Kinds Are Calling Conventions: Intensional Static Polymorphism

Paul Downen

Theory and Practice

Of Programming Languages

Theory and Practice

Of Programming Languages

- Goal: Performance

Theory and Practice

Of Programming Languages

- Goal: Performance
- Subgoal: Semantics

Theory and Practice

Of Programming Languages

- Goal: Performance
- Subgoal: Semantics
- Answer: Logic

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Haskell

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Desugaring

Haskell

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Desugaring

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Desugaring

Code
Generation

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Desugaring
Code
Generation

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

Compilation Funnel

Source \rightarrow Intermediate \rightarrow Target

System F

Workhorse of Functional Compilers

System F

Workhorse of Functional Compilers

Core

System F

Workhorse of Functional Compilers

Core $=$ System F

System F

Workhorse of Functional Compilers

Core $=$ System F (first-class functions, polymorphism)

System F

Workhorse of Functional Compilers

Core $=$ System F + Data Types
(first-class functions, polymorphism)

System F

Workhorse of Functional Compilers

Core $=$ System F

 + Data Types(first-class functions, polymorphism)
(Primitives, lists/trees, records)

System F

Workhorse of Functional Compilers

Core $=$ System F + Data Types (Primitives, lists/trees, records) + Type Equality
(first-class functions, polymorphism)

System F

Workhorse of Functional Compilers

Core $=$ System F + Data Types (Primitives, lists/trees, records) + Type Equality (GADTs, type families, coercions)

System F

Workhorse of Functional Compilers

Core $=$ System F

+ Data Types (Primitives, lists/trees, records)
+ Type Equality (GADTs, type families, coercions)
$+\ldots$
(first-class functions, polymorphism)

GHC Core*

*In Greek

GHC Core*

*In Greek
$\operatorname{Expr} \ni d, e, f::=x|\lambda x: \tau . e| f e$
λ-calculus: variables, functions, application

GHC Core*

Type $\ni \tau, \sigma::=\ldots$
*In Greek
$\operatorname{Expr} \ni d, e, f::=x|\lambda x: \tau . e| f e$
λ-calculus: variables, functions, application

GHC Core*

*In Greek

$\operatorname{Expr} \ni d, e, f::=x|\lambda x: \tau . e| f e$
| Ка:к.е|е τ
λ-calculus: variables, functions, application System F: polymorphism \& instantiation

GHC Core*

*In Greek

Type $\ni \tau, \sigma::=\ldots$
Kind $\ni \kappa \quad=$ Type

Expr $\ni d, e, f::=x|\lambda x: \tau . e| f e$
\mid Ма:к.е|e τ
λ-calculus: variables, functions, application System F: polymorphism \& instantiation

GHC Core*

*In Greek

Type $\ni \tau, \sigma::=\ldots$
Kind $\ni \kappa \quad=$ Type

Expr $\ni d, e, f::=x|\lambda x: \tau . e| f e$
| Ма:к.е|е τ
$|l|$ let $x: \tau=d$ in e
λ-calculus: variables, functions, application System F: polymorphism \& instantiation Literal primitives \& let-bindings

GHC Core*

*In Greek

Type $\ni \tau, \sigma::=\ldots$
Kind $\ni \kappa \quad=$ Type
Expr $\ni d, e, f::=x|\lambda x: \tau . e| f e \quad \lambda$-calculus: variables, functions, application
| Ка:к.е|е τ
$|l|$ let $x: \tau=d$ in e
| case d of $\{\pi \rightarrow e ; \ldots\}$

System F: polymorphism \& instantiation
Literal primitives \& let-bindings
Data contructor \& literal matching

GHC Core*

Type $\ni \tau, \sigma::=\ldots \quad$ Pattern $\ni \pi::=x|l| K x \ldots$
Kind $\ni \kappa \quad=$ Type
$\operatorname{Expr} \ni d, e, f::=x|\lambda x: \tau . e| f e \quad \lambda$-calculus: variables, functions, application
| Ка:к.е|е τ
$|l|$ let $x: \tau=d$ in e
| case d of $\{\pi \rightarrow e ; \ldots\}$
*In Greek System F: polymorphism \& instantiation

Literal primitives \& let-bindings
Data contructor \& literal matching

GHC Core*

Type $\ni \tau, \sigma::=\ldots \quad$ Pattern $\ni \pi::=x|l| K x \ldots$
Kind $\ni \kappa \quad=$ Type
$\operatorname{Expr} \ni d, e, f::=x|\lambda x: \tau . e| f e \quad \lambda$-calculus: variables, functions, application
| Ка:к.e|e τ
$|l|$ let $x: \tau=d$ in e
| case d of $\{\pi \rightarrow e ; \ldots\}$
$|\chi| e \triangleright \chi$
*In Greek System F: polymorphism \& instantiation

Literal primitives \& let-bindings
Data contructor \& literal matching
Coercion evidence \& casting

GHC Core*

Type $\ni \tau, \sigma::=\ldots \quad$ Pattern $\ni \pi::=x|l| K x \ldots$
Kind $\ni \kappa \quad=$ Type \quad Coercion $\ni \chi::=\operatorname{refl}\left|\chi^{-1}\right| \chi \circ \chi^{\prime} \mid \ldots$
Expr $\ni d, e, f::=x|\lambda x: \tau . e| f e \quad \lambda$-calculus: variables, functions, application
| Ка:к.е|e τ
$|l|$ let $x: \tau=d$ in e
| case d of $\{\pi \rightarrow e ; \ldots\}$
$|\chi| e \triangleright \chi$
*In Greek System F: polymorphism \& instantiation

Literal primitives \& let-bindings
Data contructor \& literal matching
Coercion evidence \& casting

GHC Core*

*In Greek

$$
\begin{array}{rrr}
\text { Type } \ni \tau, \sigma::=\ldots & \text { Pattern } \ni \pi::=x|l| K x \ldots & \text { *ln Greek } \\
\text { Kind } \ni \kappa \quad=\text { Type } & \text { Coercion } \ni \chi::=\text { refl }\left|\chi^{-1}\right| \chi \circ \chi^{\prime} \mid \ldots \\
l, e, f::=x|\lambda x: \tau . e| \text { fe } & \lambda \text {-calculus: variables, functions, application } \\
\mid \text { ^a:k.e } \mid e \tau & \text { System F: polymorphism \& instantiation } \\
|l| \text { let } x: \tau=d \text { in } e & \text { Literal primitives \& let-bindings } \\
\mid \text { case } d \text { of }\{\pi \rightarrow e ; \ldots\} & \text { Data contructor \& literal matching } \\
|\chi| e \triangleright \chi & \text { Coercion evidence \& casting } \\
\mid \text { tick } t k e & \text { Profiling \& instrumentation }
\end{array}
$$

GHC Core*

*In Greek

$$
\begin{array}{rrr}
\text { Type } \ni \tau, \sigma::=\ldots & \text { Pattern } \ni \pi::=x|l| K x \ldots & \text { *ln Greek } \\
\text { Kind } \ni \kappa \quad=\text { Type } & \text { Coercion } \ni \chi::=\text { refl }\left|\chi^{-1}\right| \chi \circ \chi^{\prime} \mid \ldots \\
d, e, f::=x|\lambda x: \tau . e| \text { fe } & \lambda \text {-calculus: variables, functions, application } \\
\mid \text { ^a:k.e } \mid e \tau & \text { System F: polymorphism \& instantiation } \\
|l| \text { let } x: \tau=d \text { in } e & \text { Literal primitives \& let-bindings } \\
\mid \text { case } d \text { of }\{\pi \rightarrow e ; \ldots\} & \text { Data contructor \& literal matching } \\
|\chi| e \triangleright \chi & \text { Coercion evidence \& casting } \\
\mid \text { tick } t k e & \text { Profiling \& instrumentation }
\end{array}
$$

A real-world programming language in only 6 lines!

