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PROBLEMS IN HIGH-ASSURANCE PROGRAMMING

Consequences are huge, so is paramount

Need to prove that programs

E.g., Security protocols, private information management

is often still a top concern

The right thing is still wrong!
If the answer comes too late, it doesn’t matter

E.g., Automotive control systems, medical devices,
high-speed network communication (Duff, OPLSS "18)



CuURRY-HOWARD CORRESPONDENCE

propositions = types
proofs ~ programs



CORRESPONDENCE OF LoGic AND LANGUAGES

Logic H Language
Proposition Type
Proof Program



CORRESPONDENCE OF LoGic AND LANGUAGES

Logic H Language
Proposition Type
Proof Program
Second-order quantification Generics and modules
Classical logic Control flow effects (call/cc)




PutTING LoGICc TO WORK

Start with ideas from ; find connections to
Use it to program behavior

Apply it to programs better



THE TRUTH ABOUT TRUTH
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Theorem
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Proof.

2
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There exist two irrational numbers, x and y, such that x¥ is rational.

Proof.
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TRUTH 1S DIVINE




Crassic CrassicAL Loaic

TRUTH 1S DIVINE

...and sometimes out of reach to mortals



CoNsTRUCTIVE INTUITIONISTIC LOGIC

TRUTH IS THE WORK OF MORTALS




THE MONOLOGUE OF THE SAGE

TRUTH 1S DISSEMINATED THROUGH PROCLAMATIONS




THE DIALOGUE OF THE SAGE AND THE SKEPTIC

TRUTH 1S DISCOVERED THROUGH DEBATE

Gl

SAGE SkepTic




ConNsTRUCTIVE CLASSICAL Loaic

WHo Possesses THE BURDEN oF PROOF?

AvB is True

AVB 15 FALSE.

1T’ IMPOSSIBLE FOR A

Fz.Poo 15 Taue

BECAUSE Fin) 15 TRUE,
FOR THIS N




CoNsTRUCTIVE CLASSICAL Logic

AvB 15 True
BECAUSE A 1

Fz.Poo 15 Taue
BECAUSE Fin) 15 TRUE,
FOR THIS N

PosiTive

A\/B ;.s_rRuE.
A ano B caw'T
BoTH BE FALSE

AvB s Faise
BECAUSE BOTH A Awp
ARE FALSE

VxR 1s Favse
BECAUSE Pin) 15 FaLsE
FOR THIS N

VZ. P(X) 15 [RUE.

P 15 wever Fause
FOR ANY

WHo Possesses THE BURDEN oF PROOF?



INTERPRETATION OF CLASSICAL PRINCIPLES

THE MIRACULOUS VERSUS THE MUNDANE

Excluded Middle with a Positive Mindset

o.. 1A 15 Fase O O ACTUALLY, | AEANT
BECAUsE A 1s TRue. é P Av-A s TRUE BECAUSE

15 TRUE.. SEE?

Av-A
|5 | RUE
BECAUSE
~A s

TRuE

HERES PROOE




INTERPRETATION OF CLASSICAL PRINCIPLES

THE MIRACULOUS VERSUS THE MUNDANE

Excluded Middle with a Positive Mindset

Av-A
|5 | RuEe
BECAUSE
~A s

TRuE

HERE's PROOF A 15 TRUE... SEE?

o.. 1A 15 Fase O 0 ACTUALLY, | HEANT
BECAUSE A 1s Trae. {P Av-A s TRUE BECAUSE

UMA...
WELL, THAT
MEANs A
CANT BE

Fause, Too.
HAA....




DUALITY IN PRACTICE



DuALITY

“CO-THINGS” ARE THE OPPOSITE OF “THINGS”




DuALITY IN LOGIC

De Morgan duals

not true = false

not false = true

not(A and B) = (not A) or (not B)
not(A or B) = (not A) and (not B)



THE SEQUENT

A1,A2,...An}_B1 Bz

means

Ay and A, and . ..
—
By or B,

Brm

and A,

Brm



THE SEQUENT

A1,A2,...An}_B1 Bz Bm

means
Ay and A, and ... and A,
—
B, B, o B,,
o A means A is true
Al e means A s

ol o means contradiction



CoMPUTATIONAL SEQUENT CALCULUS

means A is true

o A
Al e means Ais false
oo means contradiction

e~ P:A is aproducer of Avalues
is a consumer of A values

is a runnable command

Think: producer = sage, consumer = skeptic, command = dialogue



CoMPUTATIONAL SEQUENT CALCULUS

means A is true

e A
Al e means Ais false
oo means contradiction
ol P: is a producer of A values
C:AF e is a consumer of A values
(P|C): (oF o) is a runnable command
(P|C):(x1:A1...xp: AnF g i Byoooayy o B)

is an open command
with free inputs x; and outputs

Think: producer = sage, consumer = skeptic, command = dialogue



DuALITIES OF COMPUTATION

Answers

(PIC)

