
Numerical Methods with

Functional Programming in

Python∗

Paul Downen

MATH607 – March 7, 2018

Many numerical methods are expressed as a series of approximations; each
one a little more accurate than the one that came before. Since the approxima-
tions can usually always be made more accurate by some sort of improvement,
these series are infinite. That way, an answer can be calculated to any desired
level of accuracy, in principle, by searching far enough into the infinite series of
approximations to find one that is close enough to the real answer.

Unfortunately, translating this kind of numerical method to a computer
algorithm quickly runs into a snag: a computer with finite memory cannot
store an infinite series. Because of this mismatch between the mathematics
and the machine, the programmer must encode the method into some finite
representation. In standard practice, the encodings will be far removed the
original description of the method, involving (many several nested) loops with
intricate control flow and termination conditions.

But there is another way! Instead of twisting the infinite series of approxi-
mations into some sort of loop, we can represent infinite series of approximations
directly as an ordinary object, keeping the structure of the program much closer
to that of the description. To do so, we will be using the following techniques
from functional programming:

• Using on data and objects which are constant and do not change their
value or behavior over time.

• Treating functions as data which can be stored in objects and passed as
parameters to other functions.

• Manipulating data structures containing information that is computed
on-demand, rather than at the time of creation.

∗This exercise set is based on Section 4 from John Hughes’ excellent paper “Why Functional
Programming Matters” (https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.
pdf). Hughes’ original paper expresses its programs in Miranda, a lazy, functional program-
ming language. The exercises here (attempt to) preserve the main ideas as much as possible
while translating the programs to Python, an eager, object-oriented language.

1

https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

Remark 1. The code to follow will occasionally make use of anonymous func-
tions. This is just another way to refer to a function without having to first give
it a name. Anonymous functions in Python are written as:� �
lambda x, y, z: # some expression involving x, y, and z� �
which describes (in this case) a function of three parameters x, y, and z. For
example, the following two definitions of the square function are the same:� �
def square(x):

return x*x

square = lambda x: x*x� �
In the first case, a function named square is defined using the normal definition
syntax. In the second case, the variable square is assigned a value, and that
value is the function which squares its argument.

1 Infinite Streams

An infinite stream a0, a1, a2, . . . cannot be stored in its entirety as a list in a
computer, since there is not enough space to hold the whole thing (let alone
taking eternity to do so). So instead, we will have to come up with a type
of object that somehow hides the stream itself, and gives us access to its in-
formation through a specific interface. The interface for streams includes two
methods: the head of a stream is its first element, and the tail of a stream is
the remaining stream with the head remove. In other words, the interface for a
stream object a0, a1, a2, a3, a4, . . . is expressed by the following two equations:

(a0, a1, a2, a3, a4, . . .).head() = a0

(a0, a1, a2, a3, a4, . . .).tail() = a1, a2, a3, a4, . . .

To represent these objects in Python, we can use an (abstract) class Stream.
Every Stream object must respond to the above two head and tail methods.1� �
class Stream:

head: Stream -> elem
tail: Stream -> Stream� �

Notice how the head and tail methods—the most important part of the
stream interface—are not given any definition in the generic Stream class!
That’s because each more specific type of Stream will define its own special-
ized responses to these two methods. The most basic type of stream is one that
repeats the same element over and over, ad nauseam.

Repeat(a) = a, a, a, a, . . .

1In the template script, the Stream class includes some extra methods that are defined
in terms of head and tail. These extra methods it a little easier to work with Streams in
Python by enabling the use of special syntax (like for loops and indexing s[i]) and printing
something actually useful in the interactive prompt.

2

To define what a Repeat stream is in Python only requires explaining what is
the head and tail of Repat(a), which should obey the equations:

Repeat(a).head() = a

Repeat(a).tail() = Repeat(a)
(1)

These equations can be translated to the following Repeat class, which is a
subclass of Streams:� �
class Repeat(Stream):

def __init__(self , a):
self.state = a

def head(self): return self.state
def tail(self): return Repeat(self.state)� �

The parameter self refers to the object itself, and the element a of Repeat(a)
is stored within the object as self.state, which is set during initialization in
init . Therefore, the parameter a from the equations Eq. (1) are replaced

by self.state in the class definition.
Repeat streams can be made more general by repeatedly applying some

function f to generate different elements of the stream, as in:

Repeat(a, f) = a, f(a), f(f(a)), f(f(f(a))), . . .

