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Chapter 1

Abstract Machines

1.1 A Tale of Two Semantics

Direct semantics of source language (operational semantics, denotational seman-
tics, etc.):

• Assign a meaning to a piece of source code which indicates its value (what
does it return when evaluated?) or behavior (what other effects happen
when it is run?)

• Can reason directly about expressions of the source language itself ⌣̈

• Makes it easy to reason about high-level properties of code at compile time
(“are these two functions equal?”, “is this program type-safe?”) ⌣̈

• Makes it harder to understand the low-level cost of programs at run time
(“how many instructions does this loop call take to run?”, “how many
allocations does this function call make?”) ⌢̈

Abstract machine semantics:

• Describe a form of theoretical low-level machine that abstracts away details
from, while remaining close enough to, real-world machines

• To run a source program on the machine, it may or may not have to be
compiled to a different machine language first

• Describes a more practical implementation by being more similar to the
real machine, providing both a formal specification and a hint of how to
implement ⌣̈

• Makes it easy to reason about low-level cost of programs at run time ⌣̈

• Makes it harder to reason about high-level properties of code at compile
time ⌢̈
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6 CHAPTER 1. ABSTRACT MACHINES

LISP programmers know the value of everything and the cost of
nothing.

C programmers know the cost of everything and the value of nothing.

How can we have our cake and eat it, too?

1. Enrich the direct semantics with a notion of cost (see Jan Hoffman, OPLSS
2016; Foundations of Programming Languages, OPLSS 2018)

2. Discover the good high-level properties of a well-designed abstract machine

1.2 Source Language

A small simply-typed λ-calculus [2] with booleans as the only base type.

1.2.1 Syntax & Semantics

Syntax:

M,N ::= x |M N | λx.M
| True | False | if M thenN1 elseN2

(Call-by-Name) Operational Semantics:

(λx.M) N 7→M [N/x] (β→)

if True thenM1 elseM2 7→M1 (βBool 1)

if False thenM1 elseM2 7→M2 (βBool 2)

1.2.2 Safety

Type System:

A,B ::= Bool | A→ B

Γ ::= • | Γ, x : A

Γ, x : A ⊢ x : A
V ar

Γ ⊢M : A→ B Γ ⊢ N : A
Γ ⊢M N : B

→E
Γ, x : A ⊢M : B

Γ ⊢ λx.M : A→ B
→I

Γ ⊢ True : Bool
BoolI1 Γ ⊢ False : Bool

BoolI2

Γ ⊢ N : Bool Γ ⊢M1 : A Γ ⊢M2 : A

Γ ⊢ if N thenM1 elseM2 : A
BoolE
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Lemma 1.2.1 (Progress). If • ⊢ M : Bool then either M is a value (True or
False) or there is an M ′ such that M 7→M ′.

Lemma 1.2.2 (Preservation). If Γ ⊢M : A and M 7→M ′ then Γ ⊢M ′ : A.

Corollary 1.2.3 (Type Safety). If • ⊢M : Bool then every time M 7→→M ′ ̸7→,
M ′ has to be a valid final value (True or False).

Is this true?

No! Consider if (λx.x) False thenFalse elseTrue ̸7→.

We forgot reduction inside of evaluation contexts (E).

E ::= □ | E N | if E thenM1 elseM2

M 7→M ′

E[M ] 7→ E[M ′]

Now we have

if (λx.x) False thenFalse elseTrue

7→ if False thenFalse elseTrue (β→)

7→ True (βBool 2)

Many steps (i.e., the reflexive, transitive closure) of 7→ is written as 7→→:

M 7→M ′

M 7→→M ′ Inclusion
M 7→→M

Reflexivity
M 7→→M ′ M ′ 7→→M ′′

M 7→→M ′′ Transitivity

1.2.3 Theories of computation

Reduction theory, where → is “reduction anywhere” and →→ is zero or more
steps of →:

M 7→M ′

M →M ′ Inclusion
M →M ′

C[M ]→ C[M ′]
Compatibility

M →M ′

M →→M ′ Inclusion
M →→M

Reflexivity
M →→M ′ M ′ →→M ′′

M →→M ′′ Transitivity

where C can be any context.

Exercise 1.2.4. Let

and = λx.λy. if x then y elseFalse

Use the reduction theory of the λ-calculus to prove that λy.(and True y)→→ λy.y.
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Equational theory:

M 7→M ′

M = M ′ Inclusion
M = M ′

C[M ] = C[M ′]
Compatibility

M = M
Refl .

M = M ′ M ′ = M ′′

M = M ′′ Trans.
M = M ′

M ′ = M
Symmetry

More axioms (syntactic rules we assume relate equal terms):

λx.(M x) = M : A→ B (if x /∈ FV (M)) (η→)

if M thenTrue elseFalse = M : Bool (ηBool)

E[if M thenN1 elseN2] = if M thenE[N1] elseE[N2] (µBool)

Exercise 1.2.5. Let

not = λx. if x thenFalse elseTrue

Use the equational theory to prove that λx. not (not x) = λx.x.

1.3 Target Machine

1.3.1 Näıve Syntax & Semantics

M ::= same as before. . .

E ::= α |M · E | if thenM elseM ′;E

c ::= ⟨M ||E⟩

Refocusing rules:

⟨M N ||E⟩ 7→ ⟨M ||N · E⟩ (µ→)

⟨if M thenN1 elseN2||E⟩ 7→ ⟨M ||if thenN1 elseN1;E⟩ (µBool)

Reduction rules:

⟨λx.M ||N · E⟩ 7→ ⟨M [N/x]||E⟩ (β→)

⟨True||if thenN1 elseN2;E⟩ 7→ ⟨N1||E⟩ (βBool 1)

⟨False||if thenN1 elseN2;E⟩ 7→ ⟨N2||E⟩ (βBool 2)

But now only commands can reduce, not terms. Since there is only one
command in a program — the one at the top-level — there is no opportunity to
simplify sub-expression as before.
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1.3.2 Compilation and simplified syntax — commands
everywhere!

Idea: Make more things commands by compiling away refocusing rules ahead of
time.1

⟨M N ||α⟩ 7→ ⟨M ||N · α⟩
M N := µα.⟨M ||N · α⟩

⟨if M thenN1 elseN2||α⟩ 7→ ⟨M ||if then⟨N1||α⟩ else⟨N2||α⟩⟩
if M thenN1 elseN2 := µα.⟨M ||if thenN1 elseN2;E⟩

:= µα.⟨M ||if then⟨N1||α⟩ else⟨N2||α⟩⟩

Note: I have now also made the branches of the if thenelse continuation into
commands, to put together the next step with the answer of each branch.

Revised syntax of compiled programs into the machine language:

v ::= x | λx.v | True | False | µα.c
E ::= α | v · E | if then c else c′

c ::= ⟨v||E⟩

Have just one µ rule for pushing around the continuation through (one or
more) elimination steps:

⟨µα.c||E⟩ 7→ c[E/α] (µ)

For example, application is compiled and then run as:

⟨M N ||E⟩ := ⟨µα.⟨M ||N · α⟩||E⟩
7→ ⟨M ||N · E⟩ (µ)

The only other reduction rules are:

⟨λx.M ||N · E⟩ 7→ ⟨M [N/x]||E⟩ (β→)

⟨True||if then c1 else c2⟩ 7→ c1 (βBool 1)

⟨False||if then c1 else c2⟩ 7→ c2 (βBool 2)

Exercise 1.3.1. Write a compilation transformation function JMK,

J K : λ-term→ machine term

which converts terms from the λ-calculus (in section 1.2) to a term v of the
machine language defined just above.

1The µ notation comes from Parigot’s λµ-calculus [18].
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Hint: here are a few cases to get you going:

JxK := x

Jλx.MK := λx.JMK
JM NK := µα.⟨JMK||JNK · α⟩

Fill in the definitions of JTrueK, JFalseK, and Jif M thenN1 elseN2K.

Exercise 1.3.2. Translate the λ-calculus and and not functions to the abstract
machine, and show that compilation produces the following machine terms

and := λx.λy.µα.⟨x||if then⟨y||α⟩ else⟨False||α⟩⟩
not := λx.µα.⟨x||if then⟨False||α⟩ else⟨True||α⟩⟩

1.3.3 Theories of computation

Reduction theory:

c 7→ c′

c→ c′
Incl .

c→ c′

C[c]→ C[c′]
Compat .

c→ c′

c→→ c′
Incl .

c→→ c Refl .
c→→ c′ c′ →→ c′′

c→→ c′′
Trans.

and similar for v and E, where C can be any context (the Compat . rule assumes
that the specific C has a command-shaped hole, but when filled C might build a
command, a term, or a continuation).

Exercise 1.3.3. Use the reduction theory of the abstract machine to prove that
Jλy.(and True y)K := λy.µα.⟨and ||True ·y · α⟩ →→ λy.µα.⟨y||α⟩.

