Kinds Are Calling Conventions

Paul Downen, Zena M. Ariolaq,
Simon Peyton Jones, Richard A. Eisenberg

ICFP 2020, August 23—29



Efficient Function Calls

Parameter Passing Techniques



Efficient Function Calls

Parameter Passing Techniques

e Representation — What & Where?



Efficient Function Calls

Parameter Passing Techniques

e Arity — How many?



Efficient Function Calls

Parameter Passing Techniques

 Levity (aka Evaluation Strategy) — When to
compute?



Efficient Function Calls

Parameter Passing Techniques

» Representation — What & Where?
* Arity — How many?/

» Levity (aka Evaluation Strategy) — When to
compute?



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >
let z = expensive Xx

1INy + Z



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >
let z = expensive X Arity2

1INy + Z



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

f1=\x ->1\y —>
let z = expensive x Arity2 f2 = \x -> fl X

1INy + Z



Determining Function Arity

f1, f2, 3, f4 ::

fl1=\x ->1\y >

let z =

1INy + Z

expensive X

Int -> Int -> Int

Arity2 f/Z

Type suggests arity 2

\X -> f1 X
\X -=> \y > fl X vy



Determining Function Arity

f1, f2, 3, f4 ::

fl1=\x ->1\y >

let z =

1INy + Z

expensive X

Int -> Int -> Int

Arity2 f/Z

Type suggests arity 2

\x -> fl x Arity 2
\X -=> \y > fl X vy



Determining Function Arity

f1, f2, 3, f4 ::

fl

3

\X -> \y ->

let z = expensive Xx
1INy + Z

\X ->

let z = expensive Xx
1N \y ->VY + Z

Int -> Int -> Int

Arity2 f/Z

Type suggests arity 2

\x -> fl x Arity 2
\X > \y > fl X vy



Determining Function Arity
f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >

let z = expensive x Arity2 f2 = \x -> fl X Arity 2

\X -=> \y > fl X vy

1INy + Z

f3 = \x ->
let z = expensive Xx
1N \y ->VY + Z

Hint: ‘expensive X’ may be costly, or even cause side effects



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >

\x -> fl x Arity 2
\X -=> \y > fl X vy

let z = expensive x Arity2 fZ

1INy + Z

f3 = \x ->
let z = expensive X Arity1
1N \y ->VY + Z

Hint: ‘expensive X’ may be costly, or even cause side effects



Determining Function Arity
f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >

let z = expensive x Arity2 f2 = \x -> fl X Arity 2

\X -=> \y > fl X vy

1INy + Z
f3 = \x >

let z = expensive x Arityl f4 = \x -> f3 X

1N \y ->VY + Z

Hint: ‘expensive X’ may be costly, or even cause side effects



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >

\x -> fl x Arity 2
\X -=> \y > fl X vy

let z = expensive x Arity2 fZ

1INy + Z =
f3 = \x ->
let z = expensive x Arityl f4 = \x -> f3 X
1N \y ->Yy + Z =z \X > \y > f3 xvy

Hint: ‘expensive X’ may be costly, or even cause side effects



Determining Function Arity

f1, 2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

fl1=\x ->1\y >

\x -> fl x Arity 2
\X -=> \y > fl X vy

let z = expensive x Arity2 fZ

1INy + Z =

f3 = \x ->
let z = expensive x Arityl f4 = \x -> f3 X Arity 1
1N \y ->Yy + Z =z \X > \y > f3 xvy

Hint: ‘expensive X’ may be costly, or even cause side effects



What Is Arity?

For Curried Functions



What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing
“serious work.”



What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing
“serious work.”

» If'f 1 2 3" does work, but ‘f 1 2’ does not, then ‘f’ has arity 3



What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.



What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

 If‘f'isequivalentto\x y z -> f x y Z, then ‘f’ has arity 3



What Is Arity?

For Curried Functions

Definition 3. The number of arguments passed simultaneously to a function
during one call.



What Is Arity?

For Curried Functions

Definition 3. The number of arguments passed simultaneously to a function
during one call.

 If ‘f" hasarity 3, then ‘f 1 2 3’ can be implemented as a single call



What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

Definition 3. The number of arguments passed simultaneously to a function
during one call.



Goal: An IL with unrestricted
for functions, along with
restricted 5 for other types



Static Arity

In an Intermediate Language



Static Arity

In an Intermediate Language

* New a « b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics



Static Arity

In an Intermediate Language

* New a v b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

* Primitive functions are fully extensional, unlike source functions

* Ax.f x =, f:a~ b unconditionally



Static Arity

In an Intermediate Language

* New a v b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

* Primitive functions are fully extensional, unlike source functions

* Ax.f x =, f:a~ b unconditionally

* Application may still be restricted for efficiency, like source functions

* (Ax.x +x) (fact 10°) does not recompute fact 10°



Static Arity

In an Intermediate Language

New a ~ b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

Primitive functions are fully extensional, unlike source functions

* Ax.f x =, f:a~ b unconditionally

Application may still be restricted for efficiency, like source functions

* (Ax.x +x) (fact 10°) does not recompute fact 10°

With full n, types express arity — just count the arrows

* f:Int » Bool ~ String has arity 2, no matter f’s definition



When Partial Application Matters



Currying

When Partial Application Matters

f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x 1n \y >y + Z



Currying

When Partial Application Matters

* Because of n, {3 now has arity 2, not 1!



