Kinds Are Calling Conventions Paul Downen, Zena M. Ariola, Simon Peyton Jones, Richard A. Eisenberg

Efficient Function Calls

Parameter Passing Techniques

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Arity - How many?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Arity - How many?
- Levity (aka Evaluation Strategy) - When to compute?

Efficient Function Calls

Parameter Passing Techniques

- Representation - What \& Where?
- Arity - How many?
- Levity (aka Evaluation Strategy) - When to compute?

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

$$
\begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \\
& \text { in } y+z
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \quad \text { Arity } 2 \\
& \text { in } y+z
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \quad \text { Arity } 2 \quad f 2=\backslash x->f 1 x
\end{aligned}
$$ in $\mathrm{y}+\mathrm{z}$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 \mathrm{f} 2=\text { lx -> f1 } x \\
& \text { in } \mathrm{y}+\mathrm{z} \\
& =\backslash x \text {-> \y -> f1 x y }
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 : : Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } \mathrm{y}+\mathrm{z} \\
& =\backslash x \text {-> \y -> f1 x y }
\end{aligned}
$$

Determining Function Arity

fl, fl, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { ff = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arty } 2 f 2=\backslash x->f 1 x \quad \text { Amity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> } \backslash y \text {-> ff x y } \\
& \text { ff = \x -> } \\
& \text { let } z=\text { expensive } x \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{array}{rlrl}
f 1= & \backslash x->\backslash y-> \\
& \text { let } z=\text { expensive } x \quad \text { Arity } 2 \quad f 2=\backslash x->f 1 x \text { Arity } 2 \\
& \text { in } y+z & & \\
f 3= & & \\
& & \text { let } z=\text { expensive } x & \\
& \text { in } \backslash y->y y->f 1 x y
\end{array}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> } \backslash y \text {-> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> \y -> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \quad f 4=\backslash x \text {-> } f 3 x \\
& \text { in } \backslash y \text {-> } y+z
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> \y -> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \quad f 4=\backslash x->f 3 x \\
& \text { in } \backslash y \text {-> } y+z \\
& \neq \backslash x \text {-> \y -> f3 x y }
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

Determining Function Arity

f1, f2, f3, f4 :: Int -> Int -> Int
Type suggests arity 2

$$
\begin{aligned}
& \text { f1 = \x -> \y -> } \\
& \text { Let } z=\text { expensive } x \text { Arity } 2 f 2=\backslash x->f 1 x \quad \text { Arity } 2 \\
& \text { in } y+z \\
& =\backslash x \text {-> \y -> f1 x y } \\
& \text { f3 = \x -> } \\
& \text { let } z=\text { expensive } x \text { Arity } 1 \quad f 4=\backslash x->f 3 x \quad \text { Arity } 1 \\
& \text { in } \backslash y \text {-> } y+z \\
& \neq \backslash x \text {-> \y -> f3 x y }
\end{aligned}
$$

Hint: 'expensive x' may be costly, or even cause side effects

What Is Arity?

For Curried Functions

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs to do "serious work."

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs to do "serious work."

- If 'f 123 ' does work, but ' $f 12$ ' does not, then ' f ' has arity 3

What Is Arity?

Definition 1. The number of arguments a function needs to do "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be η-expanded without changing its behavior or cost.

What Is Arity?

Definition 1. The number of arguments a function needs to do "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be η-expanded without changing its behavior or cost.

- If ' f ' is equivalent to ' $x \mathrm{x} y \mathrm{z}$-> $\mathrm{f} x \mathrm{y} z$ ', then ' f ' has arity 3

What Is Arity?

For Curried Functions

Definition 1. The number of arguments a function needs to do "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be η-expanded without changing its behavior or cost.

- If ' f ' is equivalent to ' $x x y z->f \times y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

What Is Arity?

Definition 1. The number of arguments a function needs to do "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then ' f ' has arity 3

Definition 2. The number of times a function may be η-expanded without changing its behavior or cost.

- If ' f ' is equivalent to ' $x x y z->f \times y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

- If ' f ' has arity 3 , then ' $f 123$ ' can be implemented as a single call

What Is Arity?

Definition 1. The number of arguments a function needs to do "serious work."

- If 'f 12 3' does work, but 'f 1 2' does not, then 'f' has arity 3

Definition 2. The number of times a function may be η-expanded without changing its behavior or cost.