Equational theory:

c 7→ c′

c = c′
Incl .

c = c′

C[c] = C[c′]
Compat .

c = c Refl .
c = c′ c′ = c′′

c = c′′
Trans.

c = c′

c′ = c
Symm.

and similar reflexivity, symmetry, and transitive rules for v and E. Plus these
additional extensionality rules:

µα.⟨v||α⟩ = v (if α /∈ FV(v)) (ηµ)

λx.⟨v||x · α⟩ = v : A→ B (if α, x /∈ FV(v)) (η→)

if then⟨True||E⟩ else⟨False||E⟩ = E : Bool (ηBool)

Exercise 1.3.4. Use the equational theory of the abstract machine to prove that
Jλx. not (not x)K := λx.µα.⟨not ||µβ.⟨not ||x · β⟩ · α⟩ = λx.x.
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1.3.4 Type safety

Environments:

• Environment Γ = x1 : A1, . . . , xn : An assigning types to variables which
stand for unknown terms/values

• Environment ∆ = α1 : A1, . . . , αn : An assigning types to covariables (i.e.,
continuation variables or logical duals of variables)

Three judgments:

• Γ ⊢ v : A | ∆

• Γ | E : A ⊢ ∆

• c : (Γ ⊢ ∆)

Type system:

Γ, x : A ⊢ v : B | ∆
Γ ⊢ λx.v : A→ B | ∆ →R

Γ ⊢ v : A | ∆ Γ | E : B ⊢ ∆

Γ | v · E : A→ B ⊢ ∆
→L

Γ ⊢ True : Bool | ∆ BoolR1
Γ ⊢ False : Bool | ∆ BoolR2

c1 : (Γ ⊢ ∆) c2 : (Γ ⊢ ∆)

Γ | if then c1 else c2 : Bool ⊢ ∆
BoolL

Γ, x : A ⊢ x : A | ∆ Ax
Γ | α : A ⊢ α : A,∆

CoAx

c : (Γ ⊢ α : A,∆)

Γ ⊢ µα.c : A | ∆ ActR
Γ ⊢ v : A | ∆ Γ | E : A ⊢ ∆

⟨v||E⟩ : (Γ ⊢ ∆)
Cut

Type safety can be shown via progress and preservation [20].

Lemma 1.3.5 (Progress). If c : (• ⊢ α : Bool) then either c is a final command
(of the form ⟨True||α⟩ or ⟨False||α⟩) or there is an c′ such that c 7→ c′.

Lemma 1.3.6 (Preservation). If c : (Γ ⊢ ∆) and c 7→ c′ then c : (Γ ⊢ ∆).

Corollary 1.3.7 (Type Safety). If c : (• ⊢ α : Bool) then every time c 7→→ c′ ̸7→,
c′ has to be a valid final command (of the form ⟨True||α⟩ or ⟨False||α⟩).

1.4 Glossary of arrows

Type of relationship One Step Many Step
(Deterministic) Evaluation (only in eval. contexts) 7→ 7→→

Reduction Anywhere (in any context) → →→
Forward & Backward (symmetry) =

The hierarchy of these relations is

c 7→ c′ implies c 7→→ c′ implies c→→ c′ implies c = c′

c 7→ c′ implies c→ c′ implies c→→ c′ implies c = c′
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Remember that each step down the hierarchy might add new rules. The
arrow c → c′ might include extra reduction rules that weren’t needed for the
operational arrow c 7→ c′ (we didn’t have any, but it can happen in practice
when you want to add new optimizations besides just simplification). Likewise,
the equality relation c = c′ might include extra axioms that state two things are
equal that goes above and beyond the operational rules for c 7→ c′ and reduction
rules for c→ c′ (in our case, we had η axioms which formalize certain notions of
extensionality equality).

Sometimes in the literature, the many step (i.e., reflexive, transitive) closure
of a generic relation R is written uniformly with a star R∗ rather than the
specialized double arrow head. In that notation, the many-step 7→→ is the
∗-closure 7→∗ and the many-step →→ is →∗.



Chapter 2

Classical Realizability

Let’s erase the expressions (v, E, and c) from the type system of the abstract
machine:

• Γ ⊢ v : A | ∆ becomes Γ ⊢ A,∆

• Γ | E : A ⊢ ∆ becomes Γ, A ⊢ ∆

• c : (Γ ⊢ ∆) becomes Γ ⊢ ∆

Typing rules become logical rules:

Γ, A ⊢ B,∆

Γ ⊢ A→ B,∆
→R

Γ ⊢ A,∆ Γ, B ⊢ ∆

Γ, A→ B ⊢ ∆
→L

Γ ⊢ Bool,∆
BoolR1 Γ ⊢ Bool,∆

BoolR2

Γ ⊢ ∆ Γ ⊢ ∆
Γ,Bool ⊢ ∆

BoolL

Γ, A ⊢ A,∆
Ax

Γ, A ⊢ A,∆
CoAx

Γ ⊢ A,∆

Γ ⊢ A,∆
ActR

Γ ⊢ A,∆ Γ, A ⊢ ∆

Γ ⊢ ∆
Cut

These (ignoring Bool and ActR) are the rules of classical logic! Specifically,
a system based on Gentzen’s sequent calculus LK [13].1 For more details on how
the LK sequent calculus relates to abstract machines, see [6].

1I’m taking some liberties with the treatment of environments. If you’re a linear logician
you may care a lot, and see me after class. Otherwise, it just simplifies away issues we won’t
be talking about here.

13
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2.1 Realizers

Definition 2.1.1 (Realizer). A realizer to a proposition is an algorithm (a
program, expression, etc. in a computational language) whose type corresponds
to that proposition.

For example, the implication A⇒ B corresponds to the function type A→ B.

2.1.1 Intuitionistic realizers

Intuition: the effect-free expressions (no recursion, state, exceptions, etc.) in
your favorite (pure) functional language are realizers for intuitionistic logic.

Realizers give an algorithmic interpretation to proofs of intuitionistic theorems
[15].

Examples:
A ∧B ⇒ B ∧A

Interpret conjunction A ∧B as a tuple/pair type A ∗B,

dataA ∗Bwhere

( , ) : A→ B → A ∗B

swap : A ∗B → B ∗A
swap (x, y) = (y, x)

A ∨B ⇒ B ∨A

Interpret disjunction A ∨B as a sum type A+B,

dataA+Bwhere

Left : A→ A+B

Right : B → A+B

flip : A+B → B +A

flip (Left x) = Rightx

flip (Right y) = Left y

Exercise 2.1.2. Define realizers for these (intuitionistic) tautologies (whereA ⇐⇒
B means to give realizers for both A⇒ B and B ⇒ A):

1. A ∧ (B ∧ C) ⇐⇒ (A ∧B) ∧ C

2. A ∨ (B ∨ C) ⇐⇒ (A ∨B) ∨ C

3. ⊤ ∧A ⇐⇒ A

4. ⊥ ∨A ⇐⇒ A
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5. ⊤ ∨A ⇐⇒ ⊤

6. ⊥ ∧A ⇐⇒ ⊥

7. A ∧ (B ∨ C) ⇐⇒ (A ∧B) ∨ (A ∧ C)

8. A ∨ (B ∧ C) ⇐⇒ (A ∨B) ∧ (A ∨ C)

Hint: in some cases, there may be multiple valid answers. You should interpret
the logical constant ⊤ of truth as the data type 1 with one constructor:

data 1where

() : 1

2.1.2 Classical realizers

The language of the abstract machine lets us realize classical axioms or theorems,
which are otherwise rejected by intuitionistic logic [16].

Contrapositive = (A⇒ B)⇒ (¬B ⇒ ¬A)

Logicians like to say that ¬A is the same thing as A⇒ ⊥ (where propositional
constant ⊥ stands for “false”). Interpret ⊥ as the empty data type 0,

data 0where

— no constructors

so that ¬A is interpreted as A→ 0.

contra : (A→ B)→ ((B → 0)→ (A→ 0))

contra f = λg:(B → 0). λx:A.g (f x)

Double Negation Introduction = A⇒ ¬¬A

dni : A→ ((A→ 0)→ 0)

dni x = λk:(A→ 0). k x

Triple Negation Introduction/Elimination = ¬¬¬A ⇐⇒ ¬A

tni : (A→ 0)→ (((A→ 0)→ 0)→ 0)

tni = dni — instantiated to argument type A→ 0

tne : (((A→ 0)→ 0)→ 0)→ (A→ 0)

tne = contra dni
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Double Negation Elimination = ¬¬A⇒ A

dne : ((A→ 0)→ 0)→ A

dne h = . . .???

Try again, in the machine language:

dne : ((A→ 0)→ 0)→ A

dne h = µα:A.⟨h||(λx:A.µβ:0.⟨x||α⟩) · case of{}⟩

where the continuation case of{} does a case-analysis on an expected input of
type 0 (which is impossible), and since there are no cases to cover, it doesn’t say
what to do because it represents dead code. The typing rule is:

Γ | case of{} : 0 ⊢ ∆
0L

and it corresponds to the empty case expression caseM of{} when M : 0 in a
pure functional language (like Haskell) pushed onto the call stack like so:

Γ ⊢M : 0
Γ ⊢ caseM of{} : A 0E ⟨caseM of{}||E⟩ 7→ ⟨M ||case of{}⟩

Law of the Excluded Middle = ¬A ∨A

lem : (A→ 0) +A

lem = µα:(A+ (A→ 0)).⟨Left(λx:A.µβ:0.⟨Rightx||α⟩)||α⟩

Or written as an equation of machine commands:2

⟨lem||α⟩ = ⟨Right(λx:A.⟨Leftx||α⟩)||α⟩
2Notice how the definition of lem is definitely not linear in the continuation variables. Most

importantly, α is used twice — first with the Left constructor then second with Right — acting
as a bait-and-switch by being given two different (and incompatible) options at different times.
Programs that used continuations in a non-linear way are effectively not purely functional,
which is what gives them their non-intuitionistic character.

What about dne? Is that linear? It seems like the continuation β of the false type is never
used. But what if we re-defined falsehood as a codata type with one destructor [] that returns
nothing, with these (linear) typing rules

• | [] : ⊥ ⊢ • ⊥L
c : (Γ ⊢ ∆)

Γ ⊢ µ[].c : ⊥ | ∆ ⊥R

so that we could write the double negation elimination realizer as

dne : ((A → ⊥) → ⊥) → A

dne h = µα:A.⟨h||(λx:A.µ[].⟨x||α⟩) · []⟩

Is this definition of dne in terms of the falsehood codata type ⊥ linear or non-linear?
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Exercise 2.1.3. de Morgan’s laws of duality are:

¬(A ∨B) ⇐⇒ (¬A) ∧ (¬B)

¬(A ∧B) ⇐⇒ (¬A) ∨ (¬B)

Try to write intuitionistic realizers (i.e., in a pure functional language) for both
directions of these two laws. Is there any direction that you can’t write?