The ith element of the Repeat(a, f) stream is the ith iteration of f on a. This
stream obeys the following equalities on the head and tail methods:

Repeat(a, f).head() = a

Repeat(a, f).tail() = Repeat(f(a), f)

This is a generalization previous definition because the simpler Repeat(a) can
be recovered by taking f to be the identity function lambda x: x which just
returns its parameter unchanged

Repeat(a) = Repeat(a, lambda x: x)

and the previous definition of the Repeat class is updated as follows:� �
class Repeat(Stream):

def __init__(self , a, f=lambda x: x):
self.state = a
self.step = f

def head(self): return self.state
def tail(self): return Repeat(self.step(self.state), self.step)� �

In the above method definition def __init__(self, state, step=lambda x: x):, the syn-
tax step=lambda x: x gives a default value for the step parameter, which happens
to be the identity function, if one is not provided.

3

Exercise 1. Two example streams are the constant stream of all zeroes, and
the stream of all natural numbers:

zeroes = 0, 0, 0, 0, 0, . . .

nats = 0, 1, 2, 3, 4, . . .

Generate these two streams in Python using the Repeat class constructor.

Exercise 2. Another way to generate a stream is to modify an existing one by
applying a function to each element. Given a stream a0, a1, a2, a3, a4, Mapping
the function f over it is:

Map((a0, a1, a2, a3, a4, . . .), f) = f(a0), f(a1), f(a2), f(a3), f(a4), . . .

According to the above definition, the head and tail methods of a Map stream
behave as follows:

Map((a0, a1, a2, a3, . . .), f).head() = f(a0)

Map((a0, a1, a2, a3, . . .), f).tail() = Map((a1, a2, a3, . . .), f)

Now, fill in the following class definition for Map in Python that obeys the above
two equations:� �
class Map(Stream):

def __init__(self , stream , f):
self.stream = stream
self.trans = f

def head(self): # FILL IN
def tail(self): # FILL IN� �

Example 1. Here is a use of Map to create a stream of squares; one for each
natural number:� �
squares = Map(nats , lambda x: x*x)� �
The squares object represents the following infinite sequence:

squares = 0, 1, 4, 9, 16, . . .

Exercise 3. Yet another way to generate a stream is to combine two streams,
pointwise. Given two streams a0, a1, a2, a3, . . . and b0, b1, b2, b3, . . . , Zipping the
two together is:

Zip((a0, a1, a2, a3, . . .), (b0, b1, b2, b3, . . .)) = (a0, b0), (a1, b1), (a2, b2), (a3, b3), . . .

As with Repeat, Zip can be generalized to take an arbitrary binary function f
used to combine the two elements, instead of pairing them together, as follows:

Zip((a0, a1, a2, . . .), (b0, b1, b2, . . .), f) = f(a0, b0), f(a1, b1), f(a2, b2), . . .

4

The simpler behavior is recovered by setting f to be the function just returns
the pair of its two arguments:

Zip((a0, . . .), (b0, . . .)) = Zip((a0, . . .), (b0, . . .), lambda x, y: (x, y))

According to the above definition of Zip, the head and tail methods of a Zip

stream behave as follows:

Zip((a0, a1, a2, . . .), (b0, b1, b2, . . .), f).head() = f(a0, b0)

Zip((a0, a1, a2, . . .), (b0, b1, b2, . . .), f).tail() = Zip((a1, a2, . . .), (b1, b2, . . .), f)

Now, fill in the following class definition for Zip in Python that obeys the above
two equations:� �
class Zip(Stream):

def __init__(self , l, r, f=lambda x, y: (x,y)):
self.left = l
self.right = r
self.combine = f

def head(self): # FILL IN
def tail(self): # FILL IN� �

2 Newton-Raphson Square Roots

Newton’s method for finding the square root of n is to begin with some initial
approximation a0 of

√
n, and then generating increasingly better approximations

as follows:
a0 = some initial guess

ai+1 =
ai + n

ai

2

(2)

If this series of approximations converges to a limit a, so that a = a+n/a
2 then

2a = a +
n

a

a =
n

a

a2 = n

a =
√
n

That is to say, the limit of the series a0, a1, a2, . . . described by Eq. (2) is the
square root of n. Since the series converges on the limit, the difference between
consecutive elements ai and ai+1 represents the error: the smaller |ai−ai+1| is,
the more accurate ai+1 is with respect to the real answer

√
n. That means that

an approximation of
√
n can be calculated to any desired accuracy by going

deep enough into the series until the error is within an acceptably small margin.

