Kinds Are Calling Conventions: **Intensional Static Polymorphism**

Paul Downen

POPV, November 14, 2020

• Goal: Performance

• Goal: Performance • Subgoal: Semantics

- Goal: Performance • Subgoal: Semantics
- Answer: Logic

Desugaring

Desugaring

Code Generation

Desugaring

Code Generation

Desugaring

Code Generation

Desugaring

Code Generation

Desugaring

Code Generation

Desugaring

Workhorse of Functional Compilers

Core

Workhorse of Functional Compilers

Core = System F

Workhorse of Functional Compilers

Core = System F

Workhorse of Functional Compilers

(first-class functions, polymorphism)

Core = System F + Data Types

Workhorse of Functional Compilers

(first-class functions, polymorphism)

Core = System F + Data Types

Workhorse of Functional Compilers

(first-class functions, polymorphism)

(Primitives, lists/trees, records)

Core = System F + Data Types + Type Equality

Workhorse of Functional Compilers

(first-class functions, polymorphism)

(Primitives, lists/trees, records)

Core = System F + Data Types + Type Equality

Workhorse of Functional Compilers

(first-class functions, polymorphism) (Primitives, lists/trees, records) (GADTs, type families, coercions)

Core = System F + Data Types + Type Equality

Workhorse of Functional Compilers

(first-class functions, polymorphism) (Primitives, lists/trees, records) (GADTs, type families, coercions)

$Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$

*In Greek

λ -calculus: variables, functions, application

 $Type \ni \tau, \sigma ::= \dots$

 $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$

*In Greek

λ -calculus: variables, functions, application

 $Type \ni \tau, \sigma ::= \dots$

$Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ $\Lambda a:\kappa \cdot e \mid e \tau$

*In Greek

λ -calculus: variables, functions, application System F: polymorphism & instantiation

 $Type \ni \tau, \sigma ::= \dots$ *Kind* $\ni \kappa$ = *Type* $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ $\Lambda a:\kappa \cdot e \mid e \tau$

*In Greek

λ -calculus: variables, functions, application System F: polymorphism & instantiation

 $Type \ni \tau, \sigma ::= \dots$ $Kind \ni \kappa = Type$ $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ $\Lambda a:\kappa . e \mid e \tau$ |l| let $x:\tau = d$ in e

*In Greek

λ -calculus: variables, functions, application System F: polymorphism & instantiation Literal primitives & let-bindings

 $Type \ni \tau, \sigma ::= \dots$ $Kind \ni \kappa = Type$ λ -calculus: variables, functions, application $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ System F: polymorphism & instantiation $\Lambda a:\kappa . e \mid e \tau$ Literal primitives & let-bindings |l| let $x:\tau = d$ in eData contructor & literal matching case d of $\{\pi \rightarrow e; ...\}$

 $Pattern \ni \pi ::= x \mid l \mid K x \dots$ $Type \ni \tau, \sigma ::= \dots$ Kind $\ni \kappa = Type$ λ -calculus: variables, functions, application $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ System F: polymorphism & instantiation $|\Lambda a:\kappa . e | e \tau$ Literal primitives & let-bindings |l| let $x:\tau = d$ in eData contructor & literal matching case d of $\{\pi \rightarrow e; ...\}$

 $Pattern \ni \pi ::= x \mid l \mid K x \dots$ $Type \ni \tau, \sigma ::= \dots$ Kind $\ni \kappa = Type$ λ -calculus: variables, functions, application $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ System F: polymorphism & instantiation $|\Lambda a:\kappa . e | e \tau$ Literal primitives & let-bindings |l| let $x:\tau = d$ in eData contructor & literal matching case d of $\{\pi \rightarrow e; ...\}$ Coercion evidence & casting $|\chi| e \triangleright \chi$

 $Pattern \ni \pi ::= x \mid l \mid K x...$ $Type \ni \tau, \sigma ::= \dots$ Coercion $\exists \chi ::= refl | \chi^{-1} | \chi \circ \chi' | \dots$ Kind $\ni \kappa = Type$ λ -calculus: variables, functions, application $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ System F: polymorphism & instantiation $|\Lambda a:\kappa . e | e \tau$ Literal primitives & let-bindings |l| let $x:\tau = d$ in eData contructor & literal matching case d of $\{\pi \rightarrow e; ...\}$ Coercion evidence & casting $|\chi| e \triangleright \chi$

 $Pattern \ni \pi ::= x \mid l \mid K x...$ $Type \ni \tau, \sigma ::= \dots$ Coercion $\exists \chi ::= refl | \chi^{-1} | \chi \circ \chi' | \dots$ Kind $\ni \kappa = Type$ λ -calculus: variables, functions, application $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ System F: polymorphism & instantiation $|\Lambda a:\kappa . e | e \tau$ Literal primitives & let-bindings |l| let $x:\tau = d$ in eData contructor & literal matching case d of $\{\pi \rightarrow e; ...\}$ Coercion evidence & casting $|\chi| e \triangleright \chi$ Profiling & instrumentation tick tk e

 $Type \ni \tau, \sigma ::= \dots$ Kind $\ni \kappa = Type$ $Expr \ni d, e, f ::= x \mid \lambda x : \tau \cdot e \mid f e$ $|\Lambda a:\kappa . e | e \tau$ |l| let $x:\tau = d$ in ecase d of $\{\pi \rightarrow e; ...\}$ $|\chi| e \triangleright \chi$ tick tk e

*In Greek $Pattern \ni \pi ::= x \mid l \mid K x...$

- Coercion $\exists \chi ::= refl | \chi^{-1} | \chi \circ \chi' | \dots$
 - λ -calculus: variables, functions, application System F: polymorphism & instantiation Literal primitives & let-bindings Data contructor & literal matching Coercion evidence & casting Profiling & instrumentation
- A real-world programming language in only 6 lines!