- If ' f ' is equivalent to ' $\backslash x$ y $z->f x y z$ ', then ' f ' has arity 3

Definition 3. The number of arguments passed simultaneously to a function during one call.

- If ' f ' has arity 3 , then ' $f 123$ ' can be implemented as a single call

Goal: An IL with unrestricted η for functions, along with restricted β for other types

Static Arity

In an Intermediate Language

Static Arity

In an Intermediate Language

- New $a \rightsquigarrow b$ type of primitive functions (ASCII ' $a \sim>b^{\prime}$)
- To distinguish from the source-level $a \rightarrow b$ with different semantics

Static Arity

In an Intermediate Language

- New $a \rightsquigarrow b$ type of primitive functions (ASCII ' $a \sim>b^{\prime}$)
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions - $\lambda x . f x={ }_{\eta} f: a \rightsquigarrow b$ unconditionally

Static Arity

- New $a \leadsto b$ type of primitive functions (ASCII ' $a \sim>b$ ')
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions - $\lambda x . f x={ }_{\eta} f: a \rightsquigarrow b$ unconditionally
- Application may still be restricted for efficiency, like source functions
- $(\lambda x \cdot x+x)\left(\right.$ expensive $\left.10^{6}\right)$ does not recompute expensive 10^{6}

Static Arity

- New $a \rightsquigarrow b$ type of primitive functions (ASCII ' $a \sim>b^{\prime}$)
- To distinguish from the source-level $a \rightarrow b$ with different semantics
- Primitive functions are fully extensional, unlike source functions
- $\lambda x . f x={ }_{\eta} f: a \rightsquigarrow b$ unconditionally
- Application may still be restricted for efficiency, like source functions
- $(\lambda x \cdot x+x)$ (expensive 10^{6}) does not recompute expensive 10^{6}
- With full η, types express arity - just count the arrows
- f: Int \rightsquigarrow Bool \rightsquigarrow String has arity 2, no matter f 's definition

Currying

When Partial Application Matters

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f_{3} now has arity 2 , not 1 !

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1!
- map ($\mathrm{f}_{3} 100$) $\left[1 . .10^{\wedge} 6\right]$ recomputes ‘expensive 100 ' a million times $:-$

Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100’ a million times $:($
f3' : : Int ~> \{ Int ~> Int \}
f^{\prime} ' $=\backslash x->$ let $z=$ expensive x in Clos (ly $->y+z$)

```
Clos :: (Int ~> Int) ~> {Int ~> Int}
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100’ a million times : $:$

```
f3' :: Int ~> { Int ~> Int }
```

f3' $^{\prime}=\backslash x->$ let $z=$ expensive x in Clos ($\backslash y->y+z$)

- f3' is an arity 1 function; returns a closure \{Int~>Int\} of an arity 1 function

```
Clos :: (Int ~> Int) ~> {Int ~> Int}
```


Currying

When Partial Application Matters

```
f3 :: Int ~> Int ~> Int
f3 = \x -> let z = expensive x in \y -> y + z
```

- Because of η, f3 now has arity 2, not 1 !
- map (f3 100) [1..10^6] recomputes 'expensive 100 ' a million times $:($

