Kinds Are Calling Conventions Paul Downen, Zena M. Ariola, Simon Peyton Jones, Richard A. Eisenberg

Efficient Function Calls

Parameter Passing Techniques

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Arity - How many?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Arity - How many?
- Levity (aka Evaluation Strategy) - When to compute?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Arity - How many?
- Levity (aka Evaluation Strategy) - When to compute?

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

$$
\begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \\
& \text { in } y+z
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \quad \text { Arity } 2 \\
& \text { in } y+z
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \quad \text { Arity } 2 \quad f 2=\backslash x->f 1 x
\end{aligned}
$$ in $\mathrm{y}+\mathrm{z}$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 \mathrm{f} 2=\text { lx -> f1 } x \\
& \text { in } \mathrm{y}+\mathrm{z} \\
& =\backslash x \text {-> \y -> f1 x y }
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 : : Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } \mathrm{y}+\mathrm{z} \\
& =\backslash x \text {-> \y -> f1 x y }
\end{aligned}
$$

Determining Function Arity

fl, fl, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { ff = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arty } 2 f 2=\backslash x->f 1 x \quad \text { Arty } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> } \backslash y \text {-> ff x y } \\
& \text { ff = \x -> } \\
& \text { let } z=\text { expensive } x \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{array}{rlrl}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \quad \text { Arity } 2 \quad f 2=\backslash x->f 1 x \text { Arity } 2 \\
& \text { in } y+z & & \\
f 3= & & \\
& & \text { let } z=\text { expensive } x & \\
& \text { in } \backslash y->y y->f 1 x y
\end{array}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> } \backslash y \text {-> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> \y -> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \quad f 4=\backslash x \text {-> } f 3 x \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> \y -> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \quad f 4=\backslash x->f 3 x \\
& \text { in } \backslash y \text {-> } y+z \\
& \neq \backslash x \text {-> \y -> f3 x y }
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { Let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> \y -> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \quad f 4=\backslash x->f 3 x \quad \text { Arity } 1 \\
& \text { in } \backslash y \text {-> } y+z \\
& \neq \backslash x \text {-> \y -> f3 x y }
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

What Is Arity?

For Curried Functions

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but ' $f 12$ ' does not, then ' f ' has arity 3

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

- If ' f ' is equivalent to ' $\backslash x$ y $z->f x y z$ ', then ' f ' has arity 3

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then ' f ' has arity 3

Definition 2. The number of times a function may be soundly η-expanded. - If ' f ' is equivalent to ' $x x y z->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then ' f ' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

- If ' f ' is equivalent to ' $\backslash x y z->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

- If ' f ' has arity 3 , then ' $f 123$ ' can be implemented as a single call

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

- If ' f ' is equivalent to ' $\backslash x$ y $z ~->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

- If ' f ' has arity 3 , then 'f 12 3' can be implemented as a single call

Goal: An IL with unrestricted η for functions, along with restricted β for other types

Static Arity

In an Intermediate Language

Static Arity

In an Intermediate Language

- New $a \rightsquigarrow b$ type of primitive functions (ASCII ' $a \sim>b^{\prime}$)
- To distinguish from the source-level $a \rightarrow b$ with different semantics

Static Arity

In an Intermediate Language

- New $a \rightsquigarrow b$ type of primitive functions (ASCII ' $a \sim>b^{\prime}$)
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions - $\lambda x . f x={ }_{\eta} f: a \rightsquigarrow b$ unconditionally

Static Arity

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions - $\lambda x . f x={ }_{\eta} f: a \rightsquigarrow b$ unconditionally
- Application may still be restricted for efficiency, like source functions
- $(\lambda x . x+x)\left(\right.$ fact $\left.10^{6}\right)$ does not recompute fact 10^{6}

Static Arity

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions
- $\lambda x . f x={ }_{\eta} f: a \rightsquigarrow b$ unconditionally
- Application may still be restricted for efficiency, like source functions
- $(\lambda x . x+x)\left(\right.$ fact $\left.10^{6}\right)$ does not recompute fact 10^{6}
- With full η, types express arity - just count the arrows
- f: Int \rightsquigarrow Bool \rightsquigarrow String has arity 2, no matter f 's definition

Currying

When Partial Application Matters

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f_{3} now has arity 2 , not 1 !