Compiling Polymorphism

Statically

Compiling Polymorphism

$$
\begin{aligned}
& \operatorname{dup}: \text { forall } a .(a->a->a)->a->a \\
& \operatorname{dup} f x=f x x
\end{aligned}
$$

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
dup f x = f x x
```

Compiled assembly code:

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
dup f x = f x x
```

Compiled assembly code:

1. Accept parameters

Compiling Polymorphism

dup: forall $a \cdot\left(\begin{array}{ll}-> & ->a) \\ -> & a^{->} a\end{array}\right.$
dup $f x=f x x$
Compiled assembly code:

1. Accept parameters

- f : $a^{->} a^{->} a$ is a pointer; read from pointer register 1

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
```

Compiled assembly code:

1. Accept parameters

- f : a -> a -> a is a pointer; read from pointer register 1
- Where is x : a ?

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
dup f x = f x x
```

Compiled assembly code:

1. Accept parameters

- f : a -> a -> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

Compiling Polymorphism

$$
\begin{aligned}
& \text { dup : forall } a .(a->a->a)->a->a \\
& \text { dup } f x=f x x
\end{aligned}
$$

Compiled assembly code:

1. Accept parameters

- f : a -> a -> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

2. Pass arguments

Compiling Polymorphism

$$
\text { dup : forall } a .(a->a->a)->a->a
$$

Compiled assembly code:

1. Accept parameters

- f : a -> a -> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

2. Pass arguments

- Save f

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
dup f x = f x x
```

Compiled assembly code:

1. Accept parameters

- f : a-> a-> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

2. Pass arguments

- Save f
- Copy \times (pointer register 2) to the first argument (pointer register 1)

Compiling Polymorphism

$$
\begin{aligned}
& \text { dup : forall } a .(a->a->a)->a->a \\
& \text { dup } f x=f x x
\end{aligned}
$$

Compiled assembly code:

1. Accept parameters

- f : a -> a -> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

2. Pass arguments

- Save f
- Copy \times (pointer register 2) to the first argument (pointer register 1)

3. Call f

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
dup f x = f x x
```

Compiled assembly code:

1. Accept parameters

- f : a-> a-> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

2. Pass arguments

- Save f
- Copy \times (pointer register 2) to the first argument (pointer register 1)

3. Call f

- How many arguments does $f: a->a->a$ take? Is $f x x$: a call? a closure?

Compiling Polymorphism

```
dup: forall a.((a -> a -> a) -> a -> a
dup f x = f x x
```

Statically

Compiled assembly code:

1. Accept parameters

- f : a-> a-> a is a pointer; read from pointer register 1
- Where is x : a ?
- Assume x is a pointer; read from pointer register 2

2. Pass arguments

- Save f
- Copy \times (pointer register 2) to the first argument (pointer register 1)

3. Call f

- How many arguments does f : a-> a-> a take? Is $f \times x$: a a call? a closure?
- Check the arity of f; read runtime closure info, and take appropriate action

Calling Conventions

In Systems Programming Languages

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
- Values may be passed directly, not just pointers

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
- Values may be passed directly, not just pointers
- Many shapes of values

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
- Values may be passed directly, not just pointers
- Many shapes of values
- Different sizes of integers and words

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
- Values may be passed directly, not just pointers
- Many shapes of values
- Different sizes of integers and words
- Built-in floating-point numbers \& registers

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
- Values may be passed directly, not just pointers
- Many shapes of values
- Different sizes of integers and words
- Built-in floating-point numbers \& registers
- Contiguous arrays and compound structures

Calling Conventions

In Systems Programming Languages

- Calls have statically known parameter \#s
- Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
- Values may be passed directly, not just pointers
- Many shapes of values
- Different sizes of integers and words
- Built-in floating-point numbers \& registers
- Contiguous arrays and compound structures
- Checks for calling conventions statically at compile time

Efficient Function Calls

Parameter Passing Techniques

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Shape of data values

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Shape of data values
- Arity - How many arguments?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Shape of data values
- Arity - How many arguments?
- Shape of calling context

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Shape of data values
- Arity - How many arguments?
- Shape of calling context
- Levity - When to compute?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Shape of data values
- Arity - How many arguments?
- Shape of calling context
- Levity - When to compute?
- Aka Evaluation Strategy

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Shape of data values
- Arity - How many arguments?
- Shape of calling context
- Levity - When to compute?
- Aka Evaluation Strategy
- Goal: A type safe high-level functional IL (System F) with fine-grained control over efficient calling conventions

The Long Road

To Intensional Static Polymorphism

The Long Road

To Intensional Static Polymorphism

- S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional Language.
- Explicit monomorphic representations; implicit levities.

The Long Road

To Intensional Static Polymorphism

- S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional Language.
- Explicit monomorphic representations; implicit levities.
- R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
- Explicit polymorphic representations; implicit levities.

The Long Road

- S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional Language.
- Explicit monomorphic representations; implicit levities.
- R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
- Explicit polymorphic representations; implicit levities.
- P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry with Extensional Types.
- Explicit monomorphic arities; implicit levities.

The Long Road

- S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional Language.
- Explicit monomorphic representations; implicit levities.
- R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
- Explicit polymorphic representations; implicit levities.
- P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry with Extensional Types.
- Explicit monomorphic arities; implicit levities.
- P. Downen, Z.M. Ariola, S. Peyton Jones, and R.A. Eisenberg. 2020. Kinds Are Calling Conventions.
- Explicit polymorphic representations, arities, and levities.

Representation

Unboxed Types

And Their Representation

Unboxed Types

And Their Representation

- Primitive types:

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#...

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#..
- Unboxed (Int\#, Float\#...) or Boxed (Array\#)

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#...
- Unboxed (Int\#, Float\#...) or Boxed (Array\#)
- Pro: Efficient memory

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#...
- Unboxed (Int\#, Float\#...) or Boxed (Array\#)
- Pro: Efficient memory
- Pro: Efficient passing

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#...
- Unboxed (Int\#, Float\#...) or Boxed (Array\#)
- Pro: Efficient memory
- Pro: Efficient passing
- Con: Different sizes

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#...
- Unboxed (Int\#, Float\#...) or Boxed (Array\#)
- Pro: Efficient memory
- Pro: Efficient passing
- Con: Different sizes
- Con: Different locations

Unboxed Types

And Their Representation

- Primitive types:
- Int\#, Float\#, Char\#, Word16\#, Array\#...
- Unboxed (Int\#, Float\#...) or Boxed (Array\#)
- Pro: Efficient memory
- Pro: Efficient passing
- Con: Different sizes
- Con: Different locations

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

$$
\begin{aligned}
& \operatorname{dup}:: \text { forall } a .(a->a->a)->a->a \\
& \operatorname{dup} f x=f \times x
\end{aligned}
$$

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

 dup :: forall $a .(a->a->a)$-> $a->a$ dup $f x=f x x$$\begin{array}{lllll}(++) & : & {[a]} & -> & {[a]} \\ \text { plusFloat\# } & \text { : } & \text { Float\# } & \text {-> } & \text { Float\# } \\ \text { l> }\end{array}$

The Problem with Nonuniform Representation

And Compiling Static Polymorphism

 dup :: forall $a .(a->a->a)$-> $a->a$ dup $f x=f x x$(++) :: [a] -> [a] -> [a]
plusFloat\# :: Float\# -> Float\# -> Float\# dup (++) [0. .3] - read/write pointer to [0. 3] versus dup addFloat\# 1.5 - read/write float 1.5

The Problem with Nonuniform Representation

And Compiling Static Polymorphism dup :: forall $a .(a->a->a)$-> $a->a$ $\operatorname{dup} f x=f x x$
(++) :: [a] -> [a] -> [a]
plusFloat\# :: Float\# -> Float\# -> Float\# dup (++) [0. 3] - read/write pointer to [0. 3] versus dup addFloat\# 1.5 - read/write float 1.5

Assembly code of dup depends on type a!

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always represented as a pointer

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...
- Special kinds for unboxed types (\#)

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always represented as a pointer
- Restriction on quantifiers forall a::k....
- Special kinds for unboxed types (\#)
- k may be \star or $\star->\star$ but never \#

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always represented as a pointer
- Restriction on quantifiers forall a::k....
- Special kinds for unboxed types (\#)
- k may be \star or $\star->\star$ but never \#
- Draconian restriction is unsatisfactory

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always represented as a pointer
- Restriction on quantifiers forall a::k....
- Special kinds for unboxed types (\#)
- k may be \star or $\star->\star$ but never \#
- Draconian restriction is unsatisfactory
- Too restrictive: Identical definitions/code repeated for different types
(like error : : String -> a)

A Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always represented as a pointer
- Restriction on quantifiers forall a::k....
- Special kinds for unboxed types (\#)
- k may be \star or $\star->\star$ but never \#
- Draconian restriction is unsatisfactory
- Too restrictive: Identical definitions/code repeated for different types (like error : : String -> a)
- Incompatible with kind polymorphism: forall k::Kind. forall a::k.