```
f3' :: Int ~> { Int ~> Int }
```

f3' $^{\prime}=\backslash x->$ let $z=$ expensive x in Clos ($\backslash y->y+z$)

- f3' is an arity 1 function; returns a closure \{Int~>Int\} of an arity 1 function
- map (App (f3’ 100)) [1..10^6] computes ‘expensive 100 ’ only once -
Clos :: (Int $\sim>$ Int) $\sim>$ \{Int $\sim>$ Int \} App $::$ \{Int $\sim>$ Int \} $\sim>$ Int $\sim>$ Int

Functions are Called

Not Evaluated

Functions are Called

Not Evaluated

$$
x=\text { let } f:: \text { Int } \sim \text { Int }=\text { expensive } 100 \text { in ...f...f... }
$$

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded

Functions are Called

Not Evaluated
$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

- $x=x$ ' by η, and x^{\prime} always follows call-by-name order!

Functions are Called

$x=$ let $f::$ Int \sim Int $=$ expensive 100 in ...f...f...

- When is expensive 100 evaluated?
- Call-by-value: first, before binding f
- Call-by-need: later, but only once, when f is first demanded
- Call-by-name: later, re-evaluated every time f is demanded

- $x=x$ ' by η, and x^{\prime} always follows call-by-name order!
- Primitive functions are never just evaluated; they are always called

The Problem With Polymorphism

And Static Compilation

The Problem With Polymorphism

And Static Compilation
poly : : forall a. (Int $\sim>$ Int $\sim>a) \sim(a, a)$
poly $f=$ let $g:$ Int $\sim>a=f 3$ in $(g 5, g 4)$

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int \sim a) $\sim(a, a)$
poly $f=$ let $g::$ Int $\sim a=f 3$ in (g 5, g 4)

- What are the arities of f and g ? Counting arrows...

The Problem With Polymorphism

And Static Compilation
poly : : forall a. (Int $\sim>$ Int \sim a) $\sim>(a, a)$
poly $f=$ let $g:$ Int $\sim a=f 3$ in (g 5, g 4)

- What are the arities of f and g ? Counting arrows...
- f : : Int \sim Int \sim a has arity 2

The Problem With Polymorphism

And Static Compilation

poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- f : : Int ~> Int ~> a has arity 2
- g :: Int \sim a has arity 1

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int $\sim>a$) \sim (a, a)
poly $f=$ let g :: Int $\sim \operatorname{a}=\mathrm{f} 3$ in ($\mathrm{g} 5, \mathrm{~g} 4$)

- What are the arities of f and g ? Counting arrows...
- $\mathrm{f}:$: Int \sim Int \sim a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $\mathrm{a}=$ Bool \sim Bool?

The Problem With Polymorphism

And Static Compilation

poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- f : : Int \sim Int \sim a has arity 2
- $g::$ Int \sim a has arity 1
- But what if $\mathrm{a}=$ Bool \sim Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim Int \sim) $) \sim(a, a)$
poly $f=$ let g :: Int $\sim a=f 3$ in (9 5, g 4)

- What are the arities of f and g ? Counting arrows...
- $\mathrm{f}:$: Int \sim Int \sim a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $\mathrm{a}=\mathrm{Bool} \sim$ Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...
- g : : Int \sim Bool \sim Bool has arity 2... oops...

The Problem With Polymorphism

And Static Compilation
poly :: forall a. (Int \sim I Int $\sim>a) \sim(a, a)$
poly $f=$ let $g:$ Int $\sim a=f 3$ in ($\mathrm{g} 5, \mathrm{~g} 4$)

- What are the arities of f and g ? Counting arrows...
- $\mathrm{f}:$: Int \leadsto Int \leadsto a has arity 2
- $\mathrm{g}:$: Int \sim a has arity 1
- But what if $\mathrm{a}=\mathrm{Bool} \sim$ Bool?
- f : : Int ~> Int ~> Bool ~> Bool has arity 3...
- g : : Int \sim Bool \sim Bool has arity 2... oops...
- How to statically compile? Is 'g 5' a call? A partial application?

Nonuniform Representation

And Static Compilation

Nonuniform Representation

And Static Compilation

- Primitive types:

Nonuniform Representation

And Static Compilation

- Primitive types:
- Int\#, Float\#, Char\#, Array\#...

Nonuniform Representation

And Static Compilation

- Primitive types:
- Unboxed
- Int\#, Float\#, Char\#, Array\#...

Nonuniform Representation

And Static Compilation

- Primitive types:
- Int\#, Float\#, Char\#, Array\#...
- Unboxed
- Efficient passing

Nonuniform Representation

- Primitive types:
- Unboxed
- Efficient passing

And Static Compilation

- Different sizes
- Int\#, Float\#, Char\#, Array\#...

Nonuniform Representation

And Static Compilation

- Primitive types:
- Int\#, Float\#, Char\#, Array\#...
- Unboxed
- Efficient passing
- Different sizes
- Different locations

Nonuniform Representation

And Static Compilation

- Primitive types:
- Int\#, Float\#, Char\#, Array\#...
- Unboxed
- Efficient passing
- Different sizes
- Different locations
- Different levity

Nonuniform Representation

And Static Compilation

```
- Primitive types:
- Unboxed
- Efficient passing
- Different sizes
- Different locations
revapp :: forall \(a \operatorname{b.} a->(a->b)->b\) revapp \(x f=f x\)

\section*{Nonuniform Representation}

\section*{And Static Compilation}
```

- Primitive types: Array\#...