When Partial Application Matters

* map (f3100) [1..10"6] recomputes ‘expensive 100" a million times ®



When Partial Application Matters

f3° :: Int ~> { Int ~> Int }
f3° = \x -> let z = expensive x 1n Clos (\y -> vy + z)

Clos :: (Int ~> Int) ~> {Int ~> Intt}



When Partial Application Matters

» f3’is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

Clos :: (Int ~> Int) ~> {Int ~> Intt}



When Partial Application Matters

« map (App (13" 100)) [1..107°6] computes ‘expensive 100’ only once ©

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int



Functions are Called

Not Evaluated




Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* When is expensive 100 evaluated?



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-value: first, before binding f



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-need: later, but only once, when f is first demanded



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’ = let f :: Int ~> Int = \y -> expensive 100 y 1in ..f..f..



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’ = let f :: Int ~> Int = \y -> expensive 100 y 1in ..f..f..

X = X’ bymn,and x’ always follows call-by-name order!



Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’ = let f :: Int ~> Int = \y -> expensive 100 y 1in ..f..f..

 Primitive functions are never just evaluated; they are always called



The Problem With Polymorphism

And Static Compilation



The Problem With Polymorphism

And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f =let g :: Int ~~a=f 3 1n (g5, g 4)



The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>~a=*f 3 1n (g5, g 4)

* What are the arities of f and g? Counting arrows...



The Problem With Polymorphism

And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f =let g :: Int ~~a=f 3 1n (g5, g 4)

* f :: Int ~> Int ~> ahasarity2



The Problem With Polymorphism

And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f =let g :: Int ~~a=f 3 1n (g5, g 4)

* g :: Int ~> ahasarity1



The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>~a=*f 3 1n (g5, g 4)

 But what if a = Bool ~> Bool?



The Problem With Polymorphism

And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f =let g :: Int ~~a=f 3 1n (g5, g 4)

* f :: Int ~> Int ~> Bool ~> Bool has arity 3...



The Problem With Polymorphism

And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f =let g :: Int ~~a=f 3 1n (g5, g 4)

* g :: Int ~> Bool ~> Bool has arity 2... oops...



The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>~a=*f 3 1n (g5, g 4)

* How to statically compile? Is ‘g 5" a call? A partial application?



Arity Polymorphism

Kinds As Calling Conventions



Arity Polymorphism
Kinds As Calling Conventions

e Generalizea::xtoa::TYPE r c



Arity Polymorphism

Kinds As Calling Conventions

* r::Rep is the runtime representation of a



Arity Polymorphism

Kinds As Calling Conventions

* c::Conv is the calling convention of a



Arity Polymorphism

Kinds As Calling Conventions

* a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)



Arity Polymorphism

Kinds As Calling Conventions

poly :: forall a::TYPE Ptr Call[Z2]. (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>~a=f 3 1n (g 4, g 5)



Arity Polymorphism

Kinds As Calling Conventions

* f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4



Arity Polymorphism

Kinds As Calling Conventions

* g :: Int ~> a :: TYPE PTR Call[3] has arity 3



Arity Polymorphism

Kinds As Calling Conventions

revapp :: forall (c::Conv) (r::Rep)
(a::TYPE Ptr c) (b::TYPE r Call[1]).
a~> (a~>b) ~>Db

revapp X f = f X



Arity Polymorphism
Kinds As Calling Conventions
e Generalizea::xtoa::TYPE r c

* r::Repis the runtime representation of a

* c::Convis the calling convention of a

* a::TYPE Ptr Call[n] says a values are pointers with arity n
poly :: forall a::TYPE Ptr . (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

* f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
* g :: Int ~> a :: TYPE PTR Call[3] has arity 3

revapp :: forall (c::Conv) (r::Rep)
(a::TYPE c) (b::TYPE r ).
~> (a ~> b) ~> b
revapp x f = f x

* f :: a~ b :: TYPE Ptr Call[2] has arity 2



Arity Polymorphism
Kinds As Calling Conventions
e Generalizea::xtoa::TYPE r c

* r::Repis the runtime representation of a

* c::Convis the calling convention of a

* a::TYPE Ptr Call[n] says a values are pointers with arity n
poly :: forall a::TYPE Ptr . (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

* f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
* g :: Int ~> a :: TYPE PTR Call[3] has arity 3

revapp :: forall (c::Conv) (r::Rep)
(a::TYPE c) (b::TYPE r ).
~> (a ~> b) ~> b
revapp x f = f x

* f :: a~> b :: TYPE Ptr Call[2] has arity 2
* X :: a :: TYPE Ptr cisrepresented as a pointer



Lven More

In the Paper

o Levity Polymorphism

* For when evaluation strategy doesn’t matter

« Compiling Source — Intermediate — Target

* Via kind-directed n-expansion and register assignment

» Type system for ensuring static compilation

» Of definitions with arity, levity, and representation polymorphism



Kinds capture the details of
efficient calling conventions