Try again to write classical realizers (i.e., in the language of the abstract
machine) for both directions of these two laws. The pattern-matching case
expression on A ∗B and A+B types correspond to these continuations:

⟨caseM of (x, y)→ N ||E⟩ 7→ ⟨M ||case of (x, y)→ ⟨N ||E⟩⟩〈 caseM of

Leftx→ N1

Right y → N2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣E
〉
7→

〈
M

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
case of

Leftx→ ⟨N1||E⟩
Right y → ⟨N2||E⟩

〉

Alternatively, you could write equations on machine commands that define the
functions. For example, here is an equivalent definition of swap and flip (from
above) as equations on commands:

⟨swap||(x, y) · α⟩ = ⟨(y, x)||α⟩
⟨flip||(Leftx) · α⟩ = ⟨Rightx||α⟩
⟨flip||(Right y) · α⟩ = ⟨Left y||α⟩

Can you write programs for all four?

2.2 Constructive evidence

We humans are all finite beings, with a limited view and knowledge of the
universe. Almost assuredly, I know something you don’t know, and you know
something I don’t know. A proof is a way to transmit knowledge from one finite
being to another, and to convince even a careful skeptic that it must be correct.

Constructivist motto:

It’s not enough to say that your judgment is correct (something
works/holds/is true). You must also explain why (it works/holds/is
true).

Thus, a proof should construct an artifact with enough evidence that can
be externally checked by any reasonable skeptic which irrefutably justifies the
claim. Reject the solipsistic monologue and embrace a dialogue of debate!

Who is the skeptic? Should be

• honest (doubts are reasonably grounded and consistent with the shared
knowledge) and

• careful (follows agreed-upon rules to a fault), but

• not necessarily creative (can’t assume that big leaps of logic are “obvious,”
must explain everything in small, clear steps)
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2.2.1 A rational proof?

Theorem 2.2.1 (Classical (ir)rationality). There exist two irrational numbers,
x, y, such that xy is a rational number.

Proof (non-constructive). Let’s try x = y =
√
2.
√
2
√
2
is either rational or

irrational.

• If
√
2
√
2
= xy is rational, then we are done, because x = y =

√
2 are both

irrational numbers with a rational exponent xy.

• Otherwise,
√
2
√
2
is irrational, so instead try x =

√
2
√
2
and y =

√
2 —

both of these are irrational numbers. Then notice that the

xy = (
√
2

√
2
)
√
2 =
√
2

√
2×

√
2
=
√
2

√
2
2

=
√
2
2
= 2

is a rational number, derived as the exponent of two irrational numbers.

2.2.2 Construction of intuitionistic evidence

Intuitionistic evidence supporting truth:

• Evidence for ⊤ is trivial, since ⊤ is always trivially true by definition.

• There is no evidence for ⊥, since ⊥ is always false by definition.

• Evidence for A ∧ B consists of both evidence for A and evidence for B
(both are needed at the same time)

• Evidence for A ∨ B consists of either evidence for A or evidence for B
(just one is enough, but you must choose, and your choice is communicated
along with the supporting evidence)

• Evidence for ∃x:A.P (x) consists of a witness x from the domain A together
with evidence for P instantiated at x.

• Evidence for ∀x:A.P (x) consists of an algorithm which takes any x from
the domain A and produces the associated evidence for P at x.

• Evidence for A⇒ B consists of an algorithm which transforms arbitrary
evidence for A into some evidence for B.

• Evidence for ¬A consists of an algorithm which transforms arbitrary
evidence for A into a contradiction (such as evidence showing ⊥ is true).

If you want to provide evidence that A is true, there are many different
specific ways, which depends on the proposition A in question. This is directly
specific to A.

If you want to provide evidence that A is false, you can only give evidence
that ¬A is true, which always takes the shape of an algorithm of deriving a
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contradiction for any way in which A might be true. This is indirect, and has
nothing to do with A.

For example, how do we show that ∃n:N.n+n = n is true? Provide a concrete
witness (0), which we can show that 0 + 0 = 0.

How do we show that we show that ∀n:N.n+ n = n is false? Suppose that
it is true, and the derive a contradiction. But we are not obliged to provide
a concrete counterexample, which would be a number such that the equation
doesn’t hold.

2.2.3 Construction of classical evidence

Intuitionistic evidence is too vague about falsehood. It has a rich language of
truth, but its idea of false is all irreparably smashed through the bottleneck of
negation (¬A).

Ultra-constructivism: classical evidence lets us talk about both truth and
falsehood with the same level of nuance, precision, and specificity [8].

Split some connectives between positive and negative:
Standard Positive Negative
A ∧B A⊗B A&B
A ∨B A⊕B A`B
⊤ 1 ⊤
⊥ 0 ⊥
¬A ⊖A ¬A

∀x:A.P (x) and A⇒ B are just negative, and ∃x:A.P (x) is just positive.
Classical evidence supporting truth of positive connectives:

• Evidence for 1, 0, A ⊗ B, A ⊕ B, and ∃x:A.P (x) is defined the same as
intuitionistic evidence for ⊤, ⊥, A∧B, A∨B, and ∃x:A.P (x), respectively.

• Evidence for ⊖A is the same as evidence against A.

Classical evidence supporting falsehood of negative connectives:

• Evidence against ⊥ is trivial, since ⊥ is trivially false by definition.

• There is no evidence against ⊤, since ⊤ is always true by definition.

• Evidence against A&B consists of either evidence against A or evidence
against B (just one is enough, but you must choose, and your choice is
communicated along with the supporting evidence).

• Evidence against A`B consists of both evidence against A and evidence
against B (both are needed at the same time).

• Evidence against ∀x:A.P (x) consists of a counterexample x from the domain
A together with evidence against P instantiated at x.

• Evidence against A ⇒ B consists of both evidence for A and evidence
against B (together at the same time).
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• Evidence against ¬A is the same as evidence for A.

In all other cases:

• Evidence for a negative proposition A is an algorithm that derives a
contradiction from any possible evidence against A.

• Evidence against a positive proposition A is an algorithm that derives a
contradiction from any possible evidence for A.

Why does an intuitionist reject ¬¬A⇒ A? Because having concrete evidence
for A is stronger than saying it is impossible for evidence for A to not exist. For
example, evidence for ∃n:N.n+ n = n includes a witness (0), but evidence for
¬¬∃n:N.n+ n = n is an algorithm which rules out the impossibility of a witness;
it does not have to communicate the witness to you. These two do not have the
same informational content.

Similarly, constructive classical evidence against ∀n:N.n+ n = n has more
informational content than intuitionistic evidence for ¬∀n:N.n + n = n. To
constructively argue against ∀n:N.n+ n = n, I must provide a counterexample
(like 3) such that 3+3 ̸= 3. Instead, the intuitionistic evidence for ¬∀n:N.n+n =
n need only be an algorithm which shows that assuming n+ n = n everywhere
leads to a contradiction.

What about ⊖¬A (or dually ¬ ⊖ A)? Evidence for ⊖¬A is definitionally
the same as evidence for A. Dually, evidence against ¬ ⊖ A is defined to be
evidence against A.

2.2.4 Realizing mechanical evidence

True ∈ JBoolK+ always

False ∈ JBoolK+ always

Left v ∈ JA⊕BK+ if v ∈ JAK+

Right v ∈ JA⊕BK+ if v ∈ JBK+

(n, v) ∈ J∃x:N.P (x)K+ if n ∈ N and v ∈ JP (n)K+

v · E ∈ JA→ BK− if v ∈ JAK+ and E ∈ JBK−

FirstE ∈ JA&BK− if E ∈ JAK−

SecondE ∈ JA&BK− if E ∈ JBK−

(n,E) ∈ J∀x:N.P (x)K− if n ∈ N and E ∈ JP (n)K−



2.2. CONSTRUCTIVE EVIDENCE 21

Exercise 2.2.2. Write down the basic cases for constructing positive evidence for

• JA⊕BK+,

• J1K+,

• J0K+, and

• J⊖AK+,

and the basic cases for constructing negative evidence for

• JA`BK−,

• J⊤K−,

• J⊥K−, and

• J¬AK−.

Exercise 2.2.3. Now that the disjunctive/conjunctive connectives have been split
into positive versus negative interpretations, we have the freedom a choosing
to interpret logical principles using either one. For example, previously we had
interpreted the law of excluded middle with a positive disjunction as ¬A ⊕ 0.
This type promises to make a concrete decision on which of ¬A or A must be
true (and thus being responsible for providing supporting evidence of why the
choice was the correct one).

Another way of writing the law of the excluded middle is with a negative
disjunction as ¬A ` A. From the negative perspective, this type says that to
refute ¬A ` A, you would have to provide evidence against ¬A (which is the
same as evidence for A) while simultaneously providing evidence against A. In
any consistent setting, you cannot argue for and against the same A at the same
time, so there is no way to refute ¬A`A.

Using your interpretation of the basic negative evidence for J¬A`AK−, write
a realizer capturing the argument for ¬A`A by showing that every argument
against it leads to a contradiction. How is the realizer for the negative law
of excluded middle ¬A ` A different from the one for the positive law of the
excluded middle ¬A⊕A? Bonus: can you describe the differences in linearity
or non-linearity between the two realizers?
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Chapter 3

Computational
Orthogonality

3.1 Indirect realization of evidence

What does it mean to refute a positive type or verify a negative type?

