The Duality of Construction

Paul Downen Zena M. Ariola
University of Oregon

April 9, 2014

The sequent calculus

Sequent calculus vs. Natural deduction

- Natural deduction tells us about pure functional programming
- Sequent calculus tells us about programming with duality
- Flow of Information: producers are dual to consumers
- Evaluation: Call-by-value is dual to call-by-name
- Construction: data structures are dual to co-data (abstract objects with procedural interface)

Previous Work

- Curien and Herbelin (2000)
- Wadler $(2003,2005)$
- Zeilberger $(2008,2009)$
- Munch-Maccagnoni (2009) and Curien (2010)

Sequent calculus: a symmetric language

Commands c

$$
\langle v \| e\rangle
$$

Producers v		Consumers e (contexts)
Function abstraction		Function call (call stack)
	$\lambda x . v$	$v \cdot e$
Input variable		Output variable (co-variable)
	x	α
Output abstraction		Input abstraction (let binding)
	$\mu \alpha . C$	$\tilde{\mu} \times . C$
		\ldots

Flow of information

flow of information

$$
\langle v \| \tilde{\mu} x \cdot c\rangle \longrightarrow c\{v / x\}
$$

Flow of information

flow of information
$c\{e / \alpha\} \quad \longleftarrow \quad\langle\mu \alpha \cdot c \| e\rangle$
\Longleftarrow consumptive info

Not so fast. . .

Fundamental dilemma of classical computation

Fundamental dilemma of classical computation

Impact of strategy on substitution

- Call-by-value: Refined notion of "value"
- Subset of producers (terms)
- Variables stand in for values
- Call-by-name: Refined notion of "strict context" ("co-value")
- Subset of consumers (co-terms)
- Co-variables stand in for co-values

Parameterizing by the strategy

- Single calculus uses unspecified "values" and "co-values"
- Only substitute (co-)values for (co-)variables
- Strategy $=$ definition of (co-)values
- Impact of strategy isolated to the two parameterized rules for substitution

Parameterizing by the strategy

$$
\begin{array}{rlrl}
\left(\mu_{E}\right) & \langle\mu \alpha . c \| E\rangle & =c\{E / \alpha\} \\
\left(\tilde{\mu}_{V}\right) & & \langle V \| \tilde{\mu} x . c\rangle & =c\{V / x\} \\
& & \\
\left(\eta_{\mu}\right) & \mu \alpha .\langle v \| \alpha\rangle & =v \\
\left(\eta_{\tilde{\mu}}\right) & \tilde{\mu} x .\langle x \| e\rangle & =e
\end{array}
$$

Some strategies (and their dual)

Call-by-value:

- Variables are values
- Every consumer is a co-value
is dual to...

Call-by-name:

- Every producer is a value
- Co-variables are co-values

Some strategies (and their dual)

Call-by-value:

$$
\begin{gathered}
V \in \text { Value }::=x \quad E \in \text { CoValue }::=e \\
\text { is dual to. } \ldots
\end{gathered}
$$

Call-by-name:

$$
V \in \text { Value }::=v \quad E \in \text { CoValue }::=\alpha
$$

Some strategies (and their dual)

Lazy call-by-value (aka call-by-need):

- Values same as call-by-value
- Co-values may contain delayed let-bindings
is dual to...
Lazy call-by-name:
- Values may contain delayed co-let-bindings (callcc)
- Co-values same as call-by-name

Some strategies (and their dual)

Lazy call-by-value (aka call-by-need):

$$
\begin{aligned}
& V \in \text { Value }::=x \\
& E \in \text { CoValue }::=\alpha \| \tilde{\mu} x .\langle v \| \tilde{\mu} y .\langle x \| E\rangle\rangle \\
& \text { is dual to. } .
\end{aligned}
$$

Lazy call-by-name:

$$
\begin{aligned}
& \quad V \in \text { Value }::=x \mid \mu \alpha \cdot\langle\mu \beta .\langle V \| \alpha\rangle \| e\rangle \\
& E \in \text { CoValue }::=\alpha
\end{aligned}
$$

Two dual approaches to organize information

Data types

- Defined by rules of creation (constructors)
- Producer: fixed shapes given by constructors
- Consumer: case analysis on constructions
- Like ADTs in ML and Haskell

Declaring sums as data

(G)ADT:

data Either a b where

$$
\begin{aligned}
& \text { Left }:: a \rightarrow \text { Either } a b \\
& \text { Right }:: b \rightarrow \text { Either } a b
\end{aligned}
$$

Sequent:
data $a \oplus b$ where

$$
\begin{array}{r}
\text { Left : } a \vdash a \oplus b \mid \\
\text { Right : } b \vdash a \oplus b \mid
\end{array}
$$