Representation Polymorphism

Kinds As Representations

Representation Polymorphism

Kinds As Representations

- Generalize a :: \star to a :: TYPE r

Representation Polymorphism

Kinds As Representations

- Generalize a : : ネ to a : : TYPE r
- $r:$: Rep is the representation of a

Representation Polymorphism

Kinds As Representations

- Generalize $a:: \star$ to $a::$ TYPE r
- $r:$: Rep is the representation of a
- $\star=$ TYPE Ptr

Representation Polymorphism

Kinds As Representations

- Generalize $a:: \star$ to $a:$ TYPE r
- $r:$: Rep is the representation of a
- $\star=$ TYPE Ptr

Representation Polymorphism

Kinds As Representations

- Generalize $a:: \star$ to $a:$ TYPE r
- $r::$ Rep is the representation of a
- $\star=$ TYPE Ptr
error : : forall ($a:: \star$). String $->a$

Representation Polymorphism

Kinds As Representations

- Generalize $a:: \star$ to $a:$ TYPE r
- $r:$: Rep is the representation of a
- $\star=$ TYPE Ptr
error : : forall ($a:$: *). String $->a$
errorInt\# :: String -> Int\#

Representation Polymorphism

Kinds As Representations

- Generalize $a:: \star$ to a :: TYPE r
- $r:$: Rep is the representation of a
- $\star=$ TYPE Ptr
error :: forall ($a:: \star$). String $->a$
errorInt\# : : String -> Int\#
errorFloat\# :: String -> Float\#

Representation Polymorphism

Kinds As Representations

- Generalize a :: ^ to a :: TYPE r
- $r:$: Rep is the representation of a
- $\star=$ TYPE Ptr
error :: forall (a :: 夫). String -> a
errorInt\# :: String -> Int\#
errorFloat\# :: String -> Float\#

Representation Polymorphism

Kinds As Representations

- Generalize a :: \star to a :: TYPE r
- $r:$: Rep is the representation of a
- $\star=$ TYPE Ptr
error : : forall ($a:: \star$). String -> a
errorInt\# :: String -> Int\#
errorFloat\# : : String -> Float\#
error :: forall (r::Rep) (a :: TYPE r). String -> a

Representation Polymorphism

In Function Definitions

Representation Polymorphism

In Function Definitions
revapp $:: a->(a->b)->b$
revapp $x f=f x$

Representation Polymorphism

In Function Definitions

$$
\begin{aligned}
& \text { revapp }:: a->(a->b)->b \\
& \text { revapp } \times f=f \times \\
& \text { revapp }: \text { forall (r1, r2 :: Rep) } \\
&(a:: \text { TYPE r1) (b: TYPE r2). } \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

$$
\begin{aligned}
& \text { revapp }:: a->(a->b)->b \\
& \text { revapp } \times f=f \times \\
& \text { revapp }:: \text { forall (r1, r2 :: Rep) } \\
&(a:: \text { TYPE r1) (b: TYPE r2). } \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

$$
\begin{aligned}
& \text { revapp }:: a->(a->b)->b \\
& \text { revapp } \times f=f \times \\
& \text { revapp }: \text { forall (r1, r2 :: Rep) } \\
&(a:: \text { TYPE r1) (b: TYPE r2). } \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

$$
\begin{aligned}
& \text { revapp }:: a->(a->b)->b \\
& \text { revapp } \times f=f \times \\
& \text { revapp }:: \text { forall (r1, r2 :: Rep) } \\
&(a:: \text { TYPE r1) (b: TYPE r2). } \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

```
revapp :: a -> (a -> b) -> b
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)
(a :: TYPE r1) (b::TYPE r2).
a -> (a -> b) -> b
```

revapp : : forall (r :: Rep)

$$
\begin{aligned}
& (a:: \text { TYPE Ptr) }(b:: \text { TYPE } r) . \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

```
revapp :: a -> (a -> b) -> b
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)
(a :: TYPE r1) (b::TYPE r2).
a -> (a -> b) -> b
```

revapp : : forall (r : : Rep)

$$
\begin{aligned}
& (a:: \text { TYPE Ptr) }(b:: \text { TYPE } r) . \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

```
revapp :: a -> (a -> b) -> b
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)
(a :: TYPE r1) (b::TYPE r2).
a -> (a -> b) -> b
```

revapp : : forall (r :: Rep)

$$
\begin{aligned}
& (a:: \text { TYPE Ptr) }(b:: \text { TYPE } r) . \\
& a->(a->b)->b
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

```
revapp :: a -> (a -> b) -> b
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)
(a :: TYPE r1) (b::TYPE r2).
a -> (a -> b) -> b
```

revapp : : forall (r :: Rep)

$$
\begin{aligned}
& (a:: \text { TYPE Ptr) (b :: TYPE } r \text {). } \\
& a->(a->b)->b \text { Assume tail-call elimination }
\end{aligned}
$$

Representation Polymorphism

In Function Definitions

```
revapp :: a -> (a -> b) -> b
revapp x f = f x
revapp :: forall (r1, r2 :: Rep)
(a :: TYPE r1) (b::TYPE r2).
a -> (a -> b) -> b
```

revapp : : forall (r :: Rep)

$$
(a:: \text { TYPE Ptr) }(b:: \text { TYPE } r)
$$

$$
a->(a->b)->b \text { Assume tail-call elimination }
$$

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store representation-polymorphic values

Restricting Representation Polymorphism

 To Ensure Static Compilability
Never move or store representation-polymorphic values

- Moving, storing, reading, writing depends on representation

Restricting Representation Polymorphism

 To Ensure Static Compilability
Never move or store representation-polymorphic values

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store representation-polymorphic values

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store representation-polymorphic values

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:
- ($\backslash x$. ... x ...) reads x

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store representation-polymorphic values

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:
- ($\backslash x$. ... \times...) reads x
- (let $x=\ldots$ in ...) stores and writes x

Restricting Representation Polymorphism

To Ensure Static Compilability

Never move or store representation-polymorphic values

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:
- ($\backslash x$. ... \times...) reads x
- (let $x=$... in ...) stores and writes x
- ($f x$) moves (reads and writes) x

Efficient Code Abstraction

For Numeric Operations

Efficient Code Abstraction

For Numeric Operations

```
class Num (a ) where
    (+) :: a -> a -> a
```


Efficient Code Abstraction

For Numeric Operations
class Num (a :: TYPE r) where
(+) :: a -> a -> a
...

Efficient Code Abstraction

For Numeric Operations
class Num (a :: TYPE r) where $(+):: a->a->a$
instance Num Float\# where $x+y=$ addFloat\# x y

Efficient Code Abstraction

For Numeric Operations
class Num (a :: TYPE r) where
(+) :: a -> a -> a
instance Num Float\# where $x+y=$ addFloat\# x y

Efficient Code Abstraction

For Numeric Operations
class Num (a :: TYPE r) where instance Num Float\# where (+) :: a -> a -> a $\mathrm{x}+\mathrm{y}=$ addFloat\# x y data NumDict (a :: TYPE r) = NumD (a-> $a \operatorname{l>}$) ...

Efficient Code Abstraction

For Numeric Operations
class Num (a :: TYPE r) where instance Num Float\# where (+) :: a -> a -> a
 NumFloat\# = NumD addFloat\# ...

Efficient Code Abstraction

For Numeric Operations
class Num (a :: TYPE r) where instance Num Float\# where (+) :: a -> a -> a $x+y=$ addFloat\# x y
data NumDict (a : : TYPE r) = NumD (a -> a -> a) ...
NumFloat\# = NumD addFloat\# ...
(+) : : forall (r : : Rep) (a :: TYPE r). NumDict a-> (a-> $a->a$)
(+) (NumD plus ...) = plus

Arity

Determining Function Arity

Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

Determining Function Arity
Type suggests arity 2

```
f1, f2, f3, f4 :: Int -> Int -> Int
f1 = \x -> \y ->
    let z = expensive x
    in y + z
```

Determining Function Arity
Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

```
f1 = \x -> \y -> Arity 2
    let z = expensive x
    in y + z
```

Determining Function Arity
Type suggests arity 2
f1, f2, f3, f4 : : Int -> Int -> Int
$\mathrm{f} 1=\backslash \mathrm{x}$-> $\backslash \mathrm{y}$-> \quad Arity $2 \quad \mathrm{f} 2=\backslash \mathrm{x}$-> f1 x
let $\mathrm{z}=$ expensive x
in $y+z$