Compiling Polymorphism

Statically

Compiling Polymorphism dup : forall a. (a -> a -> a) -> a -> a dup f x = f x x

Statically

Compiling Polymorphism dup : forall a. (a -> a -> a) -> a -> a dup f x = f x x

Compiled assembly code:

Compiled assembly code:

1. Accept parameters

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1

Compiling Polymorphism dup : forall a. (a -> a -> a) -> a -> a

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2
- 2. Pass arguments

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2
- 2. Pass arguments
 - Save f

Compiling Polymorphism dup : forall a. (a -> a -> a) -> a -> a

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2
- 2. Pass arguments
 - Save f
 - Copy x (pointer register 2) to the first argument (pointer register 1)

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2
- 2. Pass arguments
 - Save f
 - Copy x (pointer register 2) to the first argument (pointer register 1)
- 3. Call f

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2
- 2. Pass arguments
 - Save f
 - Copy x (pointer register 2) to the first argument (pointer register 1)
- 3. Call f

Statically

• How many arguments does $f : a \rightarrow a \rightarrow a$ take? Is $f \times x : a \wedge call?$ a closure?

dup f x = f x x

Compiled assembly code:

- 1. Accept parameters
 - f : $a \rightarrow a \rightarrow a$ is a pointer; read from pointer register 1
 - Where is x : a?
 - Assume x is a pointer; read from pointer register 2
- 2. Pass arguments
 - Save f
 - Copy x (pointer register 2) to the first argument (pointer register 1)
- 3. Call f

 - Check the arity of f; read runtime closure info, and take appropriate action

Statically

• How many arguments does f: $a \rightarrow a \rightarrow a$ take? Is $f \times x$: $a \propto call?$ a closure?

• Calls have statically known parameter #s

• Calls have statically known parameter #s

• Just store arguments, push return pointer, and jump

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
 - Values may be passed directly, not just pointers

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
 - Values may be passed directly, not just pointers
- Many shapes of values

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
 - Values may be passed directly, not just pointers
- Many shapes of values
 - Different sizes of integers and words

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
 - Values may be passed directly, not just pointers
- Many shapes of values
 - Different sizes of integers and words
 - Built-in floating-point numbers & registers

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
 - Values may be passed directly, not just pointers
- Many shapes of values
 - Different sizes of integers and words
 - Built-in floating-point numbers & registers
 - Contiguous arrays and compound structures

- Calls have statically known parameter #s
 - Just store arguments, push return pointer, and jump
- Call-by-value versus call-by-reference
 - Values may be passed directly, not just pointers
- Many shapes of values
 - Different sizes of integers and words
 - Built-in floating-point numbers & registers
 - Contiguous arrays and compound structures
- Checks for calling conventions statically at compile time

• Representation — What & Where?

• Representation — What & Where?

• Shape of data values

- Representation What & Where?
 - Shape of data values
- Arity How many arguments?

- Representation What & Where?
 - Shape of data values
- Arity How many arguments?
 - Shape of calling context

- Representation What & Where?
 - Shape of data values
- Arity How many arguments?
 - Shape of calling context
- Levity When to compute?

- Representation What & Where?
 - Shape of data values
- Arity How many arguments?
 - Shape of calling context
- Levity When to compute?
 - Aka Evaluation Strategy

- Representation What & Where?
 - Shape of data values
- Arity How many arguments?
 - Shape of calling context
- Levity When to compute?
 - Aka Evaluation Strategy
- Goal: A type safe high-level functional IL (System F)

Parameter Passing Techniques

with fine-grained control over efficient calling conventions

To Intensional Static Polymorphism

- Non-Strict Functional Language.
 - Explicit monomorphic representations; implicit levities.

To Intensional Static Polymorphism

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a

- Non-Strict Functional Language.
 - Explicit monomorphic representations; implicit levities.
- R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
 - Explicit polymorphic representations; implicit levities.

To Intensional Static Polymorphism

• S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a

- S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional Language.
 - Explicit monomorphic representations; implicit levities.
- R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
 - Explicit polymorphic representations; implicit levities.
- P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry with Extensional Types.
 - Explicit monomorphic arities; implicit levities.

To Intensional Static Polymorphism

- S. Peyton Jones and J. Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional Language.
 - Explicit monomorphic representations; implicit levities.
- R.A. Eisenberg and S. Peyton Jones. 2017. Levity polymorphism.
 - Explicit polymorphic representations; implicit levities.
- P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019. Making a Faster Curry with Extensional Types.
 - Explicit monomorphic arities; implicit levities.
- P. Downen, Z.M. Ariola, S. Peyton Jones, and R.A. Eisenberg. 2020. Kinds Are Calling Conventions.
 - Explicit polymorphic representations, arities, and levities.

To Intensional Static Polymorphism

Representation

Unboxed Types

And Their Representation

• Primitive types:

• Primitive types:

Int#, Float#, Char#, Word16#, Array#...

- Primitive types:
 - Int#, Float#, Char#, Word16#, Array#...
- Unboxed (Int#, Float#...) or Boxed (Array#)

- Primitive types:
 - Int#, Float#, Char#, Word16#, Array#...
- Unboxed (Int#, Float#...) or Boxed (Array#)
- **Pro:** Efficient memory

- Primitive types:
 - Int#, Float#, Char#, Word16#, Array#...
- Unboxed (Int#, Float#...) or Boxed (Array#)
- **Pro:** Efficient memory
- **Pro:** Efficient passing

- Primitive types:
 - Int#, Float#, Char#, Word16#, Array#...
- Unboxed (Int#, Float#...) or Boxed (Array#)
- **Pro:** Efficient memory
- Pro: Efficient passing
- Con: Different sizes

- Primitive types:
 - Int#, Float#, Char#, Word16#, Array#...
- Unboxed (Int#, Float#...) or Boxed (Array#)
- **Pro:** Efficient memory
- Pro: Efficient passing
- Con: Different sizes
- Con: Different locations

- Primitive types:
 - Int#, Float#, Char#, Word16#, Array#...
- Unboxed (Int#, Float#...) or Boxed (Array#)
- **Pro:** Efficient memory
- **Pro:** Efficient passing
- Con: Different sizes
- Con: Different locations

S.L. Peyton Jones and J. Launchbury. 1991.

dup :: forall a. $(a \rightarrow a \rightarrow a) \rightarrow a \rightarrow a$ dup f x = f x x

dup :: forall a. $(a \rightarrow a \rightarrow a) \rightarrow a \rightarrow a$ dup f x = f x x(++) :: [a] -> [a] -> [a] plusFloat# :: Float# -> Float# -> Float#

dup :: forall a. $(a \rightarrow a \rightarrow a) \rightarrow a \rightarrow a$ dup f x = f x x(++) :: [a] -> [a] -> [a] plusFloat# :: Float# -> Float# -> Float# dup (++) [0..3] – read/write pointer to [0..3]versus dup addFloat# 1.5 – read/write float 1.5

Assembly code of dup depends on type a!

dup (++) [0..3] – read/write pointer to [0..3]versus dup addFloat# 1.5 – read/write float 1.5

plusFloat# :: Float# -> Float# -> Float#

dup f x = f x x

The Problem with Nonuniform Representation **And Compiling Static Polymorphism**

dup :: forall a. $(a \rightarrow a \rightarrow a) \rightarrow a \rightarrow a$

(++) :: [a] -> [a] -> [a]

