The Duality of Construction

Paul Downen Zena M. Ariola

University of Oregon

April 9, 2014

The sequent calculus

Sequent calculus vs. Natural deduction

» Natural deduction tells us about pure functional
programming

» Sequent calculus tells us about programming with
duality

» Flow of Information: producers are dual to consumers
» Evaluation: Call-by-value is dual to call-by-name

» Construction: data structures are dual to co-data (abstract
objects with procedural interface)

Previous Work

» Curien and Herbelin (2000)
» Wadler (2003, 2005)
» Zeilberger (2008, 2009)

» Munch-Maccagnoni (2009) and Curien (2010)

Sequent calculus: a symmetric language

Commands ¢

(v]e)
Producers v | Consumers e (contexts)
Function abstraction Function call (call stack)
AX.v v-e
Input variable Output variable (co-variable)
X a
Output abstraction Input abstraction (let binding)
pee.c px.c

Flow of information

flow of information

lixe) —— c{v/x}

productive info

Flow of information

flow of information

clefa} —— (uacle)

consumptive info

Not so fast. ..

Fundamental dilemma of classical computation

(pov.a|fix.c2)

PN

c {(fix.co)/a} o {(na.ct)/x}

Fundamental dilemma of classical computation

(p—cfi-.c2)

N

c1 (&}

Impact of strategy on substitution

» Call-by-value: Refined notion of “value”
» Subset of producers (terms)

» Variables stand in for values

» Call-by-name: Refined notion of “strict context”
("“co-value”)
» Subset of consumers (co-terms)

» Co-variables stand in for co-values

Parameterizing by the strategy

» Single calculus uses unspecified “values” and
“co-values”

» Only substitute (co-)values for (co-)variables
» Strategy = definition of (co-)values

» Impact of strategy isolated to the two
parameterized rules for substitution

Parameterizing by the strategy

(1E) (po.c|E) = c{E/a}
(fiv) (V]fix.c) = c{V/x}
(1) pa(vja) = v

() fix-(x|e) = e

Some strategies (and their dual)

Call-by-value:
» Variables are values
» Every consumer is a co-value
is dual to. ..
Call-by-name:

» Every producer is a value

» Co-variables are co-values

Some strategies (and their dual)

Call-by-value:

V € Value ::= x E € CoValue ::= e

is dual to. ..

Call-by-name:

V € Value :=v E € CoValue ::= «

Some strategies (and their dual)

Lazy call-by-value (aka call-by-need):

» Values same as call-by-value

» Co-values may contain delayed let-bindings

is dual to. ..
Lazy call-by-name:
» Values may contain delayed co-let-bindings (callcc)

» Co-values same as call-by-name

Some strategies (and their dual)

Lazy call-by-value (aka call-by-need):

V € Value ::= x
E € CoValue ::= o | fix.(v|iy.(x|E))

is dual to. ..

Lazy call-by-name:

V € Value ::= x | pa.(uB.(V]a)|e)
E € CoValue := «

Two dual approaches to
organize information

Data types

Defined by rules of creation (constructors)

v

Producer: fixed shapes given by constructors

v

v

Consumer: case analysis on constructions

Like ADTs in ML and Haskell

v

Declaring sums as data

(G)ADT:
data Either a bwhere
Left :: a — Eithera b
Right :: b — Eithera b
Sequent:

data a & bwhere
Left: a b a @ b
Right : bF a® b

Declaring sums as data

» Producer: two constructors (left or right)
Left(vy) Right(v»)

» Consumer: consider shape of input
» “If I'm given Left, do this"

» “If I'm given Right, do that”

fi[Left(x).c1| Right(y).c]

Co-data types

v

Defined by rules of observation (messages)

Consumer: fixed shapes given by observations

v

v

Producer: case analysis on messages

v

Like interfaces for abstract objects

Declaring products as co-data

codata a & bwhere
First: [a& bl a
Second : |a& bF b

Declaring products as co-data

» Consumer: two observations (first or second)
First[e] Second[e]

» Producer: consider shape of output
» “If I'm asked for first, do this"

» “If I'm asked for second, do that”

p(First[a].ci| Second[S].c2)

Declaring functions as co-data

codata a — bwhere
Call s ala— bk b

Declaring functions as co-data

» Consumer: one observation (function call)
» Argument

» What to do with result
Call[v, €]