Determining Function Arity
Type suggests arity 2
f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{aligned}
& \mathrm{f} 1=\backslash \mathrm{x} \text {-> } \backslash \mathrm{y} \text {-> } \quad \text { Arity } 2 \quad \mathrm{f} 2=\backslash \mathrm{x} \text {-> f1 } \mathrm{x} \\
& \text { let } z=\text { expensive } x \quad=\backslash x->\backslash y ~->f 1 \times y
\end{aligned}
$$

Determining Function Arity
Type suggests arity 2

$$
\begin{aligned}
& \text { f1, f2, f3, f4 : : Int -> Int }->\text { Int } \\
& \text { f1 }=\backslash x->\backslash y->\quad \text { Arity } 2 \quad f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { let } z=\text { expensive } x \quad=\backslash x->\backslash y->f 1 x y \\
& \text { in } \mathrm{y}+\mathrm{z}
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{array}{rlrl}
f 1= & \backslash x->\backslash y-> & \text { Arity } 2 & f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { let } z=\text { expensive } x & & =\backslash x->\backslash y->f 1 \times y \\
& \text { in } y+z & & \\
f 3= & \backslash x-> & & \\
& \text { let } z=\text { expensive } x & &
\end{array}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{array}{rlrl}
f 1= & \backslash x->\backslash y-> & \text { Arity } 2 & f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { let } z=\text { expensive } x & & =\backslash x->\backslash y->f 1 \times y \\
& \text { in } y+z & & \\
f 3= & \backslash x-> & & \\
& \text { let } z=\text { expensive } x & &
\end{array}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{aligned}
& \text { let } z=\text { expensive } x \\
& \text { in } y+z \\
& \text { f3 }=\text { \x -> } \\
& \text { Arity } 1 \\
& \text { let } z=\text { expensive } x \\
& \text { in } \backslash y \text {-> } y+z \\
& =\backslash x->\backslash y->f 1 \times y \\
& \text { Arity } 1
\end{aligned}
$$

Hint: 'expensive x ' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{aligned}
& \begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x
\end{aligned} \\
& \text { in } y+z \\
& \text { f3 }=\text { \x -> } \\
& \text { Arity } 1 \quad f 4=\backslash x->f 3 x \\
& \text { let } z=\text { expensive } x \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{aligned}
& \text { let } z=\text { expensive } x \\
& \text { in } y+z \\
& \text { f3 }=\text { \x -> } \\
& \text { Arity } 1 \quad f 4=\backslash x \text {-> f3 } x \\
& \text { let } z=\text { expensive } x \\
& \neq \backslash x \text {-> } \backslash y \text {-> f3 x y } \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int

$$
\begin{aligned}
& f 1=\backslash x->\backslash y->\quad \text { Arity } 2 \quad f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { let } z=\text { expensive } x \\
& \text { in } y+z \\
& \text { f3 }=\text { \x -> } \\
& \text { Arity } 1 \\
& f 4=\backslash x->f 3 x \quad \text { Arity } 1 \\
& \text { let } z=\text { expensive } x \\
& \neq \backslash x \text {-> \y -> f3 x y } \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

What Is Arity?

For Curried Functions

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but ' $f 12$ ' does not, then ' f ' has arity 3

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

- If ' f ' is equivalent to ' $\backslash x$ y $z->f x y z$ ', then ' f ' has arity 3

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then ' f ' has arity 3

Definition 2. The number of times a function may be soundly η-expanded. - If ' f ' is equivalent to ' $x x y z->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then ' f ' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

- If ' f ' is equivalent to ' $\backslash x y z->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

- If ' f ' has arity 3 , then ' $f 123$ ' can be implemented as a single call

What Is Arity?

Definition 1. The number of arguments a function needs before doing "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be soundly η-expanded.

- If ' f ' is equivalent to ' $\backslash x$ y $z ~->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

- If ' f ' has arity 3 , then 'f 12 3' can be implemented as a single call

Goal: A core language with unrestricted $\boldsymbol{\eta}$ for functions

Static Arity

In an Intermediate Language

Static Arity

In an Intermediate Language

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics

Static Arity

In an Intermediate Language

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions
- $\lambda x . f x={ }_{\eta} f: a \leadsto b$ unconditionally
- error "not a function" /= \x -> (error "not a function") x in Haskell

Static Arity

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions
- $\lambda x . f x={ }_{\eta} f: a \leadsto b$ unconditionally
- error "not a function" /= \x -> (error "not a function") x in Haskell
- With full η, types express arity - just count the arrows
- f: Int \rightsquigarrow Bool \rightsquigarrow String has arity 2, no matter f 's definition

Static Arity

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions
- $\lambda x . f x={ }_{\eta} f: a \leadsto b$ unconditionally
- error "not a function" /= \x -> (error "not a function") x in Haskell
- With full η, types express arity - just count the arrows
- f: Int \rightsquigarrow Bool \rightsquigarrow String has arity 2, no matter f 's definition

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

$$
\begin{aligned}
& \text { poly :: (Int ~> Int ~> a) ~> (} a, a \text {) } \\
& \text { poly } f=\text { let } g: \text { : Int } \sim a=f 3 \text { in (} \mathrm{g} 4, \mathrm{~g} 5 \text {) }
\end{aligned}
$$

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

$$
\begin{aligned}
& \text { poly :: (Int ~> Int ~> a) ~> (a, a) } \\
& \text { poly f let } g:: \text { Int } \sim \rightarrow a=\text { f } 3 \text { in (g 4, g 5) }
\end{aligned}
$$

- What are the arities of f and g ? Counting arrows...

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

 poly :: (Int ~> Int \sim a $) \sim(a, a)$ poly $f=$ let $g:$: Int $\sim a=f 3$ in ($\mathrm{g} 4, \mathrm{~g} 5$)- What are the arities of f and g ? Counting arrows...
- f : : Int ~> Int \sim a has arity 2

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

$$
\begin{aligned}
& \text { poly :: (Int ~> Int ~> a) ~> (} a, a \text {) } \\
& \text { poly } f=\text { let } g: \text { : Int } \sim a=f 3 \text { in (} \mathrm{g} 4, \mathrm{~g} 5 \text {) }
\end{aligned}
$$

- What are the arities of f and g ? Counting arrows...
- f : : Int ~> Int $\sim>$ a has arity 2
- $g::$ Int \sim a has arity 1

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

$$
\begin{aligned}
& \text { poly }::(\text { Int } \sim>\text { Int } \sim>a) \sim(a, a) \\
& \text { poly } f=\text { let } g:: \text { Int } \sim>a=f 3 \text { in (g 4, g 5) }
\end{aligned}
$$

- What are the arities of f and g? Counting arrows...
- f : : Int \sim Int \sim a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $a=$ Bool \sim Bool?

The Problem With Nonuniform Arity

And Compiling Static Polymorphism poly :: (Int ~> Int \sim a $) \sim(a, a)$ poly $f=$ let $g:$: Int $\sim a=f 3$ in ($94, g 5$)

- What are the arities of f and g ? Counting arrows...
- f : : Int $\sim>$ Int $\sim>$ a has arity 2
- $g:$ Int $\sim>$ a has arity 1
- But what if $a=B o o l$ ~> Bool?
- $\mathrm{f}:$: Int \sim Int \sim Bool \sim Bool has arity $3 \ldots$

The Problem With Nonuniform Arity

And Compiling Static Polymorphism

$$
\begin{aligned}
& \text { poly }::(\text { Int } \sim>\text { Int } \sim>a) \sim(a, a) \\
& \text { poly } f=\text { let } g:: \text { Int } \sim>a=f 3 \text { in (g 4, } 9 \text { 5) }
\end{aligned}
$$

- What are the arities of f and g? Counting arrows...
- f : : Int ~> Int \sim a has arity 2
- g :: Int \sim a has arity 1
- But what if $a=B o o l ~ \sim>~ B o o l ? ~$
- f : : Int ~> Int ~> Bool ~> Bool has arity 3..
- g : : Int \sim Bool \sim Bool has arity 2 ... oops...

The Problem With Nonuniform Arity

And Compiling Static Polymorphism
 - What are the arities of f and g ? Counting arrows...

- f : : Int \sim Int \sim a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $a=B o o l \sim$ Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...
- 9 :: Int \sim Bool \sim Bool has arity 2 ... oops...
- How to statically compile? Is 'g 4' a call? A partial application?

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always has arity o

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always has arity o
- Restriction on quantifiers forall a::k. ...

