
PLDI 2022, June 15—17
Originally in ICFP 2020, August 23—29

Kinds Are Calling Conventions
Paul Downen, Zena M. Ariola,
Simon Peyton Jones, Richard A. Eisenberg

Efficient Function Calls
Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Arity — How many?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Arity — How many?
• Levity (aka Evaluation Strategy) — When to

compute?

Parameter Passing Techniques

Efficient Function Calls

• Representation — What & Where?
• Arity — How many?
• Levity (aka Evaluation Strategy) — When to

compute?

Parameter Passing Techniques

Arity

Determining Function Arity
f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

≠ \x -> \y -> f3 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

Determining Function Arity

f1 = \x -> \y ->
 let z = expensive x
 in y + z

Arity 2 f2 = \x -> f1 x Arity 2

f3 = \x ->
 let z = expensive x
 in \y -> y + z

Arity 1 f4 = \x -> f3 x Arity 1

f1, f2, f3, f4 :: Int -> Int -> Int Type suggests arity 2

= \x -> \y -> f1 x y

≠ \x -> \y -> f3 x y

Hint: ‘expensive x’ may be costly, or even cause side effects

What Is Arity?
For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be η-expanded without
changing its behavior or cost.

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be η-expanded without
changing its behavior or cost.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be η-expanded without
changing its behavior or cost.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be η-expanded without
changing its behavior or cost.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

• If ‘f’ has arity 3, then ‘f 1 2 3’ can be implemented as a single call

For Curried Functions

What Is Arity?

Definition 1. The number of arguments a function needs to do “serious work.”

• If ‘f 1 2 3’ does work, but ‘f 1 2’ does not, then ‘f’ has arity 3

Definition 2. The number of times a function may be η-expanded without
changing its behavior or cost.

• If ‘f’ is equivalent to ‘\x y z -> f x y z’, then ‘f’ has arity 3

Definition 3. The number of arguments passed simultaneously to a function
during one call.

• If ‘f’ has arity 3, then ‘f 1 2 3’ can be implemented as a single call

For Curried Functions

Goal: An IL with unrestricted η
for functions, along with

restricted β for other types

Static Arity
In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions
• unconditionallyλx . f x =η f : a ⇝ b

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions
• unconditionallyλx . f x =η f : a ⇝ b

• Application may still be restricted for efficiency, like source functions
• does not recompute (λx . x + x) (expensive 106) expensive 106

In an Intermediate Language

Static Arity

• New type of primitive functions (ASCII ‘a ~> b’)
• To distinguish from the source-level with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions
• unconditionallyλx . f x =η f : a ⇝ b

• Application may still be restricted for efficiency, like source functions
• does not recompute (λx . x + x) (expensive 106) expensive 106

• With full η, types express arity — just count the arrows
• has arity 2, no matter ’s definitionf : Int ⇝ Bool ⇝ String f

In an Intermediate Language

Currying
When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹

When Partial Application Matters

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int}

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int}

Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

• map (App (f3’ 100)) [1..10^6] computes ‘expensive 100’ only once ☺

When Partial Application Matters

Clos :: (Int ~> Int) ~> {Int ~> Int} App :: {Int ~> Int} ~> Int ~> Int

Functions are Called
Not Evaluated

Functions are Called
Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

• x = x’ by η, and x’ always follows call-by-name order!

Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

• x = x’ by η, and x’ always follows call-by-name order!

• Primitive functions are never just evaluated; they are always called

The Problem With Polymorphism
And Static Compilation

The Problem With Polymorphism
And Static Compilation

poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

• g :: Int ~> Bool ~> Bool has arity 2… oops…

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

• g :: Int ~> Bool ~> Bool has arity 2… oops…

• How to statically compile? Is ‘g 5’ a call? A partial application?

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)

Nonuniform Representation
And Static Compilation

Nonuniform Representation

• Primitive types:

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

• Different sizes

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

• Different sizes

• Different locations

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

• Different sizes

• Different locations

• Different levity

And Static Compilation

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

• Different sizes

• Different locations

• Different levity

And Static Compilation

revapp :: forall a b. a -> (a -> b) -> b  
revapp x f = f x

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

• Different sizes

• Different locations

• Different levity

And Static Compilation

revapp :: forall a b. a -> (a -> b) -> b  
revapp x f = f x
(++) :: [a] -> [a] -> [a]  
plusFloat# :: Float# -> Float# -> Float#

Nonuniform Representation

• Primitive types:
• Int#, Float#, Char#,

Array#…

• Unboxed

• Efficient passing

• Different sizes

• Different locations

• Different levity

And Static Compilation

revapp :: forall a b. a -> (a -> b) -> b  
revapp x f = f x
(++) :: [a] -> [a] -> [a]  
plusFloat# :: Float# -> Float# -> Float#

revapp [0..3] (++ [4..9]) vs revapp 2.5 (plusFloat# 1.5)

A Stop-Gap Solution
Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. …

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed (#) and non-zero arity (~) types

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed (#) and non-zero arity (~) types

• k may be ★ or ★->★ but never # or ~

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed (#) and non-zero arity (~) types

• k may be ★ or ★->★ but never # or ~

• Draconian restriction is unsatisfactory

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed (#) and non-zero arity (~) types

• k may be ★ or ★->★ but never # or ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types (like error :: String -> a)

Uniform Polymorphism in a Nonuniform Language

A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. …
• Special kinds for unboxed (#) and non-zero arity (~) types

• k may be ★ or ★->★ but never # or ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types (like error :: String -> a)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k. ???

