Continuations, Processes, and Sharing

Paul Downen, Luke Maurer, Zena M. Ariola,
Daniele Varacca

University of Oregon, Université Paris Diderot

September 8, 2014

The plethora of semantic artifacts

» Many ways to understand programming
languages:
» small-step semantics

» big-step semantics (natural semantics)
» abstract machines

» continuation-passing style transformations

> ..

» Different tools; different views
» High-level reasoning

» Low-level reasoning

» Proof development

Getting along together

Q But which one to choose?

Getting along together

Q But which one to choose?

A All of them!

Getting along together

Q But which one to choose?
A All of them!

Q But how do we know that they agree?

Getting along together

Q But which one to choose?
A All of them!
Q But how do we know that they agree?

A Systematic inter-derivation; correct by
construction (Danvy et al.)

Processes as a semantic tool

» Embedding into processes (7-calculus)
» Computation as communication

» Strong resemblance to continuation-passing

Processes as a semantic tool

» Embedding into processes (7-calculus)
» Computation as communication

» Strong resemblance to continuation-passing

What do processes have to offer?

» Some computations more direct in 7- than
A-calculus
» Concurrency

» Non-determinism

» Change over time

» Simple story for memoization

» Reveals techniques in implementations of lazy
languages
» “Black holes” in GHC

From continuations to processes

Example: function composition

Transform the function composition

f(gl)

into a process

Result-named style

Name intermediate results of serious computations:

f(g1)
goes to

lety=g linfy

Continuation-passing style

Rewrite into continuations:
lety=g linfy
goes to

g(1, (Ay. f(y,ret)))

Value-named style

Name all serious values:

g(1, (Ay. f(y,ret)))

goes to

let k = \y. f(y,ret)in g(1, k)

Environment-based CPS

Rewrite into explicit environment:
let k = \y. f(y,ret) in g(1, k)
goes to

vk. k= A\y.f(y,ret)in g(1, k)

Process encoding

Rewrite into processes:
vk. k= MAy.f(y,ret)in g(1, k)
goes to

vk (1k(y). Fly, ret) | Z(1, k)

Uniform CPS transform (CBN and CBYV)
Clx] & Mk.x k
C[Ax. M] & \k. k (A(x, k). C[M]K)

Call-by-name
CIMN] £ Xk.C[M](Av.v (MK .C[N]K, k))

Call-by-value
C[MN] £ Xk.C[M](Av.C[N] (Aw.v (MK K'w, k)))

Uniform CPS to Uniform m-encoding

Clx]k = x k
NoC[x]k =x k
P o N oC[x]k = x(k)

Cl x. M)k = k (\(x, k").C[M]kK")
NoC[Mx. Mk =vf.f=Xx,k').N oC[M]k' ink f
PoN oC[Mx. Mk = vf (If(x, K').P o N o C[M]K | k(f))

Interlude: Of variables and
values

A mismatch

Soundness: steps in source are steps in target
(A Ay.y)z=Ay.y

This is invalid by CBV transform of application:

Cl(Ax. Ay.y)z] = Mk.z (Aw.C[\y. y]k)
7 Clhy.y]

Variables are not values

Clx] & \k.x k

In CBN we need to execute a computation
In CBV we need to lookup or fetch the value

Plotkin CBV Restricted CBV
Values: V :i=x|Ax.M V=M
Evaluation Contexts: E==[]|EM|VE E:=[]|EM|VE

(Ax. M)V = M{V/x} (Bv)

Correctness bisimulation

Criteria for correctness

A transformation should preserve observable results
of a program:

» Termination: the program reaches an answer
» Divergence: the program loops forever

» Getting stuck: the program cannot proceed

How the proof should go

> T[] preserves immediate results
» If M is an answer then T[M] is an answer

> ..

» T[] preserves reduction

M——— N

3 3
TIM] — TN

How the proof actually goes

» T[] preserves immediate results
» If M is an answer then T[M] reaches an answer

> ..

» T[] preserves reduction

M——— N

3 3
TIM] — TN

How the proof actually goes

» T[] preserves immediate results
» If M is an answer then T[M] reaches an answer

> ..

» T[] preserves reduction?

M—— N

$ $
TIM] TIN] —» P
~__

How the proof actually goes

» T[] preserves immediate results
» If M is an answer then T[M)] reaches an answer

>...

» T[] preserves reduction???

Mr— N
3 3
TimMl TN

\ ?

