
Continuations, Processes, and Sharing

Paul Downen, Luke Maurer, Zena M. Ariola,
Daniele Varacca

University of Oregon, Université Paris Diderot

September 8, 2014

The plethora of semantic artifacts

I Many ways to understand programming
languages:

I small-step semantics

I big-step semantics (natural semantics)

I abstract machines

I continuation-passing style transformations

I . . .

I Different tools; different views
I High-level reasoning

I Low-level reasoning

I Proof development

Getting along together

Q But which one to choose?

A All of them!

Q But how do we know that they agree?

A Systematic inter-derivation; correct by
construction (Danvy et al.)

Getting along together

Q But which one to choose?

A All of them!

Q But how do we know that they agree?

A Systematic inter-derivation; correct by
construction (Danvy et al.)

Getting along together

Q But which one to choose?

A All of them!

Q But how do we know that they agree?

A Systematic inter-derivation; correct by
construction (Danvy et al.)

Getting along together

Q But which one to choose?

A All of them!

Q But how do we know that they agree?

A Systematic inter-derivation; correct by
construction (Danvy et al.)

Processes as a semantic tool

I Embedding into processes (π-calculus)

I Computation as communication

I Strong resemblance to continuation-passing

Processes as a semantic tool

I Embedding into processes (π-calculus)

I Computation as communication

I Strong resemblance to continuation-passing

What do processes have to offer?

I Some computations more direct in π- than
λ-calculus

I Concurrency

I Non-determinism

I Change over time

I Simple story for memoization

I Reveals techniques in implementations of lazy
languages

I “Black holes” in GHC

From continuations to processes

Example: function composition

Transform the function composition

f (g 1)

into a process

Result-named style

Name intermediate results of serious computations:

f (g 1)

goes to

let y = g 1 in f y

Continuation-passing style

Rewrite into continuations:

let y = g 1 in f y

goes to

g(1, (λy . f (y , ret)))

Value-named style

Name all serious values:

g(1, (λy . f (y , ret)))

goes to

let k = λy . f (y , ret) in g(1, k)

Environment-based CPS

Rewrite into explicit environment:

let k = λy . f (y , ret) in g(1, k)

goes to

νk. k := λy . f (y , ret) in g(1, k)

Process encoding

Rewrite into processes:

νk. k := λy . f (y , ret) in g(1, k)

goes to

νk (!k(y). f 〈y , ret〉 | g〈1, k〉)

Uniform CPS transform (CBN and CBV)

CJxK , λk. x k

CJλx .MK , λk. k (λ(x , k ′). CJMKk ′)

Call-by-name

CJMNK , λk. CJMK(λv . v (λk ′. CJNKk ′, k))

Call-by-value

CJMNK , λk. CJMK(λv . CJNK (λw . v (λk ′. k ′w , k)))

Uniform CPS to Uniform π-encoding

CJxKk = x k
N ◦ CJxKk = x k

P ◦ N ◦ CJxKk = x〈k〉

CJλx .MKk = k (λ(x , k ′). CJMKk ′)
N ◦ CJλx .MKk = νf . f := λ(x , k ′).N ◦ CJMKk ′ in k f

P ◦ N ◦ CJλx .MKk = νf (!f (x , k ′).P ◦ N ◦ CJMKk ′ | k〈f 〉)

. . .

Interlude: Of variables and
values

A mismatch

Soundness: steps in source are steps in target

(λx . λy . y)z = λy . y

This is invalid by CBV transform of application:

CJ(λx . λy . y)zK = λk. z (λw . CJλy . yKk)
6= CJλy . yK

Variables are not values

CJxK , λk. x k

In CBN we need to execute a computation
In CBV we need to lookup or fetch the value

Plotkin CBV Restricted CBV
Values: V ::= x | λx .M V ::= λx .M

Evaluation Contexts: E ::= [] | EM | VE E ::= [] | EM | VE

(λx .M)V = M{V /x} (βv)

Correctness bisimulation

Criteria for correctness

A transformation should preserve observable results
of a program:

I Termination: the program reaches an answer

I Divergence: the program loops forever

I Getting stuck: the program cannot proceed

How the proof should go

I T J·K preserves immediate results
I If M is an answer then T JMK is an answer

I . . .

I T J·K preserves reduction

M N

T JMK T JNK

How the proof actually goes

I T J·K preserves immediate results
I If M is an answer then T JMK reaches an answer

I . . .

I T J·K preserves reduction

M N

T JMK T JNK

How the proof actually goes

I T J·K preserves immediate results
I If M is an answer then T JMK reaches an answer

I . . .

I T J·K preserves reduction?

