
Codata In Action

Paul Downen Zachary Sullivan Zena M. Ariola Simon Peyton Jones

April 8, 2019



What is Codata?



The Elephant in the Room

codata = infinite objects ?

codata ⊃ infinite objects X

1



The Elephant in the Room

codata 6= infinite objects X

codata ⊃ infinite objects X

1



Data versus Codata

Definition by constructions

data Sum a b where
Left : a → Sum a b
Right : b → Sum a b

Definition by observations

codata Prod a b where
First : Prod a b → a
Second : Prod a b → b

2



Where does Codata Come From?

• In theory
• Logic: computational interpretation of sequent calculus, linear

logic, polarization, session types, . . .

• Algebra: final coalgebras (dual to initial algebras)

• In practice
• Object-oriented programming (objects are codata!)

• Functional programming (first-class functions are codata!)

3



What is Codata Good For?

• Key Idea: Programming by Observation

• Many applications of codata
• Infinite objects and coinduction

• Decomposing Church encodings

• Decomposing complex problems with demand-driven
programming

• Abstracting over protocol interfaces and their invariants

4



Object-Oriented
Church Encodings



Encoding Booleans by Cases

In codata

codata Bool where
If : Bool → (∀a.a → a → a)

true.If x y = x
false.If x y = y

In λ-calculus

Bool = ∀a.a→ a→ a

true = λx.λy.x

false = λx.λy.y

5



Encoding Booleans by Cases

In codata

codata Bool where
If : Bool → (∀a.a → a → a)

true.If x y = x
false.If x y = y

In λ-calculus

Bool = ∀a.a→ a→ a

true = λx.λy.x

false = λx.λy.y

5



Walking Down a Tree

data Tree where
Leaf : Int → Tree
Branch : Tree → Tree → Tree

walk : (Int → a) → (a → a → a) → Tree → a
walk b f (Leaf x) = b x
walk b f (Branch l r) = f (walk b f l)

(walk b f r)

6



Walking Down a Tree with the Visitor Pattern

codata TreeVisitor a where
VisitLeaf : TreeVisitor a → (Int → a)
VisitBranch : TreeVisitor a → (a → a → a)

codata Tree where
Walk : Tree → (∀a. TreeVisitor a → a)

leaf : Int → Tree
(leaf x).Walk v = v.VisitLeaf x

branch : Tree → Tree → Tree
(branch l r).Walk v = v.VisitBranch (l.Walk v)

(r.Walk v) 7



The Visitor Pattern in λ-calculus

TreeVisitor a = (Int → a)× (a→ a→ a)

Tree = ∀a.TreeVisitor a→ a

visitLeaf : TreeVisitor a→ Int → a = fst

visitBranch : TreeVisitor a→ a→ a→ a = snd

leaf : Int → Tree

leaf x = λv. (visitLeaf v) x

branch : Tree→ Tree→ Tree

branch l r = λv. (visitBranch v) (l a v) (r a v)

8



Demand-Driven
Programming



Why functional Demand-Driven Programming
Matters

• Problems should be decomposed into smaller sub-problems

• But sometimes traditional imperative programming prevents
decomposition with “one big, messy loop”

• “Why Functional Programming Ma�ers” (Hughes ’89) showed
how functional programming can help recover decomposition

• Key Idea: Demand-driven programming

• Lazy functional programming is one way to be demand-driven

• Codata is another way, which applies to many more languages

9



Let’s Play a Game

10



The Dream of Decomposition

eval : Board → Int
eval = maximize ◦ mapT score ◦ prune 5 ◦ gameTree

gameTree : Board → Tree Board
prune : Int → Tree a → Tree a
mapT : (a → b) → Tree a → Tree b
score : Board → Int
maximize : Tree Int → Int

11



Decomposition with Codata

codata Tree a where
Node : Tree a → a
Children : Tree a → List (Tree a)

gameTree : Board → Tree Board
(gameTree b).Node = b
(gameTree b).Children = map gameTree (moves b)

prune : Int → Tree a → Tree a
(prune x t).Node = t.Node
(prune 0 t).Children = []
(prune x t).Children = map (prune(x-1)) t.Children

