Logic in Action

Implementing and Understanding Programs

Paul Downen
April 15, 2021

Problems in High-Assurance Programming

Consequences are huge, so correctness is paramount
Need to prove that programs "do the right thing"
E.g., Security protocols, private information management

Efficiency is often still a top concern
The right thing at the wrong time is still wrong!
If the answer comes too late, it doesn't matter
E.g., Automotive control systems, medical devices, high-speed network communication (Duff, OPLSS '18)

Curry-Howard Correspondence

propositions \approx types
proofs \approx programs

Correspondence of Logic and Languages

Logic	Language
Natural deduction	λ-calculus
Proposition	Type
Proof	Program

Correspondence of Logic and Languages

Logic	Language
Natural deduction	λ-calculus
Proposition	Type
Proof	Program
Second-order quantification	Generics and modules
Classical logic	Control flow effects (call/cc)
\vdots	\vdots

Putting Logic to Work

1. Start with ideas from logic; find connections to computation
2. Use it to reason about program behavior
3. Apply it to compile programs better

The Truth about Truth

A NON-CONSTRUCTIVE PROOF

Theorem
There exist two irrational numbers, x and y, such that x^{y} is rational.

Proof.

$\sqrt{2}$ is irrational, so consider $\sqrt{2}^{\sqrt{2}}$.

A NON-CONSTRUCTIVE PROOF

Theorem
There exist two irrational numbers, x and y, such that x^{y} is rational.

Proof.

$\sqrt{2}$ is irrational, so consider $\sqrt{2}^{\sqrt{2}}$.
$\sqrt{2}^{\sqrt{2}}$ is rational or not.

A non-constructive proof

Theorem
There exist two irrational numbers, x and y, such that x^{y} is rational.

Proof.

$\sqrt{2}$ is irrational, so consider $\sqrt{2}^{\sqrt{2}}$.
$\sqrt{2}^{\sqrt{2}}$ is rational or not.
If it's rational, then $x=y=\sqrt{2}$. Done!

A non-constructive proof

Theorem
There exist two irrational numbers, x and y, such that x^{y} is rational.

Proof.

$\sqrt{2}$ is irrational, so consider $\sqrt{2}^{\sqrt{2}}$.
$\sqrt{2}^{\sqrt{2}}$ is rational or not.
If it's rational, then $x=y=\sqrt{2}$. Done!
Otherwise, $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2}^{2}}=\sqrt{2}^{2}=2
$$

A non-constructive proof

Theorem
There exist two irrational numbers, x and y, such that x^{y} is rational.

Proof.

$\sqrt{2}$ is irrational, so consider $\sqrt{2}^{\sqrt{2}}$.
$\sqrt{2}^{\sqrt{2}}$ is rational or not.
If it's rational, then $x=y=\sqrt{2}$. Done!
Otherwise, $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2}^{2}}=\sqrt{2}^{2}=2
$$

So $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. Done!

A non-constructive proof

Theorem
There exist two irrational numbers, x and y, such that x^{y} is rational.

Proof.

$\sqrt{2}$ is irrational, so consider $\sqrt{2}^{\sqrt{2}}$.
$\sqrt{2}^{\sqrt{2}}$ is rational or not.
If it's rational, then $x=y=\sqrt{2}$. Done!
Otherwise, $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$
\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2}^{2}}=\sqrt{2}^{2}=2
$$

So $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. Done!

Classic Classical Logic

Truth is Divine

Classic Classical Logic

Truth is Divine

... and sometimes out of reach to mortals

Constructive Intuitionistic Logic
Truth is the Work of Mortals

The Monologue of the Sage

Truth is Disseminated through Proclamations

The Dialogue of the Sage and the Skeptic
Truth is Discovered through Debate

Constructive Classical Logic

Who Possesses The Burden of Proof?

Constructive Classical Logic
Who Possesses The Burden of Proof?