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always has arity o
- Restriction on quantifiers forall a::k....
- Special kinds for non-o arity types ()

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always has arity o
- Restriction on quantifiers forall a::k....
- Special kinds for non-o arity types (~)
- k may be \star or $\star->\star$ but never \sim

Another Stop-Gap Solution

Uniform Polymorphism in a Nonuniform Language

- All polymorphism is uniform
- Generic ' a ' is always has arity o
- Restriction on quantifiers forall a::k.
- Special kinds for non-o arity types ()
- k may be \star or \star-> + but never ~
- Draconian restriction is unsatisfactory

Another Stop－Gap Solution

Uniform Polymorphism in a Nonuniform Language
－All polymorphism is uniform
－Generic＇a＇is always has arity o
－Restriction on quantifiers forall a：：k．．．．
－Special kinds for non－o arity types（ ）
－k may be 夫 or 夫－＞夫 but never～
－Draconian restriction is unsatisfactory
－Too restrictive：Identical definitions／code repeated for different types
（like repeat ：：$a \rightarrow[a]$ and [] ：：$\star->\star$ ）

Another Stop－Gap Solution

Uniform Polymorphism in a Nonuniform Language
－All polymorphism is uniform
－Generic＇a＇is always has arity o
－Restriction on quantifiers forall a：：k．．．．
－Special kinds for non－o arity types（ ）
－k may be 夫 or 夫－＞夫 but never～
－Draconian restriction is unsatisfactory
－Too restrictive：Identical definitions／code repeated for different types （like repeat ：：$a->[a]$ and [] ：：$\star->\star$ ）
－Incompatible with kind polymorphism：forall k：Kind．forall a：：k．？？？

Another Stop－Gap Solution

Uniform Polymorphism in a Nonuniform Language
－All polymorphism is uniform
－Generic＇a＇is always has arity o
－Restriction on quantifiers forall a：：k．．．．
－Special kinds for non－o arity types（ \sim ）
－k may be 夫 or 夫－＞夫 but never～
－Draconian restriction is unsatisfactory
－Too restrictive：Identical definitions／code repeated for different types （like repeat ：：a－＞［a］and［］：：＊－＞\star ）
－Incompatible with kind polymorphism：forall k：：Kind．forall a：：k．？？？
－Wait．．．this sounds awfully familiar．．．

Arity Polymorphism

Kinds As Calling Conventions

Arity Polymorphism

- Generalize $a:$:TYPE r to $a::$ TYPE $r v$

Kinds As Calling Conventions

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a::$ TYPE $r v$
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call[n] says a has arity n (simplified)

Arity Polymorphism

Kinds As Calling Conventions

- v : : Conv is the calling convention of a
- $a:$:TYPE r Call[n] says a has arity n (simplified)

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call [$n]$ says a has arity n (simplified)
revapp $x f=f x$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp : : forall (v1, v2 :: Conv) (r : : Rep)
(a :: TYPE Ptr v1) (c :: Type r v2).

$$
a \sim(a \sim b) \sim b
$$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f \times$
revapp : : forall (v1, v2 :: Conv) (r :: Rep) (a :: TYPE Ptr v1) (c :: Type r v2). $a \sim>(a \sim>b) \sim>b$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp :: forall (v1, v2 :: Conv) ($\mathrm{r}::$ Rep)
(a :: TYPE Ptr v1) (c :: Type r v2).

$$
a \sim(a \sim b) \sim b
$$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp :: forall (v1, v2 :: Conv) (r :: Rep)
(a :: TYPE Ptr v1) (c :: Type r v2).

$$
a \sim(a \sim b) \sim b
$$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp :: forall (v1, v2 :: Conv) (r : : Rep) (a : : TYPE Ptr v1) (c :: Type r v2). $a \sim>(a \sim>b) \sim>b$
revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c) (c :: Type r Call[1]).
$a \sim>(a \sim>b) \sim>b$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp :: forall (v1, v2 :: Conv) (r : : Rep) (a : : TYPE Ptr v1) (c :: Type r v2). $a \sim>(a \sim>b) \sim>b$
revapp :: forall (v :: Conv) (r : : Rep)
(a :: TYPE Ptr c) (c :: Type r Call[1]).
$a \sim>(a \sim>b) \sim>b$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp :: forall (v1, v2 :: Conv) (r : : Rep) (a : : TYPE Ptr v1) (c :: Type r v2).
$a \sim>(a \sim>b) \sim>b$
revapp :: forall (v :: Conv) (r :: Rep)
(a :: TYPE Ptr c) (c :: Type r Call[1]).
$a \sim>(a \sim>b) \sim>b$

Arity Polymorphism

Kinds As Calling Conventions

- Generalize $a:$:TYPE r to $a:$:TYPE r v
- v : : Conv is the calling convention of a
- $a:$:TYPE r Call $[\mathrm{n}]$ says a has arity n (simplified)
revapp $x f=f x$
revapp :: forall (v1, v2 :: Conv) (r : : Rep) (a : : TYPE Ptr v1) (c :: Type r v2). $a \sim>(a \sim>b) \sim>b$
revapp :: forall (v :: Conv) (r :: Rep)
(a : : TYPE Ptr c) (c : : Type r Call[1]).
$a \sim>(a \sim>b) \sim>b$

Arity Polymorphism

And Higher-Order Functions

Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
& \text { poly }: \text { forall (a }:: \text { TYPE Ptr Call[2]). } \\
&\text { (Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
& \text { poly } f=\text { let } g:: \text { Int } \sim>a=f 3 \text { in }(g 4, g 5)
\end{aligned}
$$

Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
\text { poly }:: & \text { forall (} a:: \text { TYPE Ptr Call[2]). } \\
& \text { (Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
\text { poly } f= & \text { let } g:: \text { Int } \sim>a=f 3 \text { in }(g 4, g 5)
\end{aligned}
$$

- f :: Int \sim Int \sim a :: TYPE Ptr Call[4] has arity 4

Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
& \text { poly :: forall (a :: TYPE Ptr Call[2]). } \\
& \text { (Int ~> Int ~> a) ~> (a,a) } \\
& \text { poly } f=\text { let } g: \text { Int } \sim a=f 3 \text { in (g 4, g 5) } \\
& \text { - } f:: \text { Int } \sim>\text { Int } \sim>\text { a :: TYPE Ptr Call[4] has arity } 4 \\
& \text { - } g:: \text { Int } \sim \text { a : : TYPE Ptr Call[3] has arity } 3
\end{aligned}
$$

Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
& \text { poly : : forall (a : : TYPE Ptr Call[2]). } \\
& \text { (Int ~> Int ~> a) ~> (a,a) } \\
& \text { poly } f=\text { let } g: \text { Int } \sim a=f 3 \text { in (g 4, g 5) } \\
& \text { - } f: \text { Int } \sim>\text { Int } \sim>a: \text { TYPE Ptr Call[4] has arity } 4 \\
& \text { - } g:: \text { Int } \sim \text { a : : TYPE Ptr Call[3] has arity } 3
\end{aligned}
$$

Arity Polymorphism

And Higher-Order Functions

```
poly :: forall (a :: TYPE Ptr Call[2]).
        (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
    - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
    - g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
poly :: forall (v :: Conv) (a :: TYPE Ptr v).
            (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```


Arity Polymorphism

And Higher-Order Functions

```
poly :: forall (a :: TYPE Ptr Call[2]).
        (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
    - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
    - g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
poly :: forall (v :: Conv) (a :: TYPE Ptr v).
            (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```


Arity Polymorphism

And Higher-Order Functions

```
poly :: forall (a :: TYPE Ptr Call[2]).
        (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
    - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
    - g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
poly :: forall (v :: Conv) (a :: TYPE Ptr v).
            (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```


Arity Polymorphism

And Higher-Order Functions

```
poly :: forall (a :: TYPE Ptr Call[2]).
        (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
    - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
    - g :: Int ~> a :: TYPE Ptr Call [3] has arity 3
poly :: forall (v :: Conv) (a :: TYPE Ptr v).
            (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```


Arity Polymorphism

And Higher-Order Functions

```
poly :: forall (a :: TYPE Ptr Call[2]).
        (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
    - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
    - g :: Int ~> a :: TYPE Ptr Call [3] has arity 3
poly :: forall (v :: Conv) (a :: TYPE Ptr v).
            (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```


Arity Polymorphism

And Higher-Order Functions