M N

T JMK T JNK P

How the proof actually goes

I T J·K preserves immediate results
I If M is an answer then T JMK reaches an answer

I . . .

I T J·K preserves reduction???

M N

T JMK T JNK

Q
?

Out-of-synch computations: administration

Source:

(λx . x)(λy . y) 7−→ λy . y

Target:

CJ(λx . x)(λy . y)K ret 7−→−→ ret (λ(y , k). (λk ′. y k ′) k)

CJλy . yK ret 7−→ ret (λ(y , k). (λk ′. y k ′) k)

Out-of-synch computations: aliasing

Source:

(λf . g(f , f))(λx . x) 7−→ g((λx . x), (λx . x))

Target:

N J(λf . g(f , f))(λx . x)K
= νi . i := λx . x in (λf . g(f , f)) i
7−→ νi . i := λx . x in g(i , i)

N Jg((λx . x), (λx . x))K
= νi . i := λx . x in νj . j := λx . x in g(i , j)

Reasoning up to out-of-synch administration

Define an administrative free transform (Danvy and
Nielsen TCS 2003)

M N

T JMK T JNK

P Q

ad ad

Reasoning up to out-of-synch administration

Reason up to bisimulation

M N

P Q

∼ ∼

M ∼ P iff T JMK ret −→−→ad P

Reasoning up to out-of-synch aliasing

Reason up to bisimulation

M N

P Q

∼ ∼

M ∼ P iff M ≡ N−1〈〈P〉〉

Bisimulation technique
Start out similar

M

T JMK
∼

Keep being similar

M N

P Q
∼ ∼

M N

P Q
∼ ∼

End up similar

M ↓

P Q ↓
∼

M N ↓

Q ↓
∼

One direction suffices

The forward direction sufficient if (Leroy):
I The source language is deterministic;

I No infinite loop in source terminates in target

Dichotomy of source reductions (Danvy and Zerny,
PPDP’13) guarantees point 2:

I Proper reduction must cause work in target

I Administrative reduction must terminate

Sharing

Call-by-need evaluation

let x = 1+ 2 in x ∗ x

7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x

7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x

7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x

7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x

7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x

7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x

7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3

7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3

7−→ let x = 3 in 9

Call-by-need evaluation

let x = 1+ 2 in x ∗ x
7−→ let x = 3 in x ∗ x
7−→ let x = 3 in 3 ∗ x
7−→ let x = 3 in 3 ∗ 3
7−→ let x = 3 in 9

Call-by-need and stateful CPS

Okasaki call-by-need CPS using assignment

CJxK , λk. x k

CJλx .MK , λk. k (λ(x , k ′). CJMKk ′)
CJMNK , λk. CJMK(λv . νx .

x :=memox(N) in v(x , k))

memox(N) , λk. CJNK(λw . x := (λk ′. k ′ w) in k w)

On liveness of variables

I First evaluate M, with N assigned to x

let x = N in M

I When x is forced, evaluate N and x is no longer
in scope

let x = N in E [x]

I When N becomes V , continue in body with V
assigned to x

let x = V in E [V]

Constructive update

Initial binding is ephemeral, disappears on lookup

νf . f :=1 memof (N) in f k
7−→ νf . memof (N)k

Updated binding is permanent, always available and
can never be changed

νf . f := V in f k
7−→ νf . f := V in V k

Call-by-need and constructive update CPS

Thunking protocol strictly enforced (thunks only
evaluated once):

CJxK , λk. x k

CJλx .MK , λk. k (λ(x , k ′). CJMKk ′)
CJMNK , λk. CJMK(λv . νx .

x :=1 memox(N) in v(x , k))

memox(N) , λk. CJNK(λw . x := (λk ′. k ′ w) in k w)

Constructive update in the π-calculus

Permanent assignment: replicated server

PJx := λy .M in NK = !x(y).PJMK | PJNK

Ephemeral assignment: unreplicated server

PJx :=1 λy .M in NK = x(y).PJMK | PJNK

Processes can now responsively change their behavior

Constructive update in machines

I Suspended computations removed on retrieval
(Sestoft)

I Thunks become dead when forced
I “Black holes” in GHC

I Practical implementation techniques reflected by
theory

Conclusions

I Program transformation from CPS to processes

I Unite CBN and CBV with CBNeed

I Constructive update model of memoization

I CPS λ-calculus for change over time

I Reminder: Decisions have consequences; live with
them

Conclusions

I Program transformation from CPS to processes

I Unite CBN and CBV with CBNeed

I Constructive update model of memoization

I CPS λ-calculus for change over time

I Reminder: Decisions have consequences; live with
them

Questions?