Interpretation of Classical Principles
The Miraculous versus the Mundane

Interpretation of Classical Principles
The Miraculous versus the Mundane

Excluded Middle with a Negative Mindset

Duality in Practice

Duality

"CO-THINGS" ARE THE OPPOSITE OF "THINGS"

Duality in Logic

De Morgan duals
not true $=$ false not false $=$ true
$\operatorname{not}(A$ and $B)=(\operatorname{not} A)$ or $(\operatorname{not} B)$ $\operatorname{not}(A$ or $B)=(\operatorname{not} A)$ and $(\operatorname{not} B)$

The sequent

$A_{1}, A_{2}, \ldots A_{n} \vdash B_{1}, B_{2}, \ldots, B_{m}$
 means

A_{1} and A_{2} and \ldots and A_{n}

$$
\Longrightarrow
$$

$$
B_{1} \text { or } B_{2} \text { or } \ldots \text { or } B_{m}
$$

The sequent

$$
\begin{gathered}
A_{1}, A_{2}, \ldots A_{n} \vdash B_{1}, B_{2}, \ldots, B_{m} \\
\text { means }
\end{gathered}
$$

A_{1} and A_{2} and \ldots and A_{n} \Longrightarrow

$$
B_{1} \text { or } B_{2} \text { or } \ldots \text { or } B_{m}
$$

- $\vdash A$
means A is true
$A \vdash \bullet$
means A is false
$\bullet \vdash \bullet$
means contradiction

Computational Sequent Calculus

means A is true
means A is false
means contradiction

- $\vdash P: A$ is a producer of A values
$C: A \vdash \bullet$
$\langle P \| C\rangle:(\bullet \vdash \bullet)$ is a consumer of A values is a runnable command

Think: producer = sage, consumer = skeptic, command = dialogue

Computational Sequent Calculus

means A is true
means A is false
means contradiction

- $\vdash P: A$ is a producer of A values
$C: A \vdash \bullet \quad$ is a consumer of A values
$\langle P \| C\rangle:(\bullet \vdash \bullet) \quad$ is a runnable command
$\langle P \| C\rangle:\left(x_{1}: A_{1} \ldots x_{n}: A_{n} \vdash \alpha_{1}: B_{1} \ldots \alpha_{m}: B_{m}\right)$
is an open command
with free inputs x_{i} and outputs α_{j}
Think: producer = sage, consumer = skeptic, command = dialogue

Dualities of Computation

Answers

$$
\langle P \| C\rangle
$$

Producer	Consumer
Answers	Questions
Program	Context

Dualities of Computation

Construction

$\langle P \| C\rangle$

Producer	Consumer
Answers	Questions
Program	Context
Construction	Destruction

Dualities of Computation

Data Flow		
$\langle P \\| C\rangle$		
Control Flow		
Producer	Consumer	
Answers	Questions	
Program	Context	
Construction	Destruction	
Data Flow	Control Flow	

Dualities of Computation

Producer	Consumer
Answers	Questions
Program	Context
Construction	Destruction
Data Flow	Control Flow
Generics	Modules

Classical Logic and Control ${ }^{1}$

Classical logic $\cong \lambda \mu=\lambda$-calculus + labels + jumps
Corresponds to Scheme's call/cc control operator
$A \vee \neg A$ as application of call/cc
"time travel" caused by invoking the continuation
Producer \neq command:
Producers return a value
Commands don't return, they jump
Delimited control is much more expressive
Can represent any (monadic) side effect
Delimited control is $\lambda \mu$ where expression $=$ command

[^0]
Data vs Codata ${ }^{2}$

data $a \oplus b$ where

$$
\begin{array}{r}
\text { Left : } a \vdash a \oplus b \\
\text { Right : } b \vdash a \oplus b
\end{array}
$$

codata $a \& b$ where
First : $a \& b \vdash a$
Second : $a \& b \vdash b$

Data vs Codata ${ }^{2}$

data $a \oplus b$ where

$$
\begin{array}{r}
\text { Left : } a \vdash a \oplus b \\
\text { Right : } b \vdash a \oplus b
\end{array}
$$

data $a \otimes b$ where

$$
\text { Pair : } a, b \vdash a \otimes b
$$

codata $a \& b$ where
First : $a \& b \vdash a$ Second : $a \& b \vdash b$
codata $a 8 b$ where Split : $a>b \vdash a, b$