E
?
∈ JBoolK− v

?
∈ JA→ BK+

• Evidence for a negative proposition A is an algorithm that derives a
contradiction from any possible evidence against A.

• Evidence against a positive proposition A is an algorithm that derives a
contradiction from any possible evidence for A.

For specific positive types, refutations look like

E ∈ JBoolK− iff ⟨True||E⟩ runs and ⟨False||E⟩ runs

E ∈ JA⊕BK− if (⟨Left v||E⟩ runs for all v ∈ JAK+)

and (⟨Right v||E⟩ runs for all v ∈ JBK+)

E ∈ J∃x:N.P (x)K− if ⟨(n, v)||E⟩ runs for all n ∈ N and v ∈ JP (n)K+

But how do we show that if then c1 else c2 ∈ JBoolK−?
For specific negative types, verifications look like

v ∈ JA→ BK+ if ⟨v||v′ · E⟩ runs for all v′ ∈ JAK+ and E ∈ JBK−

v ∈ JA&BK+ if (⟨v||FirstE⟩ runs for all E ∈ JAK−)

and (⟨v||SecondE⟩ runs for all E ∈ JBK−)

23
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v ∈ J∀x:N.P (x)K+ if ⟨v||(n,E)⟩ runs for all n ∈ N and E ∈ JP (n)K−

But how do we show that λx.v ∈ JA→ BK+?

3.2 Machine orthogonality

The semantic realizability model of abstract machines can be traced back to
Girard’s notion of orthogonality for linear logic [14], which enriches contradiction
with computation. It also goes by the name of ⊤⊤-closure [19] (pronounced “top
top closure”).

Definition 3.2.1 (Pole). running set of commands ‚, also known as a pole,
can be any chosen set of commands satisfying some condition. . . (see later)

Definition 3.2.2 (Orthogonality). ‚-orthogonality between an individual term
v and continuation E of the machine language, written as v ‚ E, is

v ‚ E iff ⟨v||E⟩ ∈‚
‚-orthogonality between a (potentially empty) subset of terms (A+ =

{v1, v2, . . . }) and continuations (B− = {E1, E2, . . . }) of the machine language,
written as A+ ‚ B−, is

A+ ‚ B− iff for all v ∈ A+, E ∈ B−, v ‚ E

Given any subset A+ of terms ({v, . . . }) from the machine language, the
‚-orthogonal of A+, written as A+‚, is the largest subset of continuations
({E, . . . }) such that A+ ‚ A+‚. In other words, A+‚ is defined as

A+‚ = {E | ∀v ∈ A+, v ‚ E}

Given any subset A− of continuations ({E, . . . }) from the machine language,
the ‚-orthogonal of A−, written as A−‚, is the largest subset of terms ({v, . . . })
such that A−‚ ‚ A−. In other words, A−‚ is defined as

A−‚ = {v | ∀E ∈ A−, v ‚ E}

Example 3.2.3. The empty set is orthogonal to any set of terms (A+ ‚ {}) or
continuations ({}‚ B−). This holds no matter how ‚ is defined.

Example 3.2.4. Suppose that the running set ‚ contains only terminating,
type-safe commands, that is

Definition 3.2.5 (Safety Pole).

‚ = {c | ∃ final c′ s.t. c 7→→ c′}

for any chosen collection/set/judgement of acceptable “final” commands. For
example, we might say that ⟨True||α⟩ and ⟨False||α⟩ (where α denotes a “top-
level”/initial continuation) or even ⟨x||v · E⟩ (for head reduction hitting a free
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variable x) and ⟨x||α⟩ (for a totally generic final state) are all acceptable final
commands. But we can still rule out fatal type errors such as ⟨True||x · α⟩
(boolean constants cannot be applied to arguments) or ⟨λx.v||if then c1 else c2⟩
(if-then-else decisions don’t make sense on functions), which are excluded from
‚.

Suppose that c1, c2 ∈‚, i.e., ci 7→→ c′i final. It follows that if then c1 else c2 ∈
{True,False}‚ because

⟨True||if then c1 else c2⟩ 7→ c1 7→→ c′1 final

⟨False||if then c1 else c2⟩ 7→ c2 7→→ c′2 final

Definition 3.2.6 (Pole). A pole ‚ can be any chosen set of commands that is
closed under expansion: c ∈‚ whenever c 7→ c′ ∈‚.

3.3 Logic of orthogonality

Intuition: orthogonality in an abstract machine follows similar laws as negation
in intuitionistic logic. In other words, we can interpret logical implication (⇒)
as set inclusion (⊆) and logical negation (¬) as orthogonality ( ‚) [4] (ch. VII).

Notation: A± stands for either a set of machine terms or a set of machine
continuations (your choice). Given several such sets, A±

1 , . . . ,A±
n , assume that

the same choice is made for each of them (they are all sets of terms, or sets of
continuations). The opposite choice is written A∓.

Property 3.3.1 (Contrapositive). If A± ⊆ B±, then B±‚ ⊆ A±‚.

Proof. Without loss of generality, assume that A± = A+ and B± = B+ are sets
of machine terms (the other case follows dually), and suppose A+ ⊆ B+.

Given an arbitrary machine continuation E ∈ B+‚, we must show that
E ∈ A+‚. In other words, given that v′ ‚ E for all v′ ∈ B+ (the definition of
B+‚) we must prove that v′ ‚ E for all v ∈ A+ (the definition of B+‚). Since
A+ ⊆ B+, any v ∈ A+ is also a v ∈ B+, which forces v ‚ E because of the
definition of E ∈ B+‚. Therefore, E ∈ A+‚ by definition of orthogonality.

Property 3.3.2 (Double Orthogonal Introduction). A± ⊆ A±‚‚.

Proof. Without loss of generality, assume that A± = A+ is a set of machine
terms (the other case follows dually).

Suppose v ∈ A+, and we must now show that v ∈ A+‚‚, i.e., that v ‚ E
for all E ∈ A+‚. By definition of A+‚, it must be that v ‚ E for any E ∈ A+‚.
Therefore, v ∈ A+‚‚ by definition of orthogonality.

Property 3.3.3 (Triple Orthogonal Elimination). A±‚‚‚ = A±‚.

Proof. Exercise left to reader. Hint: Follows directly from double orthogonal
introduction and contrapositive, i.e., you do not need to refer to the definition
of ‚. To show the two sides are equal, you can prove A±‚‚‚ ⊆ A±‚ and
A±‚‚‚ ⊇ A±‚ separately.
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Other logical connectives can be understood as set operations. Conjunc-
tion (∧) corresponds to set union (∪) and disjunction (∨) corresponds to set
intersection (∩).

Property 3.3.4 (De Morgan Laws).

1. (A± ∪ B±)‚ = A±‚ ∩ B±‚

2. (A± ∩ B±)‚ ⊇ A±‚ ∪ B±‚

3. There (may) exist instances where (A± ∩ B±)‚ ̸⊆ A±‚ ∪ B±‚

Proof. (1) (A± ∪ B±)‚ = A±‚ ∩ B±‚ and (2) (A± ∩ B±)‚ ⊇ A±‚ ∪ B±‚ are
left as an exercise to the reader.

To show the failure of (3), we only need to exhibit a concrete example of ‚,
A±, and B± where the subset inclusion fails.

Suppose that ‚ is the safety pole (definition 3.2.5)

‚ = {c | ∃ final c′ s.t. c 7→→ c′}

and that there is at least one command ℧ not in ‚. For example, we might
have the fatal type error ℧ = ⟨True||False ·α⟩ /∈‚.

Now, consider this if thenelse continuation that is always unsafe for either
boolean value:

E℧ = if then℧ else℧

and notice that

E℧ /∈ {True}‚ because ⟨True||E1⟩ 7→βBool 1
℧ not final

E℧ /∈ {False}‚ because ⟨False||E2⟩ 7→βBool 2
℧ not final

so this continuation is not found in the union of the two orthogonals,

E℧ /∈ {True}‚ ∪ {False}‚

However, this continuation is found in the orthogonal of intersection

E℧ ∈ ({True} ∩ {False})‚

because the intersection {True} ∩ {False} = {} is empty! So by definition,
({True} ∩ {False})‚ = {}‚ is the largest set such that {} ‚ {}‚. Since there
are no terms to consider — and therefore no reason to rule out any continuation as
unsafe — {}‚ contains every continuation of the machine language. Specifically,
E℧ ∈ {}‚.
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3.4 Semantic types

In the type system of the abstract machine, a syntactic type categorizes both a
term and a continuation.

Likewise, the semantics of a type should specify both all the terms included
in that type as well as all the continuations included in that type [10, 12].

But how do we know if such a definition of a semantic type is good? It needs
to be both

• sound — meaning that interactions allowed by the type are all safe, and

• complete — meaning that anything that could be safely included is. In
other words, terms and continuations are only excluded when there is a
reason they would be unsafe.

In particular, soundness justifies the safety of the Cut rule. Completeness ensures
there is enough stuff in the type, and in particular, lets us reason by inversion
on some canonical constructions.

Definition 3.4.1 (Orthogonal Candidate). A pre-candidate for the semantic
interpretation of a type is a pair A = (A+,A−) where

• A+ is a set of machine terms, and

• A− is a set of machine continuations.

