
Beyond Polarity
A Multi-Discipline Intermediate Language with Sharing

Paul Downen Zena M. Ariola

September 4, 2018

Minimalism in
Programming
Languages

Virtues of Minimalism

Fewer concepts; fewer details

Only the essence remains

Decomposes big ideas into smaller ones

Parts are composable, modular, orthogonal

Benefits both programmers and implementors

Gives a small but powerful toolset

Gives a small but powerful core language

E.g., a “universal” intermediate language for both eager and
lazy languages

1

Perils of Minimalism

Deceptively simple

Easy to get close, but di�icult to get right

“Obvious” encodings don’t quite work, leaky abstractions

Small incongruences get in the way, break reasoning

End result can be impractical, unfaithful representation

2

Overview

Logical encodings, and what goes wrong

Polarity in languages, and how it comes to the rescue

Sharing and memoization, and how it can be included

Type isomorphisms, and their application in a compiler

3

Encodings

Encoding Complex Types

“Programming language paper problem”

Goal: a minimum, finite basis of type constructors

Should be capable of encoding all desired types

All encodings should be faithful

Represent the complex type exactly

Everything known about complex type holds for encoding

Nothing is lost by only using encoding instead

I.o.w., an isomorphism between types and their encodings

4

Currying

curry : ((a, b)→ c)→ (a→ b→ c)

curry f = λx.λy. f (x, y)

uncurry : (a→ b→ c)→ ((a, b)→ c)

uncurry f = λ(x, y). f x y

Is curry and uncurry an isomorphism between binary functions
(a, b)→ c and unary functions a→ (b→ c)?

5

Currying

— Oops

Consider partial application in CBV λ-calculus

loop : Int→ Bool→ String

loop x = loop x

what1 = let g = loop 1 in 0

what2 = let g = (curry (uncurry loop)) 1 in 0

what1 diverges because loop 1 diverges

what2 = 0 because (curry (uncurry loop)) 1 = λy.loop 1 y

So currying is not an isomorphism in CBV

The culprit?

Eagerness

6

Currying — Oops

Consider partial application in CBV λ-calculus

loop : Int→ Bool→ String

loop x = loop x

what1 = let g = loop 1 in 0

what2 = let g = (curry (uncurry loop)) 1 in 0

what1 diverges because loop 1 diverges

what2 = 0 because (curry (uncurry loop)) 1 = λy.loop 1 y

So currying is not an isomorphism in CBV

The culprit?

Eagerness

6

Currying — Oops

Consider partial application in CBV λ-calculus

loop : Int→ Bool→ String

loop x = loop x

what1 = let g = loop 1 in 0

what2 = let g = (curry (uncurry loop)) 1 in 0

what1 diverges because loop 1 diverges

what2 = 0 because (curry (uncurry loop)) 1 = λy.loop 1 y

So currying is not an isomorphism in CBV

The culprit? Eagerness

6

Nested Pairs

nest : (a, b, c)→ (a, (b, c))

nest (x, y, z) = (x, (y, z))

unnest : (a, (b, c))→ (a, b, c)

unnest (x, (y, z)) = (x, y, z)

Is nest and unnest an isomorphism between triples (a, b, c) and
nested pairs (a, (b, c))?

7

Nested Pairs

— Oops

Consider pa�ern matching in CBN λ-calculus

undefined = undefined

partial : (Int, (Bool, String))

partial = (0, undefined)

what1 = case partial of (x, y)→ x

what2 = case nest (unnest partial)of (x, y)→ x

what1 returns 0
what2 diverges because nest (unnest partial) does
So nesting pairs is not an isomorphism in CBN
The culprit?

Laziness

Possible fix with even more laziness, but. . .

8

Nested Pairs — Oops

Consider pa�ern matching in CBN λ-calculus

undefined = undefined

partial : (Int, (Bool, String))

partial = (0, undefined)

what1 = case partial of (x, y)→ x

what2 = case nest (unnest partial)of (x, y)→ x

what1 returns 0
what2 diverges because nest (unnest partial) does
So nesting pairs is not an isomorphism in CBN
The culprit?