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1!
- map (f3 100) [1..10^6] recomputes ‘expensive 100 ' a million times ${ }^{*}$

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1 !
- map (f3 100) [1..10^6] recomputes ‘expensive 100 ' a million times $)^{(2}$
f3' : : Int ~> \{ Int ~> Int \}
f^{\prime} ' $=\backslash x->$ let $z=$ expensive x in Clos (ly $->y+z$)

```
Clos :: (Int ~> Int) ~> {Int ~> Int}
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1 !
- map ($\mathrm{f}_{3} 100$) [1..10^6] recomputes 'expensive 100 ' a million times $)^{(-}$
f3' : : Int ~> \{ Int ~> Int \}
f3' $^{\prime}=\backslash x->$ let $z=$ expensive x in Clos ($\backslash y->y+z$)
- f3' is an arity 1 function; returns a closure \{Int~>Int\} of an arity 1 function

```
Clos :: (Int ~> Int) ~> {Int ~> Int}
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100 ' a million times $\cdot{ }^{*}$ f3' : : Int ~> \{ Int ~> Int \}
f3' $^{\prime}=\backslash x->$ let $z=$ expensive x in Clos ($\backslash y->y+z$)
- f3' is an arity 1 function; returns a closure \{Int~>Int\} of an arity 1 function
- map (App (f3’ 100)) [1..10^6] computes ‘expensive 100 ’ only once -
Clos :: (Int $\sim>$ Int) $\sim>$ \{Int $\sim>$ Int \} App $::$ \{Int $\sim>$ Int \} $\sim>$ Int $\sim>$ Int

Functions are Called

Not Evaluated

Functions are Called

Not Evaluated

$$
x=\text { let } f:: \text { Int } \sim \text { Int }=\text { expensive } 100 \text { in ...f...f... }
$$

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

- $x=x$ ' by η, and x ' always follows call-by-name order!

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

- $x=x$ ' by η, and x^{\prime} always follows call-by-name order!
- Primitive functions are never just evaluated; they are always called

The Problem With Polymorphism

And Static Compilation

The Problem With Polymorphism

And Static Compilation

```
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)
```


The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int \sim a) $\sim(a, a)$
poly $f=$ let g :: Int $\sim a=f 3$ in ($\mathrm{g} 5, \mathrm{~g} \mathrm{4)}$

- What are the arities of f and g ? Counting arrows...

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int $\sim>a$) \sim (a, a)
poly $f=$ let $g:$: Int $\sim a=f 3$ in ($95, g 4$)

- What are the arities of f and g ? Counting arrows...
- f : : Int ~> Int ~> a has arity 2

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int $\sim>a$) \sim (a, a)
poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- f : : Int ~> Int ~> a has arity 2
- g :: Int \sim a has arity 1

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int $\sim>a$) \sim (a, a)
poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- f :: Int ~> Int \sim a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $\mathrm{a}=$ Bool \sim Bool?

The Problem With Polymorphism

And Static Compilation

poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- $\mathrm{f}:$: Int \sim Int \sim a has arity 2
- $g::$ Int \sim a has arity 1
- But what if $\mathrm{a}=$ Bool \sim Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int \sim) $) \sim(a, a)$
poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- $\mathrm{f}:$: Int \sim Int \sim a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $\mathrm{a}=\mathrm{Bool} \sim$ Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...
- g : : Int \sim Bool \sim Bool has arity 2... oops...

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim I Int \sim a) $\sim>(a, a)$
poly $f=$ let $g:$: Int $\sim(a=f 3$ in ($95, g 4$)

- What are the arities of f and g ? Counting arrows...
- $\mathrm{f}:$: Int \leadsto Int \leadsto a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $\mathrm{a}=\mathrm{Bool} \sim$ Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...
- g : : Int \sim Bool \sim Bool has arity 2... oops...
- How to statically compile? Is 'g 5' a call? A partial application?

