Codata In Action

Paul Downen
Zachary Sullivan
Zena M. Ariola Simon Peyton Jones

April 8, 2019

What is Codata?

The Elephant in the Room

codata $=$ infinite objects
?

The Elephant in the Room

codata \neq infinite objects

codata \supset infinite objects

Data versus Codata

Definition by constructions
data Sum a b where
Left : a Sum a b
Right : b \rightarrow Sum a b

Definition by observations
codata Prod a b where
First : Prod a b \rightarrow a
Second : Prod $\mathrm{a} \mathrm{b} \rightarrow \mathrm{b}$

Where does Codata Come From?

- In theory
- Logic: computational interpretation of sequent calculus, linear logic, polarization, session types, ...
- Algebra: final coalgebras (dual to initial algebras)
- In practice
- Object-oriented programming (objects are codata!)
- Functional programming (first-class functions are codata!)

What is Codata Good For?

- Key Idea: Programming by Observation
- Many applications of codata
- Infinite objects and coinduction
- Decomposing Church encodings
- Decomposing complex problems with demand-driven programming
- Abstracting over protocol interfaces and their invariants

Object-Oriented Church Encodings

Encoding Booleans by Cases

In codata

```
codata Bool where
    If : Bool }->(\forall\textrm{a}.\textrm{a}->\textrm{a}->\textrm{a}
    true.If x y = x
    false.If x y = y
```


Encoding Booleans by Cases

In codata

codata Bool where

$$
\text { If }: \text { Bool } \rightarrow(\forall \mathrm{a} \cdot \mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \quad \text { Bool }=\forall a \cdot a \rightarrow a \rightarrow a
$$

$$
\text { true.If } \mathrm{x} y=\mathrm{x}
$$

false.If x y $=y$

$$
\ln \lambda \text {-calculus }
$$

$$
\begin{aligned}
\text { true } & =\lambda x \cdot \lambda y \cdot x \\
\text { false } & =\lambda x \cdot \lambda y \cdot y
\end{aligned}
$$

Walking Down a Tree

data Tree where

$$
\begin{array}{ll}
\text { Leaf } & : \text { Int } \rightarrow \text { Tree } \\
\text { Branch } & : \text { Tree } \rightarrow \text { Tree } \rightarrow \text { Tree }
\end{array}
$$

walk $:($ Int $\rightarrow \mathrm{a}) \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a}) \rightarrow$ Tree $\rightarrow \mathrm{a}$
walk b f (Leaf x) $=b x$
walk $b \mathrm{f}($ Branch 1 r$)=\mathrm{f}($ walk $\mathrm{b} f \mathrm{f})$
(walk b f r)

Walking Down a Tree with the Visitor Pattern

codata TreeVisitor a where

$$
\begin{array}{ll}
\text { VisitLeaf } & : \text { TreeVisitor } \mathrm{a} \rightarrow(\text { Int } \rightarrow \mathrm{a}) \\
\text { VisitBranch } & : \text { TreeVisitor } \mathrm{a} \rightarrow(\mathrm{a} \rightarrow \mathrm{a} \rightarrow \mathrm{a})
\end{array}
$$

codata Tree where
Walk : Tree \rightarrow (\forall a. TreeVisitor $\mathrm{a} \rightarrow \mathrm{a})$
leaf : Int \rightarrow Tree
(leaf x).Walk v = v.VisitLeaf x
branch : Tree \rightarrow Tree \rightarrow Tree
(branch 1 r).Walk $\mathrm{v}=\mathrm{v}$. VisitBranch (l.Walk v)

The Visitor Pattern in λ-calculus

```
TreeVisitor \(a=(\operatorname{Int} \rightarrow a) \times(a \rightarrow a \rightarrow a)\)
    Tree \(=\forall a\).TreeVisitor \(a \rightarrow a\)
visitLeaf : TreeVisitor \(a \rightarrow\) Int \(\rightarrow a=f s t\)
visitBranch : TreeVisitor \(a \rightarrow a \rightarrow a \rightarrow a=\) snd
leaf : Int \(\rightarrow\) Tree
leaf \(x=\lambda v .(\) visitLeaf \(v) x\)
branch: Tree \(\rightarrow\) Tree \(\rightarrow\) Tree
branch \(l r=\lambda v .(\) visitBranch \(v)(l a v)(r a v)\)
```


Demand-Driven

Programming

Why functionat Demand-Driven Programming

Matters

- Problems should be decomposed into smaller sub-problems
- But sometimes traditional imperative programming prevents decomposition with "one big, messy loop"
- "Why Functional Programming Matters" (Hughes '89) showed how functional programming can help recover decomposition
- Key Idea: Demand-driven programming
- Lazy functional programming is one way to be demand-driven
- Codata is another way, which applies to many more languages

Let's Play a Game

The Dream of Decomposition

eval : Board \rightarrow Int
eval $=$ maximize \circ mapT score \circ prune $5 \circ$ gameTree
gameTree : Board \rightarrow Tree Board
prune $\quad:$ Int \rightarrow Tree $a \rightarrow$ Tree a
mapt $\quad:(\mathrm{a} \rightarrow \mathrm{b}) \rightarrow$ Tree $\mathrm{a} \rightarrow$ Tree b
score : Board \rightarrow Int
maximize : Tree Int \rightarrow Int