Laziness
Possible fix with even more laziness, but. . .

8

Nested Pairs — Oops

Consider pa�ern matching in CBN λ-calculus

undefined = undefined

partial : (Int, (Bool, String))

partial = (0, undefined)

what1 = case partial of (x, y)→ x

what2 = case nest (unnest partial)of (x, y)→ x

what1 returns 0
what2 diverges because nest (unnest partial) does
So nesting pairs is not an isomorphism in CBN
The culprit? Laziness
Possible fix with even more laziness, but. . .

8

Nested Sums

— Oops

data Either a b = L a | R b

data Either3 a b c = Choice1 a | Choice2 b | Choice3 c

nest (Choice1 x) = L x

nest (Choice2 y) = R (L y)

nest (Choice3 z) = R (R z)

unnest (L x) = Choice1 x

unnest (R (L y)) = Choice2 y

unnest (R (R z)) = Choice3 z

Is nest and unnest an isomorphism between ternary sums
Either3 a b c and binary sums Either a (Either b c)?

Not in CBN, for the same reason as before; consider:

what1 = caseR undefined of L x → x; R y → 0

what2 = case nest (unnest (R undefined))of L x → x; R y → 0

9

Nested Sums — Oops

data Either a b = L a | R b

data Either3 a b c = Choice1 a | Choice2 b | Choice3 c

nest (Choice1 x) = L x

nest (Choice2 y) = R (L y)

nest (Choice3 z) = R (R z)

unnest (L x) = Choice1 x

unnest (R (L y)) = Choice2 y

unnest (R (R z)) = Choice3 z

Is nest and unnest an isomorphism between ternary sums
Either3 a b c and binary sums Either a (Either b c)?

Not in CBN, for the same reason as before; consider:

what1 = caseR undefined of L x → x; R y → 0

what2 = case nest (unnest (R undefined))of L x → x; R y → 0
9

Connectives and Evaluation are Connected

We’ve seen several encodings that should work but don’t

Culprit: wrong evaluation strategy (CBV vs CBN)

Each type connective has a strategy it works “best” in

They don’t all agree, so someone has to be unhappy

Idea: a heterogenous language where each connective uses its
“favorite” strategy

Other connective-strategy options can still be recovered

10

Polarity

A (Very) Brief History of Polarity

First in logic (Andreoli 1992, Girard 1991); specifies e�icient
proof search among other reasons

Rediscovered in computation (Levy 2001 “call-by-push-value”);
decompose denotational semantics, combine functional and
imperative

Later, both the logic and computation were connected
(Zeilberger 2008, Munch-Maccagnoni 2009)

11

Types and Evaluation Order

Two di�erent kinds of types, + and −

Evaluation order connected to these two kinds:

M : A : + means M is call-by-value

M : A : − means M is call-by-name

a.k.a. A : + is a value type and B : − a computation type

Connectives are given their “best-case scenario”

12

The Usual Suspects

Positive Sums

binary ⊕ : +→ +→ +

nullary 0 : +

Positive Pairs

binary ⊗ : +→ +→ +

nullary 1 : +

Negative Products

binary & : − → − → −
nullary > : −

Polar Functions

(→) : +→ −→ −

13

Strong Type Isomorphisms

The counter examples to logical encodings are now gone

Can faithfully represent complex types

Have many strong type isomorphisms, like associativity:

(A⊗ B)→ C ≈ A→ (B→ C)

(A⊕ B)⊕ C ≈ A⊕ (B⊕ C)

(A⊗ B)⊗ C ≈ A⊗ (B⊗ C)

(A & B) & C ≈ A & (B & C)

. . .

14

The Missing Ingredient: Polarity Shift

But as is, this language is incredibly weak!