12



Interfaces,
Abstractions, and
Invariants



Protocol Interface as a Codata Type

codata Database a where
Select : Database a → (a → Bool) → List a
Delete : Database a → (a → Bool) → Database a
Insert : Database a → a → Database a

13



Abstracting Over an Interface

copy : Database a → Database a → Database a
copy from to =

let rows = from.Select(λ_ → True)
in foldr (λrow db → db.Insert row) to rows

The same client code does many things depending on
Database a objects

Might copy between di�erent systems (like MySQL, Oracle, etc.)

Might also be a virtual simulations in short-term memory, useful for
testing client code as-is

14



Protocol Invariants as an Indexed Codata Type

index Raw, Bound, Live

codata Socket i where
Bind : Socket Raw → String → Socket Bound
Connect : Socket Bound → Socket Live
Send : Socket Live → String → ()
Receive : Socket Live → String
Close : Socket Live → ()

newSocket().Bind(addr).Send("Hello") is ill-typed!

Linear types can go further: ensure all sockets are closed once

15



Intercompiling
Codata and Data



Visitor Pattern: Data→ Codata

Turn this
data Foo where

One : A → Foo
Two : B → Foo
Three : C → Foo

Into that
codata FooVisitor r where

VisitOne : FooVisitor r → A → r
VisitTwo : FooVisitor r → B → r
VisitThree : FooVisitor r → C → r

codata Foo’ where
FooCase : ∀ r. FooVisitor r → r

16



Tabulation: Codata→ Data

Turn this
codata Foo where

One : Foo → A
Two : Foo → B
Three : Foo → C

x : Foo

Into that
data Foo’ where

FooTable : A → B → C → Foo’

x’ : Foo’
x’ = FooTable (x.One) (x.Two) (x.Three)

17



Dependent Products: Codata→ Data +
∏

Turn this
codata Foo where

One : Foo → A
Two : Foo → B

x : Foo

Into that
data FooMessage r where

One’ : FooMessage A
Two’ : FooMessage B

type Foo’ = ∀r. FooMessage r → r

x’ : Foo’
x’ m = case m of One’ → x.One

Two’ → x.Two
18



A Note on Evaluation Order

• Each compilation is correct for call-by-name and call-by-need

• Call-by-need sharing makes tabulation e�icient for free

• Dependent products require explicit sharing (on pain of
algorithmic slowdown)

• Call-by-value is also correct with manual intervention
• Visitor pa�ern requires A-normalizing constructor arguments

• Tabulation requires explicit delay/force

• Dependent products are correct as-is

19



A Note on Types

• Compilation applies to untyped terms, but preserves typing

• Di�erent typing complexity for codata→ data compilations
• Dependent products requires GADTs

• Tabulation only requires simple types (but extends to more
complex type systems)

• Indexed data and codata types can be compiled by simplifying
indexes to type equalities

• Some care is needed to preserve typing of empty objects

20



Wrapping it Up



Lessons Learned

• Codata appears all over the place

• Codata has many practical and theoretical applications
• But take care: solution 6= problem

• Codata 6= infinite objects

• Laziness 6= demand-driven programming

• Codata↔ data compilation is straightforward in stock
implementations

• Codata is common ground between object-oriented and
functional idioms

• Codata is language agnostic (di�erent paradigms, di�erent
evaluation orders) and brings techniques to a larger audience

21



Status of data and codata today

• Object-oriented languages: an abundance of codata, a scarcity
of data

• Define any codata type you want as an object

• Only a few built-in primitive data types (integers, booleans, etc.)

• Functional languages: an abundance of data, a scarcity of
codata

• Define any data type you want as a (G)ADT

• Only one built-in primitive codata type (functions)

22



Call to Action!

Your language should be rich
in data and codata, now!

23


	What is Codata?
	Object-Oriented Church Encodings
	Demand-Driven Programming
	Interfaces, Abstractions, and Invariants
	Intercompiling Codata and Data
	Wrapping it Up