```
- Unboxed
- Efficient passing
- Different sizes
- Different locations
- Different levity
revapp :: forall \(a \operatorname{b.} a->(a->b)->b\) revapp \(x f=f x\)
(++) :: [a] -> [a] -> [a]
plusFloat\# :: Float\# -> Float\# -> Float\#

\section*{Nonuniform Representation}

\section*{And Static Compilation}
- Unboxed
- Efficient passing
- Different sizes
- Different locations
- Different levity
revapp :: forall \(a \operatorname{b.}\) a -> (a -> b) -> b revapp \(x \mathrm{f}=\mathrm{f} \mathrm{x}\)
(++) :: [a] -> [a] -> [a]
plusFloat\# :: Float\# -> Float\# -> Float\#
revapp [0..3] (++ [4..9]) vs revapp 2.5 (plusFloat\# 1.5)

\section*{A Stop-Gap Solution}

Uniform Polymorphism in a Nonuniform Language

\section*{A Stop-Gap Solution}

Uniform Polymorphism in a Nonuniform Language
- All polymorphism is uniform

\section*{A Stop-Gap Solution}

Uniform Polymorphism in a Nonuniform Language
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer

\section*{A Stop-Gap Solution}

Uniform Polymorphism in a Nonuniform Language
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- ' \(a\) ' has arity o

\section*{A Stop-Gap Solution}

Uniform Polymorphism in a Nonuniform Language
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- 'a' has arity o
- Restriction on quantifiers forall \(a:: k\). ...

\section*{A Stop-Gap Solution}

\section*{Uniform Polymorphism in a Nonuniform Language}
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- ' \(a\) ' has arity o
- Restriction on quantifiers forall \(a:: k\). ...
- Special kinds for unboxed (\#) and non-zero arity (~) types

\section*{A Stop-Gap Solution}

\section*{Uniform Polymorphism in a Nonuniform Language}
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- ' \(a\) ' has arity o
- Restriction on quantifiers forall \(a:: k\). ...
- Special kinds for unboxed (\#) and non-zero arity (~) types
- k may be \(\star\) or \(\star->\star\) but never \# or ~

\section*{A Stop-Gap Solution}

Uniform Polymorphism in a Nonuniform Language
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- ' \(a\) ' has arity o
- Restriction on quantifiers forall \(a:\) :k. ...
- Special kinds for unboxed (\#) and non-zero arity (~) types
- k may be \(\star\) or \(\star->\star\) but never \# or ~
- Draconian restriction is unsatisfactory

\section*{A Stop-Gap Solution}

\section*{Uniform Polymorphism in a Nonuniform Language}
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- 'a' has arity o
- Restriction on quantifiers forall \(a:\) :k. ...
- Special kinds for unboxed (\#) and non-zero arity (~) types
- k may be \(\star\) or \(\star->\star\) but never \# or ~

\section*{- Draconian restriction is unsatisfactory}
- Too restrictive: Identical definitions/code repeated for different types (like error : : String -> a)

\section*{A Stop-Gap Solution}

\section*{Uniform Polymorphism in a Nonuniform Language}
- All polymorphism is uniform
- ' \(a\) ' is represented as a pointer
- 'a' has arity o
- Restriction on quantifiers forall a::k. ...
- Special kinds for unboxed (\#) and non-zero arity (~) types
- k may be \(\star\) or \(\star->\star\) but never \# or ~
- Draconian restriction is unsatisfactory
- Too restrictive: Identical definitions/code repeated for different types (like error : String -> a)
- Incompatible with kind polymorphism: forall k: :Kind. forall a::k. ???