Data vs Codata ${ }^{2}$

data $a \oplus b$ where

$$
\begin{array}{r}
\text { Left : } a \vdash a \oplus b \\
\text { Right : } b \vdash a \oplus b
\end{array}
$$

data $a \otimes b$ where

$$
\text { Pair : } a, b \vdash a \otimes b
$$

data $a \ominus b$ where
Yield : $a \vdash a \ominus b, b$
codata $a \& b$ where
First : $a \& b \vdash a$
Second : $a \& b \vdash b$
codata $a 8 b$ where
Split: $a \ngtr b \vdash a, b$
codata $a \rightarrow b$ where
Call : $a, a \rightarrow b \vdash b$

Induction vs Coinduction ${ }^{3}$

Induction is a bottom-up, divide-and-conquer approach:
data List a where

$$
\begin{array}{rrr}
\text { Nil : } \quad \bullet \vdash \text { List } a & & \text { Zero : } \\
\text { Cons: } & a, \text { List } a \vdash \text { List } a & \\
\text { length }(\text { Nil }) & =\text { Zero } & \\
& \text { length }(\operatorname{Cons}(x, x s)) & =\operatorname{Succ}(\text { length }(x s))
\end{array}
$$

Induction vs Coinduction ${ }^{3}$

Induction is a bottom-up, divide-and-conquer approach:
data List a where

$$
\begin{array}{rr}
\text { Nil : } & \bullet \vdash \text { List } a \\
\text { Cons: } & a, \text { List } a \vdash \text { List } a
\end{array}
$$

$$
\text { length(Nil) } \quad=\text { Zero }
$$

$$
\text { length }(\operatorname{Cons}(x, x s))=\operatorname{Succ}(\text { length }(x s))
$$

Coinduction is a top-down, demand-driven approach

$$
\operatorname{count}(0)=0,1,2, \ldots \quad \operatorname{count}(x)=x, \operatorname{count}(x+1)
$$

Induction vs Coinduction ${ }^{3}$

Induction is a bottom-up, divide-and-conquer approach:
data List a where

$$
\begin{array}{ccc}
\text { Nil : } \quad \bullet \vdash \text { List } a & & \text { Zero : } \\
\text { Cons: } & a, \text { List } a \vdash \text { List } a & \\
& \text { Succ : } \\
& \text { length }(\text { Nil }) & =\text { Zero } \\
& \text { length }(\operatorname{Cons}(x, x s)) & =\operatorname{Succ}(\text { length }(x s))
\end{array}
$$

Coinduction is a top-down, demand-driven approach

$$
\operatorname{count}(0)=0,1,2, \ldots \quad \operatorname{count}(x)=x, \operatorname{count}(x+1)
$$

codata Stream a where
Head: Stream $a \vdash a$
Tail: Stream $a \vdash$ Stream a

$$
\begin{aligned}
& \operatorname{count}(x) \cdot \text { Head }=x \\
& \operatorname{count}(x) \cdot \text { Tail }=\operatorname{count}(\operatorname{Succ}(x))
\end{aligned}
$$

Functional vs Object-oriented ${ }^{4}$

record Stream A: Set where coinductive
field head : A
tail : Stream A

Functional vs Object－oriented ${ }^{4}$

```
record Stream A : Set where
    coinductive
    field head : A
        tail : Stream A
```

```
count : Nat }->\mathrm{ Stream Nat
```