• All polymorphism is *uniform*

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...
 - Special kinds for unboxed types (#)

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...
 - Special kinds for unboxed types (#)
 - k may be \star or $\star > \star$ but never #

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...
 - Special kinds for unboxed types (#)
 - k may be * or *->* but never #
- Draconian restriction is unsatisfactory

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...
 - Special kinds for unboxed types (#)
 - k may be * or *->* but never #
- Draconian restriction is unsatisfactory
 - **Too restrictive**: Identical definitions/code repeated for different types (like error :: String -> a)

- All polymorphism is *uniform*
 - Generic 'a' is always represented as a pointer
- Restriction on quantifiers forall a::k. ...
 - Special kinds for unboxed types (#)
 - k may be * or *->* but never #
- Draconian restriction is unsatisfactory
 - Too restrictive: Identical definitions/code repeated for different types (like error :: String -> a)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???

• Generalize a :: * to a :: TYPE r

• Generalize a :: * to a :: TYPE r

• r :: Rep is the *representation* of a

- Generalize a :: * to a :: TYPE r
 - r :: Rep is the *representation* of a
 - $\star = TYPE Ptr$

- Generalize a :: * to a :: TYPE r
 - r :: Rep is the *representation* of a
 - $\star = TYPE Ptr$

R.A. Eisenberg and S. Peyton Jones. 2017.

- Generalize a :: * to a :: TYPE r
 - r :: Rep is the *representation* of a
 - $\star = TYPE Ptr$
- error :: forall (a :: \star). String -> a

R.A. Eisenberg and S. Peyton Jones. 2017.

Representation Polymorphism R.A. Eisenberg and S. Peyton Jones. 2017.

- Generalize a :: * to a :: TYPE r
 - r :: Rep is the *representation* of a
 - $\star = TYPE Ptr$
- error :: forall (a :: *). String -> a errorInt# :: String -> Int#

Representation Polymorphism R.A. Eisenberg and S. Peyton Jones. 2017. **Kinds As Representations**

- Generalize a :: * to a :: TYPE r
- - r :: Rep is the *representation* of a
- $\star = TYPE Ptr$
- error :: forall (a :: *). String -> a errorInt# :: String -> Int#
- errorFloat# :: String -> Float#

Representation Polymorphism R.A. Eisenberg and S. Peyton Jones. 2017. **Kinds As Representations**

- Generalize a :: * to a :: TYPE r
 - r :: Rep is the *representation* of a
 - $\star = TYPE Ptr$

error :: forall (a :: *). String -> a errorInt# :: String -> Int# errorFloat# :: String -> Float#

error :: forall (r::Rep) (a :: TYPE r). String -> a

- error :: forall (a :: *). String -> a errorInt# :: String -> Int# errorFloat# :: String -> Float#
- $\star = TYPE Ptr$
- r :: Rep is the *representation* of a
- Generalize a :: * to a :: TYPE r
- **Representation Polymorphism**

R.A. Eisenberg and S. Peyton Jones. 2017. **Kinds As Representations**

In Function Definitions

revapp :: a -> (a -> b) -> b revapp x f = f x

In Function Definitions

revapp :: a -> (a -> b) -> b revapp x f = f xrevapp :: forall (r1, r2 :: Rep)

a -> (a -> b) -> b

In Function Definitions

(a :: TYPE r1) (b::TYPE r2).

revapp :: a -> (a -> b) -> b revapp x f = f xrevapp :: forall (r1, r2 :: Rep)

a -> (a -> b) -> b

In Function Definitions

(a :: TYPE r1) (b::TYPE r2).

revapp :: a -> (a -> b) -> b revapp x f = f xrevapp :: forall (r1, r2 :: Rep) a -> (a -> b) -> b

In Function Definitions

(a :: TYPE r1) (b::TYPE r2).

revapp :: a -> (a -> b) -> b revapp x f = f xrevapp :: forall (r1, r2 :: Rep) a -> (a -> b) -> b

In Function Definitions

(a :: TYPE r1) (b::TYPE r2).

revapp :: $a \rightarrow (a \rightarrow b) \rightarrow b$ revapp x f = f xrevapp :: forall (r1, r2 :: Rep) (a :: TYPE r1) (b::TYPE r2). a -> (a -> b) -> b revapp :: forall (r :: Rep) (a :: TYPE Ptr) (b :: TYPE r).

In Function Definitions

a -> (a -> b) -> b

revapp :: $a \rightarrow (a \rightarrow b) \rightarrow b$ revapp x f = f xrevapp :: forall (r1, r2 :: Rep) (a :: TYPE r1) (b::TYPE r2). a -> (a -> b) -> b revapp :: forall (r :: Rep) (a :: TYPE Ptr) (b :: TYPE r).a -> (a -> b) -> b

revapp :: $a \rightarrow (a \rightarrow b) \rightarrow b$ revapp x f = f xrevapp :: forall (r1, r2 :: Rep) (a :: TYPE r1) (b::TYPE r2). a -> (a -> b) -> b revapp :: forall (r :: Rep) (a :: TYPE Ptr) (b :: TYPE r). a -> (a -> b) -> b

revapp :: $a \rightarrow (a \rightarrow b) \rightarrow b$ revapp x f = f xrevapp :: forall (r1, r2 :: Rep) (a :: TYPE r1) (b::TYPE r2). a -> (a -> b) -> b revapp :: forall (r :: Rep) (a :: TYPE Ptr) (b :: TYPE r). $a \rightarrow (a \rightarrow b) \rightarrow b$ Assume tail-call elimination

revapp :: $a \rightarrow (a \rightarrow b) \rightarrow b$ revapp x f = f xrevapp :: forall (r1, r2 :: Rep) (a :: TYPE r1) (b::TYPE r2). a -> (a -> b) -> b revapp :: forall (r :: Rep) (a :: TYPE Ptr) (b :: TYPE r). $a \rightarrow (a \rightarrow b) \rightarrow b$ Assume tail-call elimination

Restricting Representation Polymorphism To Ensure Static Compilability

Never move or store representation-polymorphic values

• Moving, storing, reading, writing depends on representation

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:
 - (\x. ... x ...) reads x

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:
 - (\x. ... x ...) reads x
 - (let x = ... in ...) stores and writes x