5

2.1 Generating approximations

Exercise 4. We can represent the infinite series described in Eq. (2) as a Stream

object. First, define a Python function next root that calculates the next
number in the series given the current one a, so that:

next root(n, a) =
a + n

a

2� �
def next_root(n, a): # FILL IN� �
Next, define a Python function sqrts that generates the series Eq. (2) by
Repeating the next root function, so that:

sqrts(a0, n) = a0, next root(n, a0), next root(n, next root(n, a0)), . . .� �
def sqrts(a0, n): # FILL IN� �
2.2 Selecting an answer

Exercise 5. To determine the error of approximations, we need to compare
them side-by-side. So it would be convenient to organize the stream so that
consecutive elements are given side-by-side. Define a Python function by twos

that groups together consecutive elements of a stream into pairs, like so:

by twos((a0, a1, a2, a3, a4, . . .)) = (a0, a1), (a1, a2), (a2, a3), (a3, a4), . . .� �
def by_twos(stream): # FILL IN� �
HINT: Zipping might be helpful here.

Next, use by twos to find the first pair of elements ai and ai+1 that are
within a given error value ε and return the second (more accurate) one, as
follows:

within(ε, (a0, a1, . . .)) = ai+1 if ai − ai+1 ≤ ε� �
def within(eps , stream): # FILL IN� �
HINT: If you use the special iter method of Stream from the template
script, a for loop can inspect the elements of a stream one at a time as in:� �
for elem in stream:

do something with each elem� �
Exercise 6. Now, use sqrts and within to define a square root approximation
function.� �
def sqrt(a0, eps , n): # FILL IN� �

6

2.3 Another selection criteria

Exercise 7. Another way to measure the error between two approximations is
to compare their ratios, rather than their difference. That is to say, instead of
trying to get |ai−ai+1| as small as possible, we could instead try to get ai/ai+1

as close to 1 as possible. This measure of error can give better results for very
small numbers where the difference is small (because the numbers are already
small) but the ratio might be huge.

Fortunately, since the generation of approximations is separate from the
selection of answers, we only need to define a new selection function to replace
within. First, define the ratio-based selection function relative similar to
within that finds the first pair of elements ai and ai+1 satisfying the following
equation:

relative(ε, (a0, a1, . . .)) = ai+1 if

∣∣∣∣ ai
ai+1

− 1

∣∣∣∣ ≤ ε� �
def relative(eps , stream): # FILL IN� �
Next, write a relative square root function rsqrt that is the same as sqrt but
uses relative in place of within.� �
def rsqrt(a0, eps , n): # FILL IN� �
3 Numerical Differentiation

Derivatives are another appropriate problem to solve with a series of approxi-
mations. The very definition of involves eliminating the error of an estimation
to find the real answer!

d

dx
f(x) = lim

h→0

f(x + h)− f(x)

h
(3)

The derivative of f at x can be calculated numerically by picking a value for
the distance h that is small, but not actually 0. The smaller the value for h ,the
more accurate the calculation. So we can rephrase the definition of a derivative
to be the limit of the calculation on a sequence H of ever decreasing distances.

H = h0, h1, h2, . . . (where hi > hi+1)

d

dx
f(x) = lim

h∈H

f(x + h)− f(x)

h

3.1 Generating approximations

Exercise 8. An appropriate choice of distances to begin with some initial h,
and then halve each successive distance. Write the Python function halves that
generates this stream starting from an initial h.

halves(h) = h,
h

2
,
h

4
,
h

16
,
h

32
, . . .

7

� �
def halves(h): # FILL IN� �
Next, write the easy diff function which calculates a derivative estimate of
f(x) from Eq. (3) for a given h.

easy diff(h, x, f) =
f(x + h)− f(x)

h� �
def easy_diff(h, x, f): # FILL IN� �
Finally, combine the above two functions together to generate a stream of deriva-
tive estimates for a distance shrinking by half each time.

differentiate(h0, x, f) = easy diff(h0, x, f), easy diff(h0/2, x, f), . . .� �
def differentiate(h0, x, f): # FILL IN� �
Example 2. Here are some numeric differential approximation streams that you
can check out. Compare how fast each of the different streams converge on the
right answer.� �
const = differentiate (1, 10, lambda x: 5)
lin = differentiate (1, 10, lambda x: 12*x)
quad = differentiate (1, 10, lambda x: x**2)
expn = differentiate (1, 10, lambda x: 2**x)
dexpn = differentiate (1, 5, lambda x: 2**(2**x))
trig = differentiate (1, 10, lambda x: sin(x))� �
HINT: The sin function can be imported from the math module.

