CobDATA IN ACTION

Paul Downen Zachary Sullivan Zena M. Ariola Simon Peyton Jones

April 8, 2019

WHAT 1S CODATA?

THE ELEPHANT IN THE Room

codata = infinite objects

THE ELEPHANT IN THE Room

codata =# infinite objects

codata D infinite objects

DATA VERSUS CODATA

Definition by

data Sum a b where
Left
Right

a—Sum ab
:b—-Sum ab

Definition by

codata Prod a b where
Prod a b —+ a
Prod a b— Db

First
Second :

WHERE DOES CoDATA COME FROM?

« In theory

« Logic: computational interpretation of sequent calculus, linear
logic, polarization, session types, ...

« Algebra: final coalgebras (dual to initial algebras)

« In practice

+ Object-oriented programming (objects are codata!)

« Functional programming (first-class functions are codatal)

WHAT IS CopATA GoobD FoRr?

» Key Idea:

» Many applications of codata

« Infinite objects and coinduction
« Decomposing

« Decomposing complex problems with

« Abstracting over and their invariants

OBJECT-ORIENTED
CHURCH ENCODINGS

ENcODING BOOLEANS BY CASES

In codata

codata Bool where
If : Bool —» (Va.a — a — a)

Il
>

true.If x vy
false.If x vy

Il
<

ENcODING BOOLEANS BY CASES

In codata

codata Bool where
If : Bool —» (Va.a — a — a)

Il
>

true.If x vy
false.If x vy

Il
<

In A-calculus

Bool =Va.a— a— a

true = Ax.\y.x
false = Ax.Ay.y

WALKING DowN A TREE

data Tree where

Leaf : Int — Tree
Branch : Tree — Tree — Tree
walk :

(Int - a) - (a—a — a) - Tree — a
walk b f (Leaf x) = b x

walk b f (Branch 1 r)

f (walk b f 1)
(walk b f r)

WALKING DOWN A TREE WITH THE VISITOR PATTERN

codata TreeVisitor a where
VisitLeaf : TreeVisitor a — (Int — a)
VisitBranch : TreeVisitor a — (a — a — a)

codata Tree where
walk : Tree — (Va. TreeVisitor a — a)

leaf : Int — Tree
(leaf x).walk v = v.VisitLeaf x

branch : Tree — Tree — Tree
(branch 1 r).walk v = v.VisitBranch (l.walk v)
(r.walk v)

THE VISITOR PATTERN IN \-CALCULUS

TreeVisitor a = (Int — a) X (a — a — a)

Tree = Va.TreeVisitor a — a

visitLeaf : TreeVisitor a — Int — a = fst

visitBranch : TreeVisitor a — a — a — a = snd

leaf : Int — Tree
leaf x = Av. (visitLeaf v) x

branch : Tree — Tree — Tree

branch [r = Av. (visitBranch v) (Lav) (rav)

DEMAND-DRIVEN
PROGRAMMING

WHY FuNerioNAE DEMAND-DRIVEN PROGRAMMING
MATTERS

+ Problems should be decomposed into smaller sub-problems

« But sometimes traditional imperative programming prevents

decomposition with “one big, messy loop”

+ “Why Functional Programming Matters” (Hughes ’89) showed
how functional programming can help recover decomposition

» Key ldea:
« Lazy functional programming is one way to be demand-driven

» Codata is another way, which applies to many more languages

LET’s PLAY A GAME

{

v
&

X

|

10

THE DREAM OF DECOMPOSITION

eval : Board — Int
eval = maximize o mapT score o prune 5 o gameTree

gameTree : Board — Tree Board

prune : Int —» Tree a — Tree a
mapT : (a—>b) > Tree a —» Tree b
score : Board — Int

maximize : Tree Int — Int

DeEcompPosITION WITH CODATA

codata Tree a where
Node : Tree a — a
Children : Tree a — List (Tree a)

gameTree : Board — Tree Board
(gameTree b) .Node =b
(gameTree b).Children = map gameTree (moves b)

prune : Int — Tree a — Tree a

(prune x t).Node = t.Node

(prune 0 t).Children []

