent calculus

A ∧ B
A

Γ,A ` ∆
Γ,A ∧ B ` ∆

A ∧ B
B

Γ,B ` ∆
Γ,A ∧ B ` ∆



A Syntax for Duality

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧ B,∆

Γ,A ` ∆ Γ,B ` ∆
Γ,A ∨ B ` ∆

Γ,A ` ∆
Γ,A ∧ B ` ∆

Γ ` A,∆
Γ ` A ∨ B,∆



Curry-Howard



All Natural Numbers are Even or Odd

What is even?
n = 2k

What is odd?
n = 2k + 1

Proof by induction. . .

0 = 2(0): even!

1 = 2(0) + 1: odd!

n + 1 by inductive hypothesis, n is:

2k then n + 1 = 2k + 1: odd!
2k + 1 then n + 1 = 2k + 1 + 1 = 2(k + 1): even!



(Unsigned) integer division by 2

data Half = Even Natural −− exact division
| Odd Natural −− remainder of 1

half :: Natural −> Half
half 0 = Even 0
half 1 = Odd 0
half (n+1) = case half n of

Even k −> Odd k
Odd k −> Even (k+1)
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