
The Duality of Construction

Paul Downen Zena M. Ariola

University of Oregon

April 9, 2014

The sequent calculus

Sequent calculus vs. Natural deduction

I Natural deduction tells us about pure functional
programming

I Sequent calculus tells us about programming with
duality

I Flow of Information: producers are dual to consumers

I Evaluation: Call-by-value is dual to call-by-name

I Construction: data structures are dual to co-data (abstract
objects with procedural interface)

Previous Work

I Curien and Herbelin (2000)

I Wadler (2003, 2005)

I Zeilberger (2008, 2009)

I Munch-Maccagnoni (2009) and Curien (2010)

Sequent calculus: a symmetric language

Commands c

〈v ||e〉

Producers v Consumers e (contexts)
Function abstraction

λx .v
Function call (call stack)

v · e
Input variable

x
Output variable (co-variable)

α
Output abstraction

µα.c
Input abstraction (let binding)

µ̃x .c
.

Flow of information

〈v ||µ̃x .c〉 c {v/x}

flow of information

productive info

Flow of information

c {e/α} 〈µα.c||e〉

flow of information

consumptive info

Not so fast. . .

Fundamental dilemma of classical computation

〈µα.c1||µ̃x .c2〉

c1 {(µ̃x .c2)/α} c2 {(µα.c1)/x}

Fundamental dilemma of classical computation

〈µ .c1||µ̃ .c2〉

c1 c2

Impact of strategy on substitution

I Call-by-value: Refined notion of “value”
I Subset of producers (terms)

I Variables stand in for values

I Call-by-name: Refined notion of “strict context”
(“co-value”)

I Subset of consumers (co-terms)

I Co-variables stand in for co-values

Parameterizing by the strategy

I Single calculus uses unspecified “values” and
“co-values”

I Only substitute (co-)values for (co-)variables

I Strategy = definition of (co-)values

I Impact of strategy isolated to the two
parameterized rules for substitution

Parameterizing by the strategy

(µE) 〈µα.c||E 〉 = c {E/α}
(µ̃V) 〈V ||µ̃x .c〉 = c {V /x}

(ηµ) µα.〈v ||α〉 = v
(ηµ̃) µ̃x .〈x ||e〉 = e

Some strategies (and their dual)

Call-by-value:

I Variables are values

I Every consumer is a co-value

is dual to. . .

Call-by-name:

I Every producer is a value

I Co-variables are co-values

Some strategies (and their dual)

Call-by-value:

V ∈ Value ::= x E ∈ CoValue ::= e

is dual to. . .

Call-by-name:

V ∈ Value ::= v E ∈ CoValue ::= α

Some strategies (and their dual)

Lazy call-by-value (aka call-by-need):

I Values same as call-by-value

I Co-values may contain delayed let-bindings

is dual to. . .

Lazy call-by-name:

I Values may contain delayed co-let-bindings (callcc)

I Co-values same as call-by-name

Some strategies (and their dual)

Lazy call-by-value (aka call-by-need):

V ∈ Value ::= x
E ∈ CoValue ::= α || µ̃x .〈v ||µ̃y .〈x ||E 〉〉

is dual to. . .

Lazy call-by-name:

V ∈ Value ::= x || µα.〈µβ.〈V ||α〉||e〉
E ∈ CoValue ::= α

Two dual approaches to
organize information

Data types

I Defined by rules of creation (constructors)

I Producer: fixed shapes given by constructors

I Consumer: case analysis on constructions

I Like ADTs in ML and Haskell

Declaring sums as data

(G)ADT:

dataEither a bwhere
Left :: a→ Either a b

Right :: b → Either a b

Sequent:
data a⊕ bwhere

Left : a ` a⊕ b|
Right : b ` a⊕ b|

Declaring sums as data

I Producer: two constructors (left or right)

Left(v1) Right(v2)

I Consumer: consider shape of input
I “If I’m given Left, do this”

I “If I’m given Right, do that”

µ̃[Left(x).c1|Right(y).c2]

Co-data types

I Defined by rules of observation (messages)

I Consumer: fixed shapes given by observations

I Producer: case analysis on messages

I Like interfaces for abstract objects

Declaring products as co-data

codata a & bwhere
First : |a & b ` a

Second : |a & b ` b

Declaring products as co-data

I Consumer: two observations (first or second)

First[e1] Second[e2]

I Producer: consider shape of output
I “If I’m asked for first, do this”

I “If I’m asked for second, do that”

µ(First[α].c1| Second[β].c2)

Declaring functions as co-data

codata a→ bwhere
Call : a|a→ b ` b

Declaring functions as co-data

I Consumer: one observation (function call)
I Argument

I What to do with result

Call[v , e]

I Producer: consider shape of output
I Function pops argument off call-stack

µ(Call[x , α].c) = λx .µα.c

Evaluating data and co-data

I Two fundamental principles of data and co-data:
I β: Case analysis breaks apart structure

I η: Forwarding is unobservable

I Does not perform substitution
I And therefore does not reference strategy

I Hold in the presence of effects (control, non-termination)