count : Nat }->\mathrm{ Stream Nat
head (count x) = x
head (count x) = x
tail (count x) = count (x+1)
tail (count x) = count (x+1)
public interface Stream $\langle\mathrm{A}\rangle$ \{
public A head ();
public Stream $\langle\mathrm{A}\rangle$ tail ();
\}
public class Count implements Stream〈Integer〉 \{
private final Integer first ;
public Count(Integer $x) \quad\{$ this. first $=x ;\}$
public Integer head() \{ return this. first ; \}
public Stream〈Integer〉 tail () \{ return new Count(this. first +1); \}
\}
${ }^{4}$ Downen \& Ariola, Classical (Co)Recursion: Programming, 2021

```

\section*{Codata in Programming \({ }^{5}\)}

Codata integrates features of functional \& OO languages
First-class functions are codata
Objects are codata
Codata connects methods of functional \& OO programming Church Encodings are the Visitor Pattern

Codata captures several functional \& OO design techniques
Demand-driven programming
Procedural abstraction
Pre- and Post-Conditions
Codata improves \(\lambda\)-calculus theory (JDA WoC'16; JDA JFP'17)

\footnotetext{
\({ }^{5}\) Downen, Sullivan, Ariola, Peyton Jones, ESOP '19
}

\section*{Coinduction in Programming \({ }^{6}\)}

Induction represents terminating, batch-processing algorithm
Coinduction naturally represents interactive, infinite processes
"Online" streaming algorithms \& network telemetry
Interactive programs, user interfaces, \& web servers
Operating systems \& real-time systems
Instead of termination, productivity is important
Service is always available, indefinitely
Process ends only when client is done
Induction \& coinduction are both structural recursion (ICFP'15)
Induction follows structure of values (producers)
Coinduction follows structure of contexts (consumers)
Coinductive hypothesis follows control flow (PPDP'20)
Dual to induction following information flow

\footnotetext{
\({ }^{6}\) Downen, Johnson-Freyd, Ariola, ICFP '15, Downen \& Ariola, PPDP '20
}

\section*{Orthogonal models of safety \({ }^{7}\)}

Domain-specific notion of safety: set of commands \(\Perp\)
Safe interaction is orthogonality
Individuals \(P \Perp C \Longleftrightarrow\langle P \| C\rangle \in \Perp\)
Groups: \(A^{+} \Perp A^{-} \Longleftrightarrow \forall P \in A^{+}, C \in A^{-} . P \Perp C\)
Adjoint duality: \(A^{\Perp}\) is biggest \(B\) s.t. \(A \Perp B\) or \(B \Perp A\)
Types are fixed points: \(A=\left(A^{+}, A^{-}\right)=\left(A^{-\Perp}, A^{+\Perp}\right)=A^{\Perp}\)
\(\Perp=\) type safety, termination, consistency, equivalence, \(\ldots\)
Handles many features of advanced \& practical languages:
Linearity, effects, (co)recursion (DA, CSL'18), subtyping (DJA, WRLA'18), dependent types (DJA, ICFP'15), intersection \& union types (DAG, FI'19)
Non-determinism and alternative evaluation orders via asymmetric orthogonality and the (co)value restriction

\footnotetext{
\({ }^{7}\) Downen, Johnson-Freyd, Ariola, JLAMP '19; Downen, Johnson-Freyd, Ariola, WRLA '18
}

\section*{Logic of}

\section*{Compilation}

\section*{The Life-cycle of a Program}

Feature Rich


Detail Rich


But this is a big jump; what goes in the middle?

\section*{Intermediate Languages}

Feature Rich


Detail Rich


\section*{The Two-Way Street of Influence}

Feature Rich


Expressive \& Performant


Detail Rich

Source (Human)


\section*{The Two-Way Street of Influence}

Feature Rich


Expressive \& Performant


Detail Rich

Source (Human)


Intermediate


Target (Machine)

\section*{Re-Associating programs}


Sequent calculus
\(\langle f \| 1 \cdot 2 \cdot 3 \cdot \alpha\rangle\)


\section*{Sequent Calculus as an Intermediate Language \({ }^{8}\)}

Bring the main action of a program to center stage
Similar to continuation-passing style (CPS) and static single assignment (SSA), but ...

Function calls are concrete, better for optimization Appropriate for both functional and imperative code

Gives an explicit representation of control flow
Shows how to implement codata
Helps to formalize and optimize calling conventions

\footnotetext{
\({ }^{8}\) Downen, Maurer, Ariola, Peyton Jones, ICFP '15; Downen, Ariola, JFP '16
}

\section*{Join Points in Control Flow}
```

