
ICFP 2020, August 23—29

Kinds Are Calling Conventions
Paul Downen, Zena M. Ariola,
Simon Peyton Jones, Richard A. Eisenberg

Efficient Function Calls
Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Arity — How many?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Arity — How many?
• Levity (aka Evaluation Strategy) — When to

compute?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Arity — How many?
• Levity (aka Evaluation Strategy) — When to

compute?

Parameter Passing Techniques

Arity

Determining Function Arity
f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

≠ \x -> \y -> f3 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x Arity 1

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

≠ \x -> \y -> f3 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

What Is Arity?
For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

• If ‘f’ has arity 3, then ‘f 1 2 3’ can be implemented as a single call

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs before doing
“serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

• If ‘f’ has arity 3, then ‘f 1 2 3’ can be implemented as a single call

For Curried Functions

Goal: An IL with unrestricted η
for functions, along with

restricted β for other types

Static Arity
In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions
• unconditionallyλx . f x =η f : a ⇝ b

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions
• unconditionallyλx . f x =η f : a ⇝ b

• Application may still be restricted for efficiency, like source functions
• does not recompute (λx . x + x) (fact 106) fact 106

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions
• unconditionallyλx . f x =η f : a ⇝ b

• Application may still be restricted for efficiency, like source functions
• does not recompute (λx . x + x) (fact 106) fact 106

• With full η, types express arity — just count the arrows
• has arity 2, no matter ’s definitionf : Int ⇝ Bool ⇝ String f

In an Intermediate Language

Currying
When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int}

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int}

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

• map (App (f3’ 100)) [1..10^6] computes ‘expensive 100’ only once ☺

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int

Functions are Called
Not Evaluated

Functions are Called
Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

• x = x’ by η, and x’ always follows call-by-name order!

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

• x = x’ by η, and x’ always follows call-by-name order!

• Primitive functions are never just evaluated; they are always called

The Problem With Polymorphism
And Static Compilation

The Problem With Polymorphism
And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

• g :: Int ~> Bool ~> Bool has arity 2… oops…

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

• g :: Int ~> Bool ~> Bool has arity 2… oops…

• How to statically compile? Is ‘g 5’ a call? A partial application?

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

Arity Polymorphism
Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3

revapp :: forall (c::Conv) (r::Rep)  
 (a::TYPE Ptr c) (b::TYPE r Call[1]).  
 a ~> (a ~> b) ~> b  
revapp x f = f x

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3

revapp :: forall (c::Conv) (r::Rep)  
 (a::TYPE Ptr c) (b::TYPE r Call[1]).  
 a ~> (a ~> b) ~> b  
revapp x f = f x

• f :: a ~> b :: TYPE Ptr Call[2] has arity 2

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::★ to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3

revapp :: forall (c::Conv) (r::Rep)  
 (a::TYPE Ptr c) (b::TYPE r Call[1]).  
 a ~> (a ~> b) ~> b  
revapp x f = f x

• f :: a ~> b :: TYPE Ptr Call[2] has arity 2
• x :: a :: TYPE Ptr c is represented as a pointer

Kinds As Calling Conventions

Even More

• Levity Polymorphism
• For when evaluation strategy doesn’t matter

• Compiling Source Intermediate Target
• Via kind-directed η-expansion and register assignment

• Type system for ensuring static compilation
• Of definitions with arity, levity, and representation polymorphism

→ →

In the Paper

Kinds capture the details of
efficient calling conventions