- Moving, storing, reading, writing depends on representation
- When this happens in assembly depends on the compiler
- Examples:
 - (\x. ... x ...) reads x
 - (let x = ... in ...) stores and writes x
 - (f x) moves (reads and writes) x

class Num (a (+) :: a -> a -> a where

 $\bullet \bullet \bullet$

class Num (a :: TYPE r) where (+) :: a -> a -> a

 $\bullet \bullet \bullet$

class Num (a :: TYPE r) where (+) :: a -> a -> a

 $\bullet \bullet \bullet$

 $\bullet \bullet \bullet$

For Numeric Operations

instance Num Float# where x + y = addFloat# x y

class Num (a :: TYPE r) where (+) :: a -> a -> a

 $\bullet \bullet \bullet$

 $\bullet \bullet \bullet$

class Num (a :: TYPE r) where (+) :: a -> a -> a

 $\bullet \bullet \bullet$

For Numeric Operations

instance Num Float# where x + y = addFloat# x y $\bullet \bullet \bullet$ data NumDict (a :: TYPE r) = NumD (a \rightarrow a \rightarrow a) ...

class Num (a :: TYPE r) where (+) :: a -> a -> a

 $\bullet \bullet \bullet$

NumFloat# = NumD addFloat# ...

class Num (a :: TYPE r) where (+) :: a -> a -> a

 $\bullet \bullet \bullet$

NumFloat# = NumD addFloat# ...

(+) :: forall (r :: Rep) (a :: TYPE r). NumDict $a \rightarrow (a \rightarrow a \rightarrow a)$ (+) (NumD plus ...) = plus

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int $f1 = \langle x -> \langle y -> \rangle$ let z = expensive x in y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int $f1 = \langle x - \rangle \langle y - \rangle$ Arity 2 let z = expensive xin y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int $f1 = \langle x \rightarrow \rangle y \rightarrow$ Arity 2 $f2 = \langle x \rightarrow f1 x \rangle$ let z = expensive x in y + z

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int f1 = $x \rightarrow y \rightarrow$ let z = expensive x in y + z Type suggests arity 2 Type suggests arity 2 F2 = $x \rightarrow$ Int $= x \rightarrow y \rightarrow$ Type suggests arity 2 F2 = $x \rightarrow$ Int $= x \rightarrow y \rightarrow$ F1 x y

Determining Function Arity f1, f2, f3, f4 :: Int -> Int -> Int f1 = $x \rightarrow y \rightarrow$ Arity2 f2 = $x \rightarrow$ f1 x Arity2 let z = expensive x in y + z Type suggests arity 2 Type suggests arity 2 F2 = $x \rightarrow$ Int = $x \rightarrow y \rightarrow$ f1 x y

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int Arity 2 $f_2 = \langle x - \rangle f_1 x$ Arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive xin y -> y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int Arity 2 $f_2 = \langle x - \rangle f_1 x$ Arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ let z = expensive xin y -> y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int Arity 2 $f_2 = \langle x - \rangle f_1 x$ Arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ Arity 1 let z = expensive xin y -> y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int Arity 2 $f_2 = \langle x - \rangle f_1 x$ Arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + zArity1 f4 = $X \rightarrow f3 x$ $f3 = \langle x \rangle$ let z = expensive xin y -> y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int Arity 2 $f_2 = \langle x - \rangle f_1 x$ Arity 2 $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ $f4 = \langle x - f3 \rangle x$ Arity 1 let z = expensive x $\neq \langle x - \rangle \langle y - \rangle f3 x y$ in y -> y + z

Determining Function Arity Type suggests arity 2 f1, f2, f3, f4 :: Int -> Int -> Int Arity 2 $f^2 = \langle x - \rangle f^2 = Arity 2$ $f1 = \langle x - \rangle \langle y - \rangle$ let z = expensive x $= \langle x - \rangle \langle y - \rangle f1 x y$ in y + z $f3 = \langle x \rangle$ $f4 = \langle x - f3 \rangle x$ Arity 1 Arity 1 let z = expensive x $\neq \langle x - \rangle \langle y - \rangle f3 x y$ in y -> y + z

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

For Curried Functions

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

For Curried Functions

Definition 2. The number of times a function may be soundly η -expanded.

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

For Curried Functions

Definition 2. The number of times a function may be soundly η -expanded.

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

during one call.

For Curried Functions

- **Definition 2**. The number of times a function may be soundly η -expanded.
- **Definition 3**. The number of arguments passed simultaneously to a function

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

during one call.

• If 'f' has arity 3, then 'f 1 2 3' can be implemented as a single call

For Curried Functions

- **Definition 2**. The number of times a function may be soundly η -expanded.

Definition 3. The number of arguments passed simultaneously to a function

Definition 1. The number of arguments a function needs before doing "serious work."

• If 'f 1 2 3' does work, but 'f 1 2' does not, then 'f' has arity 3

• If 'f' is equivalent to ' $x y z \rightarrow f x y z'$, then 'f' has arity 3

during one call.

• If 'f' has arity 3, then 'f 1 2 3' can be implemented as a single call

For Curried Functions

- **Definition 2**. The number of times a function may be soundly η -expanded.
- **Definition 3**. The number of arguments passed simultaneously to a function

Goal: A core language with **unrestricted** *n* for functions

New a → b type of primitive functions (ASCII 'a → b')

• To distinguish from the source-level $a \rightarrow b$ with different semantics

• New $a \rightarrow b$ type of primitive functions (ASCII 'a $\sim b$)

- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are *fully extensional*, unlike source functions
 - $\lambda x \cdot f x =_{\eta} f \colon a \rightsquigarrow b$ unconditionally
 - error "not a function" /= $x \rightarrow$ (error "not a function") x in Haskell

• New $a \rightarrow b$ type of primitive functions (ASCII 'a $\sim b$)

- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are *fully extensional*, unlike source functions
 - $\lambda x \cdot f x =_{\eta} f \colon a \rightsquigarrow b$ unconditionally
- error "not a function" /= $x \rightarrow$ (error "not a function") x in Haskell • With full η , types express arity — just count the arrows
 - $f: Int \rightarrow Bool \rightarrow String$ has arity 2, no matter f's definition

P. Downen, Z. Sullivan, Z.M. Ariola, and S. Peyton Jones. 2019.

New a → b type of primitive functions (ASCII 'a → b')

- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are *fully extensional*, unlike source functions
 - $\lambda x \cdot f x =_{\eta} f \colon a \rightsquigarrow b$ unconditionally
 - error "not a function" /= $x \rightarrow$ (error "not a function") x in Haskell
- With full η , types express arity just count the arrows
 - $f: Int \rightarrow Bool \rightarrow String$ has arity 2, no matter f's definition

The Problem With Nonuniform Arity **And Compiling Static Polymorphism**

The Problem With Nonuniform Arity

poly :: (Int \sim > Int \sim > a) \sim > (a, a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

And Compiling Static Polymorphism

The Problem With Nonuniform Arity

- poly :: (Int \sim > Int \sim > a) \sim > (a, a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
- What are the arities of f and g? Counting arrows...