Evaluating functions as co-data

(β) 〈λx .v ′||v · e〉 = 〈v ||µ̃x .〈v ′||e〉〉

(η) λx .µα.〈z ||x · α〉 = z

(β) 〈µ(Call[x , α].c)||Call[v , e]〉 = 〈v ||µ̃x .〈µα.c||e〉〉

(η) µ(Call[x , α].〈z ||Call[x , α]〉) = z

Evaluating sums as data

(β)

〈
Left(v)

∣∣∣∣∣
∣∣∣∣∣ µ̃[Left(x). c1

|Right(y). c2]

〉
= 〈v ||µ̃x .c1〉

(β)

〈
Right(v)

∣∣∣∣∣
∣∣∣∣∣ µ̃[Left(x). c1

|Right(y). c2]

〉
= 〈v ||µ̃y .c2〉

(η)
µ̃[Left(x). 〈Left(x)||γ〉
|Right(y). 〈Right(y)||γ〉]

= γ

Evaluating products as co-data

(β)

〈
µ(First[α]. c1

| Second[β]. c2)

∣∣∣∣∣
∣∣∣∣∣First[e]

〉
= 〈µα.c1||e〉

(β)

〈
µ(First[α]. c1

| Second[β]. c2)

∣∣∣∣∣
∣∣∣∣∣Second[e]

〉
= 〈µβ.c2||e〉

(η)
µ(First[α]. 〈z ||First[α]〉
| Second[β]. 〈z ||Second[β]〉)

= z

General characterization of data and co-data

I Constructors dual to messages, case abstractions dual to
abstract objects

I All basic connectives of linear/polarized logic fit into same
general pattern

I The ordinary: →, ⊗, ⊕, &, . . .

I The exotic: `, ¬, . . .

I All other behavior derived from β, η, and substitution:
I Usual call-by-name and call-by-value λ-calculus β and η rules

I Wadler’s (2003) ς rules for lifting components out of structures

Summary

I Single theory of the sequent calculus
parameterized by various strategies

I User-defined data and co-data defined by β and η
independent of strategy

I Illustrate call-by-name, call-by-value, and lazy
versions of both

Summary

I Generalize known dualities of computation
I General duality between various strategies

I General duality between data and co-data types

I Two or more strategies in the same program
I Use kinds to denote strategies

I Well-kindedness preserves consistency

I Extends the polarized view of evaluation strategy

Questions?

Y
Answers!

Interleaving multiple strategies

Conflicts between strategies

〈µα.c1||µ̃x .c2〉

µα.c1 µ̃x .c2
CBV non-value co-value
CBN value non-co-value

Conflicts between strategies

〈µα.c1||µ̃x .c2〉

µα.c1 µ̃x .c2
CBV non-value co-value
CBN value non-co-value

OK

Conflicts between strategies

〈µα.c1||µ̃x .c2〉

µα.c1 µ̃x .c2
CBV non-value co-value
CBN value non-co-value

OK

Conflicts between strategies

〈µα.c1||µ̃x .c2〉

µα.c1 µ̃x .c2
CBV non-value co-value
CBN value non-co-value

non-deterministic

Conflicts between strategies

〈µα.c1||µ̃x .c2〉

µα.c1 µ̃x .c2
CBV non-value co-value
CBN value non-co-value

stuck

Well-kindedness preserves consistency

Γ ` v :: S|∆ Γ|e :: S ` ∆

〈v ||e〉 : Γ ` ∆
Cut

I 〈CBV ||CBV 〉: well-kinded, call-by-value command

I 〈CBN||CBN〉: well-kinded, call-by-name command

I 〈CBV ||CBN〉: ill-kinded, non-deterministic command

I 〈CBN||CBV 〉: ill-kinded, stuck command

The polarized regime

. . . as an instance of the general theory:
I Only two kinds (therefore only two strategies)

I Positive: call-by-value

I Negative: call-by-name

I Pick strategy of (co-)data types to maximize η
I Positive: data

I Negative: co-data

Annotating variables

Γ, x :: S ` xS :: S|∆
Var

Γ|αS :: S ` α :: S,∆
CoVar

c : (Γ ` α :: S,∆)

Γ ` µαS .c :: S|∆
Act

c : (Γ, x :: S ` ∆)

Γ|µ̃xS .c :: S ` ∆
CoAct

The problem with annotating commands

I Annotating commands (cuts) with a strategy:
I 〈v ||e〉V : call-by-value

I 〈v ||e〉N : call-by-name

I Loss of determinism

〈µ .c1||µ̃x .〈x ||µ̃ .c2〉V〉N

〈µ .c1||µ̃ .c2〉N

c2

µ̃

〈µ .c1||µ̃ .c2〉V

c1

µ

µ̃ µ̃ or ηµ̃

	Introduction
	Sequent calculus as a language
	Fundamental dilemma

	Substitution and strategies
	Data and co-data
	Conclusion
	Kinds and multiple strategies

