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The big picture

I Effects that manipulate control flow, compositionally
I Programs can refer to their context, but . . .

I Still have local, equational reasoning inside open programs

I Logic is an inspiration, . . .
I Lessons from logic can fix problems in programming

I Even with an untyped mindset
I Sometimes, being type-agnostic is liberating!



Classical control

I callcc is the classic control operator, going back to Scheme

I Classical control corresponds to classical logic (Griffin, 1990)

I Start with pure language, add primitive operations
I Start with intuitionistic logic, add classical axioms

I Start with a language with continuation variables
I Start with a logic with multiple conclusions



Delimited control

I Delimit the scope of effects

I Continuations compose like functions

I Vastly more expressive power than classical control
I Every monadic effect is simulated by delimited control (Filinski, 1994)

I Exposes “monadic plumbing” underlying CBV languages
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Classical control



Operational semantics of callcc

I Extension of CBV λ-calculus

V ::= x || λx .M
|| callcc built-in function
|| [E ] reified evaluation context

M,N ::= V || M N
E ::= � || E M || V E

E [(λx .M) V ] 7→ E [M {V /x}]
E [callcc V ] 7→ E [V [E ]]

E [[E ′] V ] 7→ E ′[V ]



Equational theory for callcc

I Reason more generally about open programs

I Extension of λc (Moggi, 1989)

βv (λx .M) V = M {V /x}
ηv λx .V x = V
βΩ (λx .E [x ]) M = E [M]

I Add axioms that explain behavior of built-in callcc function
(Sabry and Felleisen, 1993; Sabry, 1996)



Problems of non-compositionality

I Equational theory weaker than operational semantics!

I Some programs can be evaluated to a value. . .

callcc(λk.λx .k (λ .x)) 7→→ (λx .[�] (λ .x))

I But the equational theory for callcc cannot reach a value!

callcc(λk.λx .k (λ .x)) 6= V

I How can we know that we have the “whole” context?



Of jumps and the extent of a continuation

I Calling a continuation never returns — it “jumps”
I E [[E ′] 1] “jumps” out of E to E ′

I Add variables α, β, . . . that stand for continuations

I Applying a continuation (variable) “jumps” (a.k.a. “aborts”)

I A jump α M is the same when inside a larger evaluation context

E [α M] = α M E is garbage

I A jump delimits the usable extent of a continuation



A running jump

I Let’s try that again

I We can evaluate a jump to an answer. . .

α (callcc(λk.λx .k (λ .x))) 7→→ α (λx .[α �] (λ .x))

I And the equational theory for callcc reaches that answer!

α (callcc(λk.λx .k (λ .x))) = α (λx .α (λ .x))



λµ: taking jumps seriously

I Syntactically distinguish jumps as “commands”

M,N ::= . . . || µα.c control abstraction
c :: = [α]M command, a.k.a “jump”

I Commands “run”

[α](E [(λx .M)V ]) 7→ [α](E [M {V /x}])
[α](E [µβ.c]) 7→ c {[α](E [N])/[β]N}



λµ: a language of classical logic

I Developed as calculus for classical logic (Parigot, 1992)

I Originally CBN, but also CBV (extension of λc):

µE [α](E [µβ.c]) = c {[α](E [N])/[β]N}
ηµ µα.[α]M = M
βµ (λx .µα.[β]M) N = µα.[β]((λx .M) N)

I Equational theory contains operational semantics

I λµ ≡ λ + callcc!



Relaxing the syntax



Λµ: a more relaxed language

I Collapse term/command distinction: M ≡ c

M ::= . . . || µα.M || [α]M

I Same rules, just more expressive meta-variables:

(λx .[α]x) 1 = [α]1 because [α]x is now a term
[α](µ .1) = 1 because 1 is now a command



Nothing new, nothing gained?

I We haven’t added any new constructs

I We haven’t added any new rules

I As typed calculus, Λµ considered equivalent to Parigot’s λµ

I So they’re the same?

No!
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Delimited control



shift and reset

I shift and reset are a common basis for delimited control

reset(E [shift V ]) = reset(V (λx .reset(E [x ])))

I Continuations return, they are composable like normal functions

2× reset(10 + (shift(λk.k (k 2))))

= 2× reset(10 + reset(10 + reset(2)))

= 2× reset(22) = 44



λ + shift+ reset ≤ Λµ

I Embedding of shift and reset into Λµ
I Equational theory of shift and reset (Kameyama and Hasegawa, 2003)
provable in Λµ

I The two-pass CPS transformation for shift and reset (Danvy and
Filinski, 1990) derived from embedding

I So λ + shift+ reset is a subset of Λµ

µα1.µα2.µα3.4 [α3][α2][α1](f 0)

I What covers the whole of Λµ?



shift0 and reset0

I Like shift, except that shift0 removes its surrounding delimiter

reset(E [shift V ]) = reset(V (λx .reset(E [x ])))

reset0(E [shift0 V ]) = V (λx .reset0(E [x ]))

I Many shift0s can “dig” out of many reset0s



λ + shift0 + reset0 ≡ Λµ

I λ with shift0 and reset0 is equivalent to Λµ
I Equational theories correspond

I CPS transforms correspond

I shift0 and reset0 rely on mixing terms with commands

I Restricting then relaxing the syntax led us from classical to
delimited control!
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Λµ: a framework for delimited control

I Encode both shift, reset and shift0, reset0 in Λµ

I Provable observational guarantees about the operators
I Example: idempotency of reset

reset(reset(M)) = reset(M)

I Observational guarantees still hold under composition
I reset is still idempotent even if we use shift0

I Safely put together programs using either operators



More in the paper

I Parameterize equational theory by different evaluation strategies
I call-by-value, call-by-name, and call-by-need

I Improved reasoning for control operators in λ-calculus using
continuation variables

I Equational correspondence with compositional transformations
I Compositionality and hygiene makes life easier!



Final words

I Control-flow effects: have our cake and eat it too
I Expressive capability

I Preserve local, open, high-level reasoning

I Generic (parametric) treatment of evaluation strategies

I Compositionality is powerful

I Logic can be a wonderful guide
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