And Compiling Static Polymorphism

- - f :: Int \sim Int \sim a has arity 2

- - f :: Int ~> Int ~> a has arity 2
 - $g :: Int \sim a has arity 1$

- - f :: Int ~> Int ~> a has arity 2
 - g :: Int ~> a has arity 1
- But what if $a = Bool \sim Bool?$

- - f :: Int ~> Int ~> a has arity 2
 - g :: Int ~> a has arity 1
- But what if $a = Bool \sim Bool?$
 - f :: Int ~> Int ~> Bool ~> Bool has arity 3...

- - f :: Int ~> Int ~> a has arity 2
 - g :: Int ~> a has arity 1
- But what if $a = Bool \sim Bool?$
 - f :: Int ~> Int ~> Bool ~> Bool has arity 3...
 - g :: Int ~> Bool ~> Bool has arity 2... oops...

- - f :: Int ~> Int ~> a has arity 2
 - g :: Int ~> a has arity 1
- But what if $a = Bool \sim Bool?$
 - f :: Int ~> Int ~> Bool ~> Bool has arity 3...
 - g :: Int ~> Bool ~> Bool has arity 2... oops...

• How to statically compile? Is 'g 4' a call? A partial application?

• All polymorphism is *uniform*

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...
 - Special kinds for non-o arity types (~)

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...
 - Special kinds for non-o arity types (~)
 - k may be * or *->* but never ~

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...
 - Special kinds for non-o arity types (~)
 - k may be * or *->* but never ~
- Draconian restriction is unsatisfactory

Another Stop-Gap Solution **Uniform Polymorphism in a Nonuniform Language**

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...
 - Special kinds for non-o arity types (~)
 - k may be * or *->* but never ~
- Draconian restriction is unsatisfactory
 - **Too restrictive**: Identical definitions/code repeated for different types (like repeat :: $a \rightarrow [a]$ and $[] :: \star \rightarrow \star$)

Another Stop-Gap Solution **Uniform Polymorphism in a Nonuniform Language**

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...
 - Special kinds for non-o arity types (~)
 - k may be * or *->* but never ~
- Draconian restriction is unsatisfactory
 - **Too restrictive**: Identical definitions/code repeated for different types (like repeat :: $a \rightarrow [a]$ and $[] :: \star \rightarrow \star$)
 - Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???

Another Stop-Gap Solution **Uniform Polymorphism in a Nonuniform Language**

- All polymorphism is *uniform*
 - Generic 'a' is always has arity o
- Restriction on quantifiers forall a::k. ...
 - Special kinds for non-o arity types (~)
 - k may be * or *->* but never ~
- Draconian restriction is unsatisfactory
 - **Too restrictive**: Identical definitions/code repeated for different types (like repeat :: $a \rightarrow [a]$ and $[] :: \star \rightarrow \star$)
 - Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???
- Wait... this sounds awfully familiar...

• Generalize a::TYPE rto a::TYPE r v

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a

- Generalize a::TYPE r to a::TYPE r v
 - V:: Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the calling convention of a
 - a::TYPE r Call[n] says a has arity n (simplified)

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a • a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

- Generalize a::TYPE r to a::TYPE r v
 - V:: Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b
- revapp :: forall (v :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

(a :: TYPE Ptr v1) (c :: Type r v2). (a :: TYPE Ptr c) (c :: Type r Call[1]).

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b
- revapp :: forall (v :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

(a :: TYPE Ptr v1) (c :: Type r v2). (a :: TYPE Ptr c) (c :: Type r Call[1]).

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b
- revapp :: forall (v :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

(a :: TYPE Ptr v1) (c :: Type r v2). (a :: TYPE Ptr c) (c :: Type r Call[1]).

- Generalize a::TYPE r to a::TYPE r v
 - v::Conv is the *calling convention* of a
 - a::TYPE r Call[n] says a has arity n (simplified)
- revapp x f = f x
- revapp :: forall (v1, v2 :: Conv) (r :: Rep) a ~> (a ~> b) ~> b
- revapp :: forall (v :: Conv) (r :: Rep) a ~> (a ~> b) ~> b

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Kinds As Calling Conventions

(a :: TYPE Ptr v1) (c :: Type r v2). (a :: TYPE Ptr c) (c :: Type r Call[1]).

poly :: forall (a :: TYPE Ptr Call[2]). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

poly :: forall (a :: TYPE Ptr Call[2]). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4

- poly :: forall (a :: TYPE Ptr Call[2]). (Int ~> Int ~> a) ~> (a,a) poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 • $g :: Int \sim a :: TYPE Ptr Call[3] has arity 3$

- poly :: forall (a :: TYPE Ptr Call[2]). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 • $g :: Int \sim a :: TYPE Ptr Call[3] has arity 3$

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
- f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- poly :: forall (v :: Conv) (a :: TYPE Ptr v).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
- f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- poly :: forall (v :: Conv) (a :: TYPE Ptr v).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
- f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- poly :: forall (v :: Conv) (a :: TYPE Ptr v).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
- f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- poly :: forall (v :: Conv) (a :: TYPE Ptr v).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

poly :: forall (a :: TYPE Ptr Call[2]). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 • $g :: Int \sim a :: TYPE Ptr Call[3] has arity 3$

poly :: forall (v :: Conv) (a :: TYPE Ptr v). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

poly :: forall (a :: TYPE Ptr Call[2]). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 • $g :: Int \sim a :: TYPE Ptr Call[3] has arity 3$

poly :: forall (v :: Conv) (a :: TYPE Ptr v). $(Int \sim> Int \sim> a) \sim> (a,a)$ poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- poly :: forall (v :: Conv) (a :: TYPE Ptr v).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity ≥ 2

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- - f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity ≥ 2
 - g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity ≥ 1

- poly :: forall (a :: TYPE Ptr Call[2]).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4
 g :: Int ~> a :: TYPE Ptr Call[3] has arity 3
- poly :: forall (v :: Conv) (a :: TYPE Ptr v).
 (Int ~> Int ~> a) ~> (a,a)
 poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
 - f :: Int ~> Int ~> a :: TYPE Ptr Call[2+?] has an unknown arity ≥ 2
 - g :: Int ~> Int ~> a :: TYPE Ptr Call[1+?] has an unknown arity ≥ 1

