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What Is Arity?

For Curried Functions

Definition 2. The number of times a function may be soundly n-expanded.

Definition 3. The number of arguments passed simultaneously to a function
during one call.



Goal: An IL with unrestricted
for functions, along with
restricted 5 for other types
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Static Arity

In an Intermediate Language

New a ~ b type of primitive functions (ASCII ‘a ~> b’)

* To distinguish from the source-level a — b with different semantics

Primitive functions are fully extensional, unlike source functions

* Ax.f x =, f:a~ b unconditionally

Application may still be restricted for efficiency, like source functions

* (Ax.x +x) (fact 10°) does not recompute fact 10°

With full n, types express arity — just count the arrows

* f:Int » Bool ~ String has arity 2, no matter f’s definition
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When Partial Application Matters

« map (App (13" 100)) [1..107°6] computes ‘expensive 100’ only once ©

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int
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Functions are Called

Not Evaluated

X = let f :: Int ~> Int = expensive 100 1n ..f..f..

* Call-by-name: later, re-evaluated every time f is demanded

x’ = let f :: Int ~> Int = \y -> expensive 100 y 1in ..f..f..

 Primitive functions are never just evaluated; they are always called
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The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~>~a=*f 3 1n (g5, g 4)

* How to statically compile? Is ‘g 5" a call? A partial application?
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Kinds As Calling Conventions
e Generalizea::xtoa::TYPE r c

* r::Repis the runtime representation of a

* c::Convis the calling convention of a

* a::TYPE Ptr Call[n] says a values are pointers with arity n
poly :: forall a::TYPE Ptr . (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~>a=f 3 1n (g 4, g 5)

* f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
* g :: Int ~> a :: TYPE PTR Call[3] has arity 3

revapp :: forall (c::Conv) (r::Rep)
(a::TYPE c) (b::TYPE r ).
~> (a ~> b) ~> b
revapp x f = f x

* f :: a~> b :: TYPE Ptr Call[2] has arity 2
* X :: a :: TYPE Ptr cisrepresented as a pointer



Lven More

In the Paper

o Levity Polymorphism

* For when evaluation strategy doesn’t matter

« Compiling Source — Intermediate — Target

* Via kind-directed n-expansion and register assignment

» Type system for ensuring static compilation

» Of definitions with arity, levity, and representation polymorphism



Kinds capture the details of
efficient calling conventions



