# Compositional Semantics for Composable Continuations

From Abortive to Delimited Control

Paul Downen Zena M. Ariola

University of Oregon

ICFP'14 — September 1, 2014

### The big picture

- Effects that manipulate control flow, compositionally
  - Programs can refer to their context, but . . .
  - Still have local, equational reasoning inside open programs
- Logic is an inspiration, . . .
  - Lessons from logic can fix problems in programming
- Even with an untyped mindset
  - Sometimes, being type-agnostic is liberating!

### Classical control

- callcc is the classic control operator, going back to Scheme
- Classical control corresponds to classical logic (Griffin, 1990)
- Start with pure language, add primitive operations
  - Start with intuitionistic logic, add classical axioms
- ▶ Start with a language with continuation variables
  - Start with a logic with multiple conclusions

### **Delimited control**

- ▶ Delimit the scope of effects
- Continuations compose like functions
- Vastly more expressive power than classical control
  - ▶ Every monadic effect is simulated by delimited control (Filinski, 1994)
  - Exposes "monadic plumbing" underlying CBV languages

Classical

$$\lambda + \text{callcc}$$

Classical



Classical

 $\lambda + \operatorname{callcc}$   $\lambda + \operatorname{shift}_0 + \operatorname{reset}_0$ 

Delimited

## Classical control

### Operational semantics of callco

**Extension of CBV**  $\lambda$ -calculus

```
\begin{array}{c|c} V ::= x \mid \lambda x. M \\ & \mid \mathsf{callcc} & \mathsf{built-in\ function} \\ & \mid [E] & \mathsf{reified\ evaluation\ context} \\ M, N ::= V \mid M \ N \\ E ::= \square \mid E \ M \mid V \ E \end{array}
```

$$E[(\lambda x.M) \ V] \mapsto E[M \{V/x\}]$$

$$E[\text{callcc } V] \mapsto E[V \ [E]]$$

$$E[[E'] \ V] \mapsto E'[V]$$

### Equational theory for callco

- Reason more generally about open programs
- Extension of  $\lambda_c$  (Moggi, 1989)

$$eta_{v}$$
  $(\lambda x.M) \ V = M \{V/x\}$ 
 $\eta_{v}$   $\lambda x.V \ x = V$ 
 $\beta_{\Omega}$   $(\lambda x.E[x]) \ M = E[M]$ 

 Add axioms that explain behavior of built-in callcc function (Sabry and Felleisen, 1993; Sabry, 1996)

## Problems of non-compositionality

- Equational theory weaker than operational semantics!
- ▶ Some programs can be evaluated to a value. . .

$$\mathsf{callcc}(\lambda k.\lambda x.k\ (\lambda_{-}.x)) \mapsto (\lambda x.[\Box]\ (\lambda_{-}.x))$$

▶ But the equational theory for callcc cannot reach a value!

$$\operatorname{callcc}(\lambda k.\lambda x.k\ (\lambda_{-}.x)) \neq V$$

▶ How can we know that we have the "whole" context?

## Of jumps and the extent of a continuation

- Calling a continuation never returns it "jumps"
  - ▶ *E*[[*E*′] 1] "jumps" out of *E* to *E*′
  - Add variables  $\alpha, \beta, \ldots$  that stand for continuations
  - ► Applying a continuation (variable) "jumps" (a.k.a. "aborts")
- lacktriangle A jump lpha M is the same when inside a larger evaluation context

$$E[\alpha M] = \alpha M$$
 E is garbage

▶ A jump delimits the usable extent of a continuation



### A running jump

- ▶ Let's try that again
- ▶ We can evaluate a jump to an answer. . .

$$\alpha \; (\mathsf{callcc}(\lambda k.\lambda x.k \; (\lambda_{-}.x))) \mapsto \alpha \; (\lambda x.[\alpha \; \Box] \; (\lambda_{-}.x))$$

▶ And the equational theory for callcc reaches that answer!

$$\alpha$$
 (callcc( $\lambda k.\lambda x.k$  ( $\lambda ...x$ ))) =  $\alpha$  ( $\lambda x.\alpha$  ( $\lambda ...x$ ))



### $\lambda\mu$ : taking jumps seriously

Syntactically distinguish jumps as "commands"

$$M, N ::= \dots \mid \mu \alpha.c$$
 control abstraction  $c ::= [\alpha] M$  command, a.k.a "jump"

► Commands "run"

$$[\alpha](E[(\lambda x.M)V]) \mapsto [\alpha](E[M\{V/x\}])$$
$$[\alpha](E[\mu\beta.c]) \mapsto c\{[\alpha](E[N])/[\beta]N\}$$



### $\lambda\mu$ : a language of classical logic

- ▶ Developed as calculus for classical logic (Parigot, 1992)
- ▶ Originally CBN, but also CBV (extension of  $\lambda_c$ ):

$$\mu_{E} \qquad [\alpha](E[\mu\beta.c]) = c \{ [\alpha](E[N])/[\beta]N \}$$

$$\eta_{\mu} \qquad \mu\alpha.[\alpha]M = M$$

$$\beta_{\mu} \qquad (\lambda x.\mu\alpha.[\beta]M) N = \mu\alpha.[\beta]((\lambda x.M) N)$$

- Equational theory contains operational semantics
- $\lambda \mu \equiv \lambda + \text{callcc!}$

## Relaxing the syntax

### $\Lambda\mu$ : a more relaxed language

▶ Collapse term/command distinction:  $M \equiv c$ 

$$M ::= \dots \mid \mu \alpha . M \mid [\alpha] M$$

► Same rules, just more expressive meta-variables:

$$(\lambda x.[\alpha]x) \ 1 = [\alpha]1$$
 because  $[\alpha]x$  is now a term  $[\alpha](\mu_-.1) = 1$  because 1 is now a command

## Nothing new, nothing gained?

- We haven't added any new constructs
- We haven't added any new rules
- As typed calculus,  $\Lambda\mu$  considered equivalent to Parigot's  $\lambda\mu$
- So they're the same?