Declaring sums as data

- Producer: two constructors (left or right)

$$
\operatorname{Left}\left(v_{1}\right) \quad \operatorname{Right}\left(v_{2}\right)
$$

- Consumer: consider shape of input
- "If I'm given Left, do this"
- "If I'm given Right, do that"

$$
\tilde{\mu}\left[\operatorname{Left}(x) \cdot c_{1} \mid \operatorname{Right}(y) \cdot c_{2}\right]
$$

Co-data types

- Defined by rules of observation (messages)
- Consumer: fixed shapes given by observations
- Producer: case analysis on messages
- Like interfaces for abstract objects

Declaring products as co-data

codata a \& b where

First: $\mid a \& b \vdash a$

$$
\text { Second : } \mid a \& b \vdash b
$$

Declaring products as co-data

- Consumer: two observations (first or second)

First $\left[e_{1}\right] \quad$ Second $\left[e_{2}\right]$

- Producer: consider shape of output
- "If I'm asked for first, do this"
- "If I'm asked for second, do that"
$\mu\left(\right.$ First $[\alpha] . c_{1} \mid$ Second $\left.[\beta] . c_{2}\right)$

Declaring functions as co-data

codata $a \rightarrow b$ where

$$
\text { Call : } a \mid a \rightarrow b \vdash b
$$

Declaring functions as co-data

- Consumer: one observation (function call)
- Argument
- What to do with result

$$
\text { Call }[v, e]
$$

- Producer: consider shape of output
- Function pops argument off call-stack

$$
\mu(\text { Call }[x, \alpha] \cdot c)=\lambda x \cdot \mu \alpha \cdot c
$$

Evaluating data and co-data

- Two fundamental principles of data and co-data:
- β : Case analysis breaks apart structure
- η : Forwarding is unobservable
- Does not perform substitution
- And therefore does not reference strategy
- Hold in the presence of effects (control, non-termination)

Evaluating functions as co-data

$$
\begin{aligned}
(\beta) \quad\left\langle\lambda x \cdot v^{\prime} \| v \cdot e\right\rangle & =\left\langle v \| \tilde{\mu} x \cdot\left\langle v^{\prime} \| e\right\rangle\right\rangle \\
(\eta) \quad \lambda x \cdot \mu \alpha \cdot\langle z \| x \cdot \alpha\rangle & =z
\end{aligned}
$$

$(\beta) \quad\langle\mu(\mathrm{Call}[x, \alpha] . c) \| \mathrm{Call}[v, e]\rangle=\langle v \| \tilde{\mu} x .\langle\mu \alpha . c \| e\rangle\rangle$
(η) $\mu($ Call $[x, \alpha] \cdot\langle z \| \operatorname{Call}[x, \alpha]\rangle)=z$

Evaluating sums as data

(β) $\quad\left\langle\operatorname{Left}(v) \| \begin{array}{cc}\tilde{\mu}[\operatorname{Left}(x) . & c_{1} \\ \mid \operatorname{Right}(y) . & \left.c_{2}\right]\end{array}\right\rangle=\left\langle v \| \tilde{\mu} x \cdot c_{1}\right\rangle$
(β) $\quad\langle\operatorname{Right}(v)$
$\left.\left.\mid \operatorname{Right}(y) . \quad c_{2}\right]\right\rangle=\left\langle v \mid \tilde{\mu} y \cdot c_{2}\right\rangle$
(η)
$\tilde{\mu}[\operatorname{Left}(x) . \quad\langle\operatorname{Left}(x) \| \gamma\rangle$
$\mid \operatorname{Right}(y) . \quad\langle\operatorname{Right}(y) \| \gamma\rangle]=\gamma$

Evaluating products as co-data

$\left.\begin{array}{l}\left.(\beta) \quad\left\langle\begin{array}{cc}\mu(\text { First }[\alpha] . & c_{1} \\ \mid \text { Second }[\beta] . & c_{2}\end{array}\right) \| \text { First }[e]\right\rangle\end{array}=\left\langle\mu \alpha \cdot c_{1} \| e\right\rangle \begin{array}{l}\text { (First }[\alpha] . \\ c_{1} \\ \mid \operatorname{Second}[\beta] . \\ c_{2}\end{array}\right) \|$ Second[e] $\rangle=\left\langle\mu \beta \cdot c_{2} \| e\right\rangle$
(η) $\quad \begin{array}{ll}\mu(\text { First }[\alpha] . & \langle z \| \text { First }[\alpha]\rangle \\ & \mid \text { Second }[\beta] .\end{array} \begin{array}{ll}\langle z \| \text { Second }[\beta]\rangle)\end{array}=z$