A ‚-orthogonal candidate for the semantic interpretation of a type is a pre-
candidate (A+,A−) such that A+ = A−‚ and A− = A+‚. In other words, every
‚-orthogonal candidate is

• sound, meaning that A+ ‚ A−, i.e.,

∀v ∈ A+, E ∈ A−, v ‚ E

equivalent to the fact that A+ ⊆ A−‚ and A− ⊆ A+‚, and

• complete, meaning that

– v ∈ A+ whenever v ‚ E for all E ∈ A−, equivalent to the fact that
A−‚ ⊆ A+, and

– E ∈ A− whenever v ‚ E for all v ∈ A+, equivalent to the fact that
A+‚ ⊆ A−

But how do we make one of these things? Two ways:

• Positive: Start with your collection of “canonical” constructions (terms).
Pick all the continuations that are safe with those canonical terms. Then
pick any (additional) terms that are compatible with those continuations.

In symbols, if you start with the set C+ of canonical term constructions,
then the positive ‚-orthogonal candidate containing C+ is:

Pos(C+) = (C+‚‚,C+‚)
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• Negative: Start with your collection of “canonical” observations (continua-
tions). Pick all the terms that are safe with those canonical observations.
Then pick any (additional) continuations that are compatible with those
terms.

In symbols, if you start with the set C− of canonical observation construc-
tions, then the negative ‚-orthogonal candidate containing C− is:

Neg(C−) = (C−‚,C−‚‚)

Why do these work?

Property 3.4.2. For any set of terms C+ and continuations C−, both Pos(C+)
and Neg(C−) are ‚-orthogonal candidates.

Proof. Since the positive and negative cases are perfectly symmetric, consider
just the case of Pos(C+) below.

By definition, Pos(C+) = (C+‚‚,C+‚). Note that the term side C+‚‚
is equal to the orthogonal to the continuation side, (C+‚)‚, by definition.
Furthermore, the continuation side C+‚ is equal to the orthogonal of the term
side, (C+‚‚)‚, by triple orthogonal elimination.

Example positive semantics for booleans:

JBoolK = Pos({True,False})
JBoolK− = {True,False}‚ = {E | True ‚ E and False ‚ E}

JBoolK+ = {True,False}‚‚ = {v | ∀E, True ‚ E and False ‚ E implies v ‚ E}

True,False ∈ JBoolK = {True,False}‚‚ by double orthogonal introduction.
For any c1, c2 ∈ ‚, we have if then c1 else c2 ∈ JBoolK = {True,False}‚

because ‚ is closed under expansion.

⟨True||if then c1 else c2⟩ 7→ c1 ∈‚ so ⟨True||if then c1 else c2⟩ ∈‚
⟨False||if then c1 else c2⟩ 7→ c2 ∈‚ so ⟨False||if then c1 else c2⟩ ∈‚

If c[E/α] for any E ∈ JBoolK−, then µα.c ∈ JBoolK+ = JBoolK−‚
because

‚ is closed under expansion. Given any E ∈ Bool−,

⟨µα.c||E⟩ 7→ c[E/α] ∈‚ so ⟨µα.c||E⟩

Example negative semantics for functions:

JA→ BK = Neg({v · E | v ∈ JAK+, E ∈ JBK−})
JA→ BK+ = {v | ∀v′ ∈ JAK+, E ∈ JBK−, v ‚ v′ · E}
JA→ BK− = {E | ∀v, (∀v′ ∈ JAK+, E ∈ JBK−, v ‚ v′ · E) implies v ‚ E}

If v ∈ JAK+ and E ∈ JBK−, then v · E ∈ JA→ BK by double orthogonal
introduction.
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If v[v′/x] ∈ JBK+ for all v′ ∈ JAK+ and JBK is a ‚-orthogonal candidate, then
λx.v ∈ JA→ BK+ because ‚ is closed under expansion. Given any v′ ∈ JBK+,
E ∈ JBK−,

⟨λx.v||v′ · E⟩ 7→ ⟨v[v′/x]||E⟩ (β→)

∈‚ (soundness: JBK+ ‚ JBK−)
⟨λx.v||v′ · E⟩ ∈‚ (expansion of ‚)

3.5 Interpretation of types

Goal: Interpret typing judgments, c : (Γ ⊢ ∆), etc., as statements.
Environments Γ and ∆ are interpreted as specifications on (simultaneous)

substitutions, σ = v1/x1, . . . , vn/xn, E1/α1, . . . , En/αn.

JΓK = {σ | ∀x:A ∈ Γ, x[σ] ∈ JAK+}
J∆K = {σ | ∀α:A ∈ ∆, α[σ] ∈ JAK−}

Semantic judgments:

c : (Γ ⊨ ∆) = ∀σ, σ ∈ JΓK and σ ∈ J∆K implies c[σ] ∈‚
Γ ⊨ v : A | ∆ = ∀σ, σ ∈ JΓK and σ ∈ J∆K implies v[σ] ∈ JAK+

Γ | e : A ⊨ ∆ = ∀σ, σ ∈ JΓK and σ ∈ J∆K implies e[σ] ∈ JAK−

Lemma 3.5.1 (Adequacy). For any pole ‚,

1. If c : (Γ ⊢ ∆) is derivable, then c : (Γ ⊨ ∆) holds.

2. If Γ ⊢ v : A | ∆ is derivable, then Γ ⊨ v : A | ∆ holds.

3. If Γ | E : A ⊢ ∆, then Γ | E : A ⊨ ∆ holds.

Proof. By induction on the structure of the given typing derivation.

Theorem 3.5.2 (Boolean Command). If c : (• ⊢ α : Bool) then c 7→→ ⟨True||α⟩
or c 7→→ ⟨False||α⟩.

Proof. First, set ‚ to the safety pole

‚ = {c | ∃ final c′ s.t. c 7→→ c′}

where the only final commands are ⟨True||α⟩ and ⟨False||α⟩. Note that this forces
α ∈ JBoolK−. As such, the identity substitution α/α is a valid instance of the
output environment Jα : BoolK.

From adequacy, the derivation of c : (• ⊢ α : Bool) ensures c : (• ⊨ α : Bool).
Therefore, c[α/α] = c ∈‚, in other words, c 7→→ ⟨True||α⟩ or c 7→→ ⟨False||α⟩.

Corollary 3.5.3 (Boolean Decision). If • ⊢ v : Bool | • then ⟨v||α⟩ 7→→ ⟨True||α⟩
or ⟨v||α⟩ 7→→ ⟨False||α⟩.
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Exercise 3.5.4. The boolean semantic type can be generalized to the sum semantic
type defined as this positive candidate:

JA⊕BK = Pos
(
{Left v | v ∈ JAK+} ∪ {Right v | v ∈ JBK+}

)
Use adequacy to prove that

Theorem 3.5.5 (Constructive Decision). If • ⊢ v : A ⊕ B | • then ⟨v||α⟩ 7→→
⟨Left v′||α⟩ for some v′ ∈ JAK+, or ⟨v||α⟩ 7→→ ⟨Right v′||α⟩ for some v′ ∈ JBK−.

Exercise 3.5.6. A semantic version of the existential quantification over numbers,
∃x:N.P (x), can be interpreted as a positive candidate:

J∃x:N.P (x)K = Pos({(n, v) | n ∈ N, v ∈ JP (n)K+})

Use adequacy to prove that

Theorem 3.5.7 (Constructive Decision). If • ⊢ v : ∃x:N.P (x) | • then ⟨v||α⟩ 7→→
⟨(n, v′)||α⟩ for some n ∈ N and v′ ∈ JP (n)K+.

3.6 Equational reasoning — generalizing to bi-
nary relations

The model above (built on c : (Γ ⊨ ∆), Γ ⊨ v : A | ∆, and Γ | E : A ⊨ ∆) is
good for describing unary predicates that ask a question about just one thing: is
this expression type safe, does this expression terminate, etc. This matches the
unary nature of typing judgments deciding that just one expression (command,
term, or continuation) is well-typed at a time. These questions can be asked
(and answered) by strategically capturing the main predicate on commands in
the choice for ‚, and the rest of the model for types compatible with that ‚
follows automatically.

But what about binary relationships that ask a question about two things:
are these two terms equivalent in any well-typed closing context, so that they
would always produce the same answer? For example, you might want to ask
if you can prove two commands equal using axioms as c =µβη c′, then are
they contextually/observationally equivalent (and similar for v =µβη v′ : A and
E =µβη E′ : A)? Such questions aren’t easy to answer by just instantiating the
choice of the set ‚.

Instead, if you want to ask a binary question, you should have a binary model.
Thankfully, the extension of the above model to binary relationships is pretty
straightforward — fundamentally it does all the same things, just doubling up
everything [4] (ch. VII).

The important first step is to generalize the pole ‚ to be a binary relation on
commands, i.e., a set containing pairs of commands which we decide are related.
The crucial closure under expansion property then says that commands c1, c2
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are always related when they step to related commands c′1, c
′
2 in the future:1

if ci 7→→ c′i (for i ∈ {1, 2}), and (c1,
′ c′2) ∈‚ then (c1, c2) ∈‚

From there, the notion of orthogonality is also generalized to judge the
compatibility pairs of related terms with pairs of related continuations:

(v, v′) ‚ (E,E′) iff (⟨v||E⟩, ⟨v′||E′⟩) ∈‚
And pre-candidates now store a binary relation on terms (i.e., a set of pairs
of terms that are related) and a binary relation on continuations (i.e., a set
of pairs of continuations that are related). The definition of the orthogonal
to a binary relation A±‚ finds the biggest relation (i.e., biggest set of related
pairs) that is ‚-compatible with A, similar to before. After that point, the same
logical properties of orthogonality still hold (contrapositive, double orthogonal
introduction, triple orthogonal elimination, and the de Morgan laws), so that
you can follow the same path.