Q@

Out-of-synch computations: administration

Source:

(Ax. x)(Ay.y) — Ay.y
Target:
C[(Ax. x)(Ay.y)] ret — ret (A(y, k). (AK".y k') k)

C[My.y] ret — ret (A(y, k). (A\K'.y k') k)

Out-of-synch computations: aliasing
Source:
(M. g(f, 1)) (Ax. x) — g((Ax. x), (Ax. x))
Target:

NN g(f, F))(Ax.x)]
=vi.i=XMx.xin(Af.g(f,f))i
— vi. i = Ax.xin g(i, i)

Ng((Mx.x), (Ax. x))]

=vi.i = x.xinvj.j = Xx.xin g(i,])

Reasoning up to out-of-synch administration

Define an administrative free transform (Danvy and
Nielsen TCS 2003)

— N

NN

=
=

TIN]

|-

Q

“—
L
Q.

|

Reasoning up to out-of-synch administration

Reason up to bisimulation

M+— N

Pr—»Q

M ~ P iff T[M] ret —»,4 P

Reasoning up to out-of-synch aliasing

Reason up to bisimulation

M+—— N

Pr——Q

M ~ P iff M= N"1(P)

Bisimulation technique
Start out similar

M
TIM]
Keep being similar
M +— N M =% N
Pr-»Q P— Q
End up similar
M| M N |

~ ~

Pr-» Q1 QI

One direction suffices

The forward direction sufficient if (Leroy):

» The source language is deterministic;

» No infinite loop in source terminates in target

Dichotomy of source reductions (Danvy and Zerny,
PPDP'13) guarantees point 2:

» Proper reduction must cause work in target

» Administrative reduction must terminate

Sharing

Call-by-need evaluation

letx=1+21In x *xx

Call-by-need evaluation

letx=1+21In x *xx

Call-by-need evaluation

letx=1+2in x xx

Call-by-need evaluation

letx=1+2in x xx
— letx =3 in x x x

Call-by-need evaluation

letx=1+2in x xx
— letx =3 in x x x

— letx=3In3x x

Call-by-need evaluation

letx=1+2in x xx
— letx =3 in x x x

— letx=3In3x x

Call-by-need evaluation

letx=1+2in x xx
— letx =3 in x x x

— letx=3In3x x

Call-by-need evaluation

letx=1+2inx * x
— let x = 3 in x * x
— letx=3iIn3x% x
— letx=3in3x%x3

Call-by-need evaluation

letx=1+2inx *x
— letx = 3 in x * x
— letx=3iIn3x% x
— letx=3in3x%3

Call-by-need evaluation

letx=1+2inx * x
— let x = 3 in x * x
— letx=3iIn3x% x
— letx=3in3x%x3
— letx=3in9

Call-by-need and stateful CPS

Okasaki call-by-need CPS using assignment

C[x] = k. x k
C[Mx. M] = Xk. k (\(x, K').C[M]K")
C[MN] & Xk.C[M](\v.vx.

x = memoy(N) in v(x, k))

memo,(N) £ Mk.C[N](Aw. x = (AK'. k" w)in k w)

On liveness of variables

» First evaluate M, with N assigned to x
letx=Nin M

» When x is forced, evaluate N and x is no longer
in scope

let x = N in E[x]

» When N becomes V/, continue in body with V
assigned to x

let x = Vin E[V]

Constructive update

Initial binding is ephemeral, disappears on lookup

vf.f =1 memos(N)inf k
— vf. memos(N)k

Updated binding is permanent, always available and
can never be changed

vi.f=Vinf k
—svf.f =VinV k

Call-by-need and constructive update CPS

Thunking protocol strictly enforced (thunks only
evaluated once):

C[x] = k. x k
C[Mx. M] = Xk. k (\(x, K').C[M]K')
C[MN] & Xk.C[M](\v.vx.

x =1 memoy(N) in v(x, k))

memo,(N) £ Mk.C[N](Aw. x = (AK'. k" w)in k w)

Constructive update in the 7-calculus

Permanent assignment: replicated server

Plx = Ay. Min N] = Ix(y). P[M] | P[N]
Ephemeral assignment: unreplicated server

Plx =1 Ay. Min N] = x(y). P[M] | P[N]

Processes can now responsively change their behavior

Constructive update in machines

» Suspended computations removed on retrieval
(Sestoft)

» Thunks become dead when forced
» “Black holes” in GHC

» Practical implementation techniques reflected by
theory

Conclusions

» Program transformation from CPS to processes
» Unite CBN and CBV with CBNeed
» Constructive update model of memoization

» CPS A-calculus for change over time

Conclusions

» Program transformation from CPS to processes
» Unite CBN and CBV with CBNeed

» Constructive update model of memoization

» CPS A-calculus for change over time

» Reminder: Decisions have consequences; live with
them

Questions?