Uniform Polymorphism in a Nonuniform Language

Representation Polymorphism
Kinds As Representations

Representation Polymorphism

• Generalize a::★ to a::TYPE r
Kinds As Representations

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a

Kinds As Representations

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

Kinds As Representations

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

Kinds As Representations

revapp x f = f x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b

Kinds As Representations

revapp x f = f x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b

Kinds As Representations

a::TYPE r1
revapp x f = f x

a

x x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b

Kinds As Representations

a::TYPE r1
revapp x f = f x

a

x x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b
revapp :: forall (r::Rep) (a::TYPE Ptr) (b::TYPE r).  
 a -> (a -> b) -> b

Kinds As Representations

revapp x f = f x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b
revapp :: forall (r::Rep) (a::TYPE Ptr) (b::TYPE r).  
 a -> (a -> b) -> b

Kinds As Representations

a::TYPE Ptr

revapp x f = f x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b
revapp :: forall (r::Rep) (a::TYPE Ptr) (b::TYPE r).  
 a -> (a -> b) -> b

Kinds As Representations

b::TYPE ra::TYPE Ptr

revapp x f = f x

b

f x

Representation Polymorphism

• Generalize a::★ to a::TYPE r
• r::Rep is the representation of a
• ★ = TYPE Ptr

revapp :: forall (r1,r2::Rep) (a::TYPE r1) (b::Type r2).  
 a -> (a -> b) -> b
revapp :: forall (r::Rep) (a::TYPE Ptr) (b::TYPE r).  
 a -> (a -> b) -> b

Kinds As Representations

b::TYPE ra::TYPE Ptr

revapp x f = f x

b

f x

Arity Polymorphism
Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 (2 + 1 + 1)

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 (2 + 1 + 1)
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3 (2 + 1)

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 (2 + 1 + 1)
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3 (2 + 1)

revapp :: forall (c::Conv) (r::Rep)  
 (a::TYPE Ptr c) (b::TYPE r Call[1]).  
 a ~> (a ~> b) ~> b  
revapp x f = f x

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 (2 + 1 + 1)
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3 (2 + 1)

revapp :: forall (c::Conv) (r::Rep)  
 (a::TYPE Ptr c) (b::TYPE r Call[1]).  
 a ~> (a ~> b) ~> b  
revapp x f = f x

• f :: a ~> b :: TYPE Ptr Call[2] has arity 2

Kinds As Calling Conventions

Arity Polymorphism

• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)

• f :: Int ~> Int ~> a :: TYPE Ptr Call[4] has arity 4 (2 + 1 + 1)
• g :: Int ~> a :: TYPE PTR Call[3] has arity 3 (2 + 1)

revapp :: forall (c::Conv) (r::Rep)  
 (a::TYPE Ptr c) (b::TYPE r Call[1]).  
 a ~> (a ~> b) ~> b  
revapp x f = f x

• f :: a ~> b :: TYPE Ptr Call[2] has arity 2
• x :: a :: TYPE Ptr c is represented as a pointer

Kinds As Calling Conventions

Levity Polymorphism
Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers
sum :: forall (g1, g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers
sum :: forall (g1, g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

g1 g2

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers
sum :: forall (g1, g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

+

g1 g2

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers
sum :: forall (g1, g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

+xx

g1g1 g2

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers
sum :: forall (g1, g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

sum xs+

g1 g2g2

Levity Polymorphism

• Code that isn’t called is evaluated
• Eval U :: Conv — eager (call-by-value) evaluation, Unlifted values
• Eval L :: Conv — lazy (call-by-need) evaluation, Lifted values
• Eval g :: Conv — polymorphic evaluation, with Levity variable g

 
Int g :: Type Ptr (Eval g) -- boxed, levity-g integers
sum :: forall (g1, g2 :: Levity). [Int g1] ~> Int g2  
sum [] = 0  
sum (x : xs) = x + sum xs

Call vs Eval, Revisited

g1 g2

Static Compilation
To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

• Only fully saturated functions and calls

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

• Only fully saturated functions and calls
poly :: forall a :: TYPE Ptr Call[2].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  

To the Machine

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

• Only fully saturated functions and calls
poly :: forall a :: TYPE Ptr Call[2].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  

To the Machine

η

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

• Only fully saturated functions and calls
poly :: forall a :: TYPE Ptr Call[2].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  

poly = \(f::Ptr) ->

To the Machine

η

Static Compilation

• Only basic types (pointer, integer, float); no polymorphism

• Only fully saturated functions and calls
poly :: forall a :: TYPE Ptr Call[2].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  

poly = \(f::Ptr) ->
 let g::Ptr = \(x::I32, y::?, z::?) -> f(3, x, y, z)

To the Machine

η

Static Compilation
With Polymorphic η-Expansion

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr, F64].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  
 

With Polymorphic η-Expansion

η

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr, F64].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ->

With Polymorphic η-Expansion

η

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr, F64].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ->
 let g::Ptr = \(x::I32, y::Ptr, z::F64) -> f(3,x,y,z)

With Polymorphic η-Expansion

η

Static Compilation

poly :: forall a::TYPE Ptr Call[Ptr, F64].  
 (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
 in (g 4, g 5)  
 

poly = \(f::Ptr) ->
 let g::Ptr = \(x::I32, y::Ptr, z::F64) -> f(3,x,y,z)
 in (\(y::Ptr, z::F64) -> g(4, y, z),  
 \(y::Ptr, z::F64) -> g(5, y, z))

With Polymorphic η-Expansion

η

Even More

• Levity Polymorphism
• For when evaluation strategy doesn’t matter

• Compiling Source Intermediate Target
• Via kind-directed η-expansion and register assignment

• Type system for ensuring static compilation
• Of definitions with arity, levity, and representation polymorphism

→ →

In the Paper

Kinds capture the details of
efficient calling conventions in

low-level machine code