Questions

Producer || Consumer

Answers || Questions

Program | Context




DuALITIES OF COMPUTATION

Construction

(PIC)

Destruction

Producer || Consumer

Answers || Questions

Program | Context

Construction || Destruction



DuALITIES OF COMPUTATION

Data Flow

(PIC)

Control Flow

Producer || Consumer

Answers || Questions

Program | Context

Construction || Destruction

Data Flow || Control Flow



DuALITIES OF COMPUTATION

Modules

(PIC)

Generics
Producer || Consumer
Answers || Questions
Program | Context

Construction

Destruction

Data Flow

Control Flow

Generics

Modules



CrAssIcAL Locic AND CoNTRoOL'

Classical logic = Ay = A-calculus + labels + jumps
Corresponds to Scheme’s control operator

AV —A as application of call /cc
“time travel” caused by invoking the continuation

Producer # command:

Producers a value

Commands don’t return, they
Delimited control is
Can represent any (monadic) side effect

Delimited control is Ay where

, Ariola, ICFP ’14



DATA vs CODATA>

data a © bwhere
Left:ata® b
Right : b-a@® b

& Ariola, ESOP ’14

codata a & bwhere
First:a& bt a
Second : a& b+ b
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DATA vs CODATA>

data a © bwhere
Left:ata® b
Right : b-a@® b

data a ® bwhere
Pair:a,bF-a® b

data a © bwhere
Yield: aka©& b, b

& Ariola, ESOP ’14

codata a & bwhere
First:a& bt a
Second : a& b+ b

codataa”® bwhere

Split:a® bt a,b

codataa — bwhere
Call:a,a— b+ b



INDUCTION Vs COINDUCTION3

Induction is a bottom-up, divide-and-conquer approach:

data List awhere data Nat where
Nil : o Lista Zero : e - Nat
Cons: a,lListal Lista Succ : Nat + Nat
length(Nil) = Zero

length(Cons(x, xs)) = Succ(length(xs))

3 , Johnson-Freyd, Ariola, ICFP *15
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INDUCTION Vs COINDUCTION3

Induction is a bottom-up, divide-and-conquer approach:

data List awhere data Nat where
Nil : o Lista Zero : e - Nat
Cons: a,lListal Lista Succ : Nat + Nat
length(Nil) = Zero

length(Cons(x, xs)) = Succ(length(xs))
Coinduction is a top-down, demand-driven approach
count(0) =0,1,2,... count(x) = x, count(x + 1)

codata Stream awhere
Head : Streamal a
Tail :  Streamat Streama

count(x).Head = x

count(x).Tail = count(Succ(x))

3 , Johnson-Freyd, Ariola, ICFP *15



FUNCTIONAL VS OBJECT-ORIENTED"

record Stream A : Set where

i i count : Nat — Stream Nat
coinductive

field head : A

tail : Stream A

head (count x) = x

tail (count x) = count (x + 1)

& Ariola, Classical (Co)Recursion: Programming, 2021

20



FUNCTIONAL VS OBJECT-ORIENTED"

record Stream A : Set where
count : Nat — Stream Nat

head (count x) = x

coinductive
field head : A

tail (count x) = count (x + 1
tail : Stream A ( ) ( )

public interface Stream(A) {
public A head ();
public Stream(A) tail ();
}
public class Count implements Stream(Integer) {
private final Integer first ;
public Count(Integer x) { this. first =x; }
public Integer head() { return this. first ; }
public Stream(Integer) tail () { return new Count(this. first +1); }

& Ariola, Classical (Co)Recursion: Programming, 2021

20



CODATA IN PROGRAMMING’

Codata integrates of functional & OO languages
First-class functions are codata

Objects are codata

Codata connects of functional & OO programming

Church Encodings are the Visitor Pattern

Codata captures several functional & OO
Demand-driven programming
Procedural abstraction