Never invoke or define arity-polymorphic code

• Calling and defining function code depends on arity

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:
 - (let $f = \langle x | y | z \rangle \langle y | u \rangle$ defines code for f

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:
 - (let $f = \langle x | y | z \rangle$... in ...) defines code for f
 - ($x y \rightarrow f y x$) calls code at f

- Calling and defining function code depends on arity
- When this happens in assembly depends on the compiler
- Examples:
 - (let $f = \langle x | y | z \rangle$... in ...) defines code for f
 - (\x y -> f y x) calls code at f
 - (f ($x \rightarrow ...$) creates code for function pointer passed to f

data List (a = Nil | Cons a (List a)

data List (a = Nil | Cons a (List a) Nil :: List a

data List (a = Nil | Cons a (List a) Nil :: List a Cons :: a ~> List a ~> List a

data List (a :: TYPE Ptr v) = Nil | Cons a (List a) Nil :: List a Cons :: a ~> List a ~> List a

Primitive Functions are First-Class Values

- data List (a :: TYPE Ptr v) = Nil | Cons a (List a)
- Nil :: forall (v :: Conv) (a :: TYPE Ptr v). List a
- Cons ::
 - a ~> List a ~> List a

Primitive Functions are First-Class Values

- data List (a :: TYPE Ptr v)
 = Nil | Cons a (List a)
- Nil :: forall (v :: Conv) (a :: TYPE Ptr v). List a
- Cons :: forall (v :: Conv) (a :: TYPE Ptr v). a ~> List a ~> List a

Primitive Functions are First-Class Values

- data List (a :: TYPE Ptr v) = Nil | Cons a (List a)
- Nil :: forall (v :: Conv) (a :: TYPE Ptr v). List a
- Cons :: forall (v :: Conv) (a :: TYPE Ptr v). a ~> List a ~> List a
- repeat x = Cons x (repeat x)

Primitive Functions are First-Class Values **Arity-Polymorphic Data Types** data List (a :: TYPE Ptr v) = Nil | Cons a (List a) Nil :: forall (v :: Conv) (a :: TYPE Ptr v). List a Cons :: forall (v :: Conv) (a :: TYPE Ptr v). a ~> List a ~> List a

- repeat x = Cons x (repeat x)
- repeat :: forall (v :: Conv) (a :: TYPE Ptr v). a ~> List a

class Functor (f fmap :: (a -> b) -> f a -> f b

For Higher-Order Type Classes

where

class Functor (f :: TYPE r v -> TYPE r' v') where fmap :: (a -> b) -> f a -> f b

class Functor (f :: TYPE r v -> TYPE r' v') where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') = Read (e ~> a)

class Functor (f :: TYPE r v -> TYPE r' v') where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') = Read ($e \sim a$) instance Functor (Reader e) where

class Functor (f :: TYPE r v -> TYPE r' v') where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') = Read (e ~> a) instance Functor (Reader e) where fmap f (Read g) = Read ($x \sim f (g x)$)

- class Functor (f :: TYPE r v -> TYPE r' v') where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') = Read ($e \sim a$) instance Functor (Reader e) where fmap f (Read g) = Read ($x \sim f (g x)$)
- But now fmap id (Read g) = Read g! (hint: requires η)

- class Functor (f :: TYPE r v -> TYPE r' v') where fmap :: (a -> b) -> f a -> f b newtype Reader (e :: TYPE r v) (a :: TYPE r' v') = Read ($e \sim a$) instance Functor (Reader e) where fmap f (Read g) = Read ($x \sim f (g x)$)
- But now fmap id (Read g) = Read g! (hint: requires η)
- Better for performance and correctness

 $\lambda x \cdot M x =_{\eta} M$

Unrestricted y Is Inconsistent With Restricted B In the λ -calculus

- $\lambda x \cdot M x =_{\eta} M$
- $\lambda x \perp x =_{\eta} \perp$

- $\lambda x \cdot M x =_{\eta} M$
- $\lambda x \perp x =_{\eta} \perp$
- $(\lambda z.5) (\lambda x. \perp x) =_{\eta} (\lambda z.5) \perp$

- $\lambda x \cdot M x =_{\eta} M$
- $\lambda x \perp x =_{\eta} \perp$
- $(\lambda z.5) (\lambda x. \perp x) =_{\eta} (\lambda z.5) \perp$

5

- $\lambda x \cdot M x =_{\eta} M$
- $\lambda x \perp x =_{\eta} \perp$
- $(\lambda z.5) (\lambda x. \perp x) =_{\eta} (\lambda z.5) \perp$

Unrestricted y Is Inconsistent With Restricted B In the λ -calculus

 $\lambda x \perp x =_{\eta} \perp$

- $\lambda x \cdot M x =_{\eta} M$
- $(\lambda z . 5) (\lambda x . \perp x) =_{\eta} (\lambda z . 5) \perp$

Unrestricted y Is Inconsistent With Restricted ß In the λ -calculus

 $\lambda x \cdot M x =_{\eta} M$ $\lambda x \perp x =_{\eta} \perp$ $(\lambda z . 5) (\lambda x . \perp x) =_{\eta} (\lambda z . 5) \perp$

 $\lambda x \cdot M x =_{\eta} M$ $\lambda x \perp x =_{\eta} \perp$ $(\lambda z . 5) (\lambda x . \perp x) =_{\eta} (\lambda z . 5) \perp$ **≠**

Goal: A core language with *unrestricted η* for functions and *restricted β* for other types

Unboxed Data Is Eager

Not <u>Lazy</u>

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#

• Compiles to machine primop for float addition in specialized registers

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#

• Compiles to machine primop for float addition in specialized registers

let x :: Float# = addFloat# 1.5 3.5 in ...

Unboxed Data Is Eager

addFloat# :: Float# ~> Float# ~> Float#

• Compiles to machine primop for float addition in specialized registers

- let x :: Float# = addFloat# 1.5 3.5 in ...
 - Compiles to code that stores (1.5 + 3.5) in float register x

- Compiles to machine primop for float addition in specialized registers
- let x :: Float# = addFloat# 1.5 3.5 in ...
 - Compiles to code that stores (1.5 + 3.5) in float register x
- Can x be lazy?

- Compiles to machine primop for float addition in specialized registers
- let x :: Float# = addFloat# 1.5 3.5 in ...
 - Compiles to code that stores (1.5 + 3.5) in float register x
- Can x be lazy?
 - No!