» Producer: consider shape of output
» Function pops argument off call-stack

p(Call[x, a].c) = Ax.pa.c

Evaluating data and co-data

» Two fundamental principles of data and co-data:
» [: Case analysis breaks apart structure

» 1. Forwarding is unobservable

» Does not perform substitution
» And therefore does not reference strategy

» Hold in the presence of effects (control, non-termination)

Evaluating functions as co-data

(5) (A vv - e) = (v]fix.(v'] e})

() Mxpa(zlx-a) =z

(8) (u(Calllx, al.c)|Calllv, e]) = {v]fix.(ua.cle))

(n) p(Calllx, a].(z|Call[x,a])) = z

Evaluating sums as data

[Left(x). ¢

) <Left(v) | Right(y). <]
i Left(x). ¢
| Right(y). o]

0

= (v]fiy.c2)

> = (v|fix.c1)
(8) <Right(v) >
fif Left(x). (Left(x)]v)

) [Right(y). (Right(y)|7)] ~

Evaluating products as co-data

u(First[a]. i
(B) < | Second[].)

9) < w(First[a]. a

First[e]> = (pa.ci|e)

| Second[5].)

Second[e]> = (up.c|e)

) w(First[a]. (z|First[a]) _,
| Second[3]. (z|Second[5]))

General characterization of data and co-data

» Constructors dual to messages, case abstractions dual to
abstract objects

» All basic connectives of linear/polarized logic fit into same
general pattern
» The ordinary: —, ®, @, &, ...

» The exotic: %, —, ...

» All other behavior derived from 3, 1, and substitution:
» Usual call-by-name and call-by-value A-calculus 8 and 7 rules

» Wadler's (2003) s rules for lifting components out of structures

Summary

» Single theory of the sequent calculus
parameterized by various strategies

» User-defined data and co-data defined by 5 and n
independent of strategy

» lllustrate call-by-name, call-by-value, and lazy
versions of both

Summary

» Generalize known dualities of computation
» General duality between various strategies

» General duality between data and co-data types

» Two or more strategies in the same program
» Use kinds to denote strategies

» Well-kindedness preserves consistency

» Extends the polarized view of evaluation strategy

Questions?

@

| SIOMSUY/

Interleaving multiple strategies

Conflicts between strategies

(pa.ci|fix.c2)

Q. C [1X.Co

CBV || non-value co-value

CBN value non-co-value

Conflicts between strategies

(pa.ci|fix.c2)

Q. C [1X.Co
CBV | non-value co-value
CBN value non-co-value

OK

Conflicts between strategies

(pa.ci|fix.c2)

Q. C [1X.Co
CBV | non-value co-value
CBN value non-co-value

OK

Conflicts between strategies

(pa.ci|fix.c2)

L. cy [AX.Co
CBV || non-value co-value
CBN value non-co-value

non-deterministic

Conflicts between strategies

(pa.ci|fix.c2)

Q. C [1X.Co
CBV || non-value co-value
CBN value non-co-value

stuck

Well-kindedness preserves consistency

>

>

>

>

(
(
(
(

FEvaSIA Tlex:SFEFA

CBV|CBV):

CBN|CBN
CBV/|CBN
CBN|CBV

)
):
):

ey :TFA Cut

well-kinded, call-by-value command
well-kinded, call-by-name command
ill-kinded, non-deterministic command

ill-kinded, stuck command

The polarized regime

...as an instance of the general theory:
» Only two kinds (therefore only two strategies)

» Positive: call-by-value
» Negative: call-by-name

» Pick strategy of (co-)data types to maximize 7
» Positive: data

» Negative: co-data

Annotating variables

V. CoV.
Mx:SkxS:SA e Mo = Ska:S,A ovar

c:(FI—a::S,A)A c:(Mx:SkFA)
t
M- pad.c:: S|A ‘ MixS.c:: SFA

CoAct

The problem with annotating commands

» Annotating commands (cuts) with a strategy:
> (v|e)V: call-by-value

» (v|eYV: call-by-name

» Loss of determinism
(e ix-(xli)Y

NU,}

(p—c1]fi—c2)” (p—ci| i)V

I f

G %]

	Introduction
	Sequent calculus as a language
	Fundamental dilemma

	Substitution and strategies
	Data and co-data
	Conclusion
	Kinds and multiple strategies