General characterization of data and co-data

- Constructors dual to messages, case abstractions dual to abstract objects
- All basic connectives of linear/polarized logic fit into same general pattern
- The ordinary: $\rightarrow, \otimes, \oplus, \&, \ldots$
- The exotic: $\mathfrak{P}, \neg, \ldots$
- All other behavior derived from β, η, and substitution:
- Usual call-by-name and call-by-value λ-calculus β and η rules
- Wadler's (2003) ς rules for lifting components out of structures

Summary

- Single theory of the sequent calculus parameterized by various strategies
- User-defined data and co-data defined by β and η independent of strategy
- Illustrate call-by-name, call-by-value, and lazy versions of both

Summary

- Generalize known dualities of computation
- General duality between various strategies
- General duality between data and co-data types
- Two or more strategies in the same program
- Use kinds to denote strategies
- Well-kindedness preserves consistency
- Extends the polarized view of evaluation strategy

Questions?

¡S」ӘMSU \forall

Interleaving multiple strategies

Conflicts between strategies

$$
\left\langle\mu \alpha \cdot c_{1} \| \tilde{\mu} x \cdot c_{2}\right\rangle
$$

	$\mu \alpha \cdot c_{1}$	$\tilde{\mu} x \cdot c_{2}$
CBV	non-value	co-value
CBN	value	non-co-value

Conflicts between strategies

$$
\left\langle\mu \alpha \cdot c_{1} \| \tilde{\mu} x \cdot c_{2}\right\rangle
$$

	$\mu \alpha \cdot c_{1}$	$\tilde{\mu} x \cdot c_{2}$
CBV	non-value	co-value
CBN	value	non-co-value

Conflicts between strategies

$$
\left\langle\mu \alpha \cdot c_{1} \| \tilde{\mu} x \cdot c_{2}\right\rangle
$$

	$\mu \alpha \cdot c_{1}$	$\tilde{\mu} x \cdot c_{2}$
CBV	non-value	co-value
CBN	value	non-co-value

Conflicts between strategies

$$
\left\langle\mu \alpha \cdot c_{1} \| \tilde{\mu} x \cdot c_{2}\right\rangle
$$

	$\mu \alpha \cdot c_{1}$	$\tilde{\mu} x \cdot c_{2}$
CBV	non-value	co-value
CBN	value	non-co-value

non-deterministic

Conflicts between strategies

$$
\left\langle\mu \alpha \cdot c_{1} \| \tilde{\mu} x \cdot c_{2}\right\rangle
$$

	$\mu \alpha \cdot c_{1}$	$\tilde{\mu} x \cdot c_{2}$
CBV	non-value	co-value
CBN	value	non-co-value

stuck

Well-kindedness preserves consistency

$$
\frac{\Gamma \vdash v:: \mathcal{S}|\Delta \quad \Gamma| e:: \mathcal{S} \vdash \Delta}{\langle v \| e\rangle: \Gamma \vdash \Delta} C u t
$$

- $\langle C B V \| C B V\rangle$: well-kinded, call-by-value command
- $\langle C B N \| C B N\rangle$: well-kinded, call-by-name command
- $\langle C B V \| C B N\rangle$: ill-kinded, non-deterministic command
- $\langle C B N \| C B V\rangle$: ill-kinded, stuck command

The polarized regime

... as an instance of the general theory:

- Only two kinds (therefore only two strategies)
- Positive: call-by-value
- Negative: call-by-name
- Pick strategy of (co-)data types to maximize η
- Positive: data
- Negative: co-data

Annotating variables

$$
\begin{array}{cc}
\overline{\Gamma, x:: \mathcal{S} \vdash x^{\mathcal{S}}:: \mathcal{S} \mid \Delta} \operatorname{Var} & \overline{\Gamma \mid \alpha^{\mathcal{S}}:: \mathcal{S} \vdash \alpha:: \mathcal{S}, \Delta} \text { CoVar } \\
\frac{c:(\Gamma \vdash \alpha:: \mathcal{S}, \Delta)}{\Gamma \vdash \mu \alpha^{\mathcal{S}} . c:: \mathcal{S} \mid \Delta} \text { Act } & \frac{c:(\Gamma, x:: \mathcal{S} \vdash \Delta)}{\Gamma \mid \tilde{\mu} \mathcal{S} . c:: \mathcal{S} \vdash \Delta} \operatorname{CoAct}
\end{array}
$$

The problem with annotating commands

- Annotating commands (cuts) with a strategy:
- $\langle v \| e\rangle^{\nu}$: call-by-value
- $\langle v \| e\rangle^{\mathcal{N}}$: call-by-name
- Loss of determinism

