Paul Downen, Zena M. Ariola, **Simon Peyton Jones, Richard A. Eisenberg**

Kinds Are Calling Conventions

ICFP 2020, August 23–29

• Representation — What & Where?

• Representation — What & Where? • Arity — How many?

• Representation — What & Where? • Arity — How many? • Levity (aka Evaluation Strategy) — When to compute?

• Representation — What & Where? • Arity — How many? Levity (aka Evaluation Strategy) — When to compute?

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int

f1, f2, f3, f4 :: Int -> Int -> Int

 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive xin y + z

f1, f2, f3, f4 :: Int -> Int -> Int

 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 in y + z

f1, f2, f3, f4 :: Int -> Int -> Int

 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ in y + z

f1, f2, f3, f4 :: Int -> Int -> Int

 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ in y + z

Type suggests arity 2

$= \langle x - \rangle \langle y - \rangle f1 x y$

f1, f2, f3, f4 :: Int -> Int -> Int

 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x in y + z

t -> Int Type suggests arity 2

let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 in y + z = $x \rightarrow y \rightarrow f1 x y$

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive xin y -> y + z

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive xin $\langle y - y + z \rangle$

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive x Arity 1 in $\langle y - y + z \rangle$

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive x Arity1 f4 = x -> f3 xin y -> y + z

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive x Arity1 f4 = x -> f3 x $\neq \langle x - \rangle \langle y - \rangle f3 x y$ in y -> y + z

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x Arity 2 f2 = $x \rightarrow f1 x$ Arity 2 $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive x Arity1 f4 = x -> f3 xArity 1 $\neq \ \ x \rightarrow \ y \rightarrow f3 x y$ in $\langle y - y + z \rangle$

Definition 1. The number of arguments a function needs before doing "serious work."

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

For Curried Functions

Definition 2. The number of times a function may be soundly η -expanded.

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

For Curried Functions

Definition 2. The number of times a function may be soundly η -expanded.

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

during one call.

- **Definition 2**. The number of times a function may be soundly η -expanded.
- **Definition 3**. The number of arguments passed simultaneously to a function

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

during one call.

• If 'f' has arity 3, then 'f 1 2 3' can be implemented as a single call

For Curried Functions

- **Definition 2**. The number of times a function may be soundly η -expanded.

Definition 3. The number of arguments passed simultaneously to a function

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

during one call.

• If 'f' has arity 3, then 'f 1 2 3' can be implemented as a single call

- **Definition 2**. The number of times a function may be soundly η -expanded.
- **Definition 3**. The number of arguments passed simultaneously to a function

Goal: An IL with unrestricted n for functions, along with restricted B for other types

New a → b type of primitive functions (ASCII 'a → b')

• To distinguish from the source-level $a \rightarrow b$ with different semantics

• New $a \rightarrow b$ type of primitive functions (ASCII 'a $\sim b$ ')

- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are *fully extensional*, unlike source functions
 - $\lambda x \cdot f x =_{\eta} f \colon a \rightsquigarrow b$ unconditionally

New a → b type of primitive functions (ASCII 'a → b')

- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are *fully extensional*, unlike source functions
 - $\lambda x \cdot f x =_{\eta} f \colon a \rightsquigarrow b$ unconditionally
- - $(\lambda x \cdot x + x)$ (fact 10⁶) does not recompute fact 10⁶

In an Intermediate Language

• Application may still be *restricted* for efficiency, like source functions

- New a
 → b type of primitive functions (ASCII 'a
 → b')
 - To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are *fully extensional*, unlike source functions
 - $\lambda x \cdot f x =_n f \colon a \rightsquigarrow b$ unconditionally
- Application may still be *restricted* for efficiency, like source functions • $(\lambda x \cdot x + x)$ (fact 10⁶) does not recompute fact 10⁶
- With full η , types express arity just count the arrows
 - $f: Int \rightsquigarrow Bool \rightsquigarrow String$ has arity 2, no matter f's definition

f3 :: Int ~> Int ~> Int $f3 = \langle x - \rangle$ let $z = expensive x in \langle y - \rangle y + z$

f3 :: Int ~> Int ~> Int $f3 = \langle x - \rangle$ let $z = expensive x in \langle y - \rangle y + z$

• Because of η , f3 now has arity 2, not 1!