(prune x t).Children = map (prune(x-1)) t.Children

12

INTERFACES,
ABSTRACTIONS, AND
INVARIANTS

ProT1ocoL INTERFACE AS A CODATA TYPE

codata Database a where
Select : Database a —+ (a — Bool) — List a

Delete : Database a — (a — Bool) — Database a
Insert : Database a — a — Database a

ABSTRACTING OVER AN INTERFACE

copy : Database a — Database a — Database a
copy from to =

let rows = from.Select(A_ — True)

in foldr (Arow db — db.Insert row) to rows

The same client code does many things depending on
Database a objects
Might copy between different systems (like MySQL, Oracle, etc.)

Might also be a virtual simulations in short-term memory, useful for

client code as-is

ProT1ocoL INVARIANTS AS AN INDEXED CODATA TYPE

index Raw, Bound, Live

codata Socket i where

Bind : Socket Raw — String — Socket Bound
Connect : Socket Bound — Socket Live

Send : Socket Live — String — ()

Receive : Socket Live — String

Close : Socket Live — ()

newSocket () .Bind(addr) .Send("Hello") is ill-typed!

Linear types can go further: ensure all sockets are closed once

INTERCOMPILING
CoDATA AND DATA

VisITOR PATTERN: DATA — CoODATA

Turn this

data Foo where
One : A — Foo
Two : B — Foo

Three : C — Foo

Into that

codata FooVisitor r where
VisitOne : FooVisitor r VA —r
VisitTwo : FooVisitor r 4 B —» r

VisitThree : FooVisitor r - C — 1

codata Foo’ where
FooCase : V r. FooVisitor r — 1

TABuULATION: CODATA — DATA

Turn this

codata Foo where
One : Foo - A
Two : Foo -+ B
Three : Foo — C

x : Foo

Into that

data Foo’ where
FooTable : A—+ B — C — Foo’

b b

X Foo

X’ = FooTable (x.0ne) (x.Two) (x.Three)

DEPENDENT PrRODUCTS: CODATA — DATA + H

Turn this

codata Foo where
One : Foo — A
Two : Foo — B

x : Foo

Into that
data FooMessage r where

3

One FooMessage A

Two’ : FooMessage B
type Foo’ = Vr. FooMessage r — r

b b

X Foo

b

x> m = case m of One’ — x.0ne
Two’ — x.Two

A NOTE oN EVALUATION ORDER

Each compilation is correct for call-by-name and call-by-need

Call-by-need sharing makes tabulation efficient for free

» Dependent products require explicit sharing (on pain of

algorithmic slowdown)

Call-by-value is also correct with manual intervention

« Visitor pattern requires A-normalizing constructor arguments
« Tabulation requires explicit delay/force

» Dependent products are correct as-is

A NOTE oN TYPES

» Compilation applies to untyped terms, but preserves typing

Different typing complexity for codata — data compilations
» Dependent products requires GADTs

« Tabulation only requires simple types (but extends to more
complex type systems)

Indexed data and codata types can be compiled by simplifying

indexes to type equalities

» Some care is needed to preserve typing of empty objects

20

WRAPPING IT UP

LESSONS LEARNED

Codata appears all over the place

Codata has many practical and theoretical applications
« But take care: solution # problem

+ Codata # infinite objects

« Laziness # demand-driven programming

Codata <> data compilation is straightforward in stock

implementations

Codata is common ground between object-oriented and

functional idioms

Codata is language agnostic (different paradigms, different

evaluation orders) and brings techniques to a larger audience

21

STATUS OF DATA AND CODATA TODAY

» Object-oriented languages: an abundance of codata, a scarcity
of data

+ Define any codata type you want as an object
+ Only a few built-in primitive data types (integers, booleans, etc.)

 Functional languages: an abundance of data, a scarcity of
codata

« Define any data type you want as a (G)ADT

« Only one built-in primitive codata type (functions)

22

CALL 1O ACTION!

Your language should be rich

in data and codata, now!

23

	What is Codata?
	Object-Oriented Church Encodings
	Demand-Driven Programming
	Interfaces, Abstractions, and Invariants
	Intercompiling Codata and Data
	Wrapping it Up