Arity Polymorphism

Kinds As Calling Conventions

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:: \star$ to $a:$:TYPE r c

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$: \star to $a:$:TYPE r c
- $r:$: Rep is the runtime representation of a

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$: \star to $a:$:TYPE r c
- $r:$: Rep is the runtime representation of a
- c : : Conv is the calling convention of a

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:: \star$ to $a:$:TYPE r c
- $r:$: Rep is the runtime representation of a
- $c:$ Conv is the calling convention of a
- $a:$:TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$: \star to $a:$:TYPE r c
- $r:$: Rep is the runtime representation of a
- $c:$ Conv is the calling convention of a
- a: :TYPE Ptr Call[n] says a values are pointers with arity n (simplified)
poly : : forall $a:$:TYPE Ptr Call[2]. (Int $\sim>$ Int $\sim>a$) $\sim>(a, a)$
poly $f=$ let $g:$ Int $\sim l^{\prime}=f 3$ in (g 4, g 5)

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$: \star to $a:$:TYPE r c
- $r:$: Rep is the runtime representation of a
- $c:$ Conv is the calling convention of a
- a: :TYPE Ptr Call[n] says a values are pointers with arity n (simplified)
poly : : forall $a:$:TYPE Ptr Call[2]. (Int $\sim>$ Int $\sim>a$) $\sim>(a, a)$
poly $f=$ let $g:$ Int $\sim a=f 3$ in (g 4, g 5)
- $\mathrm{f}:$: Int \sim Int \sim a : : TYPE Ptr Call[4] has arity 4

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$: \star to $a:$:TYPE r c
- $r:$: Rep is the runtime representation of a
- $c:$: Conv is the calling convention of a
- a: :TYPE Ptr Call[n] says a values are pointers with arity n (simplified)
poly : : forall $a:$:TYPE Ptr Call[2]. (Int $\sim>$ Int $\sim>a$) $\sim>(a, a)$
poly $f=$ let $g:$ Int $\sim>a=f 3$ in (g 4, g 5)
- f : : Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
- $\mathrm{g}::$ Int \sim a $:$: TYPE PTR Call[3] has arity 3

Arity Polymorphism

Kinds As Calling Conventions

```
- Generalize a::\star to a::TYPE r c
```

- $r:$: Rep is the runtime representation of a
- $c:$ Conv is the calling convention of a
- a: :TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

```
poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)
```

poly $f=$ let $g:$ Int $\sim>a=f 3$ in (g 4, g 5)

- $f:$ Int $\sim>$ Int $\sim>a:$ TYPE Ptr Call[4] has arity 4
- g :: Int ~> a : : TYPE PTR Call[3] has arity 3
revapp : : forall (c::Conv) (r::Rep)
(a::TYPE Ptr c) (b::TYPE r Call[1]).
$a \sim>(a \sim>b) \sim>b$
revapp $x f=f x$

Arity Polymorphism

Kinds As Calling Conventions

```
- Generalize a::\star to a::TYPE r c
```

- $r:$: Rep is the runtime representation of a
- $c:$ Conv is the calling convention of a
- a: :TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

```
poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```

- $f:$ Int $\sim>$ Int $\sim>a:$ TYPE Ptr Call [4] has arity 4
- g :: Int ~> a :: TYPE PTR Call[3] has arity 3
revapp : : forall (c::Conv) (r::Rep)
(a::TYPE Ptr c) (b::TYPE r Call[1]).
$a \sim>(a \sim>b) \sim>b$
revapp $\times f=f \times$
- $f:: a \sim b$: : TYPE Ptr Call[2] has arity 2

Arity Polymorphism

Kinds As Calling Conventions

```
- Generalize a::\star to a::TYPE r c
```

- $r:$: Rep is the runtime representation of a
- $c:$ Conv is the calling convention of a
- a: :TYPE Ptr Call[n] says a values are pointers with arity n (simplified)

```
poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```

- $f:$: Int $\sim>$ Int $\sim>$ a :: TYPE Ptr Call[4] has arity 4
- $g::$ Int \sim a $:$: TYPE PTR Call[3] has arity 3
revapp : : forall (c::Conv) (r::Rep)
(a::TYPE Ptr c) (b::TYPE r Call[1]).
$a \sim>(a \sim>b) \sim>b$
revapp $\times f=f x$
- $\mathrm{f}:: \mathrm{a} \sim>\mathrm{b}:$: TYPE Ptr Call[2] has arity 2
- $x:: a::$ TYPE Ptr c is represented as a pointer

Even More

- Levity Polymorphism
- For when evaluation strategy doesn't matter
- Compiling Source \rightarrow Intermediate \rightarrow Target
- Via kind-directed η-expansion and register assignment
- Type system for ensuring static compilation
- Of definitions with arity, levity, and representation polymorphism

Kinds capture the details of efficient calling conventions