\section*{Representation Polymorphism}

Kinds As Representations

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:\) :夫 to \(a:\) :TYPE \(r\)
- \(r\) : : Rep is the representation of \(a\)

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:\) :^ to \(a:\) :TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r\) : : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)
revapp : : forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).
\[
a \rightarrow(a->b)->b
\]

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)
revapp : : forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).
\[
a \rightarrow(a->b)->b
\]

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r\) : : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
```

revapp $x f=f x$
revapp : : forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).
$a->(a->b)->b$

```

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)
revapp : forall (r1, r2::Rep) ( \(a:\) :TYPE r1) (b::Type r2) \(a->(a->b)->b\)
revapp : : forall ( \(r:: \operatorname{Rep}\) ) (a::TYPE Ptr) (b::TYPE r).
\[
a->(a->b)^{->} b
\]

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)
revapp : forall (r1, r2::Rep) (a::TYPE r1) (b::Type r2): \(a->(a->b)->b\)
revapp : : forall ( \(r:: \operatorname{Rep}\) ) ( \(a::\) TYPE Ptr) (b::TYPE r).
\[
a->(a->b)^{->} b
\]

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a::\) TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)
revapp \(:\) forall (r1, r2::Rep) ( \(a:\) :TYPE r1) (b::Type r2). \(a->(a->b)->b\)
revapp : : forall ( \(r:: \operatorname{Rep}\) ) ( \(a::\) TYPE Ptr) ( \(b::\) TYPE \(r\) ).
\[
a->(a->b)->b
\]

\section*{Representation Polymorphism}

Kinds As Representations
- Generalize \(a:: \star\) to \(a:\) :TYPE \(r\)
- \(r:\) : Rep is the representation of \(a\)
- \(\star=\) TYPE Ptr
revapp \(x f=f x\)
revapp : forall (r1, r2::Rep) (a::TYPE r1) (b::Type r2) a -> (a -> b) -> b
revapp : : forall ( \(r:: \operatorname{Rep}\) ) ( \(a::\) TYPE Ptr) ( \(b::\) TYPE \(r\) ).
\[
a->(a->b)->b
\]

\section*{Arity Polymorphism}

Kinds As Calling Conventions

\section*{Arity Polymorphism}

\author{
Kinds As Calling Conventions
}
- Generalize \(a::\) TYPE \(r\) to \(a:\) :TYPE \(r\) c

\section*{Arity Polymorphism}

Kinds As Calling Conventions
- Generalize a::TYPE r to a::TYPE r c
- \(r\) : : Rep is the runtime representation of a

\section*{Arity Polymorphism}

Kinds As Calling Conventions
- Generalize a::TYPE r to a::TYPE r c
- \(r:\) : Rep is the runtime representation of a
- \(\mathrm{c}:\) : Conv is the calling convention of \(a\)

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE r to a::TYPE r c
- \(r:\) :Rep is the runtime representation of a
- \(c:\) : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call[n] says values of \(a\) are pointers with arity \(n\) (simplified)

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE r to a::TYPE r c
- \(r:\) : Rep is the runtime representation of a
- c : : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call [n] says values of a are pointers with arity \(n\) (simplified)
poly : : forall \(a:\) :TYPE Ptr Call[2]. (Int \(\sim>\) Int \(\sim>a\) ) \(\sim>(a, a)\)
poly \(f=\) let \(g:\) Int \(\sim y^{\prime}=f 3\) in (g 4, g 5)

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE r to a::TYPE r c
- \(r:\) :Rep is the runtime representation of a
- \(c:\) : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call [n] says values of a are pointers with arity \(n\) (simplified)
poly : : forall \(a:\) :TYPE Ptr Call[2]. (Int \(\sim>\) Int \(\sim>a\) ) \(\sim>(a, a)\)
poly \(f=\) let \(g:\) Int \(\sim l^{\prime}=f 3\) in (g 4, g 5)
- \(\mathrm{f}:\) : Int \(\sim\) Int \(\sim\) a : : TYPE Ptr Call[4] has arity \(4(2+1+1)\)

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE r to a::TYPE r c
- \(r:\) : Rep is the runtime representation of a
- \(\mathrm{c}:\) : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call [n] says values of a are pointers with arity \(n\) (simplified)
```

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)

```
poly \(f=\) let \(g:\) Int \(\sim y^{\prime}=f 3\) in (g 4, g 5)
- \(\mathrm{f}:\) : Int \(\sim>\) Int \(\sim>\) a : : TYPE Ptr Call[4] has arity \(4(2+1+1)\)
- \(g::\) Int \(\sim\) a \(:\) : TYPE PTR Call[ [3] has arity \(3(2+1)\)

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE r to a::TYPE r c
- \(r:\) : Rep is the runtime representation of a
- \(\mathrm{c}:\) : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call [n] says values of a are pointers with arity \(n\) (simplified)
```

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)