if }x>100\mathrm{ :
print"x is large"
else :
print "x is small"
print "goodbye"

```


\section*{Purely Functional Join points \({ }^{9}\)}

Some optimizations follow control flow, not data flow
If careless, potential exponential blowup of code size
Join points are found in SSA and CPS, in different forms
Classical logic can represent join points in direct style
Classical-Intuitionistic hybrid gives join points while maintaining purity

\footnotetext{
\({ }^{9}\) Maurer, Downen, Ariola, Peyton Jones, PLDI '17
}

\section*{The Duality of Evaluation}
\(f(1+1)\) : is \(1+1\) done before or after call?


Call-by-value favors producer \(P\); follows control flow first
Call-by-name favors consumer \(C\); follows data flow first

\section*{Polarization Hypothesis}

Data Flow: Answers
\[
\langle P \| C\rangle
\]
\(\longdiv { \text { Control Flow: Questions } }\)

Positive: CBV Data Types
\begin{tabular}{r||l} 
Answer & Question \\
\hline \hline Primary & Secondary \\
\hline Action & Reaction \\
\hline Concrete & Abstract \\
\hline Finite & Infinite
\end{tabular}
e.g., lists, trees, structures,

Negative: CBN Codata Types
\begin{tabular}{r||l} 
Answer & Question \\
\hline \hline Secondary & Primary \\
\hline Reaction & Action \\
\hline Abstract & Concrete \\
\hline Infinite & Finite
\end{tabular}

\section*{Polarity in Intermediate Languages}

Dual (adjoint) language: "universal" IL for CBV and CBN
User-defined types encoded into finite set of primitives
Purely functional (Downen \& Ariola, CSL '18)
Perfectly dual (Downen \& Ariola, LMCS '20)
Encodings have same properties as source program
Must be robust in the face of computational effects
Going beyond polarity, for call-by-need, etc., requires only four extra "polarity shifts"

\section*{Efficient Calling Conventions}

Systems languages give fine-grained calling conventions:
Fixed number of parameters
Boxed (call-by-reference) versus unboxed (call-by-value)
Many shapes (integer vs floating point vs arrays)
All checks done statically at compile time
Functional languages make efficient calls difficult:
Currying: \(a \rightarrow(b \rightarrow c)\) instead of \((a, b) \rightarrow c\)
Polymorphism: \(\forall a . a \rightarrow a\); is \(a=\operatorname{Int}\) or \(a=\operatorname{Int} \rightarrow \operatorname{Int}\) ?
Pervasive Boxing: due to polymorphism or laziness

\section*{Kinds are Calling Conventions \({ }^{10}\)}

Polarity points out types of efficient machine primitives
Hindsight: unboxed data must be positive (PJ\&L, FPLCA'91)
Primitive function types must be negative (DSAP, Haskell'19)
Polarized types are so well-behaved they fuse together
Unboxed tuples combine into a single structure
Currying recomposes into single multi-arity function
Implementation details stored statically in types \& kinds
How many bits? Where are they stored?
How can you use this object?
When do you run this code?
Kinds: the type system of the machine

\footnotetext{
\({ }^{10}\) Downen, Ariola, Peyton Jones, Eisenberg, ICFP '20
}

Conclusion

\section*{Summary}
1. Translate an idea from logic to computation
2. Use it to understand program behavior
3. Apply it to implement programs more efficiently

\section*{Lessons Learned}

Curry-Howard is the gift that keeps giving
Good for theory of programming
Proving properties
Verifying correctness
Designing programs
Good for practice of compilation
Express low-level details in high-level representation
Reason about performance
Formalize and develop new optimizations

\section*{Future Work}

\section*{A Dual Programming Language}

Through the lens of duality, the two main paradigms are:
Object-oriented: richness of codata types, paucity of data
Functional: richness of data types, paucity of codata