Pre- and Post-Conditions

Codata improves A-calculus theory (JDA WoC’16; JDA JFP17)

, Sullivan, Ariola, Peyton Jones, ESOP °19
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COINDUCTION IN PROGRAMMING?®

Induction represents terminating, batch-processing algorithm
Coinduction naturally represents
“Online” streaming algorithms & network telemetry
Interactive programs, user interfaces, & web servers
Operating systems & real-time systems
Instead of termination, is important
Service is , indefinitely

Process ends only when

Induction & coinduction are both (ICFP’15)
Induction follows (producers)
Coinduction follows (consumers)

Coinductive hypothesis follows (PPDP’20)

Dual to induction following

6 , Johnson-Freyd, Ariola, ICFP 15, & Ariola, PPDP °20

22



ORTHOGONAL MODELS OF SAFETY7

Domain-specific notion of safety: set of commands _IL
Safe interaction is orthogonality
Individuals P 1L C < (P|C) € 1L
Groups: AT 1L < VPc AT, P
Adjoint duality: A" is biggest Bs.t. A IL Bor B L A
Types are fixed points: A= (AT, A7) = (4 L, AT = AL
Al = type safety, termination, consistency, equivalence, ...
Handles many features of advanced & practical languages:
Linearity, effects, (co)recursion (DA, CSL'18), subtyping (DJA, WRLA'18),
dependent types (DJA, ICFP’15), intersection & union types (DAG, FI'19)
Non-determinism and alternative evaluation orders via

asymmetric orthogonality and the (co)value restriction

, Johnson-Freyd, Ariola, JLAMP ’19; , Johnson-Freyd, Ariola, WRLA *18
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LoGic OF
COMPILATION



THE LIFE-CYCLE OF A PROGRAM

Feature Rich Source (Human) Reason

Execute

Detail Rich Target (Machine) ————

But this is a big jump; what goes in the middle?

24



INTERMEDIATE LANGUAGES

Feature Rich Source (Human)

A

Reason

Desugar

IntermediateDO -
ptimize

Generate Code

2

Execute

Detail Rich Target (Machine) ————

25



THE Two-WAY STREET OF INFLUENCE

Feature Rich

2

Expressive & Performant

N

Detail Rich

Source (Human)

\> Reason

Intermediate

Implementation <

Target (Machine)

26



Feature Rich

2

Expressive & Performant

N

Detail Rich

THE Two-WAY STREET OF INFLUENCE

Source (Human)

A
/

. 1
Implementation | Reason
\
\

Intermediate

\
\

\
Implementation ; Reason

/
\L

Target (Machine)

26



RE-ASSOCIATING PROGRAMS

A-calculus Sequent calculus
fi fli-2-3-a)
‘ H

A A

1

A A
/"



SEQUENT CALCULUS AS AN INTERMEDIATE LANGUAGE

8

Bring the of a program to

Similar to continuation-passing style (CPS) and static single
assignment (SSA), but ...

Function , better for optimization

Appropriate for both code
Gives an explicit representation of
Shows how to implement

Helps to formalize and optimize

, Maurer, Ariola, Peyton Jones, ICFP ’15; , Ariola, JFP ’16
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JoiN PoiNTs IN CoNTROL FLOW

if x > 100 :

print"x is large"
else :

print"x is small"
print "goodbye"

yes no

/ print "x_is large" / / print "x_is _small"

print "goodbye"
L /

29



PURELY FUNCTIONAL JOIN POINTS’

Some optimizations follow , not data flow
If careless, potential of code size
Join points are found in SSA and CPS, in different forms
Classical logic can represent join points in

hybrid gives join points while

maintaining purity

9/\/\aurer, , Ariola, Peyton Jones, PLDI 17
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THE DUALITY OF EVALUATION

f(14 1):is 14 1 done before or after call?