1The reason that I use the many-step 7→→ here is to allow for the fact that the two initial
commands c1, c2 may need to take a different number of steps before they are related in the
future. For example, in order to justify the inclusion of a single step in an equational theory

c 7→ c′

c = c′
Inclusion

we would know that (c′, c′) ∈ ‚ when ‚ is reflexive, and also c 7→→ c′ in one step whereas
c′ 7→→ c′ in zero steps.
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Chapter 4

Fixing Recursion

4.1 Two orders of candidates

Definition 4.1.1 (Partial Order). A partial order of a collection D is any binary
relation, x ≤ y for x, y ∈ D, with the following properties for all x, y, z ∈ D:

• Reflexivity: x ≤ x,

• Transitivity: if x ≤ y and y ≤ z then x ≤ z, and

• Antisymmetry: if x ≤ y and y ≤ x then x = y.

Note that partial orders do not need to be total ; there is no requirement that
for arbitrary x, y ∈ D, they must be ordered in one of the two possible ways —
either x ≤ y or y ≤ x.

Example 4.1.2. The subset relation — X ⊆ Y — is a partial order over sets.

Definition 4.1.3. Given semantic type pre-candidates A = (A+,A−) and
B = (B+,B−), the refinement (intuitively, containment) partial order between
candidates, written A ⊑ B, and the subtype partial order between candidates,
written A ≤ B are defined as [10, 12]

A ⊑ B = A+ ⊆ B+ and A− ⊆ B−

A ≤ B = A+ ⊆ B+ and A− ⊇ B−

Definition 4.1.4 (Orthogonal). The orthogonal of a pre-candidate is

(A+,A−)‚ = (A−‚,A+‚)

Notice that ‚-orthogonal candidates are exactly the pre-candidates which
are fixed points of orthogonality, A = A‚.

Property 4.1.5 (Fixed-point Candidates). A is a ‚-orthogonal candidate (ac-
cording to the previous definition) exactly when it is a fixed point of orthogonality,
A = A‚. Notably, the two properties of candidates are equivalent to the two
directions of this equality:

33
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• Soundness (A+ ‚ A−) holds iff A ⊑ A‚, and

• Completeness holds iff A‚ ⊑ A.

Property 4.1.6. Given any two ‚-orthogonal candidates A = (A+,A−) and
B = (B+,B−),

A ≤ B iff A+ ‚ B−

Property 4.1.7 (Refinement Orthogonal). Given any pre-candidate A,

1. Double orthogonal introduction: A ⊑ A‚‚.

2. Triple orthogonal elimination: A‚‚‚ = A‚.

Property 4.1.8 (Monotonicity & Antitonicity). Given any pre-candidates A
and B,

1. Antitonicity (a.k.a contrapositive): if A ⊑ B then A‚ ⊒ B‚.

2. Monotonicity: if A ≤ B then A‚ ≤ B‚.

Exercise 4.1.9. Prove the above double orthogonal introduction, triple orthog-
onal elimination, antitonicity, and monotonicity properties of refinement and
subtyping, in terms of the more basic properties of orthogonals on a single set
(chapter 3).

Can also (slightly) generalize the positive/negative construction of candidates
to take an initial sound pre-candidate ((C+,C−) = C ⊑ C‚) instead of just a
set, so that

Pos(C) = (C+‚‚,C+‚) Neg(C) = (C−‚,C−‚‚)

By doing so, we can position these candidates as the extremal cases of completions
of a sound but (potentially) incomplete C, meaning that they extend C

C ⊑ Pos(C) C ⊑ Neg(C)

and Pos(C) is the least (w.r.t subtyping) one to do so, whereas Neg(C) is the
greatest one (w.r.t subtyping). In other words, if you find any other ‚-orthogonal
candidate A extending C then it always happens to lie in between those two:

if C ⊑ C‚ and C ⊑ A = A‚ then Pos(C) ≤ A ≤ Neg(C)

4.2 Lattices of types — intersection and union

Definition 4.2.1 (Lattice). A collection D is a (binary, lower) semi-lattice with
respect to a partial order (≤) if:

• there is a least element ⊥ such that ⊥ ≤ x for all x ∈ D, and
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• for any two x, y ∈ D, there is a meet (a.k.a intersection) x ∧ y which is
the greatest lower bound of x and y, i.e.,

x ∧ y ≤ x x ∧ y ≤ y ∀z ∈ D, z ≤ x and z ≤ y implies z ≤ x ∧ y

Additionally, D is a (binary) lattice with respect to a partial order (≤) if:

• there is a greatest element ⊤ such that x ≤ ⊤ for all x ∈ D, and

• for any two x, y ∈ D there is a join (a.k.a union) x ∨ y which is the least
upper bound of x and y, i.e.,

x ≤ x ∨ y y ≤ x ∨ y ∀z ∈ D, x ≤ z and y ≤ z implies x ∨ y ≤ z

A complete lattice generalizes the binary operators over any (finite or infinite)
set of such elements.

Example 4.2.2. Sets ordered by subset inclusion (A ⊆ B) form a lower semi-
lattice with empty set {} as the least element and the usual set intersection
operation A ∩B.

Given any set U , subsets of U form a lattice where, in addition to the least
{} and intersection A∩B, there is a greatest set U and union A∪B ⊆ U for all
A ⊆ U and B ⊆ U .

Definition 4.2.3 (Refinement & Subtype Lattices). There are two complete
lattices over type pre-candidates: one with respect to refinement (A ⊑ B) and
one with respect to subtyping (A ≤ B). The binary refinement union/intersection
(⊔, ⊓) and subtyping union/intersection (∨,∧) are:

(A+,A−) ⊔ (B+,B−) = (A+ ∪ B+,A− ∪ B−)

(A+,A−) ∨ (B+,B−) = (A+ ∪ B+,A− ∩ B−)

(A+,A−) ⊓ (B+,B−) = (A+ ∩ B+,A− ∩ B−)

(A+,A−) ∧ (B+,B−) = (A+ ∩ B+,A− ∪ B−)

The pre-candidates ({}, {}) and (Term,Cont) are the least and greatest
pre-candidates, respectively, with respect to refinement.

The pre-candidates ({},Cont) and (Term, {}) are the least and greatest
pre-candidates, respectively, with respect to subtyping.

Property 4.2.4 (de Morgan). For all pre-candidates A and B:

1. (A ⊔ B)‚ = (A‚) ⊓ (B‚)

2. (A ⊓ B)‚ ⊒ (A‚) ⊔ (B‚)

Property 4.2.5 (Sound & Complete Refinement Semi-Lattices). The lower
refinement semi-lattice over pre-candidates preserves soundness and the upper re-
finement semi-lattice preserves completeness. Specifically, for any pre-candidates
A and B:
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1. ({}, {}) is (trivially) sound,

2. if A and B are sound, then so is A ⊓ B,

3. (Term,Cont) is (trivially) complete, and

4. if A and B are complete, then so is A ⊔ B.

Property 4.2.6 (Sound Subtyping Lattice). The complete lattice over pre-
candidates preserves soundness (in both directions), but does not necessarily
preserve completeness (in both directions).

Problem: A∨B might be missing some terms which could be soundly included,
and A ∧ B might be missing some continuations.

Solution: restore completeness to A∨B and A∧B so that if we put two (sound
& complete) ‚-orthogonal candidates in, we get another (sound & complete)
‚-orthogonal out [9].

Definition 4.2.7. There is a complete lattice over (sound and complete) ‚-
orthogonal candidates with respect to subtype order, with the binary union (⋎)
and intersection (⋏) between any ‚-orthogonal candidates A = (A+,A−) and
B = (B+,B−)

A⋎ B = (A ∨ B)‚‚ = Pos(A+ ∪ B+)

A⋏ B = (A ∧ B)‚‚ = Neg(A− ∪ B−)

and the least (∅) and greatest (

‚

) elements

∅ = Pos{} = (Cont‚,Cont)

‚

= Neg{} = (Term,Term‚)

Proof. Using de Morgan laws of orthogonality, along with the fact that ‚-
orthogonal candidates are fixed points of ‚. Notice that for any A = A‚ and
B = B‚, we have

A⋏ B ≤ A ∧ B ≤ A,B ≤ A ∨ B ≤ A⋎ B

where

A⋏ B = (A⋏ B)‚ A⋎ B = (A⋎ B)‚

but it may be the case that

A ∧ B ̸= (A ∧ B)‚ A ∨ B ̸= (A ∨ B)‚

This lattice gives us a semantic interpretation of intersection and union types,
where

JA ∧BK = JAK ⋏ JBK JA ∨BK = JAK ⋎ JBK

with all the correct subtyping properties.
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4.3 Recursive types — induction and coinduc-
tion

4.3.1 Variations on induction

How to define the set of numbers?

Incremental Kleene fixed point

Kleene fixed point construction:

1. start with the empty set {},

2. at each step, build on the previous step (add 0 and the successor of every
number known before), then

3. the inductively-defined set is the limit (the union) of all the finite approxi-
mations generated from steps 1 and 2.

N0 = {}
N1 = {0}
N2 = {0, 1}
N3 = {0, 1, 2}

...

Ni+1 = {0} ∪ {n+ 1 | n ∈ Ni}
...

N∞ =

∞⋃
i=0

Ni

N+1(X) = {0} ∪ {n+ 1 | n ∈ X}
Ni+1 = N+1(Ni)

Ni = Ni
+1{}

This works because N+1 is monotonic, for all X ⊆ Y , N+1(X) ⊆ N+1(Y ).
Therefore, N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Ni ⊆ Ni+1.