Decomposition with Codata

codata Tree a where
Node : Tree $\mathrm{a} \rightarrow \mathrm{a}$
Children : Tree $\mathrm{a} \rightarrow$ List (Tree a)
gameTree : Board \rightarrow Tree Board
(gameTree b). Node $=\mathrm{b}$
(gameTree b). Children = map gameTree (moves b)
prune : Int \rightarrow Tree $a \rightarrow$ Tree a
(prune x t).Node $=t . N o d e$
(prune 0 t). Children $=$ []
(prune x t).Children $=\operatorname{map}(p r u n e(x-1)) t . C h i l d r e n$

INTERFACES,

Abstractions, and Invariants

Protocol Interface as a Codata Type

codata Database a where
Select : Database $\mathrm{a} \rightarrow(\mathrm{a} \rightarrow$ Bool $) \rightarrow$ List a
Delete : Database $\mathrm{a} \rightarrow(\mathrm{a} \rightarrow$ Bool $) \rightarrow$ Database a
Insert : Database $\mathrm{a} \rightarrow \mathrm{a} \rightarrow$ Database a

Abstracting Over an Interface

copy : Database a \rightarrow Database $\mathrm{a} \rightarrow$ Database a copy from to $=$
let rows $=$ from. Select $\left(\lambda_{-} \rightarrow\right.$ True $)$
in foldr (λ row $\mathrm{db} \rightarrow \mathrm{db}$. Insert row) to rows

The same client code does many things depending on Database a objects

Might copy between different systems (like MySQL, Oracle, etc.)
Might also be a virtual simulations in short-term memory, useful for testing client code as-is

Protocol Invariants as an Indexed Codata Type

index Raw, Bound, Live
codata Socket i where
Bind : Socket Raw \rightarrow String \rightarrow Socket Bound
Connect : Socket Bound \rightarrow Socket Live
Send : Socket Live \rightarrow String \rightarrow ()
Receive : Socket Live \rightarrow String
Close : Socket Live \rightarrow ()
newSocket().Bind(addr).Send("Hello") is ill-typed!
Linear types can go further: ensure all sockets are closed once

INTERCOMPILING

Codata and Data

Visitor Pattern: Data \rightarrow Codata

Turn this
data Foo where

$$
\begin{array}{ll}
\text { One } & : \mathrm{A} \rightarrow \text { Foo } \\
\text { Two } & : \mathrm{B} \rightarrow \text { Foo } \\
\text { Three } & : \mathrm{C} \rightarrow \text { Foo }
\end{array}
$$

Into that
codata FooVisitor r where

$$
\begin{array}{ll}
\text { VisitOne } & : \text { FooVisitor } \mathrm{r} \rightarrow \mathrm{~A} \rightarrow \mathrm{r} \\
\text { VisitTwo } & : \text { FooVisitor } \mathrm{r} \rightarrow \mathrm{~B} \rightarrow \mathrm{r} \\
\text { VisitThree }: & \text { FooVisitor } \mathrm{r} \rightarrow \mathrm{C} \rightarrow \mathrm{r}
\end{array}
$$

codata Foo' where
FooCase : $\forall r$. FooVisitor $r \rightarrow r$

Tabulation: Codata \rightarrow Data

```
Turn this
codata Foo where
    One : Foo }->\textrm{A
    Two : Foo }->\mathrm{ B
    Three : Foo }->\mathrm{ C
x : Foo
```

Into that
data Foo' where
FooTable : $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow$ Foo'
x' : Foo'
$x^{\prime}=$ FooTable (x.One) (x.Two) (x.Three)

Dependent Products: Codata \rightarrow Data $+\Pi$

```
Turn this
codata Foo where
    One : Foo }->\mathrm{ A
    Two : Foo }->\mathrm{ B
x : Foo
Into that
data FooMessage r where
    One' : FooMessage A
    Two' : FooMessage B
type Foo' = \forallr. FooMessage r }->\textrm{r
x' : Foo'
x' m = case m of One' }->\mathrm{ x.One
        Two' }->\mathrm{ x.Two
```


A Note on Evaluation Order

- Each compilation is correct for call-by-name and call-by-need
- Call-by-need sharing makes tabulation efficient for free
- Dependent products require explicit sharing (on pain of algorithmic slowdown)
- Call-by-value is also correct with manual intervention
- Visitor pattern requires A-normalizing constructor arguments
- Tabulation requires explicit delay/force
- Dependent products are correct as-is

A Note on Types

- Compilation applies to untyped terms, but preserves typing
- Different typing complexity for codata \rightarrow data compilations
- Dependent products requires GADTs
- Tabulation only requires simple types (but extends to more complex type systems)
- Indexed data and codata types can be compiled by simplifying indexes to type equalities
- Some care is needed to preserve typing of empty objects

Wrapping it Up

Lessons Learned

- Codata appears all over the place
- Codata has many practical and theoretical applications
- But take care: solution \neq problem
- Codata \neq infinite objects
- Laziness \neq demand-driven programming
- Codata \leftrightarrow data compilation is straightforward in stock implementations
- Codata is common ground between object-oriented and functional idioms
- Codata is language agnostic (different paradigms, different evaluation orders) and brings techniques to a larger audience

Status of data and codata today

- Object-oriented languages: an abundance of codata, a scarcity of data
- Define any codata type you want as an object
- Only a few built-in primitive data types (integers, booleans, etc.)
- Functional languages: an abundance of data, a scarcity of codata
- Define any data type you want as a (G)ADT
- Only one built-in primitive codata type (functions)

Call to Action!

Your language should be rich in data and codata, now!