Data Flow: CBN

{PIC)

Control Flow: CBV

Call-by-value favors producer P; follows control flow first

Call-by-name favors ; follows data flow first

31



PoLARIZATION HYPOTHESIS

Data Flow: Answers

(PIC)

Control Flow: Questions

Positive: CBV Data Types

Answer H Question Answer H Question
Primary || Secondary Secondary || Primary
Action || Reaction Reaction || Action
Concrete || Abstract Abstract || Concrete
Finite || Infinite Infinite || Finite
e.g., lists, trees, structures, e.g., functions, streams, processes,

Think: Positive vs burden of proof 3



POLARITY IN INTERMEDIATE LANGUAGES

Dual (adjoint) language: “universal” IL for CBV and CBN

User-defined types encoded into

Purely functional ( & Ariola, CSL "18)
Perfectly dual ( & Ariola, LMCS °20)

Encodings have as source program
Must be in the face of computational effects

Going , for call-by-need, etc., requires only

four extra

33



EFFICIENT CALLING CONVENTIONS

Systems languages give

Fixed of parameters

(call-by-reference) versus (call-by-value)
Many (integer vs floating point vs arrays)
All checks done at compile time

Functional languages make
:a— (b — c) instead of (a, b) — ¢
:Va.a — ajis a = Intor a = Int — Int?

: due to polymorphism or laziness

34



KiNDS ARE CALLING CONVENTIONS '’

Polarity points out types of

Hindsight: unboxed data be positive (PJ&L, FPLCA91)
Primitive function types be (DSAP, Haskell’19)
Polarized types are so well-behaved they together

Unboxed tuples combine into a
Currying recomposes into single

Implementation details stored statically in
How many bits? Where are they stored?
How can you use this object?

When do you run this code?

10 , Ariola, Peyton Jones, Eisenberg, ICFP *20
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CONCLUSION



SUMMARY

Translate an idea from

to

Use it to program behavior

Apply it to

programs more efficiently

36



LESSONS LEARNED

Curry-Howard is the gift that keeps giving

Good for of programming

Proving properties
Verifying correctness

Designing programs

Good for of compilation

Express low-level details in high-level representation
Reason about performance

Formalize and develop new optimizations

37



FUTURE WORK



A DuUAL PROGRAMMING LANGUAGE

Through the lens of duality, the two main paradigms are:
: richness of codata types, paucity of data
: richness of data types, paucity of codata

Codata already captures many important OO principles

Interfaces, encapsulation, dynamic dispatch, subtyping

Concurrency is modeled through communicating agents
specify concurrent protocols

controls limited resources
Duality expresses communication between a server and client

Goal: Dual programming language fusing high- & low-level,

functional & OO, sequential & concurrent programming

38



THE DUALITY OF INFORMATION SECURITY

(who knows?) & (says who?) are dual

C private yet trusted C
“That duality is what makes security hard” — Myers OPLSS *17

Both are dependent on and

private bool secret ;
if secret { return true; } else { return false; }

Are & dual? (co)effects, adjoint languages
(Near et al., OOPSLA’19)
Can be decomposed into orthogonality?

Ml.s MiffYSCR,PrMe S| < e Pr[M € S|+ 6

x DB y iff databases x, y differ by 1 row

¢, 6-differentially private algorithm: DB«
Hypothesis: Orthogonality gives a robust model for the

dualities of information security o



A LocicAL FOUNDATION OF COMPILER CORRECTNESS

Old: Compiling & running programs give right answer

Problems with whole-program correctness:
Cannot link with system libraries
No foreign-function interface
Poor modularity and separate compilation

: Compiling of a
program and with a valid context gives the right answer
Context in target; program P € ~in source

Other properties (e.g., privacy and security) could be modeled

as compositional correctness criteria

Hypothesis: sequent calculus gives a logical framework for

compositional compiler correctness & security

40
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STRUCTURAL
(Co)INDUCTION



UNIFYING (CO)INDUCTION AS STRUCTURAL RECURSION''

A call stack | x - «v| contains an:

argument x

return pointer o
is well-founded because its argument shrinks:
( INil - ) = (Zero|a)
(length|[Cons x xs]- a) = (length|[xs] - Succ o o)
is well-founded because its return pointer shrinks:

( |x - Head o) = (x| )
(count]x-[Taila]) = (count|Suce x - [@])

" , Johnson-Freyd, Ariola, ICFP *15




INDUCTIVE REASONING

o - P(True) e P(False)

x : Bool - P(x)
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INDUCTIVE REASONING

o - P(True) e P(False)
x : Bool - P(x)

o P(0) ok P(1) ek P(2)

x : Nat = P(x)

e P(0) y: Nat, = P(y + 1)

x : Nat - P(x)



CoINDUCTIVE REASONING"®

x : Stream A, = P(x)
x : Stream A F P(x)

PRead a = Aasa : —A,ie,an assumption of not A, a continuation expecting A.
" & Ariola, PPDP "20



CoINDUCTIVE REASONING "2

x : Stream A P (X'Head”('Ta”'Head,)

x.Tail.Tail.Head, . ..
x : Stream A P(x)