Kleene-construction of an inductive type of numbers [7]:

N0 = Pos{} = ∅
Ni+1 = Pos ({Zero} ∪ {Succ v | v ∈ Ni})

N∞ =

∞j

i=0

Ni
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works because

N+1(A) = Pos ({Zero} ∪ {Succ v | v ∈ A})
Ni+1 = N+1(Ni)

Ni = Ni
+1(∅)

and N+1 is monotonic with respect to subtyping (not refinement!) — for all
A ≤ B, N+1(A) ≤ N+1(B) — so that

N0 ≤ N1 ≤ N2 ≤ · · · ≤ Ni+1 ≤ · · · ≤ N∞

Inductive sized types

Directly naming types for each of these approximations gives a direct interpre-
tation of sized types, where the i-indexed family Nat i corresponds to natural
numbers strictly less than size i [11]:

dataNat : Size→ Typewhere

Zero : Nat (i+ 1)

Succ : ∀i: Size . Nat i→ Nat (i+ 1)

JNat iK = Ni (if i is a size index)

JAnyNatK = J∃i: Size . Nat iK =

∞j

i=0

Ni = N∞

Exercise 4.3.1. There are a few variations on this kind of definition. You could
tighten this to an type describing the number of the exact size measured

dataNat= : Size→ Typewhere

Zero : Nat= 0

Succ : ∀i: Size . Nat= i→ Nat= (i+ 1)

or you could further generalize to strong induction over the size (no longer an
indexed family)

dataNat<(i : Size) : Typewhere

Zero : Nat< i

Succ : ∀j < i. Nat< j → Nat< i

Write down the definition of the ‚-orthogonal candidates for the instances of
Nat= and Nat< at each i.

Suppose v ∈
b∞

i=0 Ni. Is there some specific approximation, n, such that
v ∈ Nn? Maybe not!

∞j

i=0

Ni =

( ∞∨
i=0

Ni

)‚‚
= Pos

( ∞⋃
i=0

N+
i

)
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In particular it may be possible (depending on ‚ and the expressions in the
language), that a term which unfolds to infinite successors Succ(Succ(Succ(Succ(. . . ))))
is in the limit

b∞
i=0 Ni due to completeness, even though it is not in any of the

finite approximations Ni.

Direct Knaster-Tarski fixed point

Goal: be able to do standard induction on only the finite canonical values —
e.g., only consider the Zero and Succ v case for a previously-known v — even if
the limit of the whole type might include other weird, non-canonical values.

Knaster-Tarski fixed point solution: the greatest lower bound of over-
approximations [7]

N =
k
{A ∈‚-orthgonal candidates | Zero ∈ A and v ∈ A implies Succ v ∈ A}

We know that

• Zero ∈ N, and

• Succ v ∈ N for all v ∈ N

because they are in all (over)-approximations A.
But even if there are other terms in N, we can still do induction!
Suppose

Zero ‚ E v ‚ E implies Succ v ‚ E

We have the ‚-orthogonal candidate Neg{E}— where E ∈ Neg{E} from double
orthogonal introduction — such that

• Zero ∈ Neg{E}, and

• Succ v ∈ Neg{E} for all v ∈ Neg{E}.

That means

N ≤ Neg{E}

and thus

E ∈ N

by definition of ≤ on pre-candidates (Hint: subtyping flows backwards for
continuations, where A ≤ B means all continuations of B− must also be found
in A−).

In other words, E only needs to consider the canonical cases of numbers —
Zero and Succ v assuming v already works — even though N may have many
other non-canonical terms.
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4.3.2 Variations on coinduction

Because ‚-orthogonal candidates are naturally dual, coinduction works by just
flipping the roles between the term side and continuation side.

Incremental Kleene fixed point

Streams can be seen as a codata type

codata Stream (A : Type) : Typewhere

Head : StreamA→ A

Tail : StreamA→ StreamA

You can incrementally build up the set of all basic stream projections similar to
the plain set of natural numbers as:

S0(A) = {}
S1(A) = {HeadE | E ∈ A}
S2(A) = {HeadE | E ∈ A} ∪ {Tail(HeadE) | E ∈ A}
S2(A) = {HeadE | E ∈ A} ∪ {Tail(HeadE) | E ∈ A} ∪ {Tail(Tail(HeadE)) | E ∈ A}

...

Si+1(A) = Si(A) ∪ {TailE | E ∈ Si(A)}
...

S(A) =
∞⋃
i=0

Si = {Taili(HeadE) | i ∈ N, E ∈ A}

But this is woefully incomplete to describe the semantics of a type like
StreamA.

Trick: build a negative ‚-orthogonal candidate, perfectly symmetric to the
method used for Nat.

The Kleene-construction of a coinductive type of streams [7]:

S0(A) = Neg{} =

‚

Si+1(A) = Neg ({HeadE | E ∈ A} ∪ {TailE | E ∈ Si(A)})

S∞(A) =
∞k

i=0

Si(A)

works because

S+1(A)(B) = Neg ({HeadE | E ∈ A} ∪ {TailE | E ∈ B})
Si+1(A) = S+1(A)(Si(A))

Si(A) = S+1(A)i(

‚

)
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and S+1(A) ismonotonic with respect to subtyping — for all B ≤ C, S+1(A)(B) ≤
S+1(A)(C). So that,

S0(A) ≥ S1(A) ≥ S2(A) ≥ · · · ≥ Si+1(A) ≥ · · · ≥ S∞(A)

Sized coinductive types

Approximations Si(A) limit the size of the observations you can make on a stream
(rather than on the stream itself) — after a certain depth of projection, there is
no longer any constraint on how the stream might respond. Sized types let you
directly naming these finite approximations. The i-indexed family StreamA i
corresponds to the streams that correctly respond to projections strictly less
than size i [11]:

codata StreamA : Size→ Typewhere

Head : ∀i: Size . StreamA (i+ 1)→ A

Tail : ∀i: Size . StreamA (i+ 1)→ StreamA i

JStreamA iK = Si(A)

JInfStreamAK = J∀i: Size . StreamA iK =

∞k

i=0

Si(JAK) = S∞(JAK)

Exercise 4.3.2. As with sized induction, there are a few variations on this kind of
sized coinductive codata type. You could tighten the type of streams to describe
a measurement of the exact size of depth you are allowed to look into the stream
(no more, no less) as

codataStream= A : Size→ Typewhere

Head : Stream= A 0→ A

Tail : ∀i: Size .Stream= A (i+ 1)→ Stream= A i

or you could further generalize to strong coinduction over the depth of tail
projections (no longer an indexed family)

codataStream< (A : Type) (i : Size) : Typewhere

Head : Stream< A i→ A

Tail : ∀j < i. Stream< A i→ Stream< A j

Again, for certain design decisions (choices of ‚ and the machine language
in question), it may be possible to program infinite loops, which will endlessly
inspect deeper into a stream without end, corresponding to the projection
Tail(Tail(Tail(. . . ))) that end up the limit

c∞
i=1 Si(A), even though it is not in

any of the finite approximations Si(A) leading up to it.
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Direct Knaster-Tarski fixed point

Goal: be able to do coinduction on only the finite canonical observations — e.g.,
only consider the HeadE (for an E expecting an element) and TailE (for a
previously-known E) destructors — even if the limit of the whole type might
include other weird, non-canonical observations.

The dual Knaster-Tarski fixed point solution: the least upper bound of under
approximations [7]:

S(A) =
j {B ∈‚-orthogonal candidates | HeadE ∈ B for all E ∈ A and

TailE ∈ B for all E ∈ B}

We know that

• HeadE ∈ S(A) for all E ∈ A, and

• TailE ∈ S(A) for all E ∈ S(A)

because they are in all (under)-approximations B.
But we can still do coinduction (e.g., generate streams incrementally by their

Head and Tail) even if there are other “weird” observations!

Suppose

E ∈ A implies v ‚ HeadEv ‚ E implies v ‚ TailE

We have the ‚-orthogonal candidate Pos{v} — where v ∈ Pos{v} from double
orthogonal introduction — such that

• HeadE ∈ Pos{v} for all E ∈ A, and

• TailE ∈ Pos{v} for all E ∈ Pos{v}.

That means

Pos{v} ≤ S(A)

and thus

v ∈ S(A)

by definition of ≤ on pre-candidates.

In other words, v only needs to consider the canonical observations on streams
— HeadE when E expects an element from A and TailE assuming E already
works — even though S(A) may have many other non-canonical ways to observe
streams.
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4.4 Evaluation order — producers and consumers

Thus far, all consumers (continuations) and producers (terms) have been substi-
tutable [5]:

• A variable x may be substituted by any term v (according to the call-by-
name evaluation order).

• A covariable α may be substituted by any continuation E, which corre-
sponds exactly to the call-by-name evaluation contexts. This is because
every E that I can write is strict (it immediately uses its input).

Many other systems — with other evaluation strategies — need a more sophisti-
cated definition than ‚-orthogonality (A = A‚) to ensure that soundness and
completeness give the properties you need.

4.4.1 Non-strictness in call-by-name

Suppose we want to add a let-binding to our language.

⟨letx = N inM ||E⟩ 7→ ⟨N ||letx in ⟨M ||E⟩⟩

This is the dual of µ [3]: a let names its input, the same way that µ names its
continuation. So we could compile let to µ̃ in honor of this duality — writing
letx in c as µ̃x.c — so that

(letx = N inM) = µα.⟨N ||µ̃x.⟨M ||α⟩⟩
⟨v||µ̃x.c⟩ 7→ c[v/x] (µ̃)

c : (Γ ⊢ α : A,∆)

Γ ⊢ µα.c : A | ∆ ActR
c : (Γ, x : A ⊢ ∆)

Γ | µ̃x.c : A ⊢ ∆
ActL

and there is a generalized syntax e of non-strict continuations,

c ::= ⟨v||e⟩
e ::= E | µ̃x.e E ::= α | v · E | if then c else c′

v ::= x | µα.c | λx.v | True | False

With the addition of µ̃ — with its operational reduction and typing rules
— you can no longer show that the interpretation of a A has all the well-typed
terms. In particular, you may know that

for all v ∈ {True,False}, ‚ ∋ c[v/x]← [ ⟨v||µ̃x.c⟩ ∈‚
so that µ̃x.c ∈ JBoolK− = {True,False}‚. But now, knowing only that

for all E ∈ JBoolK−, ‚ ∋ c′[E/α]← [ ⟨µα.c′||E⟩ ∈‚
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is not enough to show that µα.c′ ‚ µx.c, so completeness isn’t strong enough to
conclude that µα.c′ ∈ JBoolK+, even though it should be because

c′[µ̃x.c/α] ̸← [ ⟨µα.c′||µ̃x.c⟩ 7→ c[µα.c′/x]

In general, the näıve positive candidate

Pos(C) = (C‚‚,C‚)

might not let you show that it includes some terms which are safe with all strict
(i.e., substitutable) continuations in C‚, but we don’t know anything about the
interaction with non-strict continuation which seize control of the command.