## Nothing new, nothing gained?

- We haven't added any new constructs
- We haven't added any new rules
- As typed calculus,  $\Lambda\mu$  considered equivalent to Parigot's  $\lambda\mu$
- So they're the same? No!

## Delimited control

### shift and reset

▶ shift and reset are a common basis for delimited control

$$reset(E[shift V]) = reset(V (\lambda x.reset(E[x])))$$

Continuations return, they are composable like normal functions

$$2 \times \text{reset}(10 + (\text{shift}(\lambda k.k \ (k \ 2))))$$

$$= 2 \times \text{reset}(10 + \text{reset}(10 + \text{reset}(2)))$$

$$= 2 \times \text{reset}(22) = 44$$

$$\lambda + \text{shift} + \text{reset} \leq \Lambda \mu$$

- lacktriangle Embedding of shift and reset into  $\Lambda\mu$ 
  - ▶ Equational theory of shift and reset (Kameyama and Hasegawa, 2003) provable in  $\Lambda\mu$
  - ► The two-pass CPS transformation for shift and reset (Danvy and Filinski, 1990) derived from embedding
- So  $\lambda$  + shift + reset is a subset of  $\Lambda\mu$

$$\mu\alpha_1.\mu\alpha_2.\mu\alpha_3.4$$
  $[\alpha_3][\alpha_2][\alpha_1](f\ 0)$ 

• What covers the whole of  $\Lambda \mu$ ?



### shift<sub>0</sub> and reset<sub>0</sub>

► Like shift, except that shift<sub>0</sub> removes its surrounding delimiter

$$reset(E[shift V]) = reset(V (\lambda x.reset(E[x])))$$

$$reset_0(E[shift_0 V]) = V (\lambda x.reset_0(E[x]))$$

► Many shift₀s can "dig" out of many reset₀s

$$\lambda + \text{shift}_0 + \text{reset}_0 \equiv \Lambda \mu$$

- $lacktriangleright \lambda$  with shift<sub>0</sub> and reset<sub>0</sub> is equivalent to  $\Lambda\mu$ 
  - Equational theories correspond
  - CPS transforms correspond
  - ▶ shift₀ and reset₀ rely on mixing terms with commands
- Restricting then relaxing the syntax led us from classical to delimited control!

Classical Delimited

$$\lambda + \operatorname{callcc} \qquad \lambda + \operatorname{shift_0} + \operatorname{reset_0}$$

$$\parallel \qquad \qquad \parallel$$

$$\lambda \mu \xrightarrow{\operatorname{syntactic}} \Lambda \mu$$

Classical Delimited



### $\Lambda\mu$ : a framework for delimited control

- ▶ Encode both shift, reset and shift<sub>0</sub>, reset<sub>0</sub> in  $\Lambda\mu$
- Provable observational guarantees about the operators
  - ► Example: idempotency of reset

$$reset(reset(M)) = reset(M)$$

- Observational guarantees still hold under composition
  - reset is still idempotent even if we use shift<sub>0</sub>
  - Safely put together programs using either operators

### More in the paper

- Parameterize equational theory by different evaluation strategies
  - call-by-value, call-by-name, and call-by-need
- ▶ Improved reasoning for control operators in  $\lambda$ -calculus using continuation variables
- Equational correspondence with compositional transformations
  - Compositionality and hygiene makes life easier!

### Final words

- ▶ Control-flow effects: have our cake and eat it too
  - Expressive capability
  - Preserve local, open, high-level reasoning
  - Generic (parametric) treatment of evaluation strategies
- Compositionality is powerful
- Logic can be a wonderful guide

#### References I

- O. Danvy and A. Filinski. Abstracting control. In *LISP and Functional Programming*, pages 151–160, 1990.
- A. Filinski. Representing monads. In POPL, pages 446-457, 1994.
- T. Griffin. A formulae-as-types notion of control. In *POPL*, pages 47–58, 1990.
- Y. Kameyama and M. Hasegawa. A sound and complete axiomatization of delimited continuations. In *ICFP*, pages 177–188, 2003.
- E. Moggi. Computational  $\lambda$ -calculus and monads. In *Logic in Computer Science*, 1989.

#### References II

- M. Parigot. Lambda-my-calculus: An algorithmic interpretation of classical natural deduction. In *LPAR*, pages 190–201, 1992.
- A. Sabry. Note on axiomatizing the semantics of control operators. Technical Report CIS-TR-96-03, Department of Computer and Information Science, University of Oregon, 1996.
- A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. *Lisp and Symbolic Computation*, 6(3-4): 289–360, 1993.