Beyond Polarity

A Multi-Discipline Intermediate Language with Sharing

Paul Downen Zena M. Ariola

September 4, 2018

Minimalism in

Programming

 Languages
Virtues of Minimalism

Fewer concepts; fewer details
Only the essence remains
Decomposes big ideas into smaller ones
Parts are composable, modular, orthogonal
Benefits both programmers and implementors
Gives a small but powerful toolset
Gives a small but powerful core language
E.g., a "universal" intermediate language for both eager and lazy languages

Perils of Minimalism

Deceptively simple
Easy to get close, but difficult to get right
"Obvious" encodings don't quite work, leaky abstractions
Small incongruences get in the way, break reasoning
End result can be impractical, unfaithful representation

Overview

Logical encodings, and what goes wrong
Polarity in languages, and how it comes to the rescue
Sharing and memoization, and how it can be included
Type isomorphisms, and their application in a compiler

Encodings

Encoding Complex Types

"Programming language paper problem"
Goal: a minimum, finite basis of type constructors
Should be capable of encoding all desired types
All encodings should be faithful
Represent the complex type exactly
Everything known about complex type holds for encoding
Nothing is lost by only using encoding instead
l.o.w., an isomorphism between types and their encodings

Currying

$$
\begin{aligned}
& \text { curry }:((a, b) \rightarrow c) \rightarrow(a \rightarrow b \rightarrow c) \\
& \text { curry } f=\lambda x \cdot \lambda y \cdot f(x, y) \\
& \text { uncurry }:(a \rightarrow b \rightarrow c) \rightarrow((a, b) \rightarrow c) \\
& \text { uncurry } f=\lambda(x, y) . f x y
\end{aligned}
$$

Is curry and uncurry an isomorphism between binary functions $(a, b) \rightarrow c$ and unary functions $a \rightarrow(b \rightarrow c)$?

Currying

Consider partial application in CBV λ-calculus

$$
\begin{aligned}
& \text { loop } \quad: \text { Int } \rightarrow \text { Bool } \rightarrow \text { String } \\
& \text { loop } x=\text { loop } x
\end{aligned} \begin{aligned}
& \text { what }_{1}=\text { let } g=\text { loop } 1 \text { in } 0 \\
& \text { what }_{2}=\text { let } g=(\text { curry }(\text { uncurry loop })) 1 \text { in } 0
\end{aligned}
$$

Currying - Oops

Consider partial application in CBV λ-calculus

$$
\begin{aligned}
& \text { loop } \quad: \text { Int } \rightarrow \text { Bool } \rightarrow \text { String } \\
& \text { loop } x=\text { loop } x
\end{aligned} \begin{aligned}
& \text { what }_{1}=\text { let } g=\text { loop } 1 \text { in } 0 \\
& \text { what }_{2}=\text { let } g=(\text { curry }(\text { uncurry loop })) 1 \text { in } 0
\end{aligned}
$$

what $_{1}$ diverges because loop 1 diverges
$w h a t_{2}=0$ because (curry (uncurry loop)) $1=\lambda y$.loop $1 y$
So currying is not an isomorphism in CBV
The culprit?

Currying - Oops

Consider partial application in CBV λ-calculus

$$
\begin{aligned}
& \text { loop } \quad: \text { Int } \rightarrow \text { Bool } \rightarrow \text { String } \\
& \text { loop } x=\text { loop } x
\end{aligned} \begin{aligned}
& \text { what }_{1}=\text { let } g=\text { loop } 1 \text { in } 0 \\
& \text { what }_{2}=\text { let } g=(\text { curry }(\text { uncurry loop })) 1 \text { in } 0
\end{aligned}
$$

what $_{1}$ diverges because loop 1 diverges
$w h a t_{2}=0$ because (curry (uncurry loop)) $1=\lambda y$.loop $1 y$
So currying is not an isomorphism in CBV
The culprit? Eagerness

Nested Pairs

$$
\begin{aligned}
& \text { nest } \quad:(a, b, c) \rightarrow(a,(b, c)) \\
& \text { nest }(x, y, z)=(x,(y, z)) \\
& \text { unnest } \quad:(a,(b, c)) \rightarrow(a, b, c) \\
& \text { unnest }(x,(y, z))=(x, y, z)
\end{aligned}
$$

Is nest and unnest an isomorphism between triples (a, b, c) and nested pairs $(a,(b, c))$?