Codata already captures many important OO principles Interfaces, encapsulation, dynamic dispatch, subtyping

Concurrency is modeled through communicating agents Session types specify concurrent protocols
Linearity controls limited resources
Duality expresses communication between a server and client
Goal: Dual programming language fusing high- \& low-level, functional \& OO, sequential \& concurrent programming

\section*{The Duality of Information Security}

Confidentiality (who knows?) \& integrity (says who?) are dual public \(\sqsubseteq\) private yet trusted \(\sqsubseteq\) untrusted
"That duality is what makes security hard" - Myers OPLSS '17
Both are dependent on data flow and control flow
private bool secret;
if secret \{ return true; \} else \{ return false; \}
Are sensitivity \& privacy dual? (co)effects, adjoint languages
(Near et al., OOPSLA'19)
Can differential privacy be decomposed into orthogonality?
\(M \Perp_{\epsilon, \delta} \mathcal{M}^{\prime}\) iff \(\forall S \subseteq \mathbb{R}, \operatorname{Pr}[M \in S] \leq e^{\epsilon} \operatorname{Pr}\left[M^{\prime} \in S\right]+\delta\)
\(x \mathrm{DB}_{1} y\) iff databases \(x, y\) differ by 1 row
\(\epsilon, \delta\)-differentially private algorithm: \(\mathrm{DB}_{1}{ }^{\Perp_{\epsilon, \delta}}\)
Hypothesis: Orthogonality gives a robust model for the dualities of information security

\section*{A Logical Foundation of Compiler Correctness}

Old: Compiling \& running whole programs give right answer
Problems with whole-program correctness:
Cannot link with system libraries
No foreign-function interface
Poor modularity and separate compilation
Compositional compiler correctness: Compiling part of a program and linking with a valid context gives the right answer Context \(C \in A\) in target; program \(P \in A^{\Perp}\) in source

Other properties (e.g., privacy and security) could be modeled as compositional correctness criteria preserved by compiler

Hypothesis: sequent calculus gives a logical framework for compositional compiler correctness \& security

\section*{Thank You}

\section*{Structural (Co)Induction}

\section*{Unifying (Co)Induction as Structural Recursion \({ }^{11}\)}

A call stack \(x \cdot \alpha\) contains an:
argument \(x\)
return pointer \(\alpha\)
length is well-founded because its argument shrinks:
\[
\begin{aligned}
\langle\text { length } \| \text { Nil } \cdot \alpha\rangle & =\langle\text { Zero } \| \alpha\rangle \\
\langle\text { length } \| \boxed{\text { Cons } x \text { xs }} \cdot \alpha\rangle & =\langle\text { length } \| \boxed{x s} \cdot \text { Succ } \circ \alpha\rangle
\end{aligned}
\]
count is well-founded because its return pointer shrinks:
\[
\begin{aligned}
\langle\operatorname{count} \| x \cdot \text { Head } \alpha\rangle & =\langle x \| \alpha\rangle \\
\langle\operatorname{count} \| x \cdot \text { Tail } \alpha\rangle & =\langle\operatorname{count} \| \operatorname{Succ} x \cdot \alpha\rangle
\end{aligned}
\]
\({ }^{11}\) Downen, Johnson-Freyd, Ariola, ICFP '15

\section*{Inductive Reasoning}
\[
\frac{\bullet \vdash P(\text { True }) \bullet \vdash P(\text { False })}{x: \text { Bool } \vdash P(x)}
\]

\section*{Inductive Reasoning}
\[
\frac{\bullet P(\text { True }) \bullet \vdash P(\text { False })}{x: \text { Bool } \vdash P(x)}
\]
\(\frac{\bullet \vdash P(0) \bullet \vdash P(1) \quad \vdash P(2) \quad \ldots}{x: \text { Nat } \vdash P(x)}\)

\section*{Inductive Reasoning}
\[
\frac{\bullet \vdash P(\text { True }) \bullet \vdash P(\text { False })}{x: \text { Sol } \vdash P(x)}
\]
\[
\frac{\bullet \vdash P(0) \quad \bullet \vdash P(1) \bullet \vdash P(2) \quad \ldots}{x: \operatorname{Nat} \vdash P(x)}
\]
\[