Doesn’t even have the identity function type A→ A

If A : +, then return type wrong, should be negative
If A : −, then input type wrong, should be positive

Need a way to shi� polarity between positive/negative

Identity function must use a shi� to assign calling convention

Delayed input A : −, call-by-name: ↓A→ A
Strict output A : +, call-by-value: A→ ↑A

15

Data versus Co-data

Connectives can be either data or co-data (Zeilberger 2009)

Data types are defined by what their values look like
Sums (A⊕ B) are data; values are le�/right injections

Tuples (A⊗ B) are data; values are pairs of values

Co-data types are defined by their interface
Products (A & B) are co-data; with first/second projections

Functions (A→ B) are co-data; objects follow the
call-return interface

Think: foreign functions are still functions, even though
they don’t look like λs.

16

Two Ways to Shift

There are two di�erent descriptions of polarity shi�s based on
the data/co-data distinction

Zeilberger (2008)

Negative-to-positive shi� ↓ : − → + is data
Positive-to-negative shi� ↑ : +→ − is co-data

Levy (2001)

Negative-to-positive shi� ⇓ : − → + is co-data
Positive-to-negative shi� ⇑ : +→ − is data

Turns out two views are isomorphic, for shi�s between + and−

17

Polarized Encodings

Call-by-value sums and functions, JAK+ : +

JA⊕ BK+ = JAK+ ⊕ JBK+

JA→ BK+ = ⇓(JAK+ → ↑JBK+)

Call-by-name sums and functions, JAK− : −

JA⊕ BK− = ⇑(↓JAK− ⊕ ↓JBK−)

JA→ BK− = ↓JAK− → JBK−

Note, shi�s show where type isomorphisms are intentionally broken

18

Beyond Polarity: Multi-disciplinary Computation

Polarity mixes both CBV and CBN computation

Brings out the best of every connective

Both data types (like sums) and co-data types (like
functions) are fully extensional

But by definition, it’s binary; leaving out other possibilities

Idea: go beyond polarity, with as many disciplines (i.e., calling
conventions) as you want

19

Sharing

Another Kind of Computation: Call-by-Need

Like call-by-name, results are only computed on-demand

Like call-by-value, results are only computed once

New meaning for a binding

let x = M inN

N is computed first, but any work done to compute M is shared
throughout N (a.k.a. memoization)

20

The Extent of Sharing

Work is shared, but values can be copied

Sharing is preserved by data constructors

A tuple is a value only when its components are
A sum injection is a value only when its payload is

Sharing is ended by co-data objects

Any λ is a value
Any product is a value

21

Extending the Language: The Extra Shifts

Denote call-by-need with a third kind of type, ?

Need shi�s between new kind (?) and old (+ and −)

Shi�s must correctly model the extent of sharing

Shi�s between ? and + are data types; preserve sharing

↓? : ?→ +

?⇑ : +→ ?

Shi�s between ? and − are co-data types; end sharing

↑? : ?→ −
?⇓ : − → ?

22

Extending the Language: What Else?

That’s it!

Four extra shi�s is all that’s needed to extend polarity with
call-by-need

Large collection of user-defined types faithfully encoded with
just shi�s and polarized connectives

All algebraic data types

Also user-defined co-data types; generalizes functions and
products

23

Polarized Encodings of Sharing

Call-by-value sums and functions, JAK+ : +

JA⊕ BK+ = JAK+ ⊕ JBK+

JA→ BK+ = ⇓(JAK+ → ↑JBK+)

Call-by-name sums and functions, JAK− : −

JA⊕ BK− = ⇑(↓JAK− ⊕ ↓JBK−)

JA→ BK− = ↓JAK− → JBK−

Call-by-need sums and functions, JAK? : ?

JA⊕ BK? = ?⇑(↓?JAK? ⊕ ↓?JBK?)

JA→ BK? = ?⇓(↓?JAK? → ↑? JBK?)