PRead v+~ Aas o1 —A, i.e., an assumption of not A, a continuation expecting A.
" & Ariola, PPDP *20



CoINDUCTIVE REASONING "2

x : Stream AF P (X'Head’X'Ta”'Head,)

x.Tail.Tail.Head, . ..
x : Stream A P(x)

a+ At P(Heada) o=+ AF P(Tail[Head o)
v = Stream A - P(7)

PRead v+~ Aas o1 —A, i.e., an assumption of not A, a continuation expecting A.
" & Ariola, PPDP °20



CoINDUCTIVE REASONING "2

x : Stream AF P (X'Head’X'Ta”'Head,>

x.Tail.Tail.Head, . ..
x : Stream A P(x)

a+ At P(Heada) o=+ AF P(Tail[Head o)
v = Stream A - P(7)

a+ At P(Head ) : - P(Tail )

v =+ Stream A F P(7)

PRead v+~ Aas o1 —A, i.e., an assumption of not A, a continuation expecting A.
" & Ariola, PPDP °20




CoNTROL FLOW



INTUITIONISTIC VS CLASSICAL LoGic

Intuitionistic logic C Classical logic

Intuitionistic logic rejects the following classical laws:
Excluded Middle: AV —A (either A or is true)

Double Negation: =——A — A (if is true, so is A)

Pierce’s Law: ((A = B) =— A) — A



MANIPULATING THE FLow OF CONTROL

Control operators let the programmer manipulate control flow
These bind that are the “rest of the computation”
Scheme’s call/cc: ((A— B) — A) — A

Felleisen’s C: =—A — A (where =Ais a )

Ambiguous choice: A+ —A (either a value or continuation)



A NATURAL EXTENSION oF CLAssicAL Locic™

Parigot’s classical Ay = A-calculus + labels + jumps

Expression # command:

Expressions return a value

Commands don’t return, they jump
Corresponds to call/cc

Delimited control is

Can represent any (monadic) side effect

Delimited control is A where expression = command

B , Ariola, ICFP ’14



DELIMITED CONTROL AS (RESUMABLE) EXCEPTIONS

def square_root(x):
if x <=0:
raise ValueError("square_root_must_be_positive ")

try:
x = input("Please enter a_number: ")
print(square_root(int(x)))

except ValueError:

print("That’s_not_a_valid ;number")



DELIMITED CONTROL AS COROUTINES

def depth_first_search (tree ):
if type(tree) is list:
for child in tree:
yield from depth_first_search (child)
else:
yield tree

def print_dfs (tree ):
for elem in depth_first_search (tree ):

print(elem)

print_dfs ([[1], 2, [[3, 4], 5], [[6]]) => 1, 2, 3, 4, 5, 6



DeLimITED CONTROL As DYNAMIC LABELS "

Practical programs should be modular

Interference between side effects should be avoided

E.g., exception handling
Was the exception in parsing input, or processing value?

Solved by

A delimiter is a dynamically-bound label

Different labels denote separate scopes

15 , Ariola, ESOP *12; , Ariola JFP "14



JoiN PoOINTS



JoIN POINTS VERSUS (>-NODES

label j(z) = ...
in ifx <0
then jump j(—x)

else jump j(x)




SEQUENT CALCULUS



RE-ORIENTING PROOFS

Natural Deduction Sequent calculus

A B TFAA TFBA

M- A



RE-ORIENTING PROOFS

Natural Deduction

Sequent calculus

MAFA
A

r

)

[BFA
I, - A




A SYNTAX FOR DUALITY

rFAA THBA T.AFA T,BFA

M- A r, - A
FAFA M- A A
r A M- A

) )



CURRY-HOWARD



ALL NATURAL NUMBERS ARE EVEN OR ODD

What is even?

What is odd?

Proof by induction...

0 = 2(0): even!
1 =2(0) + 1: odd!
n+ 1 by inductive hypothesis, nis:

2k then n+ 1= 2k + 1: odd!
2k+1 thenn+1=2k+ 1+ 1=2(k+ 1): even!



(UNSIGNED) INTEGER DIVISION BY 2

data Half = Even Natural —-— exact division
| Odd Natural —- remainder of 1

half :: Natural -> Half

half 0 = Even 0

half 1 =0ddo

half (n+1) = case half n of
Even k ->0ddk
Odd k ->Even (k+1)
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