3.2 Selecting an answer

Exercise 9. To calculate the derivative of a function, we have to pick one answer
out of the many options that is within our tolerance for error. Thankfully, we
have already written such a selection function: within! Just like in Exercise 7
where the selection criteria was swapped out, so too can the generating stream
be swapped out. Combine differentiate and within to approximate the
differential of f at x within an error of eps by beginning at a distance of h0.� �
def diff(h0, eps , x, f): # FILL IN� �
3.3 Improving convergence

One potential problem with this approach to numeric differentiation is that the
approximations can converge on the real answer rather slowly, so that finding an
answer within a desired tolerance for error can require too many calculations.
Fortunately, some ingenuity can be applied to make the approximations converge

8

much faster. Each approximation is an alteration of the real answer with some
error, and the error depends on h:

the real answer + an error involving h

It turns out that error term is approximately a multiple of hn, for some n.
Call the real answer A and the error multiplier B, so that for two consecutive
approximations ai and ai+1:

ai = A + (2h)nB ai+1 = A + hnB

Solving the system of equations gives:

2nai+1 − ai = (2nA−A) + (2nhnB − (2h)nB) = (2n − 1)A

This leaves us with the “real” answer A with the error term eliminated:

A =
2nai+1 − ai

2n − 1
(4)

Exercise 10. Write a Python function elim error that eliminates the error
term of order n from a stream of approximations by using the “real” answer
from Eq. (4).

elim error(n, (a0, a1, a2, . . .)) =
2na1 − a0

2n − 1
,

2na2 − a1
2n − 1

, . . .� �
def elim_error(n, stream): # FILL IN� �
HINT: Notice that each element of the stream generated by elim error refers
to two consecutive elements of the given stream, like in by twos.

Exercise 11. To actually eliminate the error from a stream, we need to know
the order n of the error. This is hard to know ahead of time, but easy to measure
on the stream with the following calculation:

order(a0, a1, a2, . . .) ≈ log2

∣∣∣∣a0 − a2
a1 − a2

− 1

∣∣∣∣ (5)

Write the Python function order that measures the order n of a stream using
the calculation from Eq. (5), as well as the function improve that eliminates
the error of the appropriate order of a stream.� �
def order(stream): # FILL IN

def improve(stream): # FILL IN� �
Check the improved versions of the derivative streams from Example 2 to see
the impact of improvement on approximations.

HINT1: The log function can be imported from the math module. The
base-2 logarithm log2(x) is log(x, 2).

HINT2: A convenient way of taking apart a fixed-length list in python is to
use a pattern-matching assignment like:

9

� �
[a, b, c] = [1, 2, 3]� �
which assigns 1 to a, 2 to b, and 3 to c. The take(n) method of the Stream

class in the template script returns a list of the first n elements. So the first
three elements of a stream can be easily accessed with one line:� �
[a, b, c] = stream.take (3)� �

HINT3: It’s possible that the first few elements in the given stream are so
close together than their difference is effectively 0. In that case, there is no order

since the calculation causes an exception, so the only possible “improvement”
is to remove the first element (the worst approximation) from the stream.

3.4 Super improvement

The method in Eq. (4) for eliminating some error from a stream of approx-
imations works because the variable h which controls the error in each ap-
proximation is half as big as the one that comes before it. But note that an
improved stream is also such a “halving” approximation series! That means
we can improve on an already improved stream (as in improve(improve(s))))
to eliminate another error term and converge even faster. And this can be
improved again, and again.

How much improvement is enough to effectively “jump” to the answer in
only a few hops depends entirely on the approximation stream itself, and is diffi-
cult to predict ahead of time. Instead, we can use the following “super improve”
function that repeatedly improves a stream, picking the second approximation
from each improvement.� �
def super_improve(stream):

return Map(Repeat(stream , improve), lambda s: s.tail().head())� �
The ith element of a super improved stream comes from the ith improvement
of the original approximation stream (where s.tail().head() is s[1]).

super improve(s) = s[1], improve(s)[1], improve(improve(s))[1], . . .

Exercise 12. Update your diff function from Exercise 9 to use a super improved
stream of approximations. Check the super improved versions of the deriva-
tive streams from Example 2, and compare them with the original and singly-
improved versions. Which ones converge noticeably faster, and which ones are
about the same as a single application of improve?

10

	Infinite Streams
	Newton-Raphson Square Roots
	Generating approximations
	Selecting an answer
	Another selection criteria

	Numerical Differentiation
	Generating approximations
	Selecting an answer
	Improving convergence
	Super improvement