```
poly \(f=\) let \(g:\) Int \(\sim y^{\prime}=f 3\) in (g 4, g 5)
- \(\mathrm{f}:\) : Int \(\sim>\) Int \(\sim\) a \(:\) : TYPE Ptr Call[4] has arity \(4(2+1+1)\)
- \(\mathrm{g}:\) : Int \(\sim>\mathrm{a}:\) : TYPE PTR Call [3] has arity \(3(2+1)\)
revapp : : forall (c::Conv) (r::Rep)
(a::TYPE Ptr c) (b::TYPE \(r\) Call[1]).
\(a \sim(a \sim b) \sim b\)
revapp \(x f=f x\)

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE \(r\) to \(a:\) :TYPE \(r\) c
- \(r:\) : Rep is the runtime representation of a
- \(\mathrm{c}:\) : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call [n] says values of a are pointers with arity \(n\) (simplified)
```

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

```
- \(\mathrm{f}:\) : Int \(\sim>\) Int \(\sim>\) a : : TYPE Ptr Call[4] has arity \(4(2+1+1)\)
- \(\mathrm{g}:\) : Int \(\sim>\) a : : TYPE PTR Call[3] has arity \(3(2+1)\)
revapp : : forall (c::Conv) (r::Rep)
(a::TYPE Ptr c) (b::TYPE r Call[1]).
\(a \sim>(a \sim>b) \sim b\)
revapp \(\times f=f \times\)
- \(f:: a \sim b\) : : TYPE Ptr Call[2] has arity 2

\section*{Arity Polymorphism}

\section*{Kinds As Calling Conventions}
- Generalize a::TYPE \(r\) to \(a:\) :TYPE \(r\) c
- \(r:\) : Rep is the runtime representation of a
- \(\mathrm{c}:\) : Conv is the calling convention of a
- \(a:\) :TYPE Ptr Call [n] says values of a are pointers with arity \(n\) (simplified)
```

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

```
- \(\mathrm{f}:\) : Int \(\sim>\) Int \(\sim>\) a : : TYPE Ptr Call[4] has arity \(4(2+1+1)\)
- \(\mathrm{g}:\) : Int \(\sim>\) a : : TYPE PTR Call[3] has arity \(3(2+1)\)
revapp : : forall (c::Conv) ( \(r:\) :Rep)
(a::TYPE Ptr c) (b::TYPE r Call[1]).
\(a \sim>(a \sim>b) \sim>b\)
revapp \(x f=f x\)
- \(\mathrm{f}:: \mathrm{a} \sim>\mathrm{b}:\) TYPE Ptr Call[2] has arity 2
- \(x:: a::\) TYPE Ptr \(c\) is represented as a pointer

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}
- Code that isn't called is evaluated

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U :: Conv - eager (call-by-value) evaluation, Unlifted values

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval \(g\) : : Conv - polymorphic evaluation, with Levity variable \(g\)

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g

Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g

Int g : : Type Ptr (Eval g) -- boxed, levity-g integers
sum : : forall (g1, g2 : : Levity). [Int g1] \(\sim\) ) Int g2
sum [] \(=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g
```

Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

```
sum \(:\) : forall (g1, g2 : : Levity). [Int g1] \(\sim>\) Int g2
sum [] \(=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g
```

Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

```
sum \(:\) : forall (g1, g2 : : Levity). [Int g1] \(\sim>\) Int g2
sum [] \(=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g
```

Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

```
sum \(:\) : forall (g1, g2 : : Levity). [Int g1] \(\sim>\) Int g2
sum [] \(=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g
```

Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

```
sum \(:\) : forall (g1, g2 : : Levity). [Int g1] \(\sim>\) Int g2
sum [] \(=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)

\section*{Levity Polymorphism}

\author{
Call vs Eval, Revisited
}

\section*{- Code that isn't called is evaluated}
- Eval U : : Conv - eager (call-by-value) evaluation, Unlifted values
- Eval L : : Conv - lazy (call-by-need) evaluation, Lifted values
- Eval g : : Conv - polymorphic evaluation, with Levity variable g
```

Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

```
sum : : forall (g1, g2 :: Levity). [Int g1] ~> Int g2
sum [] \(=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)