```
poly :: forall (a :: TYPE Ptr Call[2]).
        (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
    - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
    - g :: Int ~> a :: TYPE Ptr Call [3] has arity 3
poly :: forall (v :: Conv) (a :: TYPE Ptr v).
            (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
```


Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
& \text { poly : : moral (a : : TYPE Pr Call[2]). } \\
& \text { (Int ~> Int ~> a) ~> (aaa) } \\
& \text { poly } f=\text { let } g: \text { Int } \sim(a=f 3 \text { in (g 4, g 5) } \\
& \text { - } f: \text { Int } \sim>\text { Int } \sim>a: \text { TYPE Pto Call[4] has arty } 4 \\
& \text { - } g:: \text { Int } \sim>\text { a : : TYPE Pto Call [3] has arty } 3 \\
& \text { poly : moral (v : : Cons) (} a: \text { : TYPE str v). } \\
& \text { (Int ~> Int ~> a) ~> (} a, a \text {) } \\
& \text { poly } f=\text { let } g: \text { Int } \sim>a=f 3 \text { in (} \mathbf{g} 4, g 5 \text {) }
\end{aligned}
$$

- $\mathrm{f}::$ Int \sim Int \sim a $::$ TYPE Per Call [2+?] has an unknown arity ≥ 2

Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
& \text { poly }:: \text { forall (a : : TYPE Per Call [2]). } \\
&\text { (Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
& \text { poly } f=\text { let } g:: \text { Int } \sim>a=f 3 \text { in }(g 4, g 5)
\end{aligned}
$$

- $f:$: Int \sim Int \sim a $:$: TYPE Per Call [4] has arity 4
- $g::$ Int $\sim>$ a :: TYPE Per Call [3] has arity 3
poly : : forall (v : : Cons) ($a:$: TYPE Str v). (Int ~> Int ~> a) ~> (asa)
poly $f=$ let $g:$ Int $\sim \mathbf{a}=\mathrm{f} 3$ in ($\mathrm{g} 4, \mathrm{~g} 5$)
- $f::$ Int $\sim>$ Int $\sim>$ a $:$ TYPE Per Call [2+?] has an unknown arity ≥ 2
- $g::$ Int \sim Int $\sim>a::$ TYPE Per Call [1+?] has an unknown rarity ≥ 1

Arity Polymorphism

And Higher-Order Functions

$$
\begin{aligned}
& \text { poly }:: \text { forall (a : : TYPE Pt Call [2]). } \\
&\text { (Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
& \text { poly } f=\text { let } g:: \text { Int } \sim>a=f 3 \text { in }(g 4, g 5)
\end{aligned}
$$

- $\mathrm{f}:$: Int \sim Int \sim a $:$: TYPE Per Call [4] has arity 4
- $g::$ Int $\sim>a$: : TYPE Per Call [3] has arity 3
poly : : forall (v : : Conv) (a : TYPE Per v). (Int ~> Int ~> a) ~> (asa)
poly $f=$ let $g:$ Int $\sim \mathbf{a}=\mathrm{f} 3$ in ($\mathrm{g} 4, \mathrm{~g} 5$)

- $f::$ Int $\sim>$ Int $\sim>$ a $:$: TYPE Per Call [2+?] has an unknown arity ≥ 2
- $g::$ Int \sim Int $\sim>a::$ TYPE Per Call [1+?] has an unknown rarity ≥ 1

Restricting Arity Polymorphism

To Ensure Static Compilability
Never invoke or define arity-polymorphic code

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define arity-polymorphic code

- Calling and defining function code depends on arity

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define arity-polymorphic code

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define arity-polymorphic code

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define arity-polymorphic code

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:
- (let $f=\backslash x$ y z -> ... in ...) defines code for f

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define arity-polymorphic code

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:
- (let $f=\backslash x$ y z-> ... in ...) defines code for f
- ($\backslash x$ y $->f y x$) calls code at f

Restricting Arity Polymorphism

To Ensure Static Compilability

Never invoke or define arity-polymorphic code

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:
- (let $f=\backslash x$ y z-> ... in ...) defines code for f
- ($\backslash x$ y -> f y x) calls code at f
- $(f(\backslash x->. .)$.$) creates code for function pointer passed to f$

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types

$$
\begin{aligned}
& \text { data List (a } \\
& =\text { Nil l Cons a (List a) }
\end{aligned}
$$

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types

```
data List (a
)
    = Nil | Cons a (List a)
```

Nil : :
List a

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types data List (a)
$=\mathrm{Nil}$ | Cons a (List a)
Nil : :
List a

Cons : :

$$
a \sim>\text { List } a \sim>\text { List } a
$$

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types
data List (a : : TYPE Ptr v)
$=$ Nil | Cons a (List a)
Nil : :
List a

Cons : :

$$
a \sim>\text { List } a \sim>\text { List } a
$$

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types data List (a :: TYPE Per v)
$=$ Nil | Cons a (List a)
Nil :: forall (v :: Conv) (a :: TYPE Per v). List a

Cons : :

$$
a \sim>\text { List } a \sim>\text { List } a
$$

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types
data List (a :: TYPE Per v)
$=$ Nil | Cons a (List a)
Nil :: forall (v :: Conv) (a :: TYPE Per v).
List a
Cons :: forall (v :: Conv) (a :: TYPE Per v). a ~> List $a \sim$ List a

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types
data List (a :: TYPE Ptr v)
$=$ Nil | Cons a (List a)
Nil :: forall (v :: Conv) (a :: TYPE Ptr v). List a

Cons :: forall (v :: Conv) (a :: TYPE Ptr v). a ~> List a ~> List a
repeat $x=$ Cons $x($ repeat x)

Primitive Functions are First-Class Values

Arity-Polymorphic Data Types
data List (a :: TYPE Per v)
$=$ Nil | Cons a (List a)
Nil :: forall (v :: Conv) (a :: TYPE Per v). List a

Cons :: forall (v :: Conv) (a :: TYPE Per v). a ~> List $a \sim$ List a
repeat $x=$ Cons x (repeat x)
repeat : : forall (v :: Cons) (a :: TYPE Per v). a ~> List a

Efficient and Correct Abstractions

For Higher-Order Type Classes

Efficient and Correct Abstractions

For Higher-Order Type Classes

Efficient and Correct Abstractions

For Higher-Order Type Classes
class Functor (f :: TYPE r v -> TYPE r ' v ') where fmap :: (a -> b) -> f a -> f b

Efficient and Correct Abstractions

For Higher-Order Type Classes
class Functor (f :: TYPE r v \rightarrow TYPE r ' v^{\prime}) where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r ' v ') $=\operatorname{Read}(\mathrm{e} \sim>a)$

Efficient and Correct Abstractions

For Higher-Order Type Classes
class Functor (f :: TYPE r v -> TYPE r ' v^{\prime}) where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r ' v ') $=\operatorname{Read}(\mathrm{e} \sim>a)$
instance Functor (Reader e) where

Efficient and Correct Abstractions

For Higher-Order Type Classes
class Functor (f :: TYPE r v -> TYPE r ' v^{\prime}) where fmap :: (a -> b) -> fa -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r ' v ') $=\operatorname{Read}$ (e $\sim>$ a)
instance Functor (Reader e) where fmap $f($ Read $g)=\operatorname{Read}(\backslash x \sim>(g x))$

Efficient and Correct Abstractions

For Higher-Order Type Classes
class Functor (f :: TYPE r v -> TYPE r ' v^{\prime}) where fmap :: (a -> b) -> fa -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') $=\operatorname{Read}$ (e \sim a)
instance Functor (Reader e) where fmap $f($ Read $g)=\operatorname{Read}(\backslash x \sim>(g x))$

- But now fmap id (Read g) = Read g ! (hint: requires η)

Efficient and Correct Abstractions

For Higher-Order Type Classes
class Functor (f :: TYPE r v -> TYPE r ' v^{\prime}) where fmap :: (a -> b) -> fa -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') = Read (e ~> a)
instance Functor (Reader e) where fmap $f($ Read $g)=\operatorname{Read}(\backslash x \sim>(g x))$

- But now fmap id (Read g) = Read g ! (hint: requires η)
- Better for performance and correctness

Levity

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

$$
\lambda x \cdot M x={ }_{\eta} M
$$

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

$$
\begin{aligned}
& \lambda x . M x={ }_{\eta} M \\
& \lambda x . \perp x={ }_{\eta} \perp
\end{aligned}
$$

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

$$
\begin{gathered}
\lambda x . M x={ }_{\eta} M \\
\lambda x . \perp x={ }_{\eta} \perp \\
(\lambda z .5)(\lambda x . \perp x)={ }_{\eta}(\lambda z .5) \perp
\end{gathered}
$$

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

Unrestricted $\boldsymbol{\eta}$ Is Inconsistent With Restricted $\boldsymbol{\beta}$

In the $\boldsymbol{\lambda}$-calculus

Goal: A core language with unrestricted $\boldsymbol{\eta}$ for functions and restricted β for other types

Unboxed Data Is Eager

Not Lazy

Unboxed Data Is Eager

Not Lazy
addFloat\# :: Float\# ~> Float\# ~> Float\#

Unboxed Data Is Eager

addFloat\# : : Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers

Unboxed Data Is Eager

addFloat\# :: Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers
let x : : Float\# = addFloat\# 1.53 .5 in ...

Unboxed Data Is Eager

addFloat\# :: Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers

```
let x :: Float# = addFloat# 1.5 3.5 in ..
```

- Compiles to code that stores $(1.5+3.5)$ in float register x

Unboxed Data Is Eager

addFloat\# :: Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers
let x : : Float\# = addFloat\# 1.53 .5 in ...
- Compiles to code that stores (1.5 + 3.5) in float register x
- Can x be lazy?

Unboxed Data Is Eager

addFloat\# :: Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers
let x : : Float\# = addFloat\# 1.53 .5 in ...
- Compiles to code that stores $(1.5+3.5)$ in float register x
- Can x be lazy?
- No!

Unboxed Data Is Eager

addFloat\# : : Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers
let x : : Float\# = addFloat\# 1.53 .5 in ...
- Compiles to code that stores $(1.5+3.5)$ in float register x
- Can x be lazy?
- No!
- x stores a floating-point number

Unboxed Data Is Eager

addFloat\# :: Float\# ~> Float\# ~> Float\#

- Compiles to machine primop for float addition in specialized registers
let x : : Float\# = addFloat\# 1.53 .5 in ...
- Compiles to code that stores $(1.5+3.5)$ in float register x
- Can x be lazy?
- No!
- x stores a floating-point number
- Lazy thunks must be represented as pointers

Primitive Functions are Called

Not Evaluated

Primitive Functions are Called

Not Evaluated

$$
x=\text { let } f:: \text { Int } \sim \text { Int }=\text { expensive } 100 \text { in ...f...f... }
$$

Primitive Functions are Called

Not Evaluated $x=$ let $f:$: Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

- $x=x$ ' by η, so they must be the same

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

- $x=x^{\prime}$ by η, so they must be the same
- x' always follows call-by-name order! So x does, too

Primitive Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded
$x^{\prime}=$ let $f::$ Int $\sim>$ Int $=\backslash y \sim>$ expensive 100 y in ...f...f...
- $x=x^{\prime}$ by η, so they must be the same
- x' always follows call-by-name order! So x does, too
- Primitive functions are never just evaluated; they are always called

Currying

When Partial Application Matters

Currying

When Partial Application Matters

```
f3 : : Int ~> Int ~> Int
\[
\text { f3 }=\backslash x \sim>\text { let } z=\text { expensive } x \text { in } \backslash y \sim>y+z
\]
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive x in \y ~> y + z
```

- Because of η, f_{3} now has arity 2 , not 1 !

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive x in \y ~> y + z
```

- Because of η, f_{3} now has arity 2 , not 1 !
- map (f_{3} 100) [1.10^6] recomputes 'expensive 100 ' a million times ${ }^{(\cdot)}$

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive x in \y ~> y + z
```

- Because of η, f_{3} now has arity 2 , not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100 ' a million times (*)
f3' : : Int ~> \{ Int ~> Int \}
$\mathrm{f}^{\prime}=1 \mathrm{x} \sim>$ let $z=$ expensive x in $\operatorname{Clos}(\backslash y \sim>y+z)$

```
Clos :: (Int ~> Int) ~> {Int ~> Int}
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive x in \y ~> y + z
```

- Because of η, f 3 now has arity 2 , not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100’ a million times © ${ }^{(8)}$
f3' : : Int ~> \{ Int ~> Int \}
f3' $^{\prime}=\backslash x \sim>$ let $z=$ expensive x in Clos ($\backslash y \sim>y+z$)
- f 3 ' is an arity $\mathbf{1}$ function; returns a closure $\{$ Int \sim Int $\}$ of an arity $\mathbf{1}$ function

```
Clos :: (Int ~> Int) ~> {Int ~> Int}
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x ~> let z = expensive x in \y ~> y + z
```

- Because of η, f_{3} now has arity 2 , not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100’ a million times © ${ }^{(8)}$
f3' : : Int ~> \{ Int $\sim>$ Int \}
f3' $^{\prime}=\backslash x \sim>$ let $z=$ expensive x in Clos ($\backslash y \sim>y+z$)
- f3' is an arity 1 function; returns a closure \{Int~>Int\} of an arity 1 function
- map (App (f3'100)) [1..10^6] computes 'expensive 10o' only once ©

```
Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int
```


Levity and Evaluation Strategy

Denotationally and Logically

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

Levity and Evaluation Strategy
 - A_{\perp} is the lifted version of A
 Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x . f(x) \mid f \in A \rightarrow B\}$

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x . f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \leadsto B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x . f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \rightsquigarrow B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x . f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \leadsto B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)
- Indirection, dynamic checks, multiple function calls/jumps

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x . f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \leadsto B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)
- Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type Int \rightarrow Int \rightarrow Int is:

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \leadsto B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)
- Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type Int \rightarrow Int \rightarrow Int is:
- Call-by-name: $I n t_{\perp} \rightarrow$ Int $t_{\perp} \rightarrow$ Int \perp_{\perp}

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \leadsto B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)
- Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type Int \rightarrow Int \rightarrow Int is:
- Call-by-name: $I n t_{\perp} \rightarrow I n t_{\perp} \rightarrow I n t_{\perp}$
- Call-by-value: $\left(\operatorname{Int} \rightarrow\left(I n t \rightarrow I n t_{\perp}\right)_{\perp}\right)_{\perp}$

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x . f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \rightsquigarrow B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)
- Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type Int \rightarrow Int \rightarrow Int is:
- Call-by-name: $I n t_{\perp} \rightarrow$ Int $t_{\perp} \rightarrow$ Int \perp_{\perp}
- Call-by-value: $\left(\operatorname{Int} \rightarrow\left(I n t \rightarrow I n t_{\perp}\right)_{\perp}\right)_{\perp}$
- Call-by-push-value: $\operatorname{Int} \rightarrow$ Int \rightarrow Int $_{\perp}$

Levity and Evaluation Strategy

- A_{\perp} is the lifted version of A

Denotationally and Logically

- A_{\perp} adds a special, unique value \perp to A denoting divergent computation
- E.g., $\mathbb{N}_{\perp}=\{\perp, 0,1,2,3, \ldots\}$ so that $1 / 0=\perp$, and $(A \rightarrow B)_{\perp}=\{\perp\} \cup\{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$
- Unboxed types and primitive functions are unlifted
- Int\# $=\{0,1,-1,2,-2, \ldots\}$ and $A \leadsto B=\{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
- Lifting implies worse performance (for data, functions)
- Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type Int \rightarrow Int \rightarrow Int is:
- Call-by-name: $I n t_{\perp} \rightarrow$ Int $\perp_{\perp} \rightarrow$ Int \perp_{\perp}
- Call-by-value: $\left(\operatorname{Int} \rightarrow\left(I n t \rightarrow I n t_{\perp}\right)_{\perp}\right)_{\perp}$
- Call-by-push-value: $\operatorname{Int} \rightarrow$ Int \rightarrow Int \perp_{\perp}
- Logical polarity reveals the semantics for best performance

Levity Polymorphism

Call vs Eval, Revisited

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated
 - Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values

Levity Polymorphism

- Code that isn't called is evaluated

- Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval $\mathrm{g}:$: Conv - polymorphic evaluation, with levity variable g

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L :: Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g :: Conv - polymorphic evaluation, with levity variable g

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L :: Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g :: Conv - polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv-polymorphic evaluation, with levity variable g

Int $g:$ TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2
$\begin{aligned} \operatorname{sum}[] & =0 \\ \operatorname{sum}(x: x s) & =x+\operatorname{sum} x s\end{aligned}$

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv-polymorphic evaluation, with levity variable g

Int $g:$ TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2
$\begin{aligned} \operatorname{sum}[] \quad & =0 \\ \operatorname{sum}(x: x s) & =x+\operatorname{sum} x s\end{aligned}$

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv-polymorphic evaluation, with levity variable g

Int $g:$ TYPE Ptr (Eval g) -- boxed, levity-g ints
sum : : forall (g1 g2 :: Levity). [Int g1] ~> Int g2
$\begin{aligned} & =0 \\ \operatorname{sum}[] \quad & =0\end{aligned}$

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv-polymorphic evaluation, with levity variable g

Int $g:$ TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2
$\begin{aligned} & =0 \\ \operatorname{sum}[] \quad & =0+\operatorname{sum} x s\end{aligned}$

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with levity variable g

Int g : : TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2
$\begin{aligned} & =0 \\ \operatorname{sum}[] & \\ \operatorname{sum}(x: x s) & =x+\operatorname{sum} x s\end{aligned}$

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv-polymorphic evaluation, with levity variable g

Int $g:$ TYPE Ptr (Eval g) -- boxed, levity-g ints

Levity Polymorphism

Call vs Eval, Revisited

- Code that isn't called is evaluated

- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints
sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2
sum [] = 0
$\operatorname{sum}(x: x s)=x+\operatorname{sum} x s$
sum (I\# z : xs) = case sum xs of I\# y -> I\# (z +\# y)

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass levity-polymorphic computations

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass levity-polymorphic computations

- Evaluation order of serious arguments and lets depends on levity

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass levity-polymorphic computations

- Evaluation order of serious arguments and lets depends on levity
- What counts as "serious computation" depends on the compiler

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass levity-polymorphic computations

- Evaluation order of serious arguments and lets depends on levity
- What counts as "serious computation" depends on the compiler
- Examples:

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass levity-polymorphic computations

- Evaluation order of serious arguments and lets depends on levity
- What counts as "serious computation" depends on the compiler
- Examples:
- (let $x=$ expensive 100 in ...) binds x to expensive 100

Restricting Levity Polymorphism

To Ensure Static Compilability

Never bind or pass levity-polymorphic computations

- Evaluation order of serious arguments and lets depends on levity
- What counts as "serious computation" depends on the compiler
- Examples:
- (let $x=$ expensive 100 in ...) binds x to expensive 100
- (f (expensive 100)) passes expensive 100 to f

Code Reuse

Between Eager and Lazy Programs

Code Reuse

Between Eager and Lazy Programs

