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Static Arity

• New  type of primitive functions (ASCII ‘a ~> b’) 
• To distinguish from the source-level  with different semantics

a ⇝ b
a → b

• Primitive functions are fully extensional, unlike source functions 
•   unconditionallyλx . f x =η f : a ⇝ b

• Application may still be restricted for efficiency, like source functions 
•  does not recompute (λx . x + x) (expensive 106) expensive 106

• With full η, types express arity — just count the arrows 
•  has arity 2, no matter  ’s definitionf : Int ⇝ Bool ⇝ String f

In an Intermediate Language
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Currying

f3 :: Int ~> Int ~> Int  
f3 = \x -> let z = expensive x in \y -> y + z

• Because of η, f3 now has arity 2, not 1!

• map (f3 100) [1..10^6] recomputes ‘expensive 100’ a million times ☹
f3’ :: Int ~> { Int ~> Int }  
f3’ = \x -> let z = expensive x in Clos (\y -> y + z)
• f3’ is an arity 1 function; returns a closure {Int~>Int} of an arity 1 function

• map (App (f3’ 100)) [1..10^6] computes ‘expensive 100’ only once ☺

When Partial Application Matters 

Clos :: (Int ~> Int) ~> {Int ~> Int}  App  :: {Int ~> Int} ~> Int ~> Int
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Functions are Called

• When is expensive 100 evaluated?
• Call-by-value: first, before binding f

• Call-by-need: later, but only once, when f is first demanded

• Call-by-name: later, re-evaluated every time f is demanded

Not Evaluated

x = let f :: Int ~> Int = expensive 100 in …f…f…

x’ = let f :: Int ~> Int = \y -> expensive 100 y in …f…f…

• x = x’ by η, and x’ always follows call-by-name order!

• Primitive functions are never just evaluated; they are always called
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The Problem With Polymorphism

• What are the arities of f and g? Counting arrows…
• f :: Int ~> Int ~> a has arity 2

• g :: Int ~> a has arity 1

• But what if a = Bool ~> Bool?
• f :: Int ~> Int ~> Bool ~> Bool has arity 3…

• g :: Int ~> Bool ~> Bool has arity 2… oops…

• How to statically compile? Is ‘g 5’ a call? A partial application?

And Static Compilation
poly :: forall a. (Int ~> Int ~> a) ~> (a, a)  
poly f = let g :: Int ~> a = f 3 in (g 5, g 4)
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Nonuniform Representation

• Primitive types:
•  Int#, Float#, Char#, 

Array#…

• Unboxed

• Efficient passing 
 

• Different sizes

• Different locations

• Different levity

And Static Compilation

revapp :: forall a b. a -> (a -> b) -> b  
revapp x f = f x
(++)       :: [a]    -> [a]    -> [a]  
plusFloat# :: Float# -> Float# -> Float#

revapp [0..3] (++ [4..9]) vs revapp 2.5 (plusFloat# 1.5)
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A Stop-Gap Solution

• All polymorphism is uniform
• ‘a’ is represented as a pointer

• ‘a’ has arity 0

• Restriction on quantifiers forall a::k. … 
• Special kinds for unboxed (#) and non-zero arity (~) types

• k may be ★ or ★->★ but never # or ~

• Draconian restriction is unsatisfactory
• Too restrictive: Identical definitions/code repeated for different types (like error :: String -> a)

• Incompatible with kind polymorphism: forall k::Kind. forall a::k.  ???

Uniform Polymorphism in a Nonuniform Language
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• Generalize a::TYPE r to a::TYPE r c
• r::Rep is the runtime representation of a
• c::Conv is the calling convention of a
• a::TYPE Ptr Call[n] says values of a are pointers with arity n (simplified)

poly :: forall a::TYPE Ptr Call[2]. (Int ~> Int ~> a) ~> (a,a)  
poly f = let g :: Int ~> a = f 3 in (g 4, g 5)
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revapp :: forall (c::Conv) (r::Rep)  
          (a::TYPE Ptr c) (b::TYPE r Call[1]).  
          a ~> (a ~> b) ~> b  
revapp x f = f x

• f :: a ~> b :: TYPE Ptr Call[2] has arity 2
• x :: a :: TYPE Ptr c is represented as a pointer
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poly :: forall a::TYPE Ptr Call[Ptr, F64].  
        (Int# ~> Int# ~> a) ~> (a, a)  
poly f = let g :: Int# ~> a = f 3  
         in (g 4, g 5)  
 

poly = \(f::Ptr) ->
       let g::Ptr = \(x::I32, y::Ptr, z::F64) -> f(3,x,y,z)
       in (\(y::Ptr, z::F64) -> g(4, y, z),  
           \(y::Ptr, z::F64) -> g(5, y, z))
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Even More

• Levity Polymorphism 
• For when evaluation strategy doesn’t matter 

• Compiling Source  Intermediate  Target 
• Via kind-directed η-expansion and register assignment  

• Type system for ensuring static compilation 
• Of definitions with arity, levity, and representation polymorphism

→ →

In the Paper



Kinds capture the details of 
efficient calling conventions in 

low-level machine code