- Compiles to machine primop for float addition in specialized registers
- let x :: Float# = addFloat# 1.5 3.5 in ...
 - Compiles to code that stores (1.5 + 3.5) in float register x
- Can x be lazy?
 - No!
 - x stores a floating-point number

Unboxed Data Is Eager

- Compiles to machine primop for float addition in specialized registers
- let x :: Float# = addFloat# 1.5 3.5 in ...
 - Compiles to code that stores (1.5 + 3.5) in float register x
- Can x be lazy?
 - No!
 - x stores a floating-point number
 - Lazy thunks must be represented as pointers

Not <u>Evaluated</u>

$x = let f :: Int \sim> Int = expensive 100 in ...f...f...$

- x = let f :: Int ~> Int = expensive 100 in ...f...f...
- When is expensive 100 evaluated?

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

x' = let f :: Int \sim Int = $y \sim$ expensive 100 y in ...f...f.

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

• x = x' by η , so they must be the same

x' = let f :: Int \sim Int = $y \sim$ expensive 100 y in ...f..f.

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

- x = x' by η , so they must be the same
- x' always follows call-by-name order! So x does, too

x' = let f :: Int \sim Int = $y \sim$ expensive 100 y in ...f...f.

x = let f :: Int ~> Int = expensive 100 in ...f...f...

- When is expensive 100 evaluated?
 - Call-by-value: first, before binding f
 - Call-by-need: later, but only once, when f is first demanded
 - Call-by-name: later, re-evaluated every time f is demanded

- x = x' by η , so they must be the same
- x' always follows call-by-name order! So x does, too
- Primitive functions are never just *evaluated*; they are always *called*

x' = let f :: Int \sim Int = $y \sim$ expensive 100 y in ...f..f.

f3 :: Int ~> Int ~> Int $f3 = \langle x \rangle = let z = expensive x in \langle y \rangle + z$

f3 :: Int ~> Int ~> Int $f3 = \langle x \rangle = let z = expensive x in \langle y \rangle + z$

• Because of η , f3 now has arity 2, not 1!

f3 :: Int ~> Int ~> Int $f3 = \langle x \rangle \sim let z = expensive x in \langle y \rangle \rightarrow y + z$

- Because of η , f3 now has arity 2, not 1!
 - map (f₃ 100) [1..10⁶] recomputes 'expensive 100' a million times \bigotimes

$f3 :: Int \sim> Int \sim> Int$ $f3 = \langle x \rangle \sim let z = expensive x in \langle y \rangle \rightarrow y + z$

• Because of η , f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes 'expensive 100' a million times 😕

f3' :: Int ~> { Int ~> Int }

Clos :: (Int \sim Int) \sim {Int \sim Int}

When Partial Application Matters

f3' = $x \rightarrow let z = expensive x in Clos (<math>y \rightarrow y + z$)

$f3 :: Int \sim> Int \sim> Int$ $f3 = \langle x \rangle \sim let z = expensive x in \langle y \rangle \rightarrow y + z$

- Because of η , f3 now has arity 2, not 1!
 - map (f3 100) [1..10^6] recomputes 'expensive 100' a million times 😕
- f3' :: Int ~> { Int ~> Int }
- f3' is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

Clos :: (Int \sim Int) \sim {Int \sim Int}

When Partial Application Matters

f3' = $x \rightarrow let z = expensive x in Clos (<math>y \rightarrow y + z$)

$f3 :: Int \sim> Int \sim> Int$ $f3 = \langle x \rangle \sim let z = expensive x in \langle y \rangle \rightarrow y + z$

- Because of η , f3 now has arity 2, not 1!
 - map (f3 100) [1..10^6] recomputes 'expensive 100' a million times 😕
- f3' :: Int ~> { Int ~> Int } $f3' = \langle x \rangle = expensive x in Clos (\langle y \rangle + z)$
- f3' is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function
 - map (App (f3' 100)) [1..10^6] computes 'expensive 100' only once \odot

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int

• A_{\parallel} is the *lifted* version of A_{\parallel}

• A_{\parallel} is the *lifted* version of A_{\parallel}

• A_{\perp} adds a special, unique value \perp to A denoting divergent computation

- A_{\parallel} is the *lifted* version of A_{\parallel}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

- A_{\perp} is the *lifted* version of A
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*
 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x . f(x) \mid f \in A \rightarrow B\}$ denotes only real functions

- A_{\perp} is the *lifted* version of A
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*
 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions
 - Lifting implies worse performance (for data, functions)

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions • Lifting implies worse performance (for data, functions)
 - Indirection, dynamic checks, multiple function calls/jumps

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions • Lifting implies worse performance (for data, functions)
 - Indirection, dynamic checks, multiple function calls/jumps

Denotation of computations of type $Int \rightarrow Int \rightarrow Int$ is:

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

 - Int# = {0,1, -1,2, -2,...} and A $\rightarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions • Lifting implies worse performance (for data, functions)
 - Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type $Int \rightarrow Int \rightarrow Int$ is:
 - Call-by-name: $Int_{\perp} \rightarrow Int_{\perp} \rightarrow Int_{\perp}$

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions • Lifting implies worse performance (for data, functions)
 - Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type $Int \rightarrow Int \rightarrow Int$ is:
 - Call-by-name: $Int_{\parallel} \rightarrow Int_{\parallel} \rightarrow Int_{\parallel}$
 - Call-by-value: $(Int \rightarrow (Int \rightarrow Int_{\perp})_{\perp})_{\perp}$

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions • Lifting implies worse performance (for data, functions)
 - Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type $Int \rightarrow Int \rightarrow Int$ is:
 - Call-by-name: $Int_{\perp} \rightarrow Int_{\perp} \rightarrow Int_{\perp}$
 - Call-by-value: $(Int \rightarrow (Int \rightarrow Int_{\perp})_{\perp})_{\perp}$
 - Call-by-push-value: $Int \rightarrow Int \rightarrow Int_{\perp}$

- A_{\perp} is the *lifted* version of A_{\perp}
 - A_{\perp} adds a special, unique value \perp to A denoting divergent computation
 - E.g., $\mathbb{N}_{\perp} = \{ \perp, 0, 1, 2, 3, ... \}$ so that $1/0 = \perp$, and $(A \to B)_{\perp} = \{ \perp \} \cup \{ \lambda x . f(x) \mid f \in A \to B \}$
- Unboxed types and primitive functions are *unlifted*