```
data List (
    :: TYPE Ptr v) ::
```

 \(=\) Nil | Cons a (List g

Code Reuse

Between Eager and Lazy Programs data List (g :: Levity) (a :: TYPE Ptr v) :: $=$ Nil | Cons a (List ga)

Code Reuse

Between Eager and Lazy Programs data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g) $=$ Nil | Cons a (List ga)

Code Reuse
Between Eager and Lazy Programs

```
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)
    = Nil | Cons a (List g a)
foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b
foldl f z Nil = z
foldl f z (Cons x xs) = foldl f (f z x) xs
```


Code Reuse

Between Eager and Lazy Programs

```
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)
    = Nil | Cons a (List g a)
foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b
foldl f z Nil = z
foldl f z (Cons x xs) = foldl f (f z x) xs
foldl :: forall (v :: Conv) (g :: Levity)
    (a :: TYPE Ptr v) (b :: \star).
    (b ~> a ~> b) ~> b ~> List g a ~> b
```


Code Reuse

Between Eager and Lazy Programs

```
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)
    = Nil | Cons a (List g a)
foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b
foldl f z Nil = z
foldl f z (Cons x xs) = foldl f (f z x) xs
foldl :: forall (v :: Conv) (g :: Levity)
    (a :: TYPE Ptr v) (b :: \star).
    (b ~> a ~> b) ~> b ~> List g a ~> b
foldl' f z Nil = z
foldl' f z (Cons x xs) = let ! \({ }^{\prime}=f\) z x in foldl' f z' xs
```


Code Reuse

Between Eager and Lazy Programs

```
data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g)
    = Nil | Cons a (List g a)
foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b
foldl f z Nil = z
foldl f z (Cons x xs) = foldl f (f z x) xs
foldl :: forall (v :: Conv) (g :: Levity)
    (a :: TYPE Ptr v) (b :: \star).
    (b ~> a ~> b) ~> b ~> List g a ~> b
foldl' f z Nil = z
foldl' f z (Cons x xs) = let !z' = f z x in foldl' f z' xs
foldl' :: forall (v :: Conv) (g, g' :: Levity)
    (a :: TYPE Ptr v) (b :: TYPE Ptr (Eval g')).
    (b ~ a ~ b) ~> b ~ List g a ~ b
```


Compilation

If it type checks, it can be compiled.

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. ICFP 2020.

Static Compilation

To the Machine

Static Compilation

To the Machine

- Only basic types (pointer, integer, float); no polymorphism

Static Compilation

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls

Static Compilation

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)

Static Compilation

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls

$$
\begin{aligned}
& \text { poly :: forall } a:: \text { TYPE Ptr Call[2]. (Int~>Int~>a) } \sim>(a, a) \\
& \text { poly } f=\operatorname{let} g:: \text { Int } \sim>a=f 3 \\
& \\
& \text { in }(g 4, g \text {) }
\end{aligned}
$$

Static Compilation

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
poly : : forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)

poly $=\backslash(f:: P t r) \sim>$

Static Compilation

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
$\begin{aligned} & \text { poly : floral } a:: \text { TYPE Per Call [2]. (Int~>Int~>a) } \sim>(a, a) \\ & p o l y ~ f= \text { let } g:: \text { Int } \sim>a=f 3 \\ & \text { in }(g 4, g 5)\end{aligned}$

$$
\begin{aligned}
\text { poly }= & \backslash(f:: P \operatorname{tr}) \sim> \\
& \text { let } g:: P \operatorname{tr}=\backslash(x:: P \operatorname{tr}, y:: ?, z:: ?) \sim f(3, x, y, z)
\end{aligned}
$$

Static Compilation

With Polymorphic η-Expansion

Static Compilation

With Polymorphic η-Expansion

```
poly :: forall a::TYPE Ptr Call[Ptr,Flt].
    (Int ~> Int ~> a) ~> (a, a)
poly f= let g :: Int ~> a=f 3
    in (g 4, g 5)
```


Static Compilation

With Polymorphic η-Expansion

```
poly :: forall a::TYPE Ptr Call[Ptr,Flt].
    (Int ~> Int ~> a) ~> (a, a)
poly f}=\mathrm{ let g :: Int }~>a=f 
    in (g 4, g 5)
```


Static Compilation

With Polymorphic η-Expansion

$$
\begin{aligned}
& \text { poly }: \therefore \text { forall } a:: \text { TYPE Ptr Call[Ptr, Flt]. } \\
&\text { (Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
& \text { poly } f= \text { let } g:: \text { Int } \sim>a=f 3 \\
& \text { in }(g 4, g 5) \\
& \text { poly }=\backslash(f:: P t r) \sim>
\end{aligned}
$$

Static Compilation

With Polymorphic η-Expansion

$$
\begin{aligned}
\text { poly }:: & \text { forall } a:: \text { TYPE Ptr Call[Ptr, Flt] } \\
& (\text { Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
\text { poly } f= & \text { Iet } g:: \text { Int } \sim>a=f 3 \\
& \text { in }(g 4, g 5) \\
\text { poly }= & \backslash(f:: \text { Ptr }) \sim> \\
& \text { let } g:: P t r=\backslash(x:: \text { Ptr, } y:: P t r, z:: F l t) \sim>f(3, x, y, z)
\end{aligned}
$$

Static Compilation

With Polymorphic η-Expansion

$$
\begin{aligned}
& \text { poly :: forall a::TYPE Ptr Call[Ptr,Flt]. } \\
& \text { (Int } \sim>\text { Int } \sim>a) \sim>(a, a) \\
& \begin{aligned}
\text { poly } f= & \operatorname{let} g: \text { Int } \sim>a=f 3 \\
& \operatorname{in~}(g 4, g 5)
\end{aligned} \\
& N \\
& \begin{aligned}
\text { poly }= & \backslash(f:: \text { Ptr }) \sim> \\
& \text { let } g:: \text { Ptr }=\backslash(x:: \text { Ptr, } y:: \text { Ptr, } z:: F l t) \sim>f(3, x, y, z) \\
& \text { in }(\backslash(y:: \text { Ptr, z: }: \text { Flt })->g(4, y, z), \\
& \backslash(y:: \text { Ptr, z: }: \text { Flt })->g(5, y, z))
\end{aligned}
\end{aligned}
$$

Lessons Learned

- Efficient performance requires good semantics
- Good semantics comes from logic
- Kinds capture efficient calling conventions

New Goal: a foundation for functional systems programming?