$f3 :: Int \sim> Int \sim> Int$ $f3 = \langle x - \rangle$ let $z = expensive x in \langle y - \rangle y + z$

- Because of η , f3 now has arity 2, not 1!
 - map (f3 100) [1..10⁶] recomputes 'expensive 100' a million times Θ

- f3 :: Int ~> Int ~> Int
- $f3 = \langle x \rangle$ let $z = expensive x in \langle y \rangle y + z$
- Because of η , f3 now has arity 2, not 1!
- map (f3 100) [1..10⁶] recomputes 'expensive 100' a million times Θ f3' :: Int ~> { Int ~> Int } f3' = $x \rightarrow let z = expensive x in Clos (<math>y \rightarrow y + z$)

Clos :: (Int \sim Int) \sim {Int \sim Int}

- f3 :: Int ~> Int ~> Int
- Because of η , f3 now has arity 2, not 1!
- map (f3 100) [1..10⁶] recomputes 'expensive 100' a million times Θ f3' :: Int ~> { Int ~> Int } $f3' = \langle x - \rangle$ let z = expensive x in Clos ($\langle y - \rangle y + z$)
- f3' is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

Clos :: (Int \sim Int) \sim {Int \sim Int}

When Partial Application Matters

 $f3 = \langle x - \rangle$ let $z = expensive x in \langle y - \rangle y + z$

- f3 :: Int ~> Int ~> Int
- Because of η , f3 now has arity 2, not 1!
- map (f3 100) [1..10⁶] recomputes 'expensive 100' a million times Θ f3' :: Int ~> { Int ~> Int } $f3' = \langle x - \rangle$ let $z = expensive x in Clos (<math>\langle y - \rangle y + z$)
- f3' is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function
 - map (App (f3' 100)) [1..10^6] computes 'expensive 100' only once \odot
- Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int

When Partial Application Matters

 $f3 = \langle x - \rangle$ let $z = expensive x in \langle y - \rangle y + z$

Not <u>Evaluated</u>

$x = let f :: Int \sim> Int = expensive 100 in ...f...f...$

$x = let f :: Int \sim> Int = expensive 100 in ...f...f...$

• When is expensive 100 evaluated?

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded

$x = let f :: Int \sim> Int = expensive 100 in ...f...f...$

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

 $x' = let f :: Int ~> Int = \langle y -> expensive 100 y in ...f...f.$

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

• x = x' by η , and x' always follows call-by-name order!

Not Evaluated

x' = let f :: Int \sim Int = $y \rightarrow$ expensive 100 y in ...f..f.

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

- x = x' by η , and x' always follows call-by-name order!
- Primitive functions are never just *evaluated*; they are always *called*

Not Evaluated

 $x' = let f :: Int ~> Int = \langle y -> expensive 100 y in ...f...f.$

The Problem With Polymorphism

And Static Compilation

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim > Int \sim > a) \sim > (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

- poly :: forall a. (Int \sim > Int \sim > a) \sim > (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)
- What are the arities of f and g? Counting arrows...

And Static Compilation

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim Int \sim a) \sim (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

- What are the arities of f and g? Counting arrows...
 - f :: Int \sim Int \sim a has arity 2

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim Int \sim a) \sim (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

- What are the arities of f and g? Counting arrows...
 - f :: Int ~> Int ~> a has arity 2
 - $g :: Int \sim a has arity 1$

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim Int \sim a) \sim (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

- What are the arities of f and g? Counting arrows...
 - f :: Int ~> Int ~> a has arity 2
 - g :: Int ~> a has arity 1
- But what if $a = Bool \sim Bool?$

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim Int \sim a) \sim (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)• What are the arities of f and g? Counting arrows...