 - Int# = {0,1, -1,2, -2,...} and $A \rightsquigarrow B = \{\lambda x \cdot f(x) \mid f \in A \rightarrow B\}$ denotes only real functions • Lifting implies worse performance (for data, functions)
 - Indirection, dynamic checks, multiple function calls/jumps
- Denotation of computations of type $Int \rightarrow Int \rightarrow Int$ is:
 - Call-by-name: $Int_{\perp} \rightarrow Int_{\perp} \rightarrow Int_{\perp}$
 - Call-by-value: $(Int \rightarrow (Int \rightarrow Int_{\perp})_{\perp})_{\perp}$
 - Call-by-push-value: $Int \rightarrow Int \rightarrow Int_{\perp}$
- Logical polarity reveals the semantics for best performance

Call vs Eval, Revisited

• Code that isn't called is evaluated

Call vs Eval, Revisited

- Code that isn't called is evaluated

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values

Call vs Eval, Revisited • Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

• Eval g :: Conv - polymorphic evaluation, with levity variable g

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

• Eval g :: Conv - polymorphic evaluation, with levity variable g

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
 - Eval g :: Conv polymorphic evaluation, with levity variable g

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
- = 0 SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] \sim Int g2

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
- = 0 SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
- = 0 SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

• Eval g :: Conv — polymorphic evaluation, with levity variable g

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
 - Eval g :: Conv polymorphic evaluation, with levity variable g
- = 0 SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2

Levity Polymorphism

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
 - Eval g :: Conv polymorphic evaluation, with levity variable g
- = 0 SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2

Levity Polymorphism

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
 - Eval g :: Conv polymorphic evaluation, with levity variable g
- = 0 SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2

Levity Polymorphism

- Code that isn't called is evaluated

 - Eval L :: Conv lazy (call-by-need) evaluation, Lifted values
 - Eval g :: Conv polymorphic evaluation, with levity variable g
- = 0SUM
- sum(x : xs) = x + sum xs

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. 2020.

Call vs Eval, Revisited

• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Int g :: TYPE Ptr (Eval g) -- boxed, levity-g ints

sum :: forall (g1 g2 :: Levity). [Int g1] ~> Int g2

sum (I# z : xs) = case sum xs of I# y -> I# (z +# y)

• Evaluation order of serious arguments and lets depends on levity

• Evaluation order of serious arguments and lets depends on levity

• What counts as "serious computation" depends on the compiler

- Examples:

• Evaluation order of serious arguments and lets depends on levity • What counts as "serious computation" depends on the compiler

- Examples:
 - (let x = expensive 100 in ...) binds x to expensive 100

• Evaluation order of serious arguments and lets depends on levity • What counts as "serious computation" depends on the compiler

- Examples:
 - (let x = expensive 100 in ...) binds x to expensive 100
 - (f (expensive 100)) passes expensive 100 to f

• Evaluation order of serious arguments and lets depends on levity • What counts as "serious computation" depends on the compiler

data List (= Nil | Cons a (List g

Between Eager and Lazy Programs

:: TYPE Ptr v) ::

data List (g :: Levity) (a :: TYPE Ptr v) :: = Nil | Cons a (List g a)

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g) = Nil | Cons a (List g a)

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval g) = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b foldl f z Nil = zfoldl f z (Cons x xs) = foldl f (f z x) xs

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval q) = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b foldl f z Nil = z foldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity) (a :: TYPE Ptr v) (b :: *). $(b \sim a \sim b) \sim b \sim List g a \sim b$

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval q) = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b foldl f z Nil = z foldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity) $(a :: TYPE Ptr v) (b :: \star).$ (b ~> a ~> b) ~> b ~> List g a ~> b

foldl' f z Nil = zfoldl' f z (Cons x xs) = let !z' = f z x in foldl' f z' xs

data List (g :: Levity) (a :: TYPE Ptr v) :: TYPE Ptr (Eval q) = Nil | Cons a (List g a)

foldl :: (b ~> a ~> b) ~> b ~> List ? a ~> b foldl f z Nil = zfoldl f z (Cons x xs) = foldl f (f z x) xs

foldl :: forall (v :: Conv) (g :: Levity) $(a :: TYPE Ptr v) (b :: \star).$ (b ~> a ~> b) ~> b ~> List g a ~> b

foldl' f z Nil = zfoldl' f z (Cons x xs) = let !z' = f z x in foldl' f z' xs

foldl' :: forall (v :: Conv) (g, g' :: Levity) (a :: TYPE Ptr v) (b :: TYPE Ptr (Eval q')). (b ~> a ~> b) ~> b ~> List g a ~> b

Compilation

If it type checks, it can be compiled.

P. Downen, Z.M. Ariola, S. Peyton Jones, R.A. Eisenberg. ICFP 2020.

To the Machine

• Only basic types (pointer, integer, float); no polymorphism

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls

To the Machine

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
- poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

To the Machine

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) \sim > (a,a)

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
- poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

To the Machine

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
- poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

 $poly = \langle (f::Ptr) \rangle \sim$

To the Machine

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)

- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
- poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

poly = \(f::Ptr) ~>

To the Machine

poly :: forall a::TYPE Ptr Call[2]. (Int~>Int~>a) ~> (a,a)

With Polymorphic **η-Expansion**

poly :: forall a::TYPE Ptr Call[Ptr,Flt]. (Int ~> Int ~> a) ~> (a, a) poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,Flt]. (Int ~> Int ~> a) ~> (a, a) poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,Flt]. (Int ~> Int ~> a) ~> (a, a)poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

 $poly = \langle (f::Ptr) \rangle \sim >$

With Polymorphic n-Expansion

poly :: forall a::TYPE Ptr Call[Ptr,Flt]. $(Int \sim> Int \sim> a) \sim> (a, a)$ poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

 $poly = \langle (f::Ptr) \rangle \sim$

With Polymorphic n-Expansion

let $q::Ptr = (x::Ptr, y::Ptr, z::Flt) \sim f(3,x,y,z)$

poly :: forall a::TYPE Ptr Call[Ptr,Flt]. $(Int \sim> Int \sim> a) \sim> (a, a)$ poly $f = let g :: Int \sim a = f 3$ in (g 4, g 5)

 $poly = \langle (f::Ptr) \rangle \sim >$ in (\(y::Ptr, z::Flt) -> g(4, y, z),

With Polymorphic n-Expansion

let g::Ptr = $(x::Ptr, y::Ptr, z::Flt) \sim f(3,x,y,z)$ \(y::Ptr, z::Flt) -> g(5, y, z))

essons learned

 Good semantics comes from logic • Kinds capture efficient calling conventions

• Efficient performance requires good semantics

New Goal: a foundation for functional systems programming?