24

Isomorphisms

Translation Isn’t Enough

Can encode types with polar connectives (e.g., in a compiler)

Running the program is the “same”; but that’s not enough!

Remember the counter-examples (currying, nesting)

Encoding should be robust, not a leaky abstraction

Every fact that holds before encoding must hold a�er

There’s a reason compiler optimize programs in an
intermediate core language, not assembly

25

Type Isomorphisms

Definition (Isomorphism)
A ≈ B : S (for S ranging over +, −, and ?) when there are terms
x:A ` N : B and y:B ` M : A such that

y:B ` (let x = M inN) = y : B x:A ` (let y = N inM) = x : A

Note that syntactically-defined equational theory used

Ensures that simple program rewrites can justify isomorphism

Can be implemented in an optimizing compiler

Theorem
For any A : + and B : −, both ↑A ≈ ⇑A and ↓B ≈ ⇓B.

26

Isomorphism-based Worker/Wrapper

Lemma (Worker/Wrapper)
If A ≈ B : S then there are contexts C,C′ such that, for any Γ ` M : A
and Γ ` N : B, we have Γ ` C[N] : A and Γ ` C′[M] : B and:

Γ ` C′[C[N]] = N : B Γ ` C[C′[M]] = M : A

Relies on reassociation of like-kinded bindings:

let y:B = (let x:A = M inN) in P

=

let x:A = M in (let y:B = N in P)

(if A:S and B:S for some S)

Corollary
If A ≈ B then terms of type A and B are in equational correspondence.

27

Encoding User-defined Types

Every user-defined data and co-data type constructor F can be
encoded into only polarized connectives, JFK

Extend this encoding to full types, JAK, homomorphically

This enables a worker/wrapper-style of local
transformation

Likewise encode terms M using any user-defined (co-)data
types into one using only polarized types, JMK

This enables a complete form of global translation

28

Faithfulness of the Encoding

Theorem (Encoding Isomorphism)
For every A, we have A ≈ JAK.

Corollary (Local Correspondence)
Terms of type A and JAK are in equational correspondence.

Theorem (Global Correspondence)
Γ ` M = N : A if and only if JΓK ` JMK = JNK : JAK.

Corollary (Intermediate Language)
The core polarized language (with +, −, and ?) is in equational
correspondence with its extension with user-defined (co-)data types.

29

Conclusion

More in the Paper

Polymorphism and type functions (a.k.a. system Fω)

Interesting consequences for type isomorphism

Computational e�ects (divergence and first-class control)

A multi-discipline equational theory; conservative extension of
call-by-push-value

Restoring the missing duality (appendix)

30

Restoring the duality

Based on sequent calculus (Curien & Herbelin 2000)

Dual to call-by-need: sharing control vs sharing information

Fully dual data and co-data types

Fully dual polar basis of primitive connectives à la linear logic

No function type→
Negative disjunction

&
and ⊥

Involutive pair of positive 	 and negative ¬ negations
(Munch-Maccagnoni & Scherer 2015)

Common algebraic and logical laws as type isomorphisms

Two dual commutative semirings from positive and
negative conjunction/disjunction

Two dual sets of De Morgan laws

31

Future Work

Connections with unboxed values and types in GHC (Peyton
Jones & Launchbury 1991)

GHC core intermediate language has types that distinguish

Lazy evaluation (ordinary Haskell values)
Eager evaluation, (unboxed values, e.g., machine integers)

Perhaps the first implementation of a multi-discipline language

Idea: see if remaining polar connectives are useful for compilers

Potential application with curried function call arity

32

Summary

Minimalism is desirable, but requires care

Di�erent types have di�erent needs to bring out their best

Diversity of computation, rather than conformity, is a virtue

Multi-discipline evaluation goes beyond binary polarity

Sharing is possible, with just some shi�s

33

	Minimalism in Programming Languages
	Encodings
	Polarity
	Sharing
	Isomorphisms
	Conclusion