- - f :: Int ~> Int ~> a has arity 2
 - $g :: Int \sim a has arity 1$
- But what if $a = Bool \sim Bool?$
 - f :: Int ~> Int ~> Bool ~> Bool has arity 3...

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim > Int \sim > a) \sim > (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)• What are the arities of f and g? Counting arrows...

- - f :: Int ~> Int ~> a has arity 2
 - $g :: Int \sim a has arity 1$
- But what if $a = Bool \sim Bool?$
 - f :: Int ~> Int ~> Bool ~> Bool has arity 3...
 - g :: Int ~> Bool ~> Bool has arity 2... oops...

The Problem With Polymorphism **And Static Compilation** poly :: forall a. (Int \sim > Int \sim > a) \sim > (a, a) poly f = let g :: Int ~> a = f 3 in (g 5, g 4)• What are the arities of f and g? Counting arrows...

- - f :: Int ~> Int ~> a has arity 2
 - g :: Int ~> a has arity 1
- But what if $a = Bool \sim Bool?$
 - f :: Int ~> Int ~> Bool ~> Bool has arity 3...
 - g :: Int ~> Bool ~> Bool has arity 2... oops...

• How to statically compile? Is 'g 5' a call? A partial application?

• Generalize a::*to a::TYPE r c

- Generalize a::*to a::TYPE r c
 - r::Rep is the *runtime representation* of a

- Generalize a:: * to a:: TYPE r c • r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
 - a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
 - a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int \sim Int \sim a) \sim (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
- a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified) poly :: forall a::TYPE Ptr Call[2]. (Int \sim > Int \sim > a) \sim > (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
- a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified) poly :: forall a::TYPE Ptr Call[2]. (Int \sim > Int \sim > a) \sim > (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 - $g :: Int \sim a :: TYPE PTR Call[3] has arity 3$

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
 - a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)
- poly :: forall a::TYPE Ptr Call[2]. (Int \sim Int \sim a) \sim (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 • $g :: Int \sim a :: TYPE PTR Call[3] has arity 3$
- revapp :: forall (c::Conv) (r::Rep) (a::TYPE Ptr c) (b::TYPE r Call[1]). a ~> (a ~> b) ~> b
- revapp x f = f x

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
- a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified) poly :: forall a::TYPE Ptr Call[2]. (Int \sim Int \sim a) \sim (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 - $g :: Int \sim a :: TYPE PTR Call[3] has arity 3$
- revapp :: forall (c::Conv) (r::Rep) (a::TYPE Ptr c) (b::TYPE r Call[1]). a ~> (a ~> b) ~> b
- revapp x f = f x
 - f :: a \sim b :: TYPE Ptr Call[2] has arity 2

- Generalize a:: * to a:: TYPE r c
 - r::Rep is the *runtime representation* of a
 - c::Conv is the *calling convention* of a
- a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified) poly :: forall a::TYPE Ptr Call[2]. (Int \sim Int \sim a) \sim (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 - $g :: Int \sim a :: TYPE PTR Call[3] has arity 3$
- revapp :: forall (c::Conv) (r::Rep) (a::TYPE Ptr c) (b::TYPE r Call[1]). a ~> (a ~> b) ~> b

revapp x f = f x

- f :: a \rightarrow b :: TYPE Ptr Call[2] has arity 2 • x :: a :: TYPE Ptr c is represented as a pointer

Even More

Levity Polymorphism

- For when evaluation strategy doesn't matter
- - Via kind-directed η -expansion and register assignment
- Type system for ensuring static compilation

In the Paper

• Compiling Source \rightarrow Intermediate \rightarrow Target

• Of definitions with arity, levity, and representation polymorphism

Kinds capture the details of efficient calling conventions