Nested Pairs

Consider pattern matching in CBN λ-calculus
undefined $=$ undefined
partial : (Int, (Bool, String))
partial $=(0$, undefined $)$
what $_{1}=$ case partial of $(x, y) \rightarrow x$
what $_{2}=$ case nest (unnest partial) of $(x, y) \rightarrow x$

Nested Pairs - Oops

Consider pattern matching in CBN λ-calculus

$$
\begin{aligned}
& \text { undefined }=\text { undefined } \\
& \text { partial }:(\text { Int, (Bool, String) }) \\
& \text { partial }=(0, \text { undefined }) \\
& \text { what }_{1}=\text { case partial of }(x, y) \rightarrow x \\
& \text { what }_{2}=\text { case nest (unnest partial) of }(x, y) \rightarrow x
\end{aligned}
$$

what $_{1}$ returns 0
what ${ }_{2}$ diverges because nest (unnest partial) does So nesting pairs is not an isomorphism in CBN
The culprit?

Nested Pairs - Oops

Consider pattern matching in CBN λ-calculus

$$
\begin{aligned}
& \text { undefined }=\text { undefined } \\
& \text { partial }:(\text { Int, (Bool, String })) \\
& \text { partial }=(0, \text { undefined }) \\
& \text { what }_{1}=\text { case partial of }(x, y) \rightarrow x \\
& \text { what }_{2}=\text { case nest }(\text { unnest partial }) \text { of }(x, y) \rightarrow x
\end{aligned}
$$

what $_{1}$ returns 0
what ${ }_{2}$ diverges because nest (unnest partial) does
So nesting pairs is not an isomorphism in CBN
The culprit? Laziness
Possible fix with even more laziness, but...

Nested Sums

data Either $a b=\mathrm{L} a \mid \mathrm{R} b$
data Either3 $a b c=$ Choice $1 a \mid$ Choice2 $b \mid$ Choice3 c

$$
\begin{array}{ll}
\text { nest }(\text { Choice } 1 x)=\mathrm{L} x & \text { unnest }(\mathrm{L} x)=\text { Choice } 1 x \\
\text { nest }(\text { Choice } 2 y)=\mathrm{R}(\mathrm{~L} y) & \text { unnest }(\mathrm{R}(\mathrm{~L} y))=\text { Choice } 2 y \\
\text { nest }(\text { Choice } 3 z)=\mathrm{R}(\mathrm{R} z) & \text { unnest }(\mathrm{R}(\mathrm{R} z))=\text { Choice } 3 z
\end{array}
$$

Is nest and unnest an isomorphism between ternary sums
Either3 $a b c$ and binary sums Either a (Either $b c$)?

Nested Sums - Oops

data Either $a b=\mathrm{L} a \mid \mathrm{R} b$
data Either3 $a b c=$ Choice $1 a \mid$ Choice2 $b \mid$ Choice3 c

$$
\begin{array}{ll}
\text { nest }(\text { Choice } 1 x)=\mathrm{L} x & \text { unnest }(\mathrm{L} x)=\text { Choice } 1 x \\
\text { nest }(\text { Choice } 2 y)=\mathrm{R}(\mathrm{~L} y) & \text { unnest }(\mathrm{R}(\mathrm{~L} y))=\text { Choice } 2 y \\
\text { nest }(\text { Choice } 3 z)=\mathrm{R}(\mathrm{R} z) & \text { unnest }(\mathrm{R}(\mathrm{R} z))=\text { Choice } 3 z
\end{array}
$$

Is nest and unnest an isomorphism between ternary sums
Either $3 a b c$ and binary sums Either a (Either $b c$)?
Not in CBN, for the same reason as before; consider:

$$
\begin{aligned}
& \text { what }_{1}=\text { case } \mathrm{R} \text { undefined } \text { of } \mathrm{L} x \rightarrow x ; \mathrm{R} y \rightarrow 0 \\
& \text { what } \left._{2}=\text { case nest (unnest }(\mathrm{R} \text { undefined })\right) \text { of } \mathrm{L} x \rightarrow x ; \mathrm{R} y \rightarrow 0
\end{aligned}
$$