\frac{\bullet \vdash P(0) \quad y: N a t, P(y) \vdash P(y+1)}{x: \operatorname{Nat} \vdash P(x)}
\]

\section*{Coinductive Reasoning \({ }^{13}\)}
\[
\frac{x: \text { Stream } A, P(x) \vdash P(x)}{x: \text { Stream } A \vdash P(x)}
\]

\footnotetext{
\({ }^{12} \operatorname{Read} \alpha \div A\) as \(\alpha:-A\), i.e., an assumption of not \(A\), a continuation expecting \(A\).
\({ }^{13}\) Downen \& Ariola, PPDP '20
}

\section*{Coinductive Reasoning \({ }^{13}\)}
\[
\begin{array}{r}
\frac{x: \text { Stream } A, P(x) \vdash P(x)}{x: \text { Stream } A \vdash P(x)} \text { warning! } \\
\frac{x: \text { Stream } A \vdash P\binom{x . \text { Head, } x . \text { Tail.Head, }}{x . \text { Tail.Tail.Head, }, \ldots}}{x: \text { Stream } A \vdash P(x)}
\end{array}
\]

\footnotetext{
\({ }^{12}\) Read \(\alpha \div A\) as \(\alpha:-A\), i.e., an assumption of not \(A\), a continuation expecting \(A\).
\({ }^{13}\) Downen \& Ariola, PPDP '20
}

\section*{Coinductive Reasoning \({ }^{13}\)}
\[
\begin{aligned}
& \frac{x: \text { Stream } A, P(x) \vdash P(x)}{x: \text { Stream } A \vdash P(x)} \text { warning! } \\
& x: \text { Stream } A \vdash P\binom{x . \text { Head, } x \text {.Tail.Head, }}{x . \text { Tail.Tail.Head, }, \ldots} \\
& x: \text { Stream } A \vdash P(x)
\end{aligned}
\]
\(\alpha \div A \vdash P(\operatorname{Head} \alpha) \quad \alpha \div A \vdash P(\) Tail \([\) Head \(\alpha])\)
\[
\gamma \div \text { Stream } A \vdash P(\gamma)
\]

\footnotetext{
\({ }^{12} \operatorname{Read} \alpha \div A\) as \(\alpha:-A\), i.e., an assumption of not \(A\), a continuation expecting \(A\).
\({ }^{13}\) Downen \& Ariola, PPDP '20
}

\section*{Coinductive Reasoning \({ }^{13}\)}
\(\underline{x: S t r e a m ~} A, P(x) \vdash P(x)\) \(x\) : Stream \(A \vdash P(x)\)

\section*{warning!}
\(x:\) Stream \(A \vdash P\binom{x\). Head, \(x\).Tail.Head, }{\(x\).Tail.Tail.Head, \(\ldots}\)
\(x\) : Stream \(A \vdash P(x)\)
\(\alpha \div A \vdash P(\) Head \(\alpha) \quad \alpha \div A \vdash P(\) Tail \([\) Head \(\alpha])\)
\[
\begin{equation*}
\gamma \div \text { Stream } A \vdash P(\gamma) \tag{12}
\end{equation*}
\]
\(\alpha \div A \vdash P(\) Head \(\alpha) \quad \beta \div\) Stream \(A, P(\beta) \vdash P(\) Tail \(\beta)\) \(\gamma \div\) Stream \(A \vdash P(\gamma)\)

\footnotetext{
\({ }^{12} \operatorname{Read} \alpha \div A\) as \(\alpha:-A\), i.e., an assumption of not \(A\), a continuation expecting \(A\).
\({ }^{13}\) Downen \& Ariola, PPDP '20
}

Control Flow

\section*{Intuitionistic vs Classical Logic}

Intuitionistic logic \(\subset\) Classical logic
Intuitionistic logic rejects the following classical laws:
Excluded Middle: \(A \vee \neg A\) (either \(A\) or not \(A\) is true)
Double Negation: \(\neg \neg A \Longrightarrow A\) (if not not \(A\) is true, so is \(A\) )
Pierce's Law: \(((A \Longrightarrow B) \Longrightarrow A) \Longrightarrow A\)

\section*{Manipulating the Flow of Control}

Control operators let the programmer manipulate control flow
These bind continuations that are the "rest of the computation"
Scheme's call/cc: \(((A \rightarrow B) \rightarrow A) \rightarrow A\)
Felleisen's \(\mathcal{C}: \neg \neg A \rightarrow A\) (where \(\neg A\) is a continuation)
Ambiguous choice: \(A+\neg A\) (either a value or continuation)

\section*{A Natural Extension of Classical Logic \({ }^{14}\)}

Parigot's classical \(\lambda \mu=\lambda\)-calculus + labels + jumps
Expression \(\neq\) command:
Expressions return a value
Commands don't return, they jump
Corresponds to call/cc
Delimited control is much more expressive
Can represent any (monadic) side effect
Delimited control is \(\lambda \mu\) where expression \(=\) command

\section*{Delimited Control as (Resumable) Exceptions}
```