4.4.2 Computation in call-by-value

Suppose instead we want to study call-by-value evaluation. In call-by-value,
there are non-value terms that we want to evaluate first, instead of substituting
them into a variable. A call-by-value version of the abstract machine looks like:

c ::= ⟨v||E⟩
v ::= V | µα.c V ::= x | λx.v | True | False
E ::= α | µ̃x.c | V · E | if then c else c′

⟨µα.c||E⟩ 7→ c[E/α] (µ)

⟨V ||µ̃x.c⟩ 7→ c[V/x] (µ̃)

⟨λx.v||V · E⟩ 7→ ⟨v[V/x]||E⟩ (β→)

same as before (βBool)

The same problem happens, where now you can have non-values in a negative
type like JA→ BK, where

for all E ∈ JA→ BK−, ‚ ∋ ⟨µα.c||E⟩ ←[ c[E/α] ∈‚
but now there can be non-canonical continuations like µ̃x.c′ which should be in
JA→ BK because

for all V ∈ JA→ BK+, ‚ ∋ ⟨V ||µ̃x.c′⟩ ←[ c′[V/x] ∈‚
but completeness can’t prove that µ̃x.c′ ∈ JA→ BK− because

c[µ̃x.c′/α]← [ ⟨µα.c||µ̃x.c′⟩ ̸7→ c′[µα.c/x]

In general, the näıve negative candidate

Neg(C) = (C‚,C‚‚)

might not let you show that it includes some continuations which are safe with
all immediate (i.e., substitutable) values in C‚, but we don’t know anything
about the interaction with non-value computations which seize control of the
command.
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4.4.3 Sharing in call-by-need

Call-by-need reduction delays performing computations until they are “needed,”
but when they are needed it shares the work performed by the computation by
reusing the returned value in the future.

Call-by-need evaluation has both of the problems above, because it has both

• non-substitutable terms (µα.c) representing computations which can’t be
copied because we need to remember to copy the first value it returns to
all future observers, and

• non-substitutable, continuations (µ̃x.c) representing non-strict consumers
that don’t need their input yet.

As such, both Pos(C+) and NegC−, as defined above, provides a notion of
completeness that is too weak in practice.

4.4.4 Non-determinism in unrestricted reduction

In contrast, we could try removing the restriction on the µ and µ̃ reduction rules,

⟨µα.c||e⟩ 7→ c[e/α] (µ)

⟨v||µ̃x.c⟩ 7→ c[v/x] (µ̃)

so that the critical pair

c[µ̃x.c′/α]← [ ⟨µα.c||µ̃x.c′⟩ 7→ c′[µα.c/x]

can choose to go in either direction.
This causes a different sort of problem. Now, even if you know that

for all e ∈ JAK−, ‚ ∋ ⟨µα.c||e⟩ ←[ c[e/α] ∈‚
you might find a counter-example to safety by following the other reduction
path, where there is a µ̃x.c′ ∈ JAK− such that

‚ ∋ c[µ̃x.c′/α]← [ ⟨µα.c||µ̃x.c′⟩ 7→ c′[µα.c/x] /∈‚

4.4.5 Strengthening completeness — the (co)value restric-
tion

Suppose that there are some chosen subset of terms called values, and some subset
of continuations called covalues (read as your choice of either “continuation
values” or “the dual of values”),

Value ⊆ Term CoValue ⊆ Continuation

such that any Value contains exactly the terms substitutable by µ̃ reduction and
CoValue contains exactly the continuations substitutable by the µ rule.
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Idea: completeness shouldn’t require that you prove something works with all
(potentially non-substitutable, non-strict, non-(co)value) opposing sides. Instead,
you should only have to show that a potential term/continuation is safe with
just the substitutable covalues/values it might interact with.

The (co)value restriction on a pre-candidate A is [17]

Av = A ⊓ (Value,CoValue)

so that Av keeps only the (co)values from A.

Property 4.4.1.

1. Idempotency: Avv = Av

2. Refinement: Av ⊑ A

3. ‚-Extension: A‚ ⊑ Av‚

4. Restricted double orthogonal introduction: Av ⊑ Av‚v‚v

5. Restricted triple orthogonal elimination: Av‚v‚v‚v = Av‚v

Proof. Properties 1 and 2 follow from the definition of Av (as a greatest lower
bound) and 3 follows from contrapositive.

The final properties are left as an exercise for the reader.

Definition 4.4.2 (Orthogonal Candidate). A (co)value restricted ‚-orthogonal
candidate is any pre-candidate A such that A = A‚ = Av‚.

In other words, a (co)value restricted ‚-orthogonal candidate has the same
soundness property as ordinary ‚-orthogonal candidates, as well as this strength-
ened completeness property:

• v ∈ A+ whenever v ‚ E for all E ∈ Av−, equivalent to the fact that
A−v‚ ⊆ A+, and

• e ∈ A− whenever V ‚ e for all V ∈ Av+, equivalent to the fact that
A+v‚ ⊆ A−

Notice that because ‚-extension, A‚ ⊑ Av‚, always holds, the interesting
informational content of the double-fixed point A = A‚ = Av‚ is

Av‚ ⊑ A ⊑ A‚

In other words, these double-fixed points guarantee the same (strong) soundness
property before which ensures safety of any combination between the two sides
of A, but the stronger completeness property means we only need to show that
terms/continuations are safe with respect to (co)values of Av in order to prove
they are in A.
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How do we make these double-fixed points? Can generalize the positive/negative
construction of a candidate from an initial set of canonical constructions C+ ⊆
Value or canonical observations C− ⊆ CoValue as:

Posv(C+) = (C+,C+‚)v‚v‚ Negv(C−) = (C−‚,C−)v‚v‚

This definition works for positive definitions in call-by-name and negative defini-
tions in call-by-value. It also works for other evaluation strategies like call-by-need
(or its dual).

Moreover, this “generalized” definition is equal to the simple ones in the
most auspicious circumstances [10]

Property 4.4.3.

• Whenever CoValue = Cont (as in call-by-value), Posv(C+) = Pos(C+).

• Whenever Value = Term (as in call-by-name), Negv(C−) = Neg(C−).

4.4.6 Strengthening soundness — symmetric fixed points

To handle non-determinism, we can only reason about terms based on what
actions they are responsible for — reductions induced by only the continuation
cannot be known. Dually, to prove properties about continuations, we should
only have to describe what behaviors are caused by that continuation, irrespective
of what its input might do if it takes control.

Idea: generalize the symmetric orthogonality operation,

(A+,A−)‚ = (A−‚,A+‚),

to instead be an asymmetric saturation operation,

(A+,A−)s = (A−s+,A+s−).

Each side only considers only the actions it actively participates in: the
terms in A−s+ cannot be the one responsible for causing a problem, and the
continuations in A+s− cannot be blamed for causing a problem.

But it still might be the case that A+ ̸‚ A+s− (or A−s+ ‚ A−) due to
non-determinism.

Key lemma: at the fixed point, A = As implies A = A‚! [1]

Definition 4.4.4 (Symmetric Candidate). A symmetric candidate is a pre-
candidate A such that A = As (and thus A = A‚ as well).

Idea: if we can find fixed points of s that have the required canonical
constructions/observations, then we can always construct symmetric candidates
of arbitrary types.

Lemma 4.4.5. If C is self-orthogonal (i.e., C ⊑ C‚, i.e., C+ ‚ C−), and
contains only deterministic terms and continuations, then there is a symmetric
candidate A such that C ⊑ A = As = A‚.
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Proof (sketch). The key fact is that saturation s has similar logical properties
as orthogonality [10], importantly,

• Monotonicity: if A ≤ B then As ≤ Bs.

• Contrapositive (a.k.a antitonicity) if A ⊑ B then As ⊒ Bs.

Because of monotonicity with respect to subtyping, we know that we can find
fixed points via the Knaster-Tarski fixed point theorem.

So lets build the fixed point to this subtyping-monotonic operation:

Next(C)(A) = C ⊔ As

Both C ⊔ and s are monotonic (w.r.t. subtyping), and so is Next(C). In other
words, Knaster-Tarski’s fixed point theorem ensures there is an A such that

A = C ⊔ As

From there, it can then be shown that A = As (because C ⊑ As, due to
deterministic reduction of the inhabitants of C) so that A ⊑ A‚, and thus

C ⊑ As = A = A‚

This construction is much more powerful (in the way it handles nondeter-
minism) but much more vague (by not giving a finitely-defined fixed point like
before; in fact, it provides a complete lattice of possible symmetric candidates to
choose from). However, in the special case where reduction is deterministic, the
two notions of candidates coincide.

Property 4.4.6. Assuming 7→ is deterministic, any pre-candidate A is a re-
stricted ‚-orthogonal candidate (A = A‚ = Av‚) if and only if it is a symmetric
candidate (A = As).
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