Connectives and Evaluation are Connected

We've seen several encodings that should work but don't
Culprit: wrong evaluation strategy (CBV vs CBN)
Each type connective has a strategy it works "best" in
They don't all agree, so someone has to be unhappy
Idea: a heterogenous language where each connective uses its "favorite" strategy

Other connective-strategy options can still be recovered

Polarity

A (Very) Brief History of Polarity

First in logic (Andreoli 1992, Girard 1991); specifies efficient proof search among other reasons

Rediscovered in computation (Levy 2001 "call-by-push-value"); decompose denotational semantics, combine functional and imperative

Later, both the logic and computation were connected (Zeilberger 2008, Munch-Maccagnoni 2009)

Types and Evaluation Order

Two different kinds of types, + and -
Evaluation order connected to these two kinds:
$\mathcal{M}: A:+$ means M is call-by-value
$\mathcal{M}: A$: - means \mathcal{M} is call-by-name
a.k.a. $A:+$ is a value type and $B:-$ a computation type

Connectives are given their "best-case scenario"

The Usual Suspects

Positive Sums

$$
\begin{aligned}
& \text { binary } \oplus:+\rightarrow+\rightarrow+ \\
& \text { nullary } 0:+
\end{aligned}
$$

Positive Pairs

$$
\begin{aligned}
& \text { binary } \otimes:+\rightarrow+\rightarrow+ \\
& \text { nullary } 1:+
\end{aligned}
$$

Negative Products
binary \& : $\rightarrow-\rightarrow-$ nullary \top : -

Polar Functions

$$
(\rightarrow):+\rightarrow-\rightarrow-
$$

Strong Type Isomorphisms

The counter examples to logical encodings are now gone
Can faithfully represent complex types
Have many strong type isomorphisms, like associativity:

$$
\begin{aligned}
& (A \otimes B) \rightarrow C \approx A \rightarrow(B \rightarrow C) \\
& (A \oplus B) \oplus C \approx A \oplus(B \oplus C) \\
& (A \otimes B) \otimes C \approx A \otimes(B \otimes C) \\
& (A \& B) \& C \approx A \&(B \& C)
\end{aligned}
$$

The Missing Ingredient: Polarity Shift

But as is, this language is incredibly weak!
Doesn't even have the identity function type $A \rightarrow A$
If $A:+$, then return type wrong, should be negative
If A : - , then input type wrong, should be positive
Need a way to shift polarity between positive/negative
Identity function must use a shift to assign calling convention
Delayed input A : -, call-by-name: $\downarrow A \rightarrow A$
Strict output $A:+$, call-by-value: $A \rightarrow \uparrow A$

Data versus Co-data

Connectives can be either data or co-data (Zeilberger 2009)
Data types are defined by what their values look like Sums $(A \oplus B)$ are data; values are left/right injections

Tuples $(A \otimes B)$ are data; values are pairs of values
Co-data types are defined by their interface
Products ($A \& B$) are co-data; with first/second projections
Functions $(A \rightarrow B)$ are co-data; objects follow the call-return interface

Think: foreign functions are still functions, even though they don't look like λ s.

Two Ways to Shift

There are two different descriptions of polarity shifts based on the data/co-data distinction

Zeilberger (2008)
Negative-to-positive shift $\downarrow:-\rightarrow+$ is data
Positive-to-negative shift $\uparrow:+\rightarrow-$ is co-data
Levy (2001)
Negative-to-positive shift $\Downarrow:-\rightarrow+$ is co-data
Positive-to-negative shift $\Uparrow:+\rightarrow-$ is data
Turns out two views are isomorphic, for shifts between + and -

Polarized Encodings

Call-by-value sums and functions, $\llbracket A \rrbracket^{+}:+$

$$
\begin{aligned}
\llbracket A \oplus B \rrbracket^{+} & =\llbracket A \rrbracket^{+} \oplus \llbracket B \rrbracket^{+} \\
\llbracket A \rightarrow B \rrbracket^{+} & =\Downarrow\left(\llbracket A \rrbracket^{+} \rightarrow \uparrow \llbracket B \rrbracket^{+}\right)
\end{aligned}
$$

Call-by-name sums and functions, $\llbracket A \rrbracket^{-}:-$

$$
\begin{aligned}
\llbracket A \oplus B \rrbracket^{-} & =\Uparrow\left(\downarrow \llbracket A \rrbracket^{-} \oplus \downarrow \llbracket B \rrbracket^{-}\right) \\
\llbracket A \rightarrow B \rrbracket^{-} & =\downarrow \llbracket A \rrbracket^{-} \rightarrow \llbracket B \rrbracket^{-}
\end{aligned}
$$

Note, shifts show where type isomorphisms are intentionally broken

Beyond Polarity: Multi-disciplinary Computation

Polarity mixes both CBV and CBN computation
Brings out the best of every connective
Both data types (like sums) and co-data types (like functions) are fully extensional

But by definition, it's binary; leaving out other possibilities
Idea: go beyond polarity, with as many disciplines (i.e., calling conventions) as you want

Sharing

Another Kind of Computation: Call-by-Need

Like call-by-name, results are only computed on-demand
Like call-by-value, results are only computed once
New meaning for a binding

$$
\text { let } x=M \text { in } N
$$

N is computed first, but any work done to compute \mathcal{M} is shared throughout N (a.k.a. memoization)

The Extent of Sharing

Work is shared, but values can be copied
Sharing is preserved by data constructors
A tuple is a value only when its components are
A sum injection is a value only when its payload is
Sharing is ended by co-data objects
Any λ is a value
Any product is a value

Extending the Language: The Extra Shifts

Denote call-by-need with a third kind of type, \star
Need shifts between new kind (\star) and old (+ and -)
Shifts must correctly model the extent of sharing
Shifts between \star and + are data types; preserve sharing

$$
\begin{aligned}
& \downarrow_{\star}: \star \rightarrow+ \\
& \star \Uparrow:+\rightarrow \star
\end{aligned}
$$

Shifts between \star and - are co-data types; end sharing

$$
\begin{aligned}
& \uparrow_{\star}: \star \rightarrow- \\
& \star \Downarrow:-\rightarrow \star
\end{aligned}
$$

Extending the Language: What Else?

That's it!

Four extra shifts is all that's needed to extend polarity with call-by-need

Large collection of user-defined types faithfully encoded with just shifts and polarized connectives

All algebraic data types
Also user-defined co-data types; generalizes functions and products

Polarized Encodings of Sharing

Call-by-value sums and functions, $\llbracket A \rrbracket^{+}:+$

$$
\begin{aligned}
\llbracket A \oplus B \rrbracket^{+} & =\llbracket A \rrbracket^{+} \oplus \llbracket B \rrbracket^{+} \\
\llbracket A \rightarrow B \rrbracket^{+} & =\Downarrow\left(\llbracket A \rrbracket^{+} \rightarrow \uparrow \llbracket B \rrbracket^{+}\right)
\end{aligned}
$$

Call-by-name sums and functions, $\llbracket A \rrbracket^{-}:-$

$$
\begin{aligned}
\llbracket A \oplus B \rrbracket^{-} & =\Uparrow\left(\downarrow \llbracket A \rrbracket^{-} \oplus \downarrow \llbracket B \rrbracket^{-}\right) \\
\llbracket A \rightarrow B \rrbracket^{-} & =\downarrow \llbracket A \rrbracket^{-} \rightarrow \llbracket B \rrbracket^{-}
\end{aligned}
$$

Call-by-need sums and functions, $\llbracket A \rrbracket^{\star}: \star$

$$
\begin{aligned}
\llbracket A \oplus B \rrbracket^{\star} & =\star \Uparrow\left(\downarrow_{\star} \llbracket A \rrbracket^{\star} \oplus \downarrow_{\star} \llbracket B \rrbracket^{\star}\right) \\
\llbracket A \rightarrow B \rrbracket^{\star} & =\star \Downarrow\left(\downarrow_{\star} \llbracket A \rrbracket^{\star} \rightarrow \uparrow_{\star} \llbracket B \rrbracket^{\star}\right)
\end{aligned}
$$

ISOMORPHISMS

Translation Isn't Enough

Can encode types with polar connectives (e.g., in a compiler)
Running the program is the "same"; but that's not enough!
Remember the counter-examples (currying, nesting)
Encoding should be robust, not a leaky abstraction
Every fact that holds before encoding must hold after
There's a reason compiler optimize programs in an intermediate core language, not assembly

Type Isomorphisms

Definition (Isomorphism)

$A \approx B: \mathcal{S}$ (for \mathcal{S} ranging over,+- , and \star) when there are terms $x: A \vdash N: B$ and $y: B \vdash M: A$ such that

$$
y: B \vdash(\text { let } x=M \text { in } N)=y: B \quad x: A \vdash(\text { let } y=N \text { in } M)=x: A
$$

Note that syntactically-defined equational theory used
Ensures that simple program rewrites can justify isomorphism
Can be implemented in an optimizing compiler

Theorem
For any $A:+$ and $B:-$, both $\uparrow A \approx \Uparrow A$ and $\downarrow B \approx \Downarrow B$.

Isomorphism-based Worker/Wrapper

Lemma (Worker/Wrapper)
If $A \approx B: \mathcal{S}$ then there are contexts C, C^{\prime} such that, for any $\Gamma \vdash M: A$ and $\Gamma \vdash N: B$, we have $\Gamma \vdash C[N]: A$ and $\Gamma \vdash C^{\prime}[M]: B$ and:

$$
\Gamma \vdash C^{\prime}[C[N]]=N: B \quad \Gamma \vdash C\left[C^{\prime}[M]\right]=M: A
$$

Relies on reassociation of like-kinded bindings:
let $y: B=($ let $x: A=M$ in $N)$ in P
(if $A: \mathcal{S}$ and $B: \mathcal{S}$ for some \mathcal{S})
let $x: A=M$ in $($ let $y: B=N$ in $P)$

Corollary

If $A \approx B$ then terms of type A and B are in equational correspondence.

Encoding User-defined Types

Every user-defined data and co-data type constructor F can be encoded into only polarized connectives, $\llbracket \mathrm{F} \rrbracket$

Extend this encoding to full types, $\llbracket A \rrbracket$, homomorphically
This enables a worker/wrapper-style of local transformation

Likewise encode terms M using any user-defined (co-)data types into one using only polarized types, $\llbracket \mathcal{M} \rrbracket$

This enables a complete form of global translation

Faithfulness of the Encoding

Theorem (Encoding Isomorphism)
For every A, we have $A \approx \llbracket A \rrbracket$.
Corollary (Local Correspondence)
Terms of type A and $\llbracket A \rrbracket$ are in equational correspondence.
Theorem (Global Correspondence)
$\Gamma \vdash M=N: A$ if and only if $\llbracket \Gamma \rrbracket \vdash \llbracket M \rrbracket=\llbracket N \rrbracket: \llbracket A \rrbracket$.
Corollary (Intermediate Language)
The core polarized language (with,+- , and \star) is in equational correspondence with its extension with user-defined (co-)data types.

Conclusion

More in the Paper

Polymorphism and type functions (a.k.a. system F_{ω})
Interesting consequences for type isomorphism
Computational effects (divergence and first-class control)
A multi-discipline equational theory; conservative extension of call-by-push-value

Restoring the missing duality (appendix)

Restoring the duality

Based on sequent calculus (Curien \& Herbelin 2000)
Dual to call-by-need: sharing control vs sharing information
Fully dual data and co-data types
Fully dual polar basis of primitive connectives à la linear logic
No function type \rightarrow
Negative disjunction 8 and \perp
Involutive pair of positive \ominus and negative \neg negations
(Munch-Maccagnoni \& Scherer 2015)
Common algebraic and logical laws as type isomorphisms
Two dual commutative semirings from positive and negative conjunction/disjunction

Two dual sets of De Morgan laws

Future Work

Connections with unboxed values and types in GHC (Peyton Jones \& Launchbury 1991)

GHC core intermediate language has types that distinguish
Lazy evaluation (ordinary Haskell values)
Eager evaluation, (unboxed values, e.g., machine integers)
Perhaps the first implementation of a multi-discipline language
Idea: see if remaining polar connectives are useful for compilers
Potential application with curried function call arity

Summary

Minimalism is desirable, but requires care
Different types have different needs to bring out their best
Diversity of computation, rather than conformity, is a virtue
Multi-discipline evaluation goes beyond binary polarity
Sharing is possible, with just some shifts