def square_root(x):
if }\textrm{x}<=0\mathrm{ :
raise ValueError("square_root must_be (positive ")
try:

```

```

 print(square_root(int(x)))
 except ValueError:
print("That's}\mp@subsup{S}{\llcorner}{}\mp@subsup{\mathrm{ not }}{\lrcorner}{}\mp@subsup{a}{\lrcorner}{}\mathrm{ valid \number")

```

\section*{Delimited Control as Coroutines}
```

def depth_first_search (tree):
if type(tree) is list :
for child in tree:
yield from depth_first_search (child)
else:
yield tree
def print_dfs (tree):
for elem in depth_first_search (tree):
print(elem)
print_dfs ([[1], 2, [[3, 4], 5], [[6]]]) => 1, 2, 3, 4, 5, 6

```

\section*{Delimited Control as Dynamic Labels \({ }^{15}\)}

Practical programs should be modular
Interference between side effects should be avoided
E.g., exception handling

Was the exception in parsing input, or processing value?
Solved by multiple control delimiters:
A delimiter is a dynamically-bound label
Different labels denote separate scopes

\footnotetext{
\({ }^{15}\) Downen, Ariola, ESOP '12; Downen, Ariola JFP '14
}

\section*{Join Points}

\section*{Join Points versus \(\phi\)-nodes}

\[
\begin{aligned}
& \text { label } j(z)=\ldots \\
& \text { in if } x<0 \\
& \quad \text { then jump } j(-x) \\
& \text { else jump } j(x)
\end{aligned}
\]

\section*{Sequent Calculus}

\section*{Re-orienting proofs}

Natural Deduction Sequent calculus


\section*{Re-orienting proofs}

Natural Deduction Sequent calculus
\[
\begin{array}{ll}
\frac{A \wedge B}{A} & \frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \\
\frac{A \wedge B}{B} & \frac{\Gamma, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta}
\end{array}
\]

\section*{A Syntax for Duality}
\[
\begin{array}{cc}
\frac{\Gamma \vdash A, \Delta \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} & \frac{\Gamma, A \vdash \Delta \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \\
\frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} & \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash A \vee B, \Delta}
\end{array}
\]

Curry-Howard

\section*{All Natural Numbers are Even or Odd}

What is even?
\[
n=2 k
\]

What is odd?
\[
n=2 k+1
\]

Proof by induction...
\[
\begin{aligned}
& 0=2(0): \text { even! } \\
& 1=2(0)+1: \text { odd! }
\end{aligned}
\]
\(n+1\) by inductive hypothesis, \(n\) is:
\[
2 k \text { then } n+1=2 k+1: \text { odd! }
\]
\(2 k+1\) then \(n+1=2 k+1+1=2(k+1)\) : even!

\section*{(UNSIGNED) INTEGER DIVISION BY 2}
```

data Half = Even Natural -- exact division
| Odd Natural -- remainder of 1
half :: Natural -> Half
half 0 = Even 0
half 1 = Odd 0
half (n+1) = case half n of
Even k -> Odd k
Odd k -> Even (k+1)

```
```


[^0]: ${ }^{1}$ Downen, Ariola, ICFP '14