\section*{Static Compilation}

To the Machine

\section*{Static Compilation}

To the Machine
- Only basic types (pointer, integer, float); no polymorphism

\section*{Static Compilation}

To the Machine
- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls

\section*{Static Compilation}

To the Machine
- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
\[
\begin{aligned}
& \text { poly : : forall a : : TYPE Ptr Call[2]. } \\
& \text { (Int\# ~> Int\# ~> a) ~> ( } a, a \text { ) } \\
& \text { poly } f=\text { let } g:: \text { Int\# } \sim>a=f 3 \\
& \text { in (g 4, g 5) }
\end{aligned}
\]

\section*{Static Compilation}

To the Machine
- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
\[
\begin{aligned}
& \text { poly : : forall a : : TYPE Ptr Call[2]. } \\
& \text { (Int\# ~> Int\# ~> a) ~> ( } a, a \text { ) } \\
& \text { poly } f=\begin{array}{l}
\text { let } g:: \text { Int\# } \sim>a=f 3 \\
\\
i n(g 4, g 5)
\end{array}
\end{aligned}
\]

\section*{Static Compilation}

To the Machine
- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
\[
\begin{aligned}
& \text { poly : : forall a : : TYPE Ptr Call[2]. } \\
& \text { (Int\# ~> Int\# ~> a) ~> (a, a) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { - } \\
& \text { poly = \\
(f::Ptr) -> }
\end{aligned}
\]

\section*{Static Compilation}

To the Machine
- Only basic types (pointer, integer, float); no polymorphism
- Only fully saturated functions and calls
\[
\begin{aligned}
& \text { poly }: \text { forall } a: \therefore \text { TYPE Ptr Call[2]. } \\
&\text { (Int\# } \sim>\text { Int\# } \sim>a) \sim>(a, a) \\
& p o l y ~= \\
& \text { let } g: \text { Int\# } \sim>a=f 3
\end{aligned}
\]
\[
\text { let } \mathrm{g}:: \mathrm{Ptr}=\backslash(\mathrm{x}:: \mathrm{I} 32, \mathrm{y}:: ?, \mathrm{z}:: ?) \text {-> f(3, x, y, z) }
\]

\section*{Static Compilation}

With Polymorphic \(\eta\)-Expansion

\section*{Static Compilation}

With Polymorphic \(\eta\)-Expansion
```

poly :: forall a::TYPE Ptr Call[Ptr, F64].
(Int\# ~> Int\# ~> a) ~> (a, a)
poly f = let g :: Int\# ~> a = f 3
in (g 4, g 5)

```

\section*{Static Compilation}

With Polymorphic \(\eta\)-Expansion
```

poly :: forall a::TYPE Ptr Call[Ptr, F64].
(Int\# ~> Int\# ~> a) ~> (a, a)
poly f = 首t g : Int\# ~> a = f 3
m
poly = \(f::Ptr) ->

```

\section*{Static Compilation}

With Polymorphic \(\eta\)-Expansion
```

poly :: forall a::TYPE Ptr Call[Ptr, F64].
(Int\# ~> Int\# ~> a) ~> (a, a)
poly f}=\mathrm{ let g }::\mathrm{ Int\# }~>a=f
n
poly = \(f::Ptr) ->
let g::Ptr = \(x::I32, y::Ptr, z::F64) -> f(3,x,y,z)

```

\section*{Static Compilation}

With Polymorphic \(\eta\)-Expansion
```

poly :: forall a::TYPE Ptr Call[Ptr, F64].
(Int\# ~> Int\# ~> a) ~> (a, a)
poly f}=\mathrm{ let g }:\therefore\mathrm{ Int\# }~>a=f
n
poly = \(f::Ptr) ->
Let g::Ptr = \(x::I32, y::Ptr, z::F64) -> f(3,x,y,z)
in (\(y::Ptr, z::F64) -> g(4, y, z),
\(y::Ptr, z::F64) -> g(5, y, z))

```

\section*{Even More}
- Levity Polymorphism
- For when evaluation strategy doesn't matter
- Compiling Source \(\rightarrow\) Intermediate \(\rightarrow\) Target
- Via kind-directed \(\eta\)-expansion and register assignment
- Type system for ensuring static compilation
- Of definitions with arity, levity, and representation polymorphism

\title{
Kinds capture the details of efficient calling conventions in low-level machine